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Abstract In this paper, a leader–follower competitive

facility location problem considering the reactions of the

competitors is studied. A model for locating new facilities

and determining levels of quality for the facilities of the

leader firm is proposed. Moreover, changes in the location

and quality of existing facilities in a competitive market

where a competitor offers the same goods or services are

taken into account. The competitor could react by opening

new facilities, closing existing ones, and adjusting the

quality levels of its existing facilities. The market share,

captured by each facility, depends on its distance to cus-

tomer and its quality that is calculated based on the prob-

abilistic Huff’s model. Each firm aims to maximize its

profit subject to constraints on quality levels and budget of

setting up new facilities. This problem is formulated as a

bi-level mixed integer non-linear model. The model is

solved using a combination of Tabu Search with an exact

method. The performance of the proposed algorithm is

compared with an upper bound that is achieved by applying

Karush–Kuhn–Tucker conditions. Computational results

showed that our algorithm finds near the upper bound

solutions in a reasonable time.

Keywords Competitive facility location � Bi-level mixed

integer nonlinear model � Karush–Kuhn–Tucker

conditions � Tabu Search algorithm

Introduction

A branch of location theory deals with locating the facili-

ties of companies and firms that exist in a competitive

market. The aim of these firms is to obtain the maximum

benefit from all of their facilities. In a competitive facility

location problem (CFLP), firms want to enter the market or

launch new facilities to compete with other firms that

already have facilities in the same market. In the first paper

on competitive facility location, Hotelling (1990) presented

a model for locating of two competitor facilities in a linear

market. In his model, customers prefer the closest one.

Huff (1964, 1966) developed this model and proposed

Huff’s gravity model. According to Huff’s model, the

probability that a customer patronizes a particular facility is

proportional to the attractiveness of the facility (for

example quality) and inversely proportional to the distance

between a facility and a customer.

The CFLPs are classified from different views. For

example, Rhim et al. (2003) classified these types of

problems into two categories based on their complexity: (1)

the number of entrants in the entry/location game (one or

more than one entrants), and (2) the consideration of

strategic variables (like price, production quantity and

capacity) in post entry/location game. ReVelle and Eiselt

(2005) divided the location space into two categories: (1)

d-dimensional and (2) network. Each of these categories

was subdivided into continuous and discrete problems.

Also, according to Ashtiani et al. (2013) demand points are

divided into inelastic or elastic, depending on whether the
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goods or services are essential or inessential. Furthermore,

Kress and Pesch (2012) proposed another classification of

CFLP that is related to game theory aspects. In this way,

competition can be static or dynamic. In a static competi-

tion, the locations and characteristics of competitors are

known in advance and assumed to be fixed, but in a

dynamic competition when a firm loses its market share to

a new competitor, it will mostly change its policy. A basic

categorization of CFLP is proposed by Kucukaydin et al.

(2011) that is based on the type of entry, namely simulta-

neous and sequential entry. In simultaneous-entry category,

the competing firms simultaneously decide on their facil-

ity’s location, whereas in the sequential-entry category

there exists a priority among competing firms in the market

that can react to entrance of new firms. The latter category

is based on Stackelberg’s equilibrium.

According to the Stackleberg’s equilibrium, the aim of

two competitors, including the leader (the firms that enter

into the market) and follower (the competitor firm that

exists in the market), is to find an optimal strategy for

themselves. This type of problem was proposed by Hakimi

(1983) for the first time. He introduced the new relevant

concepts consisting of (r|Xp)-medianoid and (r|p)-centroid.

The meaning of (r|Xp)-medianoid problem is that the fol-

lower wants to locate r new facilities in order to maximize

his objective function while the leader is locating p facili-

ties at a set of points: Xp. Also, the meaning of (r|p)-cen-

troid is that the leader wants to find the optimal location for

launching p new facilities while he knows that the follower

will react to the leader’s action by locating r new facilities.

Bi-level optimization model is used to solve such

problems in the literature. In a bi-level CFL optimization,

there are two independent players, called leader and fol-

lower, who act in a sequential way with aim of maximizing

their own objective functions. Here, the first level is

according to the leader problem and the second level is

about the follower problem. The leader makes a decision

with the foresight or anticipation on the follower’s deci-

sions. Drezner and Drezner (1998) proposed five heuristic

procedures for the multiple CFLP. In their study, a firm

with several facilities aims to locate a new facility in a

competitive market where competing facilities already

exist. In their work, they did not consider the reaction of

competitors.

Bhadury et al. (2003) solved the centroid problem on a

plane. The demand points were supposed to be discrete.

Two metaheuristic methods were based on the alternating

step. Saiz et al. (2009) proposed a branch-and-bound

approach for a Huff-like Stackelberg location problem.

Two competing firms intended to build a new facility in a

planar market and a gravity model determines the market

share captured by a firm in their study. Serra and ReVelle

(1999) introduced a model for the case that a retail firm

enters to a market, where a competing firm exists there.

The aim of the new entrant firm is to determine the location

and mill prices by forecasting the reaction of the com-

petitor. They developed a Tabu Search algorithm to solve

this problem. Redondo et al. (2009) studied a problem in

continuous space which in a firm aims to set up new

facilities in a competitive environment that other com-

petitors offering the same product or service. The aim of

their paper was to maximize the profit gained by the firm

while both the location and the quality of the new leader’s

facility has to be determined. They solved this problem

using random data sets with a robust evolutionary algo-

rithm. Redondo et al. (2010) studied a problem that similar

facilities of the follower and the leader are presented in the

market and the leader aims to set up a new facility in this

planar market. In this problem, the follower will locate

another single facility after the leader locates its own

facility. The demands are fixed and split through a gravi-

tational model between facilities in the market. Both the

location and the quality of the new leader’s facility could

be changed to maximize profit obtained by the leader after

the follower’s reaction. Four heuristics, including two

evolutionary algorithms, a grid search procedure, and an

alternating method was presented to solve this problem.

Redondo et al. (2011) presented a global optimization

memetic algorithm called UEGO-cent. SASS to cope with

a hard-to-solve optimization problem: maximizing the

profit obtained by the leader knowing that a competitor

reaction will be locating another single facility after the

leader locates a new facility.

Redondo et al. (2013) discussed about the (1|1)-centroid

problem. This means that a firm (leader) wants to launch a

single new facility in a planar market where similar facility

of itself and also that of the competitor (follower) exist.

The follower reacts into leader’s action by locating a new

facility. The aim of both leader and follower was to max-

imize the total profit obtained by their facilities. They

formulated this problem as a bi-level non-linear model that

could find the location and quality of facilities of both

leader and follower. Another model about competitive

facility location is proposed by Kucukaydin et al. (2012).

They formulated their model in a discrete space that the

number of new facilities of both leader and follower firm is

not fixed, but a subset of the same candidates is defined in

advance. In their model the leader firm is a new entrant into

the market and the follower as a competitor reacts to the

new entrant via opening new facilities, closing their

existing facilities or changing the level of attractiveness of

its facilities in the market.

In this paper, a leader and follower CFLP is considered

so that the leader firm owns facilities in the market and

decides to develop its activities by launching new facilities

and if necessary reconsidering the levels of quality of
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existing facilities. A bi-level model is designed for solving

this problem in a discrete space. In this model, it is

assumed that the competition is dynamic and customer

demands are deterministic, and also the probable behaviors

of customers are estimated based on Huff’s gravity rule. To

the best of our knowledge the existence of multiple facil-

ities for the leader firm and the quality levels of them have

not been considered in previous researches. This makes the

mathematical model more complex although the problem

becomes more realistic and practical. In addition, despite

the previous researches, there is no limit on the number of

new facilities of both leader and follower firms but there is

a limited budget available for launching new facilities.

A developed hybrid algorithm including Tabu Search

and exact method for solving this problem is proposed

which is described in the Sect. 3. The remainder of this

paper is organized as follows: in Sect. 2, the model for-

mulation is presented and in Sect. 3, the developed algo-

rithm for solving the proposed model is described.

Numerical examples are given in Sect. 4. Finally, the

conclusion and future work are provided in Sect. 5.

The model formulation

In this section, the proposed mathematical model is pre-

sented. There are two competitors as the leader and fol-

lower in the market. The leader firm that already has some

facilities in the market decides to promote its business by

launching new facilities or changing the quality levels of

the existing facilities. In this market, there is a competitor

firm that reacts to the leader’s action by launching new

facilities or changing the quality levels of its existing

facilities. It is assumed that the competition is dynamic and

customer’s demands are deterministic, and also the prob-

able behaviors of customers are estimated based on Huff’s

gravity rule. In addition, there is no limit on the number of

new facilities of both leader and follower firms, but there is

a limited budget available for launching new facilities. This

problem is formulated as bi-level nonlinear mixed integer

model. The notation is as follows:

Parameters:

j: Index of demand related to demand points

(customers), j = 1, 2, …, n.

s: Index of existing facilities of the leader firm,

=1, 2, …, m1.

i: Index of potential points for new facilities of the

leader firm, i = 1, 2, …, m2.

k: Index of existing facilities of the follower firm,

=1, 2, …, r1.

l: Index of potential points for new facilities of the

follower firm, l = 1, 2, …, r2.

hj: Purchasing power of demand point j.

cs: Cost or revenue of changing the quality level of

existing facility s of the leader firm.

ci: Unit quality cost of new facility i of the leader firm.

ek: Cost or revenue of changing the quality level of

existing facility k of the follower firm.

el: Unit quality cost of new facility l of the follower

firm.

gs: Revenue of closing an existing facility s of the leader

firm.

gk: Revenue of closing an exist facility k of the follower

firm.

fi: Fixed cost of launching a new facility i of the leader

firm.

fl: Fixed cost of launching a new facility l of the

follower firm.
�Us: Maximum quality level of existing facility s of the

leader firm.

Us: Minimum quality level of existing facility s of the

leader firm.
�Qi: Maximum quality level of new facility i of the leader

firm.
�Ak: Maximum quality level of existing facility k of the

follower firm.

Ak: Minimum quality level of existing facility k of the

follower firm.
�Ml: Maximum quality level of new facility l of the

follower firm.

B: Total available budget for launching new facilities of

the leader firm.
~B: Total available budget for launching new facilities of

the follower firm.

dsj: Distance between existing facility s of the leader firm

and demand point j.

dij: Distance between new facility i of the leader firm

and demand point j.

dkj: Distance between existing facility k of the follower

firm and demand point j.

dlj: Distance between new facility l of the follower firm

and demand point j.

Mj: The market share obtained from customers in

demand point j.

Variables:

Ts: 1; If the existing facility of the leader firm is kept open in the site s

0; Otherwise

�
:

Us: Quality level of existing facility of the leader firm

in the site s.

Xi: 1; If a new facility of leader firm is launched in the site i

0; Otherwise

�
:

Qi: Quality level of new facility of the leader firm in

site i.

Zk: 1; f the existing facility of the follower firm is kept open in the site k

0; Otherwise

�
:
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Ak Quality level of existing facility of the follower

firm in the site k.

Yl: 1; If a new facility of the follower firm is launched in the site l

0; Otherwise

�
:

Ml Quality level of new facility of the follower firm

in the site l.

Now the model can be formulated as the following bi-

level non-linear mixed integer problem:

P:

Max
Xn
j¼1

hj

Pm1

s¼1ðUs=d
2
sjÞ þ

Pm2

i¼1ðQi=d
2
ijÞPm1

s¼1ðUs=d
2
sjÞ þ

Pm2

i¼1ðQi=d
2
ijÞ þ

Pr1

k¼1ðAk=~d
2
kjÞ þ

Pr2

l¼1ðMl=~d
2
ljÞ

þ
Xm1

s¼1

gsð1 � TsÞ

�
Xm1

s¼1

csðUs � UsTsÞ �
Xm2

i¼1

ciQi �
Xm2

i¼1

fiXi:

ð1Þ

S.T:

Us � �UsTs 8s ¼ 1; 2; . . .;m1; ð2Þ

Qi � �QiXi 8i ¼ 1; 2; . . .;m2; ð3Þ
Xm2

i¼1

fi:xi �
Xm1

s¼1

gsð1 � TsÞ þ B; ð4Þ

Us � 0 8s ¼ 1; 2; . . .;m1; ð5Þ
Qi � 0 8i ¼ 1; 2; . . .;m2; ð6Þ
Ts 2 f0; 1g 8s ¼ 1; 2; . . .;m1; ð7Þ
Xi 2 f0; 1g 8i ¼ 1; 2; . . .;m2; ð8Þ

Max
Xn
j¼1

hj

Pr1

k¼1ðAk=~d
2
kjÞ þ

Pr2

l¼1ðMl=~d
2
ljÞPm1

s¼1ðUs=d2
sjÞ þ

Pm2

i¼1ðQi=d2
ijÞ þ

Pr1

k¼1ðAk=~d
2
kjÞ þ

Pr2

l¼1ðMl=~d
2
ljÞ

þ
Xr1

k¼1

gkð1 � ZkÞ �
Xr1

k¼1

ekðAk � AkZkÞ �
Xr2

l¼1

elMl �
Xr2

l¼1

~flYl:

ð9Þ

S.T.

Ak � �AkZk 8k ¼ 1; 2; . . .; r1; ð10Þ

Ml � �MlYl 8l ¼ 1; 2; . . .; r2; ð11Þ
Xr2

l¼1

~fl:Yl �
Xr1

k¼1

ek:ð1 � ZkÞ þ ~B; ð12Þ

Ak � 0 8k ¼ 1; 2; . . .; r1; ð13Þ
Ml � 0 8l ¼ 1; 2; . . .; r2; ð14Þ
Zk 2 f0; 1g 8k ¼ 1; 2; . . .; r1; ð15Þ
Yl 2 f0; 1g 8l ¼ 1; 2; . . .; r2: ð16Þ

In this model, the first level (constraint (1)–(8)) is along

with the decision of the leader firm and the second level

(constraint (9)–(16)) is related to the follower firm.

Expression (1) is the objective function that maximizes

the leader firm’s profit and consists of five parts: The first

part presents the value of obtained income from the

available facilities and launching the new facilities. The

second part shows the revenue derives from closing the

existing facilities in the site s, and the third section

demonstrates the income or the cost which results from the

changing of quality level. If in the optimal function we

have Us ¼ Us, it means that the present quality level of the

facility in the site s remains unchanged. However, if the

situation is Us �Us � �Us, the csðUs � UsÞ income will be

obtained. Also, if the situation is 0�Us �Us, the csðUs �
UsÞ revenue will be gained. The fourth and fifth sections of

expression present the expenses of quality level and

launching the new facilities, respectively.

Constraint (2) determines the upper limit for the quality

level of the existing facilities that belongs to the leader.

This constraint ensures that if no facility is opened at the

site s, then the corresponding quality of facility remains

zero and if a facility is opened, then its quality level cannot

exceed the maximum level, and similarly the constraint (3)

is about the quality level of new facilities that belong to the

leader. Constraint (4) ensures that cost of launching new

facilities of the leader will not exceed the summation of

available budget and revenue that derives from closing the

existing facilities of the leader firm. Constraints (5) and (6)

show that the quality variables are non-negative variables.

Furthermore, constraints (7) and (8) are the binary

restriction on leader’s location variables. The description of

second-level problem is same as the first level problem.

The described model is a (r|p)-centroid problem and a

lot of medianoid problems have to be solved for solving it.

These medianoid problems are possible reactions of the

competitor, called ‘‘scenarios’’. As the size of the problem

increases, the number of scenarios that follower firm can

take increases exponentially. For example, if the number of

existing facilities of the follower firm is two (r1 = 2) and

the number of potential location for its new facility is three

(r2 = 3), then the follower firm has a total of 25 possible

scenarios to react to the leader. It is impossible to examine

all possible scenarios when the size of problem becomes

larger, and exact methods (such as Branch and bound

(B&B) or Robust Optimization) are not effective. In a

number of papers, such as Kucukaydin et al. (2012) and

Redondo et al. (2013), it is shown that solving this problem

via B&B is excessively time-consuming though Ashtiani

et al. (2013) solved only small size of such problems with

robust optimization. In this paper a hybrid algorithm
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including Tabu Search and exact method is developed for

solving the problem. This algorithm is described in Sect. 3.

The developed hybrid algorithm

Tabu Search (TS) is a meta-heuristic algorithm that can be

superimposed on other procedures to prevent them from

getting trapped in local optimal solutions. Diversification

strategy guides prevent the algorithm from being trapped in

premature local optima or cycling, and intensification

strategy in case of finding a good solution keeps the search

around its neighbors. TS algorithm is being applied for

solving the first level and Branch and Bound for solving the

second level of the proposed model. These two algorithms

have been linked to solve the problem. To evaluate the

quality of the algorithm, the results are compared with an

upper bound that obtained from changing the bi-level

problem into a one-level via Karush–Kuhn–Tucker

(K.K.T) optimality conditions.

In the following, the operation of the proposed algo-

rithm is described after noting the calculation of the upper

bound.

Calculation of the upper bound

The K.K.T necessary and sufficient conditions for calcu-

lating the upper bound are as follows (Ghodsypour 2012):

Generally, a prerequisite for having X* as the optimal

solution to the problem (the dependent issue or lower

bound) is that X* meets the following necessary and suf-

ficient conditions:

• The necessary K.K.T conditions for effectiveness of

X is

giðxÞ� 0 i ¼ 1; 2; . . .;m; ð17Þ
ki:giðxÞ ¼ 0 i ¼ 1; 2; . . .;m; ð18Þ

oZðxÞ
ox�

�
Xm
i¼1

ki:
ogiðxÞ
ox�

¼ 0; ð19Þ

ki � 0 i ¼ 1; 2; . . .;m: ð20Þ

• The sufficient condition is as follows:

• The objective function must be convex for maximizing

and concave for minimizing problems.

• The solution space has to be convex.

First of all, for providing the K.K.T conditions, some

modifications in second-level problem have to be carried

out as follows:

If it is assumed that in each scenario, the number of Yls
and Zks for which their value is 1 be equal to p1 and p2,

respectively, then the rest of Yls and Zks for which their

value is 0 and the variables related to quality level that is

Ml and Ak will be excluded. By doing so the values r1 and

r2 were replaced by the values p1 and p2 in the objective

function of the first-level problem. Furthermore in the

second level problem, the expressions
Pr1

k¼1 gkð1 � ZkÞ andPr2

l¼1
~flYl are ignored due to stabilization of Yl and Zk

variables. Moreover, with the consolidation of Yl and Zk
variables, the constraints of Ak � �AkZk and Ml � �MlYl will

be changed into the format of Ak � �Ak and Ml � �Ml.

Now, that necessary K.K.T conditions are provided, the

bi-level problem is changed into a single-level problem

(i.e. PI):

PI:

Max
Xn
j¼1

hj

Pm1

s¼1ðUs=d
2
sjÞ þ

Pm2

i¼1ðQi=d
2
ijÞPm1

s¼1ðUs=d
2
sjÞ þ

Pm2

i¼1ðQi=d
2
ijÞ þ

Pp1

k¼1ðAk=~d
2
kjÞ þ

Pp2

l¼1ðMl=~d
2
ljÞ

 !

þ
Xm1

s¼1

gsð1 � TsÞ �
Xm1

s¼1

csðUs � UsTsÞ �
Xm2

i¼1

ciQi �
Xm2

i¼1

fiXi:

ð21Þ

S.T

(2)–(8)

Xn
j¼1

hjð1=~d2
kjÞ

Pm1

s¼1ðUs=d
2
sjÞ þ

Pm2

i¼1ðQi=d
2
ijÞPm1

s¼1ðUs=d
2
sjÞ þ

Pm2

i¼1ðQi=d
2
ijÞ þ

Pp1

k¼1ðAk=~d
2
kjÞ þ

Pp2

l¼1ðMl=~d
2
ljÞ

� �2

� ek þ k1k � k2k ¼ 0 8k ¼ 1; 2; . . .; p1;

ð22Þ

Xn
j¼1

hjð1=~d2
ljÞ

Pm1

s¼1ðUs=d
2
sjÞ þ

Pm2

i¼1ðQi=d
2
ijÞPm1

s¼1ðUs=d
2
sjÞ þ

Pm2

i¼1ðQi=d
2
ijÞ þ

Pp1

k¼1ðAk=~d
2
kjÞ þ

Pp2

l¼1ðMl=~d
2
ljÞ

� �2

� el þ k3l � k4l ¼ 0 8l ¼ 1; 2; . . .; p2;

ð23Þ

�Ak � 0 8k ¼ 1; 2; . . .; p1; ð24Þ

Ml � �Ml � 0 8l ¼ 1; 2; . . .; p2; ð25Þ
�Ml � 0 8l ¼ 1; 2; . . .; p2; ð26Þ

k1kðAk � �AkÞ ¼ 0 8k ¼ 1; 2; . . .; p1; ð27Þ
k2kð�AkÞ ¼ 0 8k ¼ 1; 2; . . .; p1; ð28Þ

k3lðMl � �MlÞ ¼ 0 8l ¼ 1; 2; . . .; p2; ð29Þ
k4lð�MlÞ ¼ 0 8l ¼ 1; 2; . . .; p2; ð30Þ
k1k; k2k � 0 8k ¼ 1; 2; . . .; p1; ð31Þ
k3l; k4l � 0 8l ¼ 1; 2; . . .; p2: ð32Þ

As it is previously shown, by using the necessary K.K.T

conditions, the bi-level problem is changed to a single-

level problem. Now the necessary K.K.T conditions in the

second-level problem will be examined.
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The first sufficient condition is that the second-level

objective function must be concave that is proved in

Appendix.

The convexity of the solution space is the second

sufficient condition for being X* as a global optimal

solution that is obtained from the K.K.T conditions. Due

to the existence of fractional and bilinear expressions in

the constraints of the problem, it is not possible to

comment on the convexity of the solution space with

confidence. Therefore, solving this problem does not

guarantee reaching the global optimum solution. Conse-

quently, by estimating the fractional and bilinear expres-

sions in linear terms, we can change the solution space

into a linear format, and the convexity of the solution

space is certain.

For this purpose, new variables are defined as follows:

G1j ¼ Pm1

s¼1ðUs=d
2
sjÞ þ

Pm2

i¼1ðQi=d
2
ijÞPm1

s¼1ðUs=d2
sjÞ þ

Pm2

i¼1ðQi=d2
ijÞ þ

Pr1

k¼1ðAk=~d
2
kjÞ þ

Pr2

l¼1ðMl=~d
2
ljÞ
;

ð33Þ

G2j ¼
Xm1

s¼1

ðUs=d
2
sjÞ þ

Xm2

i¼1

ðQi=d
2
ijÞ þ

Xr1

k¼1

ðAk=~d
2
kjÞ

þ
Xr2

l¼1

ðMl=~d
2
ljÞ; ð34Þ

G1j ¼
Pm1

s¼1ðUs=d
2
sjÞ þ

Pm2

i¼1ðQi=d
2
ijÞ

G2j

: ð35Þ

In addition, the auxiliary variable s is added to con-

straints (24)–(27), and then variable s is with the equivalent

terms in the constraints (28)–(31). For example, constraint

(28) is changed into k1ks1k ¼ 0. Now, the active set strat-

egy suggested by Grossmann and Floudas (1987) is used

for linearizing this expression as:

k1k � aV1k � 0; ð36Þ
s1k � að1 � V1kÞ� 0: ð37Þ

Similarly, this process is done for constraints (29)–(31).

It should be mentioned that a is an upper bound on aux-

iliary variable s; therefore, its value is chosen to be the

maximum quality variables along with existing and the

new facilities of the follower firm. Variable V is a binary

variable that when its value becomes 0, then the corre-

sponding auxiliary variable s is 0 and the corresponding

coefficient k becomes less than an upper bound. On the

contrary, if its value becomes 1, then coefficient k is zero

and auxiliary variable s becomes less than an upper bound.

Furthermore, we should describe the way that how the

terms G1jG2j and
G1j

G2j
can be changed into linear terms. This

method is proposed by Adjiman et al. (1998). In their

paper, the overestimation of bi-linear terms (for example

x1jx2j ¼ w) was accomplished by including the following

constraints:

xL1x2 þ xL2x1 � xL1x
L
2 � w� 0; ð38Þ

xU1 x2 þ xU2 x1 � xU1 x
U
2 � w� 0; ð39Þ

�xU1 x2 � xL2x1 þ xU1 x
L
2 þ w� 0; ð40Þ

�xL1x2 � xU2 x1 þ xL1x
L
2 þ w� 0: ð41Þ

Besides, the two below constrains are used to overesti-

mate the fractional terms (like
x1j

x2j
¼ w):

xL1
x2

þ x1

xU2
� xL1
xU2

� w� 0; ð42Þ

xU1
x2

þ x1

xL2
� xU1

xL2
� w� 0; ð43Þ

where xL and xU are the lower and upper bound,

respectively.

As a result the final model is as follows:

PII:

MaxXn
j¼1

hjG1j þ
Xm1

s¼1

gsð1 � TsÞ �
Xm1

s¼1

csðUs � UsTsÞ

�
Xm2

i¼1

ciQi �
Xm2

i¼1

fiXi:

ð44Þ

S.T.

Us � �UsTs 8s ¼ 1; 2; . . .;m1; ð45Þ

Qi � �QiXi 8i ¼ 1; 2; . . .;m2; ð46Þ
Xm2

i¼1

fi:xi �
Xm1

s¼1

gsð1 � TsÞ þ B; ð47Þ

Us � 0 8s ¼ 1; 2; . . .;m1; ð48Þ
Qi � 0 8i ¼ 1; 2; . . .;m2; ð49Þ
Ts 2 f0; 1g 8s ¼ 1; 2; . . .;m1; ð50Þ
Xi 2 f0; 1g 8i ¼ 1; 2; . . .;m2; ð51Þ
Xn
j¼1

hjð1=~d2
kjÞw2j � ek þ k1k � k2k ¼ 0 8k ¼ 1; 2; . . .; r1;

ð52Þ
Xn
j¼1

hjð1=~d2
ljÞw2j � el þ k3l � k4l ¼ 0 8l ¼ 1; 2; . . .; r2

ð53Þ

Ak � �Ak þ s1k ¼ 0 8k ¼ 1; 2; . . .; r1; ð54Þ
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�Ak þ s2k ¼ 0 8k ¼ 1; 2; . . .; r1; ð55Þ

Ml � �Ml þ s3l ¼ 0 8l ¼ 1; 2; . . .; r2; ð56Þ
�Ml þ s4l ¼ 0 8l ¼ 1; 2; . . .; r2; ð57Þ
k1k � aV1k � 0 8k ¼ 1; 2; . . .; r1; ð58Þ
s1k � að1 � V1kÞ� 0 8k ¼ 1; 2; . . .; r1; ð59Þ
k2k � aV2k � 0 8k ¼ 1; 2; . . .; r1; ð60Þ
s2k � að1 � V2kÞ� 0 8k ¼ 1; 2; . . .; r1; ð61Þ
k3l � aV3l � 0 8l ¼ 1; 2; . . .; r2; ð62Þ
s3l � að1 � V3lÞ� 0 8l ¼ 1; 2; . . .; r2; ð63Þ
k4l � aV4l � 0 8l ¼ 1; 2; . . .; r2; ð64Þ
s4l � að1 � V4lÞ� 0 8l ¼ 1; 2; . . .; r2; ð65Þ

G2j ¼
Xm1

s¼1

ðUs=d
2
sjÞ þ

Xm2

i¼1

ðQi=d
2
ijÞ þ

Xr1

k¼1

ðAk=~d
2
kjÞ

þ
Xr2

l¼1

ðMl=~d
2
ljÞ

8j ¼ 1; 2; . . .; n;

ð66Þ

w1j ¼
Xm1

s¼1

ðUs=d
2
sjÞ þ

Xm2

i¼1

ðQi=d
2
ijÞ 8j ¼ 1; 2; . . .; n; ð67Þ

GL
1jG2j þ GL

2jG1j � GL
1jG

L
2j � w1j � 0 8j ¼ 1; 2; . . .; n;

ð68Þ

GU
1jG2j þ GU

2jG1j � GU
1jG

U
2j � w1j � 0 8j ¼ 1; 2; . . .; n;

ð69Þ

�GU
1jG2j � GL

2jG1j þ GU
1jG

L
2j þ w1j � 0 8j ¼ 1; 2; . . .; n;

ð70Þ

�GL
1jG2j � GU

2jG1j þ GL
1jG

L
2j þ w1j � 0 8j ¼ 1; 2; . . .; n;

ð71Þ

GL
1j

G2j

þ G1j

GU
2j

�
GL

1j

GU
2j

� w2j � 0 8j ¼ 1; 2; . . .; n; ð72Þ

GU
1j

G2j

þ G1j

GL
2j

�
GU

1j

GL
2j

� w2j � 0 8j ¼ 1; 2; . . .; n; ð73Þ

k1k; k2k � 0 8k ¼ 1; 2; . . .; r1; ð74Þ
k3l; k4l � 0 8l ¼ 1; 2; . . .; r2; ð75Þ
G1j;G2j � 0 8j ¼ 1; 2; . . .; n; ð76Þ

V1k;V2k 2 f0; 1g 8k ¼ 1; 2; . . .; r1; ð77Þ
V3l;V4l 2 f0; 1g 8l ¼ 1; 2; . . .; r2: ð78Þ

In PII problem, we have

GL
1j ¼ GL

2j ¼ 0;

GU
1j ¼ 1;

GU
2j ¼

Xm1

s¼1

ð �Us=d
2
sjÞ þ

Xm2

i¼1

ð �Qi=d
2
ijÞ þ

Xr1

k¼1

ð�Ak=~d
2
kjÞ

þ
Xr2

l¼1

ð �Ml=~d
2
ljÞ:

Now, considering the solution to the PII problem rather

than obtaining the global optimum solution, a valid upper

bound is found. The reason is that by replacing w3j and w4j

with w1jw2j and
w1j

w2j
expressions, respectively, w3j and w4j are

placed between the upper and lower bounds. Thus, the

obtained answer is an upper bound. Finally, the upper bound

can be used as a measure for examining the obtained solu-

tions of the solved problem with the proposed hybrid model.

Hybrid algorithm

TS is a single-solution based meta-heuristic algorithm,

which uses intermediate and long-term memories to

achieve regional intensification and global diversification

of the search. This meta-heuristic algorithm is employed

for solving the proposed bi-level mixed-integer nonlinear

model mentioned in Sect. 2. Each iteration, a solution for

the first level of the proposed model is presented through

TS that is coded in MATLAB software. This solution is the

strategies that are chosen by the leader firm (i.e. opening a

new facility in location i0 and changing the level of quality

in existing facility i). Then, the second-level model (reac-

tions of the follower) is solved via B&B using GAMS

software. Finally, both of two variable sets are used to

calculate the fitness function. This process continues by

searching within neighbor solutions of the first-level vari-

ables to find better solutions, until stopping criteria are met.

An overview of proposed algorithm is presented in Fig. 1.

As shown in Fig. 1, TS algorithm starts with an initial

solution. We have two types of variables in the first level:

the first one is along with existing facilities and the second

is along with new facilities of the leader firm. To find an

initial solution in the first variable type, we consider that

current condition is the initial value for variables X, U and

T. In the second variable type, we calculate the average

distance of each potential point for new facility site from

the demand points set, and set the minimum of them (i0) as

initial value for the variable X. So, the initial solution

including only a single facility located at site, i0, is as

follows:

Xi
0 ¼ 1 and Xi ¼ 0; 8 all i 6¼ i

0

Also, we set Qi
0 ¼ �Qi and Qi ¼ 0; 8 all i 6¼ i

0
.

The structure of initial solution is depicted in Fig. 2.
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Fig. 1 Flowchart of the proposed algorithm
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After calculating the fitness of the current solution,

neighbor solutions are being explored. The neighbor solu-

tions are generated from the current solution using these

three operators:

1. ‘‘Add’’ (i.e. opening a new facility in potential points

with a random value of quality level between [0, �Qi]),

2. ‘‘Change’’ (i.e. alternating quality level of an existing

facility while |Qnew - Q|[ e), and

3. ‘‘Move’’ (i.e. closing an existing facility).

An example of these operators is shown in Fig. 3.

In a normal TS algorithm, to move from current solution

to a neighbor solution, the objective function of all

neighbor solutions must be evaluated. Since checking all of

these solutions has computational cost, only objective

function of randomly selected set through the neighboring

solutions is examined. This random set is called a candi-

date list. If at least one of the new solutions is better than

the current solution, the fitness function is updated and the

stopping criteria are examined. Otherwise, a new candidate

list is generated and exploration through this list continues

to find a better solution. A tabu list is applied to prevent

seeking reiterative solutions or getting trapped in cycling.

In tabu list, location and quality level variables of existing

and new facilities are saved. We have three types of tabu

list and each of them belongs to add, change, and move

operators. By doing so, if the characteristic of new solution

coincided with those of solutions in the tabu list, then the

new solution will be declared as tabu. Also, the aspiration

criteria to make good moves even if those moves are in the

tabu list are employed. In each iteration, the best neighbor

solution becomes the current solution for the next iteration.

Furthermore, when the objective function of current

Existing facilities of  leader

Potential facilities of  leader

Fig. 2 The structure of a solution in TS

Add

Change

Move

Fig. 3 Representation of

neighbor solution exploration

operators
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solution becomes better than the best fitness function, the

best solution and the best fitness are updated. Before the

algorithm stops, it should be checked whether intensifica-

tion or diversification conditions are satisfied or not. The

meaning of diversification conditions is that, if the best

solution does not improve after several iterations, then the

algorithm generates a set of new neighbor solutions and

starts from this step again. Finally, two stopping criteria are

being used:

1. The maximum number of iterations performed.

2. The maximum number of iterations without improve-

ment. Numerical examples of proposed algorithm are

shown in Sect. 4.

Numerical examples

The performance of proposed algorithm is evaluated by

comparing it with an upper bound (UB) that is achieved in

Sect. 3. Random data set instances are generated since we

found no benchmark instances on CFLP in the literature. A

small and a medium to large size data set are employed. In

the small size, four data sets are used as follows:

The number of demand points is set to 10 and 20

(n = {10, 20});

The number of existing facilities and potential points for

new facilities of the leader, m1 = 1;

The number of potential points for new facilities of the

leader, m2 = 5;

The number of existing facilities and potential points for

new facilities of the follower, r1 = r2 = 1, 2.

In medium- and large-scale of data sets the following

data are applied:

n = {50, 60, 70, 80, 90, 100};

m2 = {8, 12, 16};

and m1 = r1 = r2 = {2, 3, 4}.

The location of demand point of existing and potential

points for new facilities of both leader and follower firms

are generated from a discrete uniform distribution defined

in the interval [0, 100]. Table 1 shows the details of other

data generation characteristics:

TS algorithm is coded in MATLAB� R2010a and

GAMS 23.5 is applied for solving the second-level model

and the upper bound. The computations are run on a PC

with Intel� cori5 Due 2.67 GHz CPU and 4.0 GB RAM

working under Windows 7. Tables 2, 3 and 4 show the

corresponding CPU time and the objective value (OV) for

each instance, and the best objective value (OVbest) over

three runs. The percentage of deviation of the best

Table 1 The values of data that are generated randomly

Data Value

hj Uniform [100, 100,000]

ci Uniform (Hotelling 1990; Drezner and Drezner 1998)

cs Uniform (Hotelling 1990; Drezner and Drezner 1998)

el Uniform (Hotelling 1990; Drezner and Drezner 1998)

ek Uniform (Hotelling 1990; Drezner and Drezner 1998)

fi 1000 ci

fl 1000 el

gs 500 cs

gk 500 ek

�Qi 10,000 ci

�Us 10,000 cs

Us Uniform [100, 1000]

�Ml 10,000 el

�Ak 10,000 ek

Ak Uniform [100, 1000]

B (0.5 m2) 9 (1000 c
avg
i )

~B (0.5 r2) 9 (1000 e
avg
l )

Table 2 Performance of the TS

algorithm in comparison with

the upper bound for small

instances

ðm1;m2; n; r1; r2Þ CPU time OV OVbest UB PDbest (%)

(1, 5, 10, 1, 1) 163.1 452,104 456,368 487,800 6.44

168.5 456,368

162.6 454,784

(1, 5, 10, 1, 2) 338.1 306,754 306,922 317,960 3.47

398.2 306,922

376.8 306,478

(1, 5, 20, 2, 1) 314,3 882,657 882,657 893,660 1.23

353.7 880,814

330.9 882,657

(1, 5, 20, 2, 2) 475 559,041 559,583 572,710 2.29

538 559,583

510.2 559,184
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Table 3 Performance of the TS

algorithm in comparison with

the upper bound for medium

instances

ðm1;m2; n; r1; r2Þ CPU time OV OVbest UB PDbest (%)

(2, 8, 50, 2, 2) 364.2 2,057,589 2,063,395 2,161,043 4.52

265.6 2,034,004

331.8 2,063,395

(2, 8, 60, 2, 2) 472.4 3,308,542 3,308,542 3,343,710 1.05

502.3 3,308,542

446.8 3,296,745

(2, 8, 70, 2, 2) 726.6 3,399,380 3,399,380 3,633,406 6.44

654.9 3,358,510

812.7 3,398,489

(2, 8, 80, 2, 2) 954.1 4,003,876 4,003,876 4,011,376 0.19

1028 3,984,946

981.7 3,998,650

(2, 8, 90, 2, 2) 892.6 4,784,608 4,784,608 4,791,608 0.15

933 4,780,312

975.2 4,784,608

(2, 8, 100, 2, 2) 1035.3 4,921,719 4,922,262 5,021,697 1.98

1130.5 4,922,262

1005.6 4,912,412

(3, 12, 50, 3, 3) 1839 2,803,290 2,805,527 2,807,026.8 0.05

1651 2,805,527

1742 2,805,527

(3, 12, 60, 3, 3) 1874.2 3,098,350 3,121,039 3,125,915 0.16

1810.3 3,116,890

1795.9 3,121,039

(3, 12, 70, 3, 3) 943 3,354,012 3,354,882 3,376,933 0.65

1002.5 3,354,882

1221.3 3,354,882

(3, 12, 80, 3, 3) 1332.1 3,904,808 3,907,071 3,924,382 0.44

1279.5 3,907,071

1412.7 3,905,976

(3, 12, 90, 3, 3) 1479.6 4,255,902 4,255,902 4,306,159 1.17

1399.5 4,255,690

1454.5 4,241,097

(3, 12, 100, 3, 3) 1198.3 5,086,665 5,086,665 5,104,057.3 0.34

1097.4 5,067,367

1209 5,054,231

(4, 8, 50, 4, 4) 1849.4 2,389,830 2,390,026 2,432,427 1.74

1974.2 2,370,842

2002.6 2,390,026

(4, 8, 60, 4, 4) 2014.9 2,699,234 2,738,635 2,848,455 3.86

2115.2 2,737,823

2125.5 2,738,635

(4, 8, 90, 4, 4) 2542.4 4,239,871 4,247,273 4,407,933 3.64

2431.5 4,247,273

2212.1 4,246,313

(4, 8, 100, 4, 4) 2492.7 5,074,347 5,074,347 5,159,669 1.65

2591.3 5,073,613

2314.9 5,069,891
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objective value from upper bound (PDbest) is computed as

follows:

PDbest ¼ 100 � ðUB � OVbestÞ
UB

:

As shown, the percentage of deviation between the

best objective values and the upper bound is less than

1% for eight instances. For 21 instances out of 32, this

value is between 1–5%, and just in 3 cases, the differ-

ence is more than 5%. It can be noted that this deviation

could be due to the deviation of upper bound from

global optimal solution. Any way, we can claim that this

algorithm can effectively find high-quality solutions in a

reasonable time.

Conclusion

In this paper, a leader–follower CFLP which takes into

account the reactions of the follower firm is studied. The

problem is formulated as bi-level mixed integer nonlinear

model. Since there could be too many scenarios that the

follower firm is able to react to the leader firm’s action, it is

impossible to check all of these scenarios. A hybrid

Table 4 Performance of the TS

algorithm in comparison with

the upper bound for large

instances

ðm1;m2; n; r1; r2Þ CPU time OV OVbest UB PDbest (%)

(4, 12, 50, 4, 4) 1076 2,608,761 2,615,122 2,719,956 3.85

1398 2,615,122

1323 2,612,701

(4, 12, 60, 4, 4) 1237 2,489,923 2,526,251 2,651,424 4.72

1100 2,493,861

1407 2,526,251

(4, 12, 70, 4, 4) 1376 3,355,450 3,355,450 3,417,126 1.80

1397 3,342,707

1463 3,350,705

(4, 12, 80, 4, 4) 1207 3,518,307 3,518,307 3,633,597 3.17

1300 3,506,439

1347 3,494,938

(4, 12, 90, 4, 4) 1876 4,184,272 4,197,704 4,283,218 2.00

1451 4,197,704

1922 4,196,142

(4, 12, 100, 4, 4) 2823 5,142,754 5,142,754 5,202,179 1.14

2882 5,139,595

2625 5,139,427

(4, 16, 50, 4, 4) 2321 2,215,715 2,215,715 2,256,643 1.81

1210 2,198,165

1515 2,213,051

(4, 16, 60, 4, 4) 1929 2,705,888 2,707,655 2,750,365 1.55

1560 2,707,655

1930 2,706,593

(4, 16, 70, 4, 4) 1202 3,477,365 3,477,365 3,520,203 1.22

1257 3,430,658

1457 3,439,637

(4, 16, 80, 4, 4) 1652 3,804,131 3,819,246 3,888,165 1.77

1938 3,819,246

1800 3,796,264

(4, 16, 90, 4, 4) 1344 3,908,390 3,913,489 4,142,402 5.53

1345 3,913,489

1339 3,904,062

(4, 16, 100, 4, 4) 1545 5,065,537 5,082,743 5,116,806 0.67

1536 5,082,743

2262 5,074,758
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algorithm is proposed to solve this problem. The perfor-

mance of this algorithm is compared with an upper bound

that is achieved from applying the K.K.T conditions to the

bi-level problem. Computational results show that our

algorithm can find solutions that are near the upper bound

in a reasonable time.

As future research, it would be attractive to consider

more than one competitor in the market. Also, other meta-

heuristic algorithm such as SA or VNS can be employed

and their results can be compared with the results of our

algorithm. Non deterministic demand of the customers is

another issue that would make the CFLP more realistic and

practicable.
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