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Identifying dynamic spillovers of crime with a causal
approach to model selection

Gregorio Caetano
Department of Economics, University of Rochester

Vikram Maheshri
Department of Economics, University of Houston

Does crime in a neighborhood cause future crime? Without a source of quasi-
experimental variation in local crime, we develop an identification strategy that
leverages a recently developed test of exogeneity (Caetano (2015)) to select a fea-
sible regression model for causal inference. Using a detailed incident-based data
set of all reported crimes in Dallas from 2000 to 2007, we find some evidence of
dynamic spillovers within certain types of crimes, but no evidence that lighter
crimes cause more severe crimes. This suggests that a range of crime reduction
policies that target lighter crimes (prescribed, for instance, by the “broken win-
dows” theory of crime) should not be credited with reducing the violent crime
rate. Our strategy involves a systematic investigation of endogeneity concerns and
is particularly useful when rich data allow for the estimation of many regression
models, none of which is agreed upon as causal ex ante.

Keywords. Neighborhood crime, broken windows, model selection, test of exo-
geneity.

JEL classification. C52, C55, K42, R23.

1. Introduction

Does crime in a neighborhood cause future crime? When crime occurs, it may al-
ter the physical and social environment through a variety of mechanisms. For in-
stance, potential criminals may be influenced by their peers’ behavior (Glaeser, Sacer-
dote, and Scheinkman (1996)), neighbors may respond by forming community watch
groups (Taylor (1996)), and law enforcement may react by reallocating their resources
(Weisburd and Eck (2004)). This may in turn affect future crime levels in different and
ambiguous ways that could depend on the type of crime committed and its salience.

In this paper, we estimate the local effects of several different crimes (rape, robbery,
burglary, auto theft, assault, and light crime) on the future levels of each of those crimes
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using a comprehensive database containing every police report (nearly 2 million in to-
tal) filed with the Dallas Police Department from 2000 to 2007. We find that robbery,
burglary, auto theft, and light crime cause modest increases (on the order of 5%–15%)
in future crimes of the same types in a neighborhood. However, we find no statistically or
economically significant evidence that crimes of any type cause—directly or indirectly—
more severe crimes in the future.

From a policy perspective, the idea that light crime (e.g., broken windows, graffiti,
vandalism) in a neighborhood can lead to more severe crime has been particularly in-
fluential, and our results can be brought to bear on this debate. The “broken windows”
theory of crime (Kelling and Wilson (1982), Kelling and Coles (1998)) asserts that the pro-
liferation of visible light crime should signal to potential criminals that enforcement and
punishment are lax in the area. This leads to an increase in the frequency and severity of
crimes that reinforces this positive feedback mechanism. Proponents of this theory have
ensured that the intense policing of light crime and the adoption of “zero-tolerance”
policies remains on the agenda of law enforcement agencies in many major US cities
such as New York City1 and Chicago2 in spite of little evidence that light crime actu-
ally leads to severe crime.3 Similarly, “stop-and-frisk” practices have been defended on
the grounds that they will deter light crime and eventually reduce more severe crimes
in spite of evidence that they are racially biased, potentially contributing to the dispro-
portionate incarceration of the poor and of racial minorities (Gelman, Fagan, and Kiss
(2007)). Our findings suggest that these policies should be reconsidered.

Our empirical analysis addresses two important methodological concerns. First, the
appropriate causal question is difficult to pose: to estimate the local effects of crime on
future crime, how should we classify crimes, how local is “local,” and how far in the fu-
ture is “future”? With a database that is detailed in multiple dimensions (description,
location, and time), there are too many initially plausible ways to aggregate the data.
Second, identifying the causal effects of interest is difficult because unobserved deter-
minants of future crimes are persistent, and it is hard to conceive of instrumental vari-
ables that are both transitory and highly localized. These two concerns are inseparable
because the assumptions necessary to identify causal effects depend on the level of ag-
gregation of the data.

Our analysis starts with the conjecture that we may be able to isolate exogenous
variation in past crime rates by appropriately specifying fixed effects that absorb con-
founding variation in past crime rates. Intuitively, social interactions occur at fine levels

1In a recent interview, New York Police Department (NYPD) Commissioner William Bratton stated, “We
will continue to focus on crime and disorder” (“Inside William Bratton’s NYPD: Broken windows policing is
here to stay,” The Guardian, June 8, 2015).

2In 2013, Chicago Police Superintendent Gary McCarthy proposed “to authorize arrests for unpaid tick-
ets for public urination, public consumption of alcohol, and gambling. . . . ‘Fixing the little things prevents
the bigger things,’ said McCarthy, a longtime advocate of the ‘broken windows’ approach to fighting crime”
(“Chicago is adopting the ‘broken windows’ strategy,” Law Enforcement Today, May 5, 2013). Ultimately, the
Chicago city council drastically increased penalties for these misdemeanors.

3Levitt (2004) describes efforts by the media to attribute falling crime rates in New York City to innovative
law enforcement policies, including broken windows’ policies, but he argues that this conclusion is prema-
ture given other confounding changes that occurred in New York City at the same time or even before such
policies were implemented.
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of geography and time (Bikhchandani, Hirshleifer, and Welch (1992), Ellison and Fuden-
berg (1995), Akerlof (1997)), whereas confounders only vary at fine levels of geography or
time, but not both. For example, localized confounders of crime such as neighborhood
wealth levels (Flango and Sherbenou (1976)) and family structure (Sampson (1985)) vary
more slowly than crime itself, while rapidly varying causes of crime such as weather
(Cohn (1990)) tend to affect nearby neighborhoods similarly. Our primary empirical ob-
stacle is that we cannot know ex ante (a) whether this conjecture is correct and (b) if it
is correct, what levels of temporal and geographical fixed effects (and aggregation of the
data) will successfully isolate the variation of interest.

In light of this, we develop a strategy that allows us to select an empirical model from
which we can identify parameters of interest without an ex ante known source of quasi-
experimental variation. Instead, our strategy finds the levels of temporal and geograph-
ical fixed effects (and aggregation of the data) that isolate variation shown to be valid for
causal inference ex post. We do so by exploiting a recently developed test of exogeneity
(Caetano (2015)) that yields an objective statistical criterion for whether the parameters
of interest in a particular empirical model can be interpreted as causal. Unlike other tests
of exogeneity (e.g., Hausman (1978)), this test does not require instrumental variables;
instead, it requires that unobservables vary discontinuously at a known threshold of the
main explanatory variable of interest, which often happens in contexts where observa-
tions bunch at this threshold. In our context, we argue both theoretically and empirically
that such discontinuities exist at the zero crime threshold.

Of course, one can never fully validate a research design: a failure to reject the null
hypothesis of exogeneity for an empirical model does not imply that the model is ex-
ogenous. Thus, we systematically develop the case that our failure to reject the null hy-
pothesis of exogeneity reasonably points to the conclusion that the null is correct and
that we have successfully identified the causal effects of crime on future crime. We do so
with a theoretical and empirical analysis of the statistical power of the test that enumer-
ates the many properties that confounders must possess so as to remain undetectable
by the test of exogeneity. We find that not a single observed variable that we construct
from our detailed database qualifies as an undetectable confounder, and our case is fur-
ther supported by a battery of robustness checks that are designed to detect unobserved
confounders that may have otherwise evaded detection.4

Ultimately, we arrived at the qualified conclusion that the cumulative list of proper-
ties that a confounder must possess so as to bias the results of our preferred regression
model is restrictive beyond reasonable doubt; that is, our preferred model should be
reasonably interpreted as causal.

Our findings contribute to a considerable literature that seeks to identify intertem-
poral links in criminal behavior. Jacob, Lefgren, and Moretti (2007) use weekly weather
shocks as instruments and find a small, negative relationship between citywide past

4The systematic implementation of the exogeneity test for the express purpose of validating an identi-
fication strategy is a novel contribution of our paper. Caetano (2015) implements her test with the goal of
rejecting a model, rather than validating it. Thus, while Caetano (2015) needs only to show that the test has
some power, we instead need to show that the test is very powerful, so much so that not detecting endo-
geneity in a given model reasonably suggests that it is exogenous.
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crimes and citywide future crimes. Kelling and Sousa (2001), Funk and Kugler (2003),
and Corman and Mocan (2005) analyze whether targeting less severe crimes has been
effective in reducing more violent crimes in the future, but as pointed out by Harcourt
and Ludwig (2006), it may be difficult to interpret these estimates as causal. Harcourt
and Ludwig (2006) take advantage of a random allocation of public housing under the
“Moving to Opportunity” experiment in five US cities and find that individuals assigned
to neighborhoods with higher misdemeanor crime levels were as likely to commit vio-
lent crime as those who were assigned to “better” neighborhoods. In contrast, Damm
and Dustmann (2014) find that refugee boys who were randomly assigned to high vio-
lent crime neighborhoods in Denmark exhibit a higher propensity for criminal behavior
as young adults.5 In addition, our findings contribute to the longstanding literature on
crime and geography (see, Anselin, Cohen, Cook, Gorr, and Tita (2000) for a review of
this literature).

Our identification strategy may help researchers leverage detailed data sets to con-
duct robust causal inference in many settings that were previously difficult to explore
using observational data alone, which may prove particularly valuable given the recent
explosion in the availability of such data sets without a similar increase in the availabil-
ity of quasi-experimental variation (Varian (2014)). These trends suggest an increasing
need for empirical approaches that can exploit rich data for causal inference by identify-
ing variation that is agreed upon to be exogenous only ex post. Our approach, in partic-
ular, may allow researchers to take further advantage of recent law enforcement agency
efforts to maintain and release large, detailed crime databases.6 However, we caution
that the ability of our approach to validate models does not center on simply the avail-
ability of a large amount of data; it is also crucial to justify empirically that the test of
exogeneity in the context of interest has statistical power to detect endogeneity from all
sources that researchers should be concerned about.

The remainder of the paper is organized as follows. In Section 2, we present a styl-
ized dynamic model of crime that describes how crime may affect future crime through
a simple learning process. In Section 3, we conceptualize such intertemporal linkages in
a simple empirical model and provide an overview of our empirical approach. In Sec-
tion 4, we offer intuition for the test of exogeneity that we use and show how it can
be used as the centerpiece of our identification strategy. In Section 5, we describe our
sample and explain how we address the inherent trade-offs we face in model selection.
In Section 6, we present estimates of the short- and long-run intertemporal effects of
light crime and the full long-run dynamic spillovers associated with various hypotheti-
cal crime reduction policies. In Section 7, we subject our results to a variety of robustness
checks. In Section 8, we discuss our findings in the context of the broken windows the-

5Braga and Bond (2008) randomized police patrols in certain light crime “hot spots” of Lowell, Mas-
sachusetts and found that increased policing also reduced citizen calls for service for more severe crimes.

6Notably, our approach may allow researchers to allay concerns due to measurement, such as underre-
porting and misreporting, which have been long identified as important obstacles in empirical analyses of
crime data (see, e.g., Skogan (1974, 1975), Levitt (1998b)).
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ory before concluding in Section 9. We provide further detail on the test of exogeneity,
our data, and our ability to detect distinct sources of endogeneity in the Appendixes.7

2. A dynamic model of crime

Crime may affect future crime levels through a variety of direct and indirect channels.
We provide a theoretical basis for how such intertemporal linkages may arise with a
simple and highly stylized dynamic model of rational criminal behavior that builds on
Becker (1968). Let C be the set of all potential crimes. An individual i in neighborhood j

would choose to commit a crime of type y ∈ C in week t if her private benefits to com-
mitting that crime exceeded her costs, or if

B
y
ijt > p

y
jtC

y
ijt � (1)

where B
y
ijt is the total private benefit to the individual, py

jt is the probability of punish-

ment conditional on committing the crime, and C
y
ijt is the cost of punishment.

Individuals may possess imperfect knowledge of py
jt , but by observing past levels of

crime (along with features of the environment that led to past crime), individuals form
beliefs of py

jt , which we denote by π
y
ijt . It follows that the total number of crimes of type

y that are committed in neighborhood j in week t is

crimeyjt =
∑

i∈Iyjt
I{byijt>π

y
ijt }� (2)

where I
y
jt represents the pool of potential criminals, I{·} is the indicator function, and

b
y
ijt = B

y
ijt

C
y
ijt

represents i’s “benefit–cost factor” of commiting a crime. To keep the model

tractable, we make assumptions about the individual heterogeneity within the neigh-
borhood to facilitate aggregation: (a) π

y
ijt = π

y
jt is a common prior for all individuals

within the neighborhood, and (b) byijt is drawn from a cumulative distribution F(·;Θy
jt).

Both the prior, πy
jt , and the parameter of this distribution, Θy

jt , may vary by neighbor-
hood, week, and type of crime. It follows that

crimeyjt = I
y
jt · (1 − F

(
π
y
jt;Θy

jt

))
� (3)

Each of the three parameters that describe the criminogenic environment, (Iyjt �Θ
y
jt�π

y
jt),

can be affected by previous crime levels. Denoting crimejt−1 as the vector of crimes of
all types in t − 1 (of which the xth element is crimexjt−1), we can express this as

I
y
jt = Iy

(
crimejt−1�η

I
jt−1

)
� (4)

Θ
y
jt =Θy

(
crimejt−1�η

Θ
jt−1

)
� (5)

π
y
jt = πy

(
crimejt−1�η

π
jt−1

)
� (6)

7Additional details are provided in the Supplemental Material, which is available in supplementary
files on the journal website, http://qeconomics.org/supp/756/supplement.pdf and http://qeconomics.
org/supp/756/code_and_data.zip.
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where ηI
jt−1, ηΘ

jt−1, and ηπ
jt−1 represent other (observable and unobservable) determi-

nants of Iyjt , Θ
y
jt , and π

y
jt , respectively.8

We illustrate how these three equations encompass many of the specific intertempo-
ral linkages in criminal behavior that have been offered by researchers by way of several
concrete examples. For instance, equation (4) allows for the possibility of incapacita-
tion effects (e.g., Levitt (1998a)), as past crimes may lead to arrests and reductions in
the future pool of potential criminals. Equation (5) captures all changes to the private
costs and benefits of crime to individuals induced by prior crimes. This includes learn-
ing from previous experiences (Kempf (1987)), peers’ experiences (Glaeser, Sacerdote,
and Scheinkman (1996)), and responses by law enforcement that increase the cost of
punishment, conditional on arrest. Finally, equation (6) captures the learning process
whereby previous crimes lead criminals to update their prior beliefs of the probability of
punishment conditional on committing a crime. This learning process may reflect the
mechanism suggested by the broken windows theory (i.e., previous crimes signal neigh-
borhood distress (Kelling and Wilson (1982)))9 or it could reflect the fact that neighbors
and the police may respond to crime with increased monitoring that, if observed by
criminals, might deter future crime (Taylor (1996), Weisburd and Eck (2004)).

We can describe the total intertemporal relationship between crimes as

∂crimeyjt
∂crimexjt−1

=
∂
(
I
y
jt · (1 − F

(
π
y
jt;Θy

jt

)))

∂I
y
jt

∂I
y
jt

∂crimexjt−1︸ ︷︷ ︸
channel 1

+
∂
(
I
y
jt · (1 − F

(
π
y
jt;Θy

jt

)))

∂Θ
y
jt

∂Θ
y
jt

∂crimexjt−1︸ ︷︷ ︸
channel 2

(7)

+
∂
(
I
y
jt · (1 − F

(
π
y
jt;Θy

jt

)))

∂π
y
jt

∂π
y
jt

∂crimexjt−1︸ ︷︷ ︸
channel 3

�

This equation incorporates the three different and broad channels defined in equa-
tions (4), (5), and (6) by which past crime can cause future crime. Each causal response
is likely to differ depending on the types of past and future crimes. For example, light
crimes such as graffiti or public urination may generate little or no incapacitation effects
relative to violent crimes, but they may be more salient to criminals, police, and neigh-
bors relative to harder-to-observe crimes such as rape. Moreover, the propensity of crim-
inals to commit certain crimes in the heat of the moment such as murder may be less

8Of course, past crimes from t − 2, t − 3, and so on may also be included in these equations. We empiri-
cally assess this possibility in Section 6.2.

9In this scenario, the function πy(·) would likely be decreasing in crimexjt−1 for x = y (this would be the
case if, for instance, individuals were rational and updated their priors according to Bayes law). Hence, if
crimeyjt−1 is higher than expected, then individuals would revise their estimate of πy

jt downward, leading to

an increasing crime. Further, πy(·) would likely decrease in crimexjt−1, x �= y if individuals expect πy
jt and πx

jt

to be positively correlated to each other.
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affected by incapacitation effects than more professionalized crimes such as burglary
and auto theft (Blumstein et al. (1986)). Furthermore, given the generality of the model,
it is premature to sign the three terms in equation (7), as they depend on the relative in-
tensities of responses from a variety of different agents (e.g., potential criminals, police,
criminal justice policymakers, and other private citizens) who have countervailing and

potentially complex incentives. As such, identifying the causal effects
∂crimeyjt

∂crimexjt−1
for each

combination of x and y is a fundamentally empirical question that we seek to answer in
this paper. This question is of importance because while policy makers typically have no
way of directly controlling the parameters of the model (Iyjt �Θ

y
jt�π

y
jt), they are more ca-

pable of devising policies that target the levels of certain types of crime, crimexjt−1, which
may indirectly affect these parameters. Indeed, the relative benefits of various targeting
policies have occupied a prominent place in the law enforcement policy debate in many
large US cities. In light of this, while identifying the contribution of each of these chan-

nels is beyond the scope of this paper, identification of the full effect
∂crimeyjt

∂crimexjt−1
is quite

valuable. This involves isolating the component of Cov(crimeyjt �crimexjt−1) that is not

attributable to Cov(ηa
ijt �η

b
ijt−1), where a and b may correspond to I, Θ, or π. We now

discuss our strategy to do so.

3. Identification strategy

So as to test empirically whether crime affects future crime levels, we formally spec-
ify the intertemporal linkages described above in a system of equations of motion that
summarize the co-evolution of crimes of various types in a neighborhood. The equation
of motion for crime y can be written as

crimeyjt =
∑

x∈C
crimexjt−1β

xy + controlsjtγ
y + erroryjt � (8)

where βxy denotes the effect of a crime of type x on a future crime of type y (we will index
dependent crime variables with y and explanatory crime variables with x throughout
the paper), controlsjt is a vector of observed covariates, and erroryjt includes all unob-
served determinants of crime. Each observation in equation (8) is uniquely indexed by
j, t, and y. We collect these equations and represent the system of equations of motion
in matrix form as

crimejt = βcrimejt−1 + Γ controlsjt + errorjt � (9)

where crimejt is a |C| × 1 column vector. The parameter matrix β (whose (y�x) element
is equal to βxy ) contains the |C|2 treatment effects of interest: the intertemporal effects
of all crimes both within and across types of crimes.

Unobserved determinants of crime (e.g., neighborhood amenities, characteristics of
neighbors, and law enforcement practices in the area) are likely to persist over time. As
a result, a naive estimation of (9) by ordinary least squares (OLS) will yield a biased esti-
mator of β. The standard solution to this issue is the use of instrumental variables (IV)
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to identify β, but IVs are difficult to find since any candidate IV must be both transitory
and vary at the neighborhood level. This difficulty is further compounded by the fact
that there are |C| endogenous variables, so at least |C| separate IVs would be required.

In light of this, we take an alternative approach. β is identified under the standard
exogeneity assumption:

Assumption 1. We have Cov(crimexjt−1�erroryjt |crime−x
jt−1�controlsjt) = 0 for all x, y,

where crime−x
jt−1 is the vector containing crimex

′
jt−1 for all x′ �= x.

The plausibility of this assumption depends upon the model in question, which is
the unique representation of equation (9) consisting of four objects: the classification of
crimes (C), definitions of neighborhoods (j) and time periods (t), and choice of covari-
ates (controlsjt ).

Given sufficiently detailed data, Assumption 1 may be satisfied for some feasible
model, but we do not know ex ante which model (if any) does so. Accordingly, we de-
velop an empirically driven identification strategy that is guided by a formal test of As-
sumption 1 (Caetano (2015)). We outline our approach as follows:

Step 1. Leveraging institutional and theoretical knowledge, as well as unique features
of our data, we begin by considering a large subset of candidate models (Section 5.2).

Step 2. For each candidate model, we test Assumption 1 using a formal test of exo-
geneity (Section 4). Most models do not survive, but one model does survive (Table 2 in
Section 6).

Step 3. We present the results of the model that survives the test of exogeneity (Table 3
in Section 6).

Step 4. Because the failure to reject exogeneity does not imply exogeneity—there
could be confounders undetectable by the test that bias our results—we present sys-
tematic evidence of the power of the test. We construct a large pool of observed vari-
ables from our detailed database and auxiliary data sets (691 variables in total) and show
that none of these variables is undetectable by the test of exogeneity. Because our pool
of observed variables may not be representative of all unobservables, this alone does
not entirely rule out the existence of undetectable unobserved confounders. Thus, we
also show that our pool of observed variables is representative in an important way: we
observe detectable confounders that correspond to the full spectrum of potential endo-
geneity concerns in our application (see Appendix B).

Step 5. We perform additional robustness checks with the particular goal of detecting
confounders that are undetectable by the test (Section 7). We find that the surviving
model above is the only one that survives all other checks.

Step 6. From our sensitivity analysis, we systematically catalog the necessary prop-
erties that any variable must possess to bias the results from our surviving model (Ta-
ble 11): it (a) must be undetectable by the test of exogeneity, (b) cannot be absorbed by
controls, and (c) must survive the many robustness checks performed.
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In total, this procedure allows us to reach the qualified conclusion that our surviving
model is appropriate for causal inference of β by OLS as it is difficult to conceive of a
variable that possesses the three properties above given our empirical evidence.

4. Testing the exogeneity assumption

Unlike tests of exogeneity that require valid IVs (e.g., Hausman (1978)), the test we use
relies on there being a known threshold value of the endogenous variable around which
unobservable confounders vary discontinuously (Caetano (2015)). Figure 1 provides
graphical intuition for the idea. We illustrate the expected number of crimes of type y

for each level of past crimes of type x in a neighborhood. This relationship as presented
constitutes a raw correlation; our goal is to determine whether any of it can be inter-
preted as causal.

Assume that crimexjt−1 has a continuous causal effect on crimeyjt at crimexjt−1 = 0
(this follows trivially from the specification of equation (9)). Then the discontinuity ob-
served in the unconditional relationship between crimexjt−1 and crimeyjt (panel (a)) can
be attributed to either observed covariates or unobserved confounders that vary dis-
continuously at crimexjt−1 = 0. Now suppose that we condition this relationship on all
observed covariates and reproduce this plot in panel (b). Any remaining discontinuity
observed at crimexjt−1 = 0 can only be due to unobserved confounders that were not ab-
sorbed by the controls. Thus, finding a discontinuity after controlling for all covariates
is equivalent to detecting endogeneity in the specification.

This test of exogeneity is easy to implement. Let dxjt−1 be an indicator variable that is
equal to 1 if crimexjt−1 = 0, and let Djt−1 be the |C| × 1 vector whose xth element is dxjt−1.

(a) Past crime and future crime, unconditional (b) Past crime and future crime, conditional

on covariates

Figure 1. Test of exogeneity: intuition.
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To test Assumption 1, we rewrite equation (9) to include these indicator variables,

crimejt = βcrimejt−1 + Γ controlsjt +ΔDjt−1 + εjt� (10)

where Δ is a |C| × |C| matrix of parameters that represent the sizes of the discontinuities
at E[crimeyjt |crimexjt−1 = 0�crime−x

jt−1�controlsjt] for all combinations of x and y. It fol-
lows that an F-test of whether all elements of Δ are equal to zero is equivalent to a test
of Assumption 1.10

Remark 1. The test of exogeneity requires that crimexjt−1 has a continuous causal effect

on crimeyjt at crimexjt−1 = 0; otherwise the parameters in Δ would incorporate the treat-
ment effect. If this assumption did not hold, then all models would be rejected irrespec-
tive of whether they were endogenous or exogenous. Thus, the fact that some models
survive the test is direct evidence that this assumption is valid. Conceptually, we believe
that this assumption is valid in our context because every neighborhood crime is not
necessarily observed by everyone (all neighbors, all potential criminals, etc.), and each
person does not respond to this knowledge the same way. (For instance, the behavior
of some potential criminals might be affected when crimexjt−1 = 1, whereas the behav-
ior of other potential criminals will be affected only when crimexjt−1 = 2.) This will lead
the effects we want to estimate, which represent the direct or indirect responses of these
individuals to their knowledge of these crimes, to be smoothed away.

4.1 Power of the test

As with any identification strategy, we can never validate Assumption 1 for a given model
beyond all doubt. Instead, we can only make the strongest attempt possible to reject As-
sumption 1 in candidate models and arrive at the qualified conclusion that we cannot
reject the causal interpretation of a model that survives powerful tests. Hence, our em-
pirical burden is to argue that a failure to reject the null hypothesis of exogeneity rea-
sonably points to the conclusion that the null is correct. For our identification strategy,
this amounts to carefully and systematically establishing the statistical power of the test
to ensure that we can detect endogeneity from all sources.

In our application, the statistical power of the test is derived from the assumption
that unobserved confounders vary discontinuously at crimexjt−1 = 0 for some x. Al-
though this does not hold in all settings (which restricts the realm of applications of our
identification strategy), there is a clear theoretical reason for why we should find such
discontinuities in our setting.11 Among the neighborhoods with crimexjt−1 = 0, there are
those that are so wealthy (or so safe or so heavily patrolled by police, etc.) that we would
expect crimexjt−1 = 0 even if they were slightly poorer (or more dangerous or less policed,
etc.). The latent heterogeneity in these inframarginal neighborhoods implies that neigh-
borhoods with zero crime should be discontinuously different on average than the set
of neighborhoods with barely positive amounts of crime. In other words, the mere fact

10Because the test that we implement is an extension of Caetano (2015) to a multivariate context, we
provide a more formal derivation in Appendix A.

11Caetano (2015) discusses other potential settings where this test can be applied.
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Figure 2. Why are unobservables discontinuous at crimexjt−1 = 0?

that crime levels must be nonnegative generates a bunching of neighborhoods with zero
crime that may in turn lead to discontinuities in unobservable determinants of crime.

We illustrate this intuition in Figure 2, where we plot the expected value of a particu-
lar unobservable for each level of a crime of type x. Without loss of generality, we assume
that this relationship is positive. The dashed line is suggestive of what the expected value
of the unobservable would have been if crime was not truncated at zero. Note that this
truncation mechanically generates a discontinuity in the expected value of the unob-
servable at zero, which provides power to detect endogeneity from this source.

Let W be the set of all model confounders, defined as the set of variables w that are
both correlated to crimeyjt and to crimexjt−1 for some combination of x and y. We provide
an intuitive framework to understand the statistical power of our test by splitting the set
W into two disjoint subsets: WD, which contains variables that vary discontinuously at
crimext−1 = 0 for some x, and WC , which contains variables that vary continuously at
crimext−1 = 0 for all x. Subset WD can be further split into WD

1 , which contains variables
that are correlated to crimeyt when crimext−1 = 0 for some combination of x and y, and
WD

2 , which contains variables that are uncorrelated to crimeyt when crimext−1 = 0 for all
combinations of x and y. These three sets, WD

1 , WD
2 , and WC form a partition of W. Our

test of exogeneity can detect endogeneity from all confounders in WD
1 , but it cannot

detect endogeneity from confounders in WD
2 or WC . Hence, the statistical power of our

test intuitively corresponds to the size of WD
1 relative to W. If, in a particular setting, all

potential confounders belonged to WD
1 , then the test would have “full” power, that is, we

could interpret the estimates of a surviving model as causal.12

In practice, our testing procedure is increasingly powerful in a multivariate applica-
tion such as ours: as the number of crimes considered gets larger, the relative size of WD

1

12More formally, WD
1 , WD

2 , and WC are all defined conditional on crime−x
jt−1, as we discuss in the Supple-

mental Material.
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(a) WD
1 vs. WD

2 (b) WC

Figure 3. Types of confounders. Notes: Light gray region: Support of confounder among all ob-
servations of sample. Dark gray region: Support of confounder among all observations of sample
with zero past crime.

grows while the relative sizes of WD
2 and WC shrink, which increases the power of our

test. We illustrate this point in Figure 3, where we present examples of confounders in
WD and in WC .

In the first panel, we distinguish between confounders belonging to WD
1 and WD

2 .
The confounder shown varies discontinuously when crimexjt−1 = 0. The thick, dashed
line represents the average value of the confounder for each level of the propensity for
past crime when it is negative, and the dot, as implied by the dashed line, represents
the average value of this confounder across all observations with crimexjt−1 = 0. For this
example, the light gray region along the right side of the vertical axis is the support of
the confounder in the whole sample, and the dark gray region along the left side of the
vertical axis is the support of the confounder in the subsample of observations where
crimext−1 = 0. To be a confounder, it must, by definition, be correlated to crimeyt in the
light gray region. If it is also correlated to crimeyt in the dark gray region, then it belongs
to WD

1 . Of course, there are |C|2 diagrams like this, one for each of the combinations of
x and y, and the confounder need only belong to the dark gray region of at least one of
these diagrams for it to belong to WD

1 . The only way a confounder could belong to WD
2

would be if it did not belong to the union of all dark gray regions across any of the |C|2
combinations of x and y.

In the second panel, we illustrate a confounder belonging to WC . This confounder
is correlated to crimexjt−1 but only when crimexjt−1 > 0. Once again, in a multivariate
setting this test has greater power; as long as observations with crimexjt−1 > 0 are such

that crimex
′

jt−1 = 0 for some x′ and that w varies discontinuously at crimex
′

jt−1 = 0, then w

will still be detectable by the test.
Figure 3 highlights the value of implementing the exogeneity test in a multivariate

context. Any confounder w is detectable by the test as long as it is detectable by at least
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one combination of x and y. In Appendix B.1, we show that these additional layers of
redundancy substantially increase the power of the test.

We supplement this discussion with abundant empirical evidence of the power of
the test in Appendix B. We first show that no observed variables in our database be-
long to WD

2 ∪ WC . For further context, we also provide examples of observed variables
belonging to WD

1 that correspond to the various potential sources of endogeneity that
might arise in our application.

5. Data

The set of potential candidate models of intertemporal effects of crime is very large,
which requires us to limit our attention to a relevant subset before implementing our
identification strategy. Because there is no purely empirical criterion for determining
this relevant subset of models,13 we take into account theoretical and institutional char-
acteristics and show how the test of exogeneity can be leveraged to aid in this task.

5.1 Sample

We assembled a database encompassing every police report filed with the Dallas Police
Department (DPD) from January 1, 2000 to September 31, 2007.14 Every report in our
database lists the exact location (address or city block) of the crime, the exact description
of the crime, and its five digit uniform crime reporting (UCR) classification as given by
the responding officer.15 To offer a sense of the size and richness of this database, we
plot all crimes that were reported in the first 2 weeks of our sample period in Figure 4.
The spatial variation in crimes is immediate. The temporal variation in crime from week
to week is less visually stark, which is suggestive of serially correlated determinants of
crimes; hence the difficult endogeneity problem that we face.

A detailed description of the complainant is also provided with the exception of
anonymous reports. Private companies and public officials/offices may be listed as
complainants. Every report also lists a series of times from which we can construct the
entire sequence of crime, neighborhood response, and police response. Specifically, we
observe the time (or estimate of the time) that the crime was committed, the time at
which the police were dispatched, the time at which the police arrived at the scene of
the crime, and the time at which the police departed the scene of the crime.

5.2 Aggregation choices

Before performing any estimation, we must first define the different types of crimes of
interest, neighborhood boundaries, and time periods over which we construct crime

13The need to predetermine a relevant subset of candidate models is a requirement of all existing model
selection approaches (Kadane and Lazar (2004)).

14A small number of police reports—sexual offenses involving minors and violent crimes for which the
complainant (not necessarily the victim) is a minor—are omitted from our data set for legal reasons.

15If a particular complaint consists of multiple crimes (e.g., criminal trespass leading to burglary), then
the report is classified only under the most severe crime (burglary) per UCR hierarchy rules from the Federal
Bureau of Investigation (FBI).
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(a) January 1, 2000–January 7, 2000 (b) January 8, 2000–January 14, 2000

Figure 4. Reported crimes in Dallas. Notes: We map all reported crimes in Dallas in the first 2
weeks of 2000. Census tract boundaries are shown for geographic perspective.

rates. These modeling choices correspond to choices of C, j, and t, respectively, which
partially determine the set of possible models that we should consider. All else constant,
the most disaggregated model is preferable since it better exploits the heterogeneity
present in the data and contains more sharply interpretable parameters. However, the
set of potential control variables is exponentially larger in more disaggregated models,
requiring us to consider an exponentially larger set of candidate models. Here, we dis-
cuss the practical trade-offs we encounter in choosing C, j, and t. As discussed in Ap-
pendix B.2, we use the test of exogeneity to simplify our model search by reducing the
number of models that we need to consider. (This is important since the detail of our
data allow us to estimate an unfeasibly large number of candidate models.) For exam-
ple, if we know that we can detect endogeneity due to both under-aggregation and over-
aggregation, then we need not be concerned about re-aggregating our data at another
level if we arrive at a model that survives the test.

5.2.1 Classification of crimes (C) In principle, crimes could be classified very coarsely
(e.g., violent crimes) or finely (e.g., robberies in the daytime with a knife). On the one
hand, as we disaggregate the types of crimes, we are able to specify more treatment ef-
fects, which allows for a richer analysis of the intertemporal effects of crime. In addition,
a larger set of crimes under consideration should, other things being equal, increase the
statistical power of our test. On the other hand, it is difficult to precisely measure local
crime rates if they are too finely classified (e.g., it is harder to precisely calculate the rate
of robberies with a knife relative to the overall rate of robberies with an incident-based
data set) and, furthermore, the number of parameters to estimate grows quadratically
in |C|.

Our practical solution is to start by defining types based on the FBI’s uniform cate-
gorization of crimes from which we choose a relatively heterogeneous subset of these
types. We perform our analysis on six crimes: rape, robbery, burglary, motor vehicle
theft, assault, and light crime. Because of potential misclassification, we define assault
as both aggravated and simple assault (Zimring (1998)). We classify criminal mischief,
drunk and disorderly conduct, minor sexual offenses (e.g., public urination), vice (mi-
nor drug offenses and prostitution), fence (trade in stolen goods), and found property
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(almost exclusively cars and weapons) as light crimes.16 Together, these six crimes com-
prise 55% of all police reports to the DPD during the sample period.17

We select this set of crimes for three reasons. First, this set includes both violent
crimes and property crimes of varying levels of severity, which allows us to test for dy-
namic spillover effects of lighter crimes to more severe crimes. Second, these crimes
occur relatively more frequently than other publicly observable crimes such as homi-
cide and arson, which should yield more variation in our variables of interest. And
third, these crimes are relatively accurately reported in comparison with crimes such
as larceny and fraud.18

We support this choice by showing that our test can detect endogeneity stemming
from the list of crimes not being exhaustive (see Appendix B.2.1) and from crimes being
too coarsely classified (see Appendix B.2.2).19

5.2.2 Neighborhood boundaries (j) Neighborhoods are fundamentally difficult to de-
fine, especially when data are observed at high geographic detail, which allows for many
different definitions that are equally plausible ex ante. Accordingly, we face a trade-off
regarding our choice of j. On the one hand, we would like to define neighborhoods
broadly (i.e., coarse j) so as to incorporate all spillover effects and to avoid contami-
nation issues. For instance, defining j as a street block is likely too fine, as the intertem-
poral effects of crime on one street block may spill over to adjacent street blocks. On
the other hand, if j is too coarsely defined, then we might not have observations with
crimex

′
jt−1 = 0 for some or even all x′s, which makes the test of exogeneity unfeasible (or

at least less powerful).
Our practical solution is to start by defining neighborhoods based on the DPD’s geo-

graphic classification scheme. During our sample period, the DPD geographically orga-
nized their policing area into 6 divisions subdivided into 32 sectors, which were further
subdivided into 236 police beats.20 Police beats range from roughly 0�5 to 2 square miles
in area, while sectors range from roughly 5 to 10 square miles in area.

We define neighborhoods as either sectors or beats. We support this choice by show-
ing that our test can detect endogeneity stemming from j being too coarsely or too finely
defined.21

16We also conducted our full analysis by defining only criminal mischief and found property as light
crime or, alternatively defining criminal mischief only as light crime, and we obtained similar results.

17Roughly 25% of police reports in the database do not directly correspond to criminal acts per se (i.e.,
they declare lost property, report missing persons, report the failure of motorists to leave identification after
auto damages, etc.), so the six crimes that we consider comprise a much larger majority of total crime in
Dallas during the sample period.

18The accuracy of reported rape statistics is admittedly poor (Mosher, Hart, and Miethe (2010)). As an
added robustness check, we replicated our full analysis excluding rapes and obtained similar results.

19If we rejected all models, then we would have to redefine C to be more exhaustive (e.g., add larceny to
the list) and disaggregated (e.g., treat burglary at night differently than burglary in the daytime).

20In October 2007, DPD added a seventh division to their classification and made slight modifications to
some beat and sector boundaries. We end our sample in September 2007 to ensure that the administrative
boundaries in our data set are geographically consistent over the entire sample period.

21See Appendixes B.2.2 and B.2.3.
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5.2.3 Time periods (t) There is an important trade-off regarding our choice of temporal
aggregation as well. We would like to choose t to be as short as possible so as to incorpo-
rate short-run intertemporal effects. However, this comes at a cost for two reasons. First,
such a specification might miss longer-run intertemporal effects of crime. The obvious
solution to this problem is to modify equation (9) to include additional lagged right-
hand-side variables, but doing so will dramatically increase the number of parameters
to be estimated. Second, if t is defined to be too short of a time period, then we will be
unable to precisely measure local crime rates (e.g., the robbery rate in a neighborhood
between 10 a.m. and 10:05 a.m. on 6/15/2003) from an incident database.

Given these competing concerns, we define t as a week, which preserves substan-
tial heterogeneity in neighborhood crime rates over time and provides a long time se-
ries (402 periods). We then show that our test can detect endogeneity stemming from
t being overly aggregated and add lagged right-hand-side variables to equation (9) to
demonstrate directly that any intertemporal effects subside fairly quickly.22

5.3 Choice of controls

Finally, we must choose what to include in controlsjt . Given the richness of our data
set, the potential number of combinations of control variables is too large, so we need
an “educated guess” of which sets of control variables have a chance of absorbing all
confounding unobservables. Accordingly, we turn to the theory of social interactions to
restrict the set of candidate models that we should consider.

Specifically, theory suggests that the two intertemporal links in crimes described in
equation (9)—as encapsulated in β and errorjt—operate at different levels of aggrega-
tion. While β is identified off variations at fine spatial and temporal levels, confounding
effects tend to vary at fine spatial or temporal levels, but not both. Intertemporal effects
of crimes propagate along individual and social learning networks, and social learning
dissipates rapidly as social distance increases. Because social distance is strongly cor-
related to both spatial distance (Akerlof (1997)) and temporal distance (Ellison and Fu-
denberg (1995)), the bulk of the causal response to a crime will likely remain close to
the scene of the crime and be strongest in its immediate aftermath.23 In contrast, most
confounding determinants of crimes operate at more aggregated levels in at least one
of these dimensions. For instance, the demographic composition of a neighborhood
tends to change relatively slowly over time, and judicial institutions vary at larger ge-
ographic levels. Hence, we conjecture that these differences in aggregation should allow
us to specify fixed effects that control for confounders of crime without absorbing the
treatment effect that we want to measure.

To formalize this idea, we can describe a city as being composed of smaller geo-
graphic units (neighborhoods) indexed by j that can be further grouped into larger ge-

22We opt for adding lags instead of choosing t = month because we otherwise might not have observa-

tions where crimex
′

jt−1 = 0 for some x′, which would reduce the power of our test. In addition, adding lags
allows for more heterogeneity in case the treatment effects decay over time.

23Block (1993) surveys this topic and shows that individuals’ beliefs about neighborhood crime levels
and even their beliefs about their own victimization have been repeatedly found to be subject to recency
bias.
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ographic units (regions) indexed by J. Similarly, our sample period can be divided into
shorter time periods t that can be further grouped into longer time periods T . We con-
sider models in which controlsjt = λJt + λjT for different definitions of J and T , where
λJt is the unobserved component of crime that varies at a high frequency within a region
and λjT is the unobserved component of crime that varies at a low frequency within
a neighborhood. The λJt fixed effects absorb all confounding factors that do not vary
within region, and similarly, the λjT fixed effects absorb any neighborhood-specific con-
founding factors that vary at the lower frequency T .

For a given level of j and t, the choices of J and T reflect the following trade-off:
Finer choices of J and T relative to j and t imply fixed effects that absorb more con-
founding variation, which makes it more likely that any remaining identifying variation
is “as good as random.” However, as J and T approach the level of refinement of j and t,
the number of covariates grows exponentially, taking the model closer to saturation. Our
practical solution is to choose the coarsest values of J and T for which we fail to reject
Assumption 1.

5.4 Summary statistics

We present summary statistics aggregated to the sector–week level in Table 1. Not sur-
prisingly, light crime is the most prevalent crime reported, followed by assault, burglary,
auto theft, robbery, and rape. In 69% of sector–week observations, zero past crimes of at
least one type are reported.24 The high prevalence of zeros in the explanatory variables

Table 1. Summary statistics: 2000–2007.

Auto Light
Variable Rape Robbery Burglary Theft Assault Crime

Avg. reported crimes in a sector per week 0�42
(0�69)

4�53
(3�15)

13�21
(7�52)

10�56
(5�92)

20�98
(11�87)

27�35
(11�87)

Avg. police response time (hours) 2�36
(1�45)

1�31
(1�00)

1�39
(0�73)

0�88
(0�66)

1�36
(0�74)

1�39
(0�72)

Avg. police duration (hours) 1�10
(1�61)

0�95
(1�73)

0�59
(0�81)

0�40
(0�68)

0�66
(0�71)

0�58
(0�61)

Frac. of crimes committed at night 0�65 0�62 0�40 0�57 0�50 0�47
Frac. of crimes committed outdoors 0�26 0�61 0�02 0�79 0�32 0�49
Frac. of crimes committed on the weekend 0�34 0�33 0�23 0�30 0�34 0�29
Frac. of crimes reported by private businesses 0�00 0�18 0�30 0�07 0�00 0�08

Total reported crimes 5,372 58,385 170,345 136,158 270,503 352,704

Note: Standard deviations are presented in parentheses where relevant. Average police response time is measured from
dispatch time to the officer’s arrival. Average police duration is measured from the officer’s arrival at the crime scene to their
departure. Nighttime is defined as 8:00 p.m.–8:00 a.m.

24When we define “past crimes” more flexibly (i.e., when we consider as explanatory variables crimexjt−τ

for some x ∈ C and τ ≤ 6), zero past crimes of at least one type are reported in 100% of sector–week observa-
tions. This more flexible definition of past crimes increases the power of the test, as shown in Section 5.2.1.
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is particularly valuable for our identification strategy, as it should yield smaller standard
errors in our estimates of Δ, thereby resulting in a more powerful test of exogeneity.

Police respond to crimes in approximately 80 minutes on average, although they re-
spond to reports of rape roughly an hour slower and to reports of motor vehicle theft
roughly half an hour faster. On average, police spend less than half an hour at the scene
of a motor vehicle theft, but they spend up to an hour at the scenes of robberies and
light crimes, and over an hour at the scenes of reported rapes. All types of crimes occur
slightly more frequently on weekends than weekdays with the exception of burglaries,
which happen less frequently on weekends than weekdays. Just over half of robberies,
light crimes, and motor vehicle thefts occur at night and, as expected, a majority of these
crimes take place outdoors. On the other hand, burglaries, assaults, and rapes tend to
occur indoors, with the first two occurring predominantly during the daytime. Private
businesses report approximate one-fifth of robberies and light crimes and one-third of
burglaries, but they report very few motor vehicle thefts and no rapes or assaults.

6. Empirical results

6.1 Main results

We consider models with C = {rape� robbery�burglary�auto theft�assault� light crime},
j ∈ {beat� sector}, and t = week. For controlsjt , we consider six specifications. In spec-
ification I, we include no controls. In specification II, we include type of crime fixed
effects. In specification III, we include year type of crime fixed effects. This specification
is closely related to previous attempts to identify intertemporal relationships between
crimes (Funk and Kugler (2003)) and between crime and policing (Corman and Mocan
(2005)), as they utilize only low-frequency control variables such as annual unemploy-
ment rates, which are likely absorbed by these fixed effects. In specification IV, we add
neighborhood type of crime fixed effects to specification III to absorb any neighborhood
characteristics that did not change over the sample period. In specification V, we include
both week type of crime and neighborhood type of crime fixed effects. Finally, in spec-
ification VI, we include both division–week type of crime and neighborhood–year type
of crime fixed effects.

Table 2 contains the F-statistics and respective p-values for each test of exogeneity
performed. We are able to reject exogeneity for all but one model at standard critical
levels.25 The surviving model is

C = {rape� robbery�burglary�auto theft�assault� light crime}�
j = sector�

25Model V for j = sector and t = week is only marginally rejected at the 5% level of significance. When
we look at the elements of Δ individually, we find that 3 out of 30 of them are statistically significantly
different from zero at the 99% level. At this level of statistical significance, we would expect to reject 0�3 of
the coefficients at random. In the interest of conducting a conservative analysis, we reject exogeneity for
this model. As a comparison, in model VI for j = sector and t = week, zero elements of Δ are statistically
significant at the 99% level.
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Table 2. Tests of exogeneity.

Specifications (p-Values in Parentheses)

I II III IV V VI

j = beat, t = week 53�06
(0�00)

5�84
(0�00)

5�86
(0�00)

5�85
(0�00)

5�91
(0�00)

6�39
(0�00)

j = sector, t = week 11�21
(0�00)

1�78
(0�01)

2�05
(0�00)

1�73
(0�01)

1�46
(0�05)

0�88
(0�66)

Note: This table shows the F-statistic and p-value of the tests of exogeneity described in Section 3 for various specifications
of equation (10). Entries in bold denote “surviving models” for which we cannot reject exogeneity at typical significance levels.
Each column specifies fixed effects at a different level: I, no fixed effects; II, fixed effects at the c level; III, fixed effects at the
year×c level; IV, fixed effects at the year×c and at the j×c levels; V, fixed effects at the t×c and at the j×c levels; VI, fixed effects
at the J × t × c and at the j × T × c levels, where J = division and T = year. All standard errors are clustered at the j × year × c
level.

t = week�

controlsjt = {λdivision–week type of crime�λsector–year type of crime}�

The division–week type of crime fixed effects absorb all time-varying determinants
of each crime that vary across the six police divisions of Dallas, and the sector–year type
of crime fixed effects absorb all neighborhood-specific determinants of each crime that
vary on an annual basis (e.g., demographic characteristics).26 In short, the only potential
omitted variable that could bias our estimates would have to vary across weeks within
a calendar year and across sectors within a division. Because we find no evidence of
such omitted variables from the test of exogeneity, the estimates of this model can be
interpreted as causal (provided the test is powerful enough). For the sake of exposition,
we interpret our estimates as such throughout this section before presenting supporting
evidence in Section 7 and Appendix B.

In Table 3, we present estimates of the intertemporal effects of crime (β) for the lone
surviving model. All coefficients are precisely estimated with the exception of the rape
coefficients, whose standard errors are relatively large due to the lack of variation in
reported rape levels. We find small within-crime intertemporal effects for robbery, bur-
glary, auto theft, and light crime, indicating that such crimes will generate an additional
0�05–0�15 crimes of that type in the following week. We find less evidence for across-
crime intertemporal effects, although we do find some positive effects at the 95% confi-
dence level, mostly in the direction of decreasing severity. Notably, we find no evidence
that light crime leads to more severe crimes. With this model, we are able to explain 87%
of the variation in reported weekly neighborhood crime levels.

We provide more context for these effects by expressing them as semi-elasticities of
1-week crime elimination in Table 4. Specifically, we compute the total spillover effect
of eliminating all crimes of a given type x in an average week on each crime of type y.
We express this effect as a percentage of crime of type y in a single week in an average

26Sector-specific unobservable amenities that are changing over time due to gentrification will be ab-
sorbed by these fixed effects to the extent that they vary across years in the sample.
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Table 3. Intertemporal effects of crimes.

Auto Light
Rapet Robberyt Burglaryt Theftt Assaultt Crimet

Rapet−1 0�001
(0�025)

0�073
(0�072)

−0�121
(0�147)

−0�083
(0�127)

−0�006
(0�200)

0�128
(0�204)

Robberyt−1 −0�006
(0�003)

0�060**
(0�013)

0�013
(0�024)

0�026
(0�016)

0�064
(0�030)

0�081**
(0�029)

Burglaryt−1 −0�001
(0�002)

0�010
(0�006)

0�153**
(0�013)

0�009
(0�010)

0�009
(0�015)

0�046**
(0�016)

Auto theftt−1 −0�001
(0�002)

−0�006
(0�006)

0�012
(0�013)

0�084**
(0�012)

0�029
(0�017)

0�025
(0�019)

Assaultt−1 0�002
(0�001)

0�010**
(0�004)

−0�004
(0�007)

0�003
(0�007)

0�016
(0�012)

0�012
(0�011)

Light crimet−1 0�001
(0�001)

0�002
(0�004)

0�003
(0�008)

0�008
(0�007)

0�016
(0�010)

0�060**
(0�013)

R2 0�8820
Number of observations 77,184

Note: This table shows the estimated intertemporal effects of various crimes in week t − 1 on crime levels in week t (i.e., the
parameter matrix β). Fixed effects at the division–week type of crime and sector–year type of crime are included in each of the
six equations, which are estimated simultaneously by seemingly unrelated regression. All errors are clustered at the sector–year
type of crime level. **, significant at the 99% level; *, significant at the 95% level.

Dallas neighborhood.27 As expected, the point estimates of all semi-elasticities tend to
be extremely small. For example, a complete elimination of light crime in week t in the
average neighborhood—a reduction of 23�15 light crimes in that week—will generate a
total future reduction in robberies aggregated over weeks t + 1� t + 2� � � � that is equal
to only 1�6% of the number of robberies in a single week in the average neighborhood
in Dallas (about 0�07 robberies). Even though the majority of these effects are not sta-
tistically distinguishable from zero, the precision of our estimates allows us to rule out
even modest intertemporal spillovers. For example, with 95% confidence we can rule
out a spillover reduction in robberies of over 3�2% from the elimination of all light crime,
which corresponds to about 0�14 robberies. Hence, we can comfortably rule out the siz-
able self-sustaining reductions in severe crimes promised by proponents of the broken
windows theory.

Remark 2. Our identification strategy is based on the premise that we should expect
that any confounder will be absorbed as we add controls; otherwise the test of exo-
geneity would detect its presence. However, this might not be the case if the standard
errors of Δ̂ also increased with the addition of controls. In that case, a discontinuity in
E[w|crimexjt−1 = d] at d = 0 would be wrongly interpreted as continuous; that is, ele-

27This calculation takes into account all cumulative effects, including indirect ones. For instance, if elim-
inating robberies in week t reduces burglaries in week t + 1, then the calculation associated with the elim-
ination of robberies in t will incorporate the reduction of assaults in week t + 2 that was due to the corre-
sponding reduction of burglaries in week t + 1.
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Table 4. Full long-run reduction in crimey from a 1-week elimination of crimex.

Effect on Crimey

Auto Light
Crimex Rape Robbery Burglary Theft Assault Crime

Eliminate 0�42 rapes 0�1%
[−4�1�5�9]

−6�3%
[−13�0�3�3]

−2�0%
[−12�6�13�5]

−0�1%
[−10�8�12�8]

11�2%
[−1�0�28�1]

6�5%
[−8�8�28�1]

Eliminate 4�58 robberies 0�7%
[−0�5�2�6]

6�5%
[3�7�10�2]

3�6%
[−0�9�10�0]

−1�4%
[−4�6�3�2]

5�0%
[0�9�10�7]

1�4%
[−3�9�9�0]

Eliminate 13�30 burglaries −0�4%
[−1�4�0�9]

0�6%
[−1�3�3�2]

18�2%
[14�8�22�8]

1�2%
[−1�2�4�6]

−0�8%
[−3�3�2�8]

1�1%
[−2�6�6�4]

Eliminate 10�71 auto thefts −0�4%
[−1�3�1�0]

1�3%
[−0�1�3�4]

1�6%
[−1�5�5�9]

9�2%
[6�6�12�7]

0�6%
[−2�1�4�5]

2�4%
[−1�4�7�7]

Eliminate 21�29 assaults −0�0%
[−0�7�1�0]

1�6%
[0�2�3�4]

0�8%
[−1�3�3�9]

1�7%
[−0�1�4�2]

1�8%
[−0�6�5�0]

2�4%
[−0�2�6�1]

Eliminate 23�15 light crimes 0�2%
[−0�4�1�1]

1�5%
[0�5�3�1]

2�8%
[1�0�5�6]

1�2%
[−0�5�3�5]

1�1%
[−0�7�3�6]

6�5%
[3�6�10�4]

Note: Reductions are calculated by hypothetically eliminating all crime of type x in the average neighborhood in the sample
for 1 week, computing the total number of future crimes of each type y that is reduced in that neighborhood, and dividing by the
average number of weekly crimes of type y in a neighborhood in the sample. Positive values correspond to long-run reductions
in crime. The 95% confidence intervals of these effects are presented in brackets. For example, eliminating light crime in the
average neighborhood for a week (a reduction of 23�15 light crimes) will generate a future reduction in robberies equal to 1�6%
of the average number of weekly robberies in a neighborhood in the sample (about 0�07 robberies). This effect lies between a
3�2% and a 0�5% reduction in robberies with 95% probability (a reduction of between 0�02 and 0�14 robberies).

ments of WD
2 would be erroneously understood to be elements of WC . To check if this

is the case, we present the distribution of the standard errors of all elements of Δ̂ for
models I–VI in Figure S2 of the Supplemental Material. In practice, the standard errors
do not seem to increase as more detailed fixed effects are added in the models that we
consider. This is not surprising since the addition of controls is simply an addition of in-
cidental parameters to the regression, so it does not necessarily affect inference on the
parameters of Δ, which remain fixed across all models.

6.2 Longer-run effects: Dynamic spillovers of crime

Criminal behavior may lead to intertemporal effects that extend to more than a single
period in the future. If that were the case, then the equations of motion in (10) would be
misspecified, which would affect our interpretation of β as the full intertemporal effects
of crime, and which could also lead to an endogeneity problem. To explore these issues,
we generalize equation (10) as

crimejt =
τ̄∑

τ=1

βτcrimejt−τ +
τ̄∑

τ=1

ΔτDjt−τ + Γ controlsjt + εjt� (11)

where τ̄ captures the maximum duration of direct, long-run effects of crime.
Table 5 presents the results of two tests for various values of τ̄ and specifications of

fixed effects for j = sector and t = week. First, we perform the most powerful test of exo-
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Table 5. Sensitivity tests: longer-run effects.

Specifications of Fixed Effects

Num. of Included Lags (τ̄) I II III IV V VI

τ̄ = 2 0�00
[0�00]

0�00
[0�00]

0�00
[0�00]

0�00
[0�00]

0�00
[0�01]

0�64
[1�00]

τ̄ = 3 0�00
[0�00]

0�00
[0�00]

0�00
[0�00]

0�00
[0�94]

0�00
[1�00]

0�21
[1�00]

τ̄ = 4 0�00
[0�00]

0�00
[0�00]

0�00
[0�00]

0�00
[1�00]

0�00
[1�00]

0�25
[1�00]

τ̄ = 5 0�00
[0�00]

0�00
[0�00]

0�00
[0�00]

0�00
[1�00]

0�00
[1�00]

0�39
[1�00]

τ̄ = 6 0�00
[0�06]

0�00
[0�37]

0�00
[0�39]

0�00
[1�00]

0�00
[1�00]

0�18
[1�00]

Note: This table shows the p-values of two tests associated with the generalized equation of motion of crime, equation
(11), with various fixed effects (corresponding to the columns) and lags (corresponding to the rows). The first p-value listed
in each cell is for the test of exogeneity described in Section 3 for Δ1� � � � �Δτ̄ (p-values in bold denote surviving models for
which we cannot reject exogeneity at the 5% level). The second p-value listed in each cell is for a test of whether all 36 × (τ̄ − 1)
elements of βτ , τ = 1� � � � � τ̄ − 1, in the listed model are equal to the respective elements of βτ , τ = 1� � � � � τ̄ − 1, when the lag τ̄
is excluded (p-values in bold denote that we cannot reject that all parameters are the same at the 5% level). The specifications
of controls are the same as those described in Table 2 for j = sector and t = week. Each one specifies fixed effects at different
levels: I, no fixed effects; II, fixed effects at the c level; III, fixed effects at the year × c level; IV, fixed effects at the year × c and at
the j × c levels; V, fixed effects at the t × c and at the j × c levels; VI, fixed effects at the J × t × c and at the j × T × c levels, where
J = division, T = year. All errors are clustered at the j × year × c level.

geneity available by jointly testing whether all |C|2 · τ̄ elements of Δ1� � � � �Δτ̄ are equal to
0 and we present the p-value of this test at the top of each cell. Only the preferred model
(model VI) survives this test, and it does so for any choice of τ̄. The fact that no other
specification survives for any choice of τ̄ can be understood as a falsification test in fa-
vor of model VI. Second, we test whether the elements of βτ for all τ ≤ τ̄−1 are the same
as their counterparts in the corresponding model with only τ̄−1 lags and we present the
p-value of this test at the bottom of each cell in brackets. For instance, when we add a
fourth lag to the model with three lags, we jointly test whether any of the 36 coefficients
in each of the first three lags change. These parameters do not differ in our preferred
model VI for any values of τ̄, which further restricts the set of potential confounders in
model VI. For instance, any confounding omitted variable that is not detected by our test
(i.e., an element of WD

2 ∪WC ) would need to be correlated to crimejt−1 and to crimejt but
also uncorrelated to crimejt−2� � � � �crimejt−6. This is a difficult condition to meet since
it rules out persistent confounders.28

Because the appropriate value of τ̄ is not obvious ex ante, we check for long-run
effects by choosing different values of τ̄ and testing whether we can reject that all 36
elements of βτ̄ = 0. We present the results of these tests in Table 6, which shows that for
the surviving model VI, τ̄ = 4 plausibly captures all long-run effects.29

28The second test is unable to reject models IV and V for τ̄ ≥ 3, which suggests that our test of exogeneity
is more powerful than this standard robustness check in this particular application.

29Note that this test is meaningful only for model VI, since we are unable to interpret the estimates of
models I–V as causal. Nevertheless, we present all estimates for completeness. The fact that the estimated
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Table 6. Should the τ̄th lag be included?

Specifications of Fixed Effects

Num. of Included Lags (τ̄) I II III IV V VI

τ̄ = 2 0�00 0�00 0�00 0�00 0�00 0�00
τ̄ = 3 0�00 0�00 0�00 0�00 0�00 0�01
τ̄ = 4 0�00 0�00 0�00 0�00 0�00 0�01
τ̄ = 5 0�00 0�00 0�00 0�00 0�00 0.43
τ̄ = 6 0�00 0�00 0�00 0�00 0�00 0.57

Note: This table shows the p-value for a test of whether all 36 elements of βτ̄ = 0 for various specifications of equation (11)
(p-values in bold denote that we cannot reject that all parameters are zero at the 5% level). These 6 specifications are the same
as those described in Table 2 for j = sector and t = week. Each one contains fixed effects at different levels: I, no fixed effects;
II, fixed effects at the c level; III, fixed effects at the year × c level; IV, fixed effects at the year × c and at the j × c levels; V, fixed
effects at the t × c and at the j × c levels; VI, fixed effects at the J × t × c and at the j × T × c levels, where J = division, T = year.
All errors are clustered at the j × year × c level.

In Table 7, we present estimates of β̂1� � � � � β̂4 of our surviving model. Our results
are similar to before. We do find some statistically significant long-run within-crime in-
tertemporal effects for burglary and auto theft. However, we find no systematic evidence
for long-run across-crime intertemporal effects.30 Moreover, these results indicate that
(direct) intertemporal effects last at most 4 weeks. Although we cannot rule out the pos-
sibility of effects that last for up to 4 weeks, disappear in the medium run (5th and 6th
weeks), and reappear after that (7th week and later), the fact that the magnitude of the
estimates in Table 7 decay for larger τ suggests that such hypothetical effects, if they
exist, are unlikely to be economically significant.

A key feature of a dynamic model of crime is that short-lived direct effects of crime
may generate longer lasting indirect effects.31 To explore such richer dynamic interac-
tions that are captured in the model described in equation (11), we use our coefficient
estimates to perform a simulated experiment in which we reduce one reported crime of
a given type in week 0 and then simulate the evolution of all reported crimes in weeks
1�2� � � � , holding all else constant.32 We then compute the cumulative change in the lev-
els of all crimes relative to how they would have evolved in the absence of the counter-
factual reduction. We interpret the cumulative simulated changes in future crime levels
as the dynamic spillovers that are associated with reductions in current crime levels,
holding all else constant except the endogenous behavioral responses to crime.

We present the results of this simulation exercise in Figure 5, which shows the full
dynamic spillovers of unit crime reductions along with 95% confidence intervals.33 The

spillovers from the nonsurviving models last 6 weeks or more when the spillovers estimated from model VI
do not is additional evidence that these nonsurviving models are biased by persistent confounders.

30Our finding that β1 �=β2�β3�β4 also serves as additional support for t = week versus t = month.
31Indeed, Gladwell (2000) popularized the notion that the broken windows theory implies the existence

of a “tipping point” level of light crime beyond which the levels of light crime and more severe crimes are
on an ever increasing trajectory. Our findings are inconsistent with this view.

32In particular, we hold constant the current arrest and incarceration policies used by law enforcement.
33Because our equations of motion are linear in Xjt−1� � � � �Xjt−T , the cumulative long-run spillovers can

be computed analytically. The standard errors for these spillovers are calculated using the delta method,
which accounts for the correlations among the elements of βc

k for all c and k.
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Table 7. Intertemporal effects of crimes: four lags.

Auto Light
Rapet Robberyt Burglaryt Theftt Assaultt Crimet

(a) β̂1
Rapet−1 0�001

(0�025)
0�078

(0�074)
−0�121
(0�145)

−0�086
(0�127)

−0�006
(0�201)

0�108
(0�206)

Robberyt−1 −0�006
(0�003)

0�056**
(0�012)

0�005
(0�024)

0�025
(0�016)

0�061*
(0�030)

0�084**
(0�029)

Burglaryt−1 −0�001
(0�002)

0�008
(0�007)

0�133**
(0�012)

0�004
(0�010)

0�003
(0�014)

0�041**
(0�015)

Auto theftt−1 −0�001
(0�002)

−0�006
(0�006)

0�008
(0�013)

0�074**
(0�011)

0�028
(0�017)

0�021
(0�019)

Assaultt−1 0�002
(0�001)

0�008*
(0�004)

−0�007
(0�007)

0�001
(0�007)

0�017
(0�012)

0�009
(0�011)

Light crimet−1 0�001
(0�001)

0�001
(0�004)

0�001
(0�008)

0�006
(0�007)

0�015
(0�009)

0�058**
(0�013)

(b) β̂2
Rapet−2 −0�030

(0�021)
0�091

(0�077)
0�210

(0�129)
−0�041
(0�128)

0�113
(0�192)

−0�106
(0�183)

Robberyt−2 0�003
(0�003)

0�026*
(0�012)

0�018
(0�020)

−0�002
(0�017)

0�002
(0�029)

0�029
(0�035)

Burglaryt−2 0�003
(0�002)

0�005
(0�006)

0�087**
(0�011)

0�010
(0�010)

0�020
(0�014)

0�019
(0�015)

Auto theftt−2 −0�003
(0�002)

0�012
(0�007)

0�013
(0�012)

0�041**
(0�011)

−0�003
(0�019)

0�037
(0�017)

Assaultt−2 0�002
(0�001)

0�001
(0�005)

0�019*
(0�009)

0�004
(0�007)

0�002
(0�012)

0�013
(0�012)

Light crimet−2 −0�001
(0�001)

0�003
(0�004)

−0�001
(0�008)

0�007
(0�006)

0�013
(0�010)

0�018
(0�011)

(Continues)

label above each panel refers to the type of crime that we hypothetically reduce by 1 unit,
and the labels for each bar refer to the type of crime that experiences the spillover. Note
that the y axis for rapes is at a different scale from the y axis for the other crimes, since
the estimated spillovers for rapes as an explanatory variable are relatively imprecise. It
is immediate that all within-crime dynamic spillovers are statistically significant, with
the exception of assault, and these spillovers tend to be large relative to across-crime
dynamic spillovers, with the exceptions of rape and assault.

Our finding of no statistically significant across-crime dynamic spillovers associated
with reductions in light crime suggests that a broken windows policy will have little
success reducing the levels of severe crimes. For perspective, we note that the spillover
benefits associated with a policy that targets either robbery or auto theft strictly domi-
nate the spillover benefits of a policy that targets light crime, as the across-crime effects
of reducing robbery and auto theft on light crime are of the same order of magnitude
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Table 7. Continued.

Auto Light
Rapet Robberyt Burglaryt Theftt Assaultt Crimet

(c) β̂3
Rapet−3 −0�032

(0�022)
0�075

(0�086)
0�193

(0�148)
−0�118
(0�131)

0�049
(0�167)

0�030
(0�204)

Robberyt−3 0�002
(0�003)

0�031**
(0�012)

0�025
(0�022)

−0�017
(0�019)

0�00
(0�025)

0�003
(0�027)

Burglaryt−3 0�001
(0�002)

0�005
(0�006)

0�036**
(0�011)

0�011
(0�009)

0�037*
(0�015)

0�011
(0�016)

Auto theftt−3 0�001
(0�002)

−0�006
(0�006)

0�006
(0�012)

0�032**
(0�011)

−0�013
(0�016)

−0�012
(0�017)

Assaultt−3 −0�000
(0�001)

0�005
(0�004)

−0�010
(0�008)

0�004
(0�007)

−0�001
(0�011)

0�016
(0�011)

Light crimet−3 0�001
(0�001)

0�001
(0�004)

0�010
(0�007)

0�002
(0�006)

0�002
(0�011)

0�022*
(0�011)

(d) β̂4
Rapet−4 −0�037

(0�022)
−0�062
(0�079)

0�213
(0�145)

−0�001
(0�132)

−0�094
(0�182)

−0�313
(0�229)

Robberyt−4 −0�004
(0�003)

0�008
(0�013)

−0�004
(0�022)

0�005
(0�018)

0�016
(0�025)

0�049
(0�030)

Burglaryt−4 −0�000
(0�002)

−0�002
(0�006)

0�017
(0�011)

0�004
(0�009)

−0�048**
(0�014)

−0�014
(0�016)

Auto theftt−4 −0�000
(0�002)

−0�010
(0�007)

0�008
(0�013)

0�018
(0�011)

0�028
(0�016)

0�027
(0�019)

Assaultt−4 0�001
(0�001)

0�006
(0�006)

−0�005
(0�008)

−0�013
(0�007)

−0�003
(0�012)

0�008
(0�012)

Light crimet−4 −0�000
(0�001)

−0�009*
(0�004)

0�004
(0�007)

0�001
(0�006)

0�010
(0�008)

0�010
(0�011)

Note: These tables show the estimated intertemporal effects of various crimes in weeks t − 1� � � � � t − 4 on crime levels in

week t (i.e., the parameter matrices β̂1� � � � � β̂4 from equation (11)). Fixed effects at the division–week–crime type and sector–
year–crime type are included in each of the six equations, which are estimated simultaneously by seemingly unrelated regres-
sion. The F-statistic for the discontinuity test over 144 indicator variables is 1�09 (p-value is 0�25); N = 76,608; R2 = 0�907. All
errors are clustered at the sector–year–crime type level. **, significant at the 99% level; *, significant at the 95% level.

as the within-crime effect of reducing light crime. A policy that targets assaults gener-
ates spillover reductions in light crime that are smaller than the within-crime spillovers
associated with light crime reduction, but this policy also generates positive spillover
reductions in rape and robbery levels. However, this policy generates no within-crime
spillover. Even though a policy that targets burglaries does not generate across-crime
spillovers, it generates the largest within-crime positive spillovers of all of the crimes.34

34We are unable to assess the benefits of a hypothetical policy that targets rapes due to imprecision in
our estimates of the dynamic spillovers associated with such a policy. Nevertheless, the inclusion of rape in
our analysis is important because we are able to precisely estimate the intertemporal effects of other crimes
on rape.
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Figure 5. Long-run cumulative spillovers from unit crime reductions. Notes: Each of the six
panels refers to each type of crime that was reduced by 1 unit. Vertical bars represent 95% confi-
dence intervals for long-run cumulative spillovers calculated via the delta method.

Remark 3. In the Supplemental Material, we present the simulated impulse response
functions of all crimes from unit crime reductions of each type in Figure S1. For brevity,
we only present these impulse response functions using our preferred specification of
the equations of motion for crime with up to four lags of each explanatory variable
(T = 4). Six weeks after the unit crime reduction, nearly all long-run spillovers are re-
alized.

Remark 4. Our findings speak directly to the effectiveness of various crime reduction
policies. So as to discuss the efficiency of crime reduction policies, we perform a rough
cost–benefit analysis of various unit crime reduction policies that incorporates external
information on the social benefits of reducing various types of crime and present the
results in Table 8. For the social benefits of crime reduction, we use estimates from ex-
ternal studies that attempt to account for the physical and psychic costs to victims of
crime and the psychic costs to society at large. Because external estimates of the costs
of crime reduction are not available in the literature, we express all benefits of crime re-
duction relative to light crime reduction. This exercise reveals that targeting light crime
would be an efficient policy to combat all crimes only if it was dramatically more expen-
sive to target rape, robbery, burglary, auto theft, and assault (95, 32, 7, 5, and 18 times
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Table 8. Estimated monetary benefits of unit crime reduction.

Crime Total Benefits From Unit
Crime Reduction ($)

Light Crime
Monetary Equivalents

Rape 240,819
[198,295;300,820]

91�6

Robbery 80,507
[73,229;90,662]

30�6

Burglary 18,390
[14,245;24,245]

7�0

Auto theft 11,947
[7,817;17,817]

4�6

Assault 45,583
[42,995;49,199]

17�3

Light crime 2,628
[141;6,187]

1�0

Note: The 95% confidence intervals for total benefits from unit crime reduction
are presented in brackets. The social costs of rape, robbery, burglary, and auto theft
are taken from Heaton (2010). We compute the social cost of all assaults by taking
an average of the social cost of aggravated assault from Heaton (2010) and the social
cost of simple assault from Miller, Cohen, and Rossman (1993) weighted by the rel-
ative share of aggravated assaults in our sample (22�83%). We are unable to obtain
estimates of the social cost of light crime, so we assume it to be half of the social cost
of larceny as given in Heaton (2010). All monetary amounts are in 2015 dollars.

as expensive as light crime, respectively). Of course, these conclusions should be qual-
ified by the uncertainty surrounding the social benefits of crime and our lack of data
regarding the costs of combatting crime.

7. Sensitivity analysis

In this section, we provide robustness checks that are complementary to the test of exo-
geneity, in the sense that potential sources of endogeneity that are undetectable by the
test of exogeneity can still be detected by these further checks.

7.1 Alternative specifications

We can take advantage of the richness of our data set to explore alternative specifica-
tions that build on the models estimated in the previous section. For each previously
estimated model, we enrich controlsjt with additional variables and then perform two
tests: the test of exogeneity and a second test of whether any of the parameter estimates
of β̂τ change with the enriched set of controls for τ ≤ τ̄. In Table 9, we present the results
of these tests for τ̄ = 1.35 In all models in the first row, we include 180 additional control
variables related to the salience of crimes. In all models in the second row, we include 72
additional control variables that attempt to proxy for unobserved police attention in the
neighborhood in period t. In all models in the third row, we add the levels of each type
of crime in the nearest adjacent neighborhood (36 variables) as control variables.

35Our conclusions are unchanged for τ̄ ≤ 6. These results are available upon request.
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Table 9. The p-values for sensitivity tests under alternative specifications.

Specifications of Fixed Effects

I II III IV V VI

Add 180 salience controls
(Number of each crime committed
outdoors, at night time, on the
weekend; average police response
times and durations at crime scene
in period t − 1)

0�00
[0�00]

0�01
[0�00]

0�00
[0�00]

0�01
[0.98]

0�04
[0.99]

0.65
[1.00]

Add 72 contemporaneous policing
controls
(Avg. police response times and
durations at crime scene in
period t)

0�00
[0.44]

0�00
[0.96]

0�00
[0.95]

0�00
[1.00]

0�01
[1.00]

0.62
[1.00]

Add levels of each crime in nearest
adjacent neighborhood
(36 variables)†

0�00
[0�05]

0�00
[1.00]

0�00
[1.00]

0�01
[1.00]

0�01
[1.00]

0.89
[1.00]

Nonlinear treatment effects
(36 variables)††

0�00
[0�00]

0�03
[0�00]

0�02
[0�00]

0�01
[0�00]

0�04
[0�00]

0.54
[0.17]

Note: This table shows the p-values of two tests for various specifications of equation (8) as described in Table 2 for
j = sector and t = week. All additional controls are specified additively. The first p-value listed in each cell is for the test of
exogeneity described in Section 3 (p-values in bold denote “surviving models” for which we cannot reject exogeneity at the 5%
level). The second p-value listed in each cell (in brackets) is for a test of whether all 36 elements of β in the listed specification
are equal to their respective element presented in Table 3 (p-values in bold denote that we cannot reject that all of our results
do not change at the 5% level). All errors are clustered at the j × year × c level.
†The first p-value refers to a test of whether the coefficients of Djt−1 and of Dj′t−1 are jointly equal to zero, where j′ is the

nearest neighborhood to j.
††Nonlinear treatment effects are specified with a linear b-spline with a knot at the median level of each type of crime. The
second p-value refers to a test of whether the coefficient corresponding to the portion of the support below the median is
equal to the coefficient of the linear specification.

When we subject each of these models to our test of exogeneity, only the models
specifying fixed effects as in VI survive. Moreover, when we conduct conventional ro-
bustness checks to see if the inclusion of these control variables affects our estimates of
the treatment effects of interest (p-values in brackets), we find that our initial estimates
are statistically unchanged in model VI and in some other models. This suggests that
our test of exogeneity is more powerful than standard robustness checks in our appli-
cation. Furthermore, we find direct evidence that the fixed effects specified in I–V are
unable to absorb the endogeneity related to contamination:36 we estimate statistically
significant across-neighborhood effects in these models (with a p-value of 0�00 in each
specification). This is consistent with the exogeneity test results presented in Table 2,
which caution us not to interpret those estimates as causal.37 In contrast, the fixed ef-

36Appendix B.2.3 discusses the potential endogeneity issue of contamination further.
37In the third row of Table 9, the test of exogeneity we perform represents a test for whether the 72 coeffi-

cients representing spillovers (the 36 elements of β plus the other 36 analogous elements pertaining to the
adjacent neighborhood) can be interpreted as causal. Thus, the exogeneity test results in this table suggest
that we should not interpret the coefficients representing dynamic spillovers to adjacent neighborhoods in
models I–V as causal.
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fects specified in VI successfully control for such confounders, as we cannot reject that
all across-neighborhood effects are equal to zero in this model (with a p-value of 0�99).

In the fourth row, we explicitly allow for nonlinear effects of crime by estimating
a linear b-spline in past crimes with knots at the median levels of each type of crime.
Once again, the modified model VI is still the only survivor of the exogeneity test. More-
over, when we test for whether the coefficients corresponding to the portion of the sup-
port below the median are equal to the corresponding coefficients of the previously es-
timated linear specification (in brackets), we find no evidence of nonlinear treatment
effects in our preferred model.38

7.2 Spatially and serially correlated errors

As pointed out by Harcourt and Ludwig (2006), the primary empirical issue in estimating
crime spillovers is the fact that many potential confounders of crime are either spatially
autocorrelated or serially correlated (or both), which generates an endogeneity problem
in any specification of the equations of motion of crime that has inadequate controls.
Estimated residuals that are spatially and serially uncorrelated in a particular model are
evidence that included controls absorb all such sources of endogeneity. Accordingly, we
conduct two standard tests of spatial autocorrelation and serial correlation on the resid-
uals in all six specifications of control variables.

Following the suggestion of Dube, Lester, and Reich (2010), we reestimate the sys-
tem of equations and cluster the standard errors at a larger geographic level than our
panel (by division–year–crime type as opposed to by sector–year–crime type). By doing
so, we allow ε

y
jt to be correlated with ε

y
kt , where j and k are sectors within the same di-

vision of Dallas. Any systematic differences in the standard errors is evidence of spatial
autocorrelation that is not controlled for. Similarly, we follow the suggestion of Angrist
and Pischke (2009) and recluster our standard errors at the division–week–crime type
level. A comparison of the standard errors clustered at this level with the standard errors
clustered at the division–year–crime type level provides a test of whether the residuals
are correlated across weeks within the year. Any systematic differences in the standard
errors is evidence of serial correlation that is not controlled for.

The results of these exercises are presented in Table S1. To summarize, we find no
evidence of either spatial autocorrelation or serial correlation in the surviving model VI.
Moreover, we find much larger differences in standard errors across different clusters
in nonsurviving models, although these differences diminish as we add more detailed
fixed effects. These two findings show that the fundamental endogeneity problem that
has been identified in this literature does in fact operate in our setting, but it can be
addressed successfully with appropriately specified fixed effects.

7.3 Multiple testing

A key requirement of our identification strategy is the implementation of the exogeneity
test for every candidate model, which may raise concerns related to multiple testing.

38As discussed in Remark 9, this finding is further evidence that our test has power to detect confounders
that vary discontinuously at crimexjt−1 = 0.
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The traditional problem encountered with multiple testing is false discovery, that is, the
rejection of the null hypothesis by pure chance when in reality the null is correct (type 1
error). The standard solution to this problem is to adjust the size of the hypothesis test
downward (Bender and Lange (2001)). In our approach, however, this is only a second
order concern, as false discovery could only lead us to reject a model that did not suffer
from endogeneity in the first place. Any surviving model in our context thus clears a
more stringent threshold for exogeneity, suggesting that our approach is conservative in
interpreting the main parameters as causal. In any case, false discovery does not seem to
be a concern in our application. Whenever we reject the null hypothesis for a model, we
continue to reject it in all further robustness checks that we perform on that model. For
example, as we add various controls and lagged explanatory variables to models I–V, we
continue to reject the null hypothesis of exogeneity. Moreover, we often find that these
models do not survive other less powerful tests that we conduct. This evidence suggests
that we did not reject those models by pure chance.

In contrast, for our testing procedure what we should be more concerned about is
the less discussed problem of false nondiscovery (Sarkar (2006)), that is, the failure to
reject the null hypothesis by pure chance when in reality the null is incorrect (type 2
error). Indeed, if we test the exogeneity assumption in enough models, we are bound to
fail to reject one of them by chance, even if all models are truly endogenous.

In our application, concerns about false nondiscovery seem unwarranted. Once we
fail to reject the null hypothesis for a model, we continue to fail to reject it in all further
robustness checks that we perform on that model. For example, as we add various con-
trol variables and lagged explanatory variables to model VI, we continue failing to reject
the null hypothesis of exogeneity. This suggests that our failure to reject model VI was
not due to chance.

We perform one additional robustness check that relates directly to both multiple
testing concerns of false discovery and false nondiscovery. We randomly split our sample
of sector–years into two subsamples, estimate models I–VI in each of them, and then
perform our test of exogeneity on each model.39 In Table 10, we report the p-value of
the test of exogeneity in each subsample and (in brackets) the p-value of whether at least
one of the 36 coefficients of interest is different from its respective coefficient in the full
sample. If our testing procedure suffered from false nondiscovery (false discovery), we
might expect to find different surviving (nonsurviving) models in each subsample; this
is not the case, as only model VI survives at the 90% level in either subsample.

7.4 Summary

We summarize the implications of our sensitivity analysis in Table 11, where we describe
all of the properties that a variable w must concurrently possess so as to bias the main

39We intentionally split our sample randomly into sector–years as opposed to sector–weeks and do so
only after we are confident that treatment effects last less than 1 year and do not spill over outside of a
sector (otherwise the splitting of the sample itself might artificially generate or eliminate endogeneity from
the model). The p-values in brackets show that the randomized samples are sufficiently representative of
the full sample.
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Table 10. The p-values for sensitivity tests on randomly drawn subsamples.

Specifications of Fixed Effects

I II III IV V VI

Subsample 1 0�00
[1.00]

0�00
[1.00]

0�00
[1.00]

0�00
[0.93]

0�02
[0.93]

0.09
[1.00]

Subsample 2 0�00
[1.00]

0�03
[1.00]

0�05
[1.00]

0�03
[0.99]

0�08
[1.00]

0.82
[1.00]

Note: For each randomly drawn subsample, we perform an exogeneity test and report the p-value of this test for various
specifications of equation (10) as described in Table 2 for j = sector and t = week. In brackets, we report the p-values of a test
of whether at least one of the 36 coefficients of interest is different from the respective coefficient in the full sample. All errors
are clustered at the j × year × c level.

estimates of the surviving model in Section 6. This can be understood as a way to keep
track of the confounders that may bias our preferred estimates. Briefly, for w to bias our
preferred estimates, it must (i) belong to W, but not be detected by the exogeneity test
(i.e., it needs to belong to WD

2 ∪WC ); (ii) not be absorbed by sector–year–crime type and
division-week–crime type fixed effects (FEs); (iii) be uncorrelated to prior crimes that
occurred up to 6 weeks in the past; (iv) be uncorrelated to 180 controls related to specific
features of crimes that reflect their salience; (v) be uncorrelated to 72 controls related
to the response of the police to crimes; (vi) be uncorrelated to 36 variables related to
crime rates in adjacent neighborhoods; (vii) be spatially uncorrelated across neighbor-
hoods within the six divisions of Dallas; and finally (viii) be serially uncorrelated across
weeks within a calendar year. In the next section, we provide empirical evidence that
the restriction imposed by (i) should eliminate most, if not all, of the set of potential
confounders. Any of the remaining undetectable confounders must possess properties
(ii)–(viii) to bias our estimates.

Remark 5. This discussion is useful for considering how one should select a model
when there are multiple survivors of the test of exogeneity. If two models survived but
yielded different estimates, then it must be the case that undetectable confounders were
confounding at least one of the models. That would be evidence that the test was not
powerful enough. Because our identification strategy is based on the premise that the
exogeneity test is sufficiently powerful, in this case we would have to conclude that it is
infeasible to identify the parameters of interest with this identification strategy and data
set alone.40 In our application, the estimates of all treatment effects of interest are in-
distinguishable (both statistically and economically) among all surviving models. Intu-
itively, if the test of exogeneity was not powerful enough, then many confounders would
clear restriction (i) in the summary table but might not clear at least one of the restric-
tions (ii)–(viii). We find that once a model survives the test of exogeneity, it survives all
other tests, which suggests that the test is sufficiently powerful for our application.

40Of course, the value of the test as discussed by Caetano (2015)—to discard certain models—is still intact
in this context. To reduce even further the set of candidate models, the test of exogeneity could in principle
be implemented with additional robustness checks aimed at detecting these undetectable confounders, as
is done in our sensitivity analysis.
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Table 11. Necessary properties of a confounder in the surviving model.

Property Justification

(i) Undetectable by the exogeneity test Models survived the exogeneity test even in
its strongest form (τ̄ = 6) (see Sections 6
and 7)

(ii) Not be absorbed by sector–year–crime type
or division–week–crime type FEs

Model contains sector–year–crime type and
division–week–crime type FEs (see
Section 5.3)

(iii) Uncorrelated to crimejt−τ for τ = 2� � � � �6 Model still survives, yet estimates do not
change when crimejt−τ , τ = 2� � � � �6, are
added as controls (see Section 6.2)

(iv) Uncorrelated to 180 salience control
variables

Model still survives, yet estimates do not
change when these 180 variables are added
(see Section 7.1)

(v) Uncorrelated to 72 police response control
variables

Model still survives, yet estimates do not
change when these 72 variables are added
(see Section 7.1)

(vi) Uncorrelated to 36 crime variables in
nearby sectors

Model still survives, yet estimates do not
change when these 36 variables are added
(see Section 7.1)

(vii) Not spatially autocorrelated within division Model still survives, yet standard errors
do not change when clustering at
division–year–type of crime level (instead
of sector–year–type of crime level) (see
Section 7.2)

(viii) Serially uncorrelated within year Model still survives, yet standard errors
do not change when clustering at
division–week–type of crime level (instead
of division–year–type of crime level) (see
Section 7.2)

Note: The surviving model corresponds to specification of FEs VI (i.e., division–week type of crime and sector–year type of
crime FEs) for j = sector, t = week, and C= {rape� robbery�burglary�auto theft�assault� light crime}.

8. Do broken windows matter?

The broken windows theory leaves room for interpretation due to the informal way in
which it was introduced. Because of its impact on policy, we attempt to provide a more
structured discussion of its hypotheses and their relationship with our findings.

According to the theory, a law enforcement policy that reduces the perception of
light crime in a neighborhood will reduce more severe crimes in the future (all else being
equal):

policy �� (perceived/actual) light crimet−1
�� severe crimet � (12)

This broken windows effect is shown as a double arrow in diagram (12). Such a pol-
icy can be focused on either reducing actual light crime (e.g., preventing broken win-
dows) or by simply removing salient signs of light crimes (e.g., fixing broken windows).
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Table 12. Is there a broken windows effect? The p-values for various tests of its existence.

Num. of Included Lags (τ̄)

τ̄ = 1 τ̄ = 2 τ̄ = 3 τ̄ = 4 τ̄ = 5 τ̄ = 6

Baseline (across-crime intertemporal effects of light crime) 0�40 0�62 0�85 0�71 0�78 0�84
Allowing for heterogeneous effects by salience 0�89 0�87 0�58 0�69 0�81 0�84
Allowing for nonlinear light crime effects 0�97 0�92 0�98 0�98 1�00 0�97
Controlling for contemporaneous police responses 1�00 1�00 1�00 1�00 1�00 1�00

Note: This table presents p-values for a variety of tests of the broken windows effect for models with 1� � � � �6 lagged crimes
of each type on the right-hand side. All models shown survive the exogeneity test. The first row contains p-values for F-tests
of whether the 5 × τ̄ coefficients representing across-crime intertemporal effects of light crime are equal to zero. The second
row contains p-values for F-tests of whether the 30 × τ̄ coefficients representing across-crime intertemporal effects of light
crime, stratified by their salience, are all equal to zero. Salience in this context refers to features of crime that may be associated
(positively or negatively) with its perception: whether crime occurs on the weekend, in the daytime, and outdoors, and whether
the police arrive quickly to the crime scene and stay longer at the crime scene. The third row contains p-values for F-tests of
whether the 10× τ̄ coefficients representing across-crime intertemporal effects of light crime, stratified by whether light crimes
was higher or lower than the median level in a given week, are all equal to zero. The fourth row contains p-values for F-tests of
whether across-crime intertemporal effects of light crime are still equal to zero when we include 36 variables referring to the
average speed of police arrival to crime scenes in t for each crime type and 36 variables referring to the average durations of
the police at crime scenes in t for each crime type.

Although we do not directly observe such signs of light crime, we can bring our findings
to bear on whether reductions in actual light crimes (and, in particular, the most salient
light crimes) have effects on future crimes. We gather these findings in Table 12, which
summarizes the evidence on the broken windows effect for all surviving models in our
analysis.41

In the first row, we report the p-values from tests of whether light crime has in-
tertemporal spillovers across other types of crimes in the future (i.e., F-tests of βxy

τ = 0
for all τ = 1� � � � � τ̄, x = light crime and x �= y). We find no evidence of such broken win-
dows effects at any point over a 6 week period.

In the second row, we report the p-values from tests of whether intertemporal
spillovers from light crime vary by the salience of the crime. For each x, we interact
crimexjt−1 with the police’s speed of arrival and their duration of stay at the crime scene
along with the number of crimes that occurred outdoors, in the daytime, and during
the weekend in all periods t − τ, τ = 1� � � � � τ̄, to the right-hand side of the equations of
motion (180 × τ̄ additional control variables in total).42 These descriptions of crimes are
plausibly associated with their salience from the perspective of police, neighbors, or po-
tential criminals. We then test for whether the coefficients on all variables that capture
the across-crime intertemporal effects of light crimes (irrespective of their salience) are
equal to zero (30 × τ̄ coefficients in total). We find no evidence that any of these kinds of
light crimes generate broken windows effects.

One might worry that light crimes become more noticeable only if many of them
occur. In the third row, we show p-values from tests of nonlinear intertemporal effects
by estimating a linear b-spline with a knot at the median number of weekly crimes for
each type of crime. This allows for intertemporal effects to differ depending on whether

41As shown in Table 9, all these models survive the test of exogeneity.
42This model survives at standard levels of significance for all values of τ̄.



376 Caetano and Maheshri Quantitative Economics 9 (2018)

a neighborhood experienced more or less than the median number of crimes of a given
type in a week. We find no evidence of broken windows effects in neighborhoods with
high or low levels of light crime.

One potential concern with these findings is that light crime may generate a sec-
ondary effect—an institutional response by law enforcement—that offsets what some
might consider the true broken windows effect (see diagram (13)).43 To address this con-
cern, we report in the fourth row of Table 12 the p-values from tests of whether the ob-
served speed of arrival to and duration of stay at the crime scene by law enforcement in
period t mitigates our estimates of the intertemporal effects of light crime. These vari-
ables partially proxy for neighborhood- and week-specific changes in the presence of
law enforcement (e.g., if the police are patrolling near a reported crime scene, they will
respond more quickly). We do so by including these variables as controls for each type
of crime (a total of 72 variables) and testing whether the estimates of across-crime in-
tertemporal spillovers of light crime are equal to zero. We find no evidence that our esti-
mates are contaminated by an institutional response:

policy ��
��� � � � � � � � � � � � � 	 	 
 
 � �

(perceived/actual) light crimet−1
��

��

severe cimet

inst. responset �

��
(13)

We supplement the evidence presented in Table 12 with our earlier empirical find-
ings. First, to the extent that our controls do not fully absorb all differences between ac-
tual light crime and perceived light crime, our test of exogeneity has the statistical power
to detect whether any resulting measurement error biases our estimates (Section B.2.2),
yet we find no evidence of such bias.44 This further allays the concern that our estimates
may not include the potentially salutary effects of, say, fixing broken windows. Second,
we find no evidence that our results depend on which kinds of nonsevere crimes are cat-
egorized as light crimes (panel (f) of Figure 7 and panel (e) of Figure 9). Moreover, given
the many robustness checks that we performed (summarized in Table 11), it is difficult
to conceive of a source of potential bias in our estimates that is consistent with all of the
evidence provided, let alone a source of negative bias that would lead us to underesti-
mate the broken windows effect. Taken all together, our findings lead us to conclude that

43To illustrate this point, consider two otherwise similar neighborhoods, one of which experienced one
additional light crime in the past week. This additional crime may lead the police to monitor more intensely
this neighborhood in the current week relative to the other neighborhood, which helps deter severe crime
in the current week. Thus, past light crime may appear to have no effect on current severe crimes purely
because of the increase in police monitoring in the current week. The policy maker may also have control
over the police response to previous crimes, so it is also useful to estimate the broken windows effect net of
institutional responses.

44Given that the Dallas Police Department did not have a policy that separately targeted the perception of
light crime during our sample period, it is not surprising that this source of measurement error does not bias
our results. Anyway, to the extent that such policy may exist, as long as it varies at a broader geographical
level (division), or rather varies yearly at the neighborhood (sector) level, our fixed effects in the surviving
model should have absorbed it.
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this hypothesized effect does not exist in practice, at least in Dallas during our sample
period.

Remark 6. In the absence of a broken windows effect, any observed causal link between
a so-called broken windows law enforcement policy on severe crime in the future is a di-
rect effect, as depicted by the dashed arrow in diagram (13). This distinction is important
for policy because a direct effect is not subject to a dynamic multiplier, whereas an in-
direct broken windows effect is. To be sure, policies focused on combating light crime
may directly affect the levels of severe crimes (e.g., in the process of cleaning up streets,
a sanitation worker may deter a murder that was about to occur). However, it would
be misleading to interpret falling rates of severe crimes that accompany such a policy
as support for the broken windows theory. Indeed, when it comes to directly reducing
severe crimes, it is probably better to target severe crimes.

9. Conclusion

Researchers typically approach causal inference problems with a source of variation that
is already known to be “as good as random.” But isolating such variation is difficult in
practice, which limits the scope of questions that can be credibly answered this way. In
this paper, we pose one such question of longstanding importance: What is the local ef-
fect of crime on future crime? To address the obstacles to causal inference that play a
central role in this literature, we develop an identification strategy that does not require
an ex ante known source of quasi-experimental variation and instead demonstrate how
a careful consideration of alternative models, informed by the systematic use of a re-
cently developed test of exogeneity, successfully leads us to an ex post known source of
quasi-experimental variation. More generally, our identification strategy can be applied
to isolate variation that is “as good as random” in any setting where this test of exogene-
ity can be used and where data are sufficiently rich.

We find evidence that robberies, burglaries, and auto thefts cause modest increases
in those crimes in the future. However, we find no evidence that light crime in a neigh-
borhood will cause more severe crimes to proliferate. This stands in conflict with a sim-
ple, intuitive idea that has influenced law enforcement policy in a number of cities over
the past three decades. Our analysis indicates that law enforcement policies based on
the broken windows theory that feature the disproportionate targeting of lighter crimes,
which include zero-tolerance and stop-and-frisk policies, are not empirically sound
strategies to reduce more severe crimes in the future. Put simply, a policymaker aiming
to reduce severe crimes ought to target severe crimes.

Methodologically, our work complements the existing empirical literature on model
selection and inference. Sophisticated methods in statistical learning such as model av-
eraging and LASSO (least absolute shrinkage and selection operator) have been suc-
cessfully applied to uncover important insights in the economics of crime (e.g., Durlauf,
Navarro, and Rivers (2008, 2010, 2014), Cohen-Cole, Durlauf, Fagan, and Nagin (2009),
Belloni, Chernozhukov, and Hansen (2014)) and many other topics in the social sci-
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ences.45 Our work illustrates how, when applicable, the exogeneity test developed by
Caetano (2015) might be used as a new criterion to assess the plausibility of models
(in the case of model averaging) or to choose tuning parameters (in the case of LASSO)
when the primary goal is causal identification as opposed to prediction.

Appendix A: A test of exogeneity

Here we present a more formal and general derivation of the test of exogeneity than
presented in the text. Consider the estimating equation

yj =X ′
jβ+Z′

jγ + εj� (14)

where Xj is an nX × 1 vector of explanatory variables of interest, Zj is a vector of control
variables, and εj is an error term that may be conditionally correlated to Xj . We can
rewrite this equation as

yj =X ′
jβ+Z′

jγ + ξj +μj︸ ︷︷ ︸
εj

� (15)

where we split the error into two terms: ξj , which contains all unobserved determinants
of yj that are correlated to Xj conditional on Zj irrespective of their source, and μj ,
which is the remainder. Taking conditional expectations of both sides of equation (15),
we obtain

E[yj|Xj�Zj] = X ′
jβ+Z′

jγ + E[ξj|Xj�Zj]� (16)

We can decompose the source of endogeneity in this equation as

E[ξj|Xj�Zj] = (
D′

jπD +X ′
jπX +Z′

jπZ

)
σξ�X|Z� (17)

where σξ�X|Z ≡ Cov(ξj�Xj|Zj) is a nX vector and Dj is an nX vector of indicator variables
that are each equal to 1 if the corresponding element of Xj is equal to 0.46

Our goal is to design the hypothesis test47

H0 : σξ�X|Z = 0�

H1 : σξ�X|Z �= 0�

To implement this hypothesis test, we substitute equation (17) into equation (16),
which we rewrite as

E[yj|Xj�Zj] = X ′
j(β+πX · σξ�X|Z)+Z′

j(γ +πZ · σξ�X|Z)+D′
j (πD · σξ�X|Z)︸ ︷︷ ︸

δ

� (18)

45See Hastie, Tibshirani, and Friedman (2009) for a general survey and many examples of applications of
these methods.

46More generally, equation (17) can be written as E[ξj |Xj�Zj] = (D′
jπD + f (Xj�Zj))σξ�X|Z , where f is

continuous in Xj at all points where some element of Xj is equal to 0 but otherwise unrestricted.
47Altonji, Elder, and Taber (2005) describe a different approach to measure the importance of ξj relative

to the total explanatory power of Xj and Zj . In addition to different assumptions, the notable distinction
between their approach and ours is that this test yields a statistical criterion that we can use for the com-
parison and selection of competing models.
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According to equation (18), β is identified by OLS under H0, but not under H1. In gen-
eral, we cannot identify σξ�X|Z so as to test H0. However, we can identify the parameter
vector δ ≡ πD · σξ�X|Z by simply including Dj in the system of equations and modifying
equation (14) to

yj =X ′
jβ+Z′

jγ +D′
jδ+ εj� (19)

The test of exogeneity is easily implemented as a joint F-test of whether all elements of δ
are equal to 0. To connect our estimate of δ̂ to our hypothesis test, we make the following
additional assumption.

Assumption 2. If σξ�X|Z �= 0, then πD · σξ�X|Z �= 0 among j such that Dj �= 0.

This assumption provides power to the test. Under Assumption 2, if σξ�X|Z �= 0, then
our estimate of δ should contain at least one nonzero element and we should reject
H0. In contrast, if we find that δ = 0, then we can conclude that σξ�X|Z = 0. Thus, if in
practice we fail to reject that δ = 0, there are two possible cases: either σξ�X|Z = 0 and
there is no endogeneity in the model or Assumption 2 is invalid. We can naturally extend
this test to the estimation of a system of nY equations. We rewrite equation (14) as

Yj =X ′
jβ+Z′

jΓ + εj� (20)

where Yj is an nY × 1 vector of dependent variables, β is an nX × nY parameter matrix,
Zj is a vector of control variables with an associated coefficient matrix Γ , and εj is now
an nY × 1 vector of errors. To implement the test, we modify this system of equations to

Yj =X ′
jβ+Z′

jΓ +D′
jΔ+ εj� (21)

where Dj is defined above and Δ is an nX × nY parameter matrix that is an analog to δ.
Similarly, ΠD and Σξ�X|Z can be defined as nX × nY and nY × nX matrix analogs to πD

and σξ�X|Z , respectively. Under the modified assumption below, the test is implemented
as a joint F-test of whether all elements of Δ equal 0.

Assumption 2′ . If Σξ�X|Z �= 0, then ΠD ·Σξ�X|Z �= 0 among j such that Dj �= 0.

Remark 7. It is useful to relate this discussion to the sets W, WD
1 , WD

2 , and WC as de-
fined in Section 4.1. For simplicity in the exposition, consider the case where X and
Y each have one dimension. As seen in equation (18), the OLS bias is represented by
bias = πX · σξ�X|Z . OLS estimates will be biased only if πX �= 0 and σξ�X|Z �= 0, i.e., if
ξ ∈ W. There are three potential cases for ξ ∈ W: (a) πD · σξ�X|Z �= 0 among observations
such that X = 0 (i.e., ξ ∈ WD

1 ); (b) πD · σξ�X|Z �= 0 only among observations such that
X �= 0 (i.e., ξ ∈ WD

2 ); (c) πD · σξ�X|Z = 0 (i.e., ξ ∈ WC ). In cases (b) or (c), the test of ex-

ogeneity has no power; we would estimate δ̂ = 0 even if σξ�X|Z �= 0. In contrast, in case
(a) the test does have power. Assumption 2′ rules out cases (b) and (c), so it guaran-
tees that either ξ is a detectable confounder or ξ is fully absorbed by controls (so that
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σξ�X|Z = 0).48 These two conditions refer to restrictions (i) and (ii) of Table 11, respec-
tively. The fact that a model that survived the test of exogeneity also survived all other
robustness checks (restrictions (iii)–(viii)) strongly suggests that Assumption 2′ holds in
our application.

Remark 8. As discussed in Appendix B, we find abundant evidence in favor of Assump-
tion 2′. However, even if the test has power, one should be careful when adding controls
to regression models. For intuition, consider the case where X and Y are each one di-
mensional. Then we can rewrite the OLS bias as bias = δ · πX

πD
. Under the null hypothesis

(δ = 0), there is no OLS bias. Moreover, for a given πX
πD

, as the true value of δ converges
to 0, the bias should converge to 0 as well. The scaling factor πX

πD
represents the extent to

which endogenous confounders are correlated to X when X > 0 (conditional on Z), rel-
ative to the extent to which this endogeneity can be observed as a discontinuity at X = 0.
If this ratio increased as we added controls to our specification, that would be a source of
concern. Intuitively, this means that controls should not be used to fit the discontinuity
at X = 0; rather, they should be used to absorb endogeneity everywhere in the support
of X ; when all endogeneity is absorbed, a natural implication is the lack of discontinuity
at X = 0. In our application, we find ample evidence that this is not a concern. First, the
controls that we specify consist only of fixed effects (which are theoretically motivated),
none of which mechanically absorbs discontinuities at crimexjt−1 = 0. Second, once a
model survives the test of exogeneity, it always survives further independent tests that
attempt to detect additional confounders. If controls were added with the aim of only
fitting the discontinuity at crimexjt−1 = 0, rather than solving the endogeneity problem
everywhere in the support of crimexjt−1 = 0, then surviving models would perform poorly
in further robustness checks designed to find nonlocal sources of endogeneity. This idea
is analogous to the idea that overfitting a model “in-sample” can lead to poorer perfor-
mance “out-of-sample” (here we interpret crimexjt−1 = 0 as in-sample and crimexjt−1 > 0
as out-of-sample).

Appendix B: Statistical power: Empirical evidence

We leverage the rich data environment of our application to present evidence that our
test has statistical power in two complementary, systematic exercises.

B.1 Detectable versus undetectable endogeneity: Classifying observed confounders

We indirectly measure the statistical power of our test with an intuitive diagnostic pro-
cedure. First, we augment our data set with data from the 2010 US Census to construct
a set of 691 distinct observed variables. For each of these candidate confounders, we
test whether it belongs to the initial pool of confounders by testing whether our esti-
mates of β̂ change when we include the variable versus when we exclude the variable in
model (1) (i.e., no controlsjt included). The subset of actual confounders, which we de-
note as Ŵ, can be understood as an observed analog to W, since Ŵ ⊂ W. Each variable

48Here, we could interpret ξ as a weighted average of all confounders w ∈ W.
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in this subset can then be assigned to the observed analog ŴD
1 , ŴD

2 , or ŴC on the basis
of its (dis)continuity at crimext−1 = 0 for some x and whether it is a confounder when

crimext−1 = 0 for some x. Of course, ŴD
1 ⊂WD

1 , ŴD
2 ⊂WD

2 , and ŴC ⊂WC .49

This informal evidence is similar to the evidence often shown in a regression dis-
continuity design (RDD). For comparison, in an RDD, researchers argue that W = WC

by first considering a large set of observed variables that are correlated to the running
variable and are potential determinants of the outcome variable (i.e., variables that are
plausibly in Ŵ) and then showing empirically that all such variables are continuous at
the relevant threshold (i.e., Ŵ = ŴC ). Intuitively, if the initial set of variables is suffi-
ciently large and representative of the true set W, then the RDD is plausibly validated
(i.e., W = WC ). Analogously, in our case we argue indirectly that W= WD

1 by showing
that Ŵ= ŴD

1 . If W=WD
1 , then all confounders will be detectable by our test of exogene-

ity, hence any surviving model can be interpreted as causal.
In Figure 6, we present the results of this diagnostic procedure in graphical form for

models with an increasing number of lagged explanatory variables (i.e., τ̄ = 1� � � � �6).
The height of each bar corresponds to the number of elements in Ŵ for a specifica-
tion with up to τ̄ lags, and each bar is subdivided into a darkly shaded component cor-
responding to the number of undetectable elements of Ŵ (i.e., confounders in ŴD

2 or
ŴC )50 and a lightly shaded component corresponding to the number of detectable ele-
ments of Ŵ (i.e., confounders in ŴD

1 ). For τ̄ = 1, over half of the 691 variables are empir-
ically found to be confounders, which suggests that our pool of candidate confounders
contains plausible determinants of neighborhood crime ex ante. Moreover, roughly half
of the elements of Ŵ are detectable. As τ̄ increases, Ŵ diminishes, because the addi-
tional variables on the right-hand side (i.e., crimejt−τ for τ = 2� � � � � τ̄) absorb an increas-
ing number of candidate confounders. Importantly, this reduction in Ŵ is dispropor-
tionately driven by a reduction in undetectable confounders; for τ̄ > 4, all remaining
elements of Ŵ are detectable (Ŵ= ŴD

1 ). Intuitively, this result follows from the fact that
as τ̄ increases, we are able to perform a more powerful test (recall that we test for whether
Δτ = 0 jointly for all τ ≤ τ̄). This exercise highlights the increase in the power of the test
when performed in a multivariate context. Some confounders w that are undetectable
by the test for low values of τ̄ end up being detected for higher values of τ̄. Of course,
all these confounders are absorbed by the fixed effects in specification VI, which is why
that model for τ̄ = 1 survives the test. Overall, this exercise provides evidence that the
property in row (i) of Table 11 substantially restricts the subset of confounders, at least
in terms of observables.

B.2 Sources of detectable endogeneity

Even though we do not find a single undetectable confounder from our pool of observed
variables, this does not entirely rule out the possibility of an undetectable confounder

49In the Supplemental Material, we list the 691 candidate confounders that are used in this exercise and

describe in detail the tests that enable us to classify them into Ŵ, ŴD
1 , ŴD

2 , and ŴC .
50In practice, we do not find elements of ŴD

2 for any value of τ̄. This may be due to the fact that for a
significant fraction of observations (69%), at least one of the six crimes is equal to 0.
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Figure 6. Classifying observed confounders. Notes: This figure shows the total number of el-
ements in the observed analog to W in a specification of equation (11) with no controlsjt
(i.e., specification I as described in Table 5 for j = sector and t = week) for various choices of
τ̄ = 1� � � � �6. The number in each bar represents the proportion of observed confounders that
are detectable by the test of exogeneity. A detailed list of potential observed confounders is pre-
sented in the Supplemental Material.

since our pool of observed variables may not be representative of the full set of omitted
variables, both observable and unobservable. Here we show that our pool of observed
variables is representative in an important sense: it contains concrete examples of de-
tectable confounders that correspond to a comprehensive set of endogeneity concerns
in our application.

Consider the general version of the true equation of motion for crime y that we seek
to estimate,

crimeyjt = f y(c̃rimejt−1�otherjt)� (22)

where c̃rimejt is a very large row vector of actual (as opposed to reported) crimes in the
set C̃ that may be defined with great detail (e.g., robbery at gunpoint outside of the main
library at 5 p.m. on a Monday; purse and $200 taken). The term otherjt refers to any other
determinant of crimeyjt , and f y(·) is a flexible function. This is a “general” equation in the

following sense: if we observed all elements of c̃rimejt−1 and otherjt , and if we were able
to estimate a nonrestrictive f y(·) for each y, then we would be able to identify the causal

partial effect of c̃rimejt−1 on crimeyjt for each y. This is a good benchmark, as it allows us
to discuss all of the sources of endogeneity that might show up in our application as we
deviate from this ideal scenario.
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In practice, we estimate models of the form

crimeyjt = crimexjt−1β
xy + crime−x

jt−1β
−xy + controlsjtγ

y + erroryjt � (23)

where β−xy is a column vector whose x′th element is equal to βx′y for all x′ �= x.
The exogeneity assumption (Assumption 1) combines all of the simplifying assump-

tions that are required to transform the general model in equation (22) into our estimat-
ing models in equation (23) (e.g., linearity, whether controlsjt are capable of proxying
for otherjt , absence of measurement error, etc.) A failure of any of these simplifying as-
sumptions to hold implies the existence of a variable w. If w belongs to W, then it will
bias our estimates unless it is absorbed by controlsjt . If w belongs to WD

1 ⊂ W, then the
exogeneity test will detect its presence.

Below, we discuss each of these simplifying assumptions in turn and show exam-
ples of corresponding observed w ∈ WD

1 that are likely to be in erroryjt when that sim-
plifying assumption does not hold. We present these examples in the form of disconti-
nuity plots in Figures 7–12 (these are analogous to the continuity plots that validate a
regression discontinuity design).51 Each point in these plots represents the mean of the
variable on the vertical axis (some potential confounder) conditional on a given level of
crimexjt−1 for some x. (For crimexjt−1 = 0, we represent the mean value of the variable on
the vertical axis as a hollow dot.) The dashed curve represents a third order local poly-
nomial regression for observations such that crimexjt−1 > 0, and the shaded region rep-
resents the 95% confidence region for this regression, with an out-of-sample prediction
at crimexjt−1 = 0.52

B.2.1 Regular omitted variables (i.e., otherjt ) The term otherjt in equation (22) might
not be fully absorbed by the covariates in equation (23), which may lead to endogeneity.
Figure 7 shows a few examples of key variables wjt that are potential elements of otherjt
such as characteristics of neighborhoods, the timing of police responses to crimes, and
types of crimes not included in C. Panels (a)–(c) show that sectors with zero burglar-
ies tend to have discontinuously more residents, fewer Whites, and more young adults
(ages 20–34). These discontinuities would only arise if the spatial distribution of crimes
was discontinuous at crimexjt−1 = 0 across all sector–week observations, which suggests

that we can detect endogeneity from slowly varying omitted sector characteristics.53

51To be sure, our running variables, crimexjt−1, are discrete. Given the fact that they take on a wide variety
of values, we treat them as continuous so as to test for discontinuities. This approach is commonly taken in
regression discontinuity design studies (e.g., Lee and McCrary (2005), Card, Dobkin, and Maestas (2008)).
See Caetano (2015) for further discussion.

52The local polynomial regression and its pointwise confidence interval are estimated using the disag-
gregated data set. For each regression, we use the Epanechnikov kernel with bandwidths of 5 for the kernel
and the standard error calculation. Results are robust to different choices of bandwidths.

53These plots are constructed with data from the 2010 Census at the block level as follows. First, we
calculate the average demographics across all census blocks within each sector. Then E[wjt |crimexjt−1] is
estimated as the weighted average of this measure across all weeks for sector j with weights corresponding
to the frequency that crimexjt−1 takes on each value. This assures that a discontinuity can be found only
if there is a discontinuity at crimexjt−1 = 0 in the spatial distribution of crimes across sector–weeks. For
instance, consider two sectors, j and j′. If crimexjt−1 = 0 for 300 weeks and crimexj′t−1 = 0 for 150 weeks, but
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(a) Population (b) Fraction of whites

(c) Fraction of 20–34 year olds (d) Police response to burglary

(e) Fraction of light crimes in summer (f) Larcenies

Figure 7. Discontinuity plots: omitted variables. Notes: The scatter plot in each panel repre-
sents E[wjt |crimexjt−1] for each value of crimexjt−1, where wjt is described in the title and crimexjt−1
is described on the horizontal axis. The hollow dot represents E[wjt |crimexjt−1 = 0]. A cubic local
polynomial fit with its 95% confidence interval is also presented along with an out-of-sample
prediction at x= 0. Panels (a)–(c) use block level data from the 2010 Census.



Quantitative Economics 9 (2018) Identifying dynamic spillovers of crime 385

Panel (d) shows that the police arrive discontinuously faster to the scene of burglaries in
sector–weeks with no auto thefts (such a variable may proxy for the presence of police
patrolling nearby in that particular week). This suggests that we can detect endogeneity
from omitted sector characteristics that vary more rapidly from week to week. Panel (e)
shows that light crimes are discontinuously less likely to occur in the summer in sector–
weeks with no auto thefts, which suggests that we can detect endogeneity from season-
ality. Panel (f) shows that the expected number of larcenies is discontinuously lower in
sector–weeks with no burglaries. Because larceny is not included in C, this suggests that
we can detect endogeneity from not defining C exhaustively.

B.2.2 Measurement error (c̃rimejt−1 �= crimejt−1) The term crimejt−1 in equation (22)
may differ from crimejt−1 in equation (23) for a variety of reasons, and this difference
may not be fully absorbed by controlsjt leading to endogeneity. Here we discuss the two
main sources of measurement error.

Misreporting (c̃rime
x

jt−1 �= crimexjt−1) A large literature has found nonclassical mea-
surement error in reported crime levels (e.g., Levitt (1998b)). To consider this, assume
the true model is

crimeyjt = c̃rime
x

jt−1β
xy + crime−x

jt−1β
−xy + controlsjtγ

y + ẽrroryjt � (24)

where crimexjt is mismeasured, i.e., c̃rime
x

jt−1 = crimexjt−1 + ηjt . Rewriting the equation
above yields

crimeyjt = crimexjt−1β
xy + crime−x

jt−1β
−xy + controlsjtγ

y + ẽrroryjt +ηjtβ
xy

︸ ︷︷ ︸
erroryjt

� (25)

where erroryjt is defined as in equation (23).
Determinants of ηjt that belong to W generate endogeneity stemming from mea-

surement error unless they are absorbed by the covariates. Misreporting should depend
on who the reporting party is. For instance, commercial businesses are obligated to re-
port certain crimes for insurance purposes, whereas individuals are not. In Figure 8, we
show plots of E[wjt |crimexjt] that are discontinuous at zero as examples of w ∈ WD

1 that
reflect who filed the report. These are likely determinants of ηjt . Panel (a) shows that
robberies are discontinuously more likely to be reported by businesses in sector–weeks
with no auto thefts. Similarly, robberies are discontinuously more likely to be anony-
mously reported in sector–weeks with no burglaries. Note that the test is agnostic to the
particular model of measurement error.

Over-aggregation (|C| < ˜|C|) Over-aggregation of crimes may also lead to endogene-

ity since c̃rimejt−1 may contain many more elements than crimejt−1. Suppose that the

crimexjt−1 = 1 and crimexj′t−1 = 1 for 50 weeks, then the demographics of sector j will be doubly weighted
relative to the demographics of sector j′ when that crime in both neighborhoods is equal to zero, but it will
have the same weight when it is equal to 1.



386 Caetano and Maheshri Quantitative Economics 9 (2018)

(a) Fraction of commercial robbery (b) Fraction of anonymous robbery

Figure 8. Discontinuity plots: measurement error. Notes: The scatter plot in each panel rep-
resents E[wjt |crimexjt−1] for each value of crimexjt−1, where wjt is described in the title, and
crimexjt−1 is described on the horizontal axis. The hollow dot represents E[wjt |crimexjt−1 = 0].
A cubic local polynomial fit with its 95% confidence interval is also presented along with an
out-of-sample prediction at x = 0.

true model is more disaggregated than (23), in the sense that crimexjt−1 = crimeAx
jt−1 +

crimeBxjt−1. Then the true model is given by

crimeyjt = crimeAx
jt−1β

Axy + crimeBxjt−1β
Bxy + crime−x

jt−1β
−xy + controlsjtγ

y + ẽrroryjt � (26)

Denoting wjt = crimeAx
jt−1

crimexjt−1
, we can rewrite equation (26) as

crimeyjt = crimexjt−1β
xy + crime−x

jt−1β
−xy + controlsjtγ

y

+ [
wjt

(
βAxy −βxy

) + (1 −wjt)
(
βBxy −βxy

)]
crimexjt−1 + ẽrroryjt︸ ︷︷ ︸

erroryjt

� (27)

where erroryjt is defined as in equation (23). In general, βAxy �= βBxy since many fea-
tures of crimes trigger different responses by police, neighbors, and potential criminals,
which in turn may lead to different dynamic spillovers. For instance, weekend crime may
be more salient to some of these agents (relative to weekday crime). If this is the case,
then aggregating the data weekly may lead to endogeneity if certain crimes occur more
frequently on weekends. In panels (a)–(e) of Figure 9, we present several plots where
E[wjt |crimexjt−1] is discontinuous at crimexjt−1 = 0 for different definitions of A and B

(crimes in the center versus at the edges of a neighborhood, daytime versus nighttime
crimes, indoor versus outdoor crimes, crimes committed on weekdays versus weekends,
light crimes of a specific subtype versus crimes of all other subtypes). These wjt all be-
long to WD

1 .
Panels (a) and (b) show that burglaries (light crimes) are discontinuously more likely

to occur at the center of a sector (in the daytime) in sector–weeks with no auto thefts.
Panels (c) and (d) show that assaults are discontinuously more likely to occur indoors
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(a) Fraction of burglaries in the center of the sector (b) Fraction of daytime light crimes

(c) Fraction of outdoor assaults (d) Fraction of weekend assaults

(e) Fraction of light crimes that are drunk (f) Police duration at burglaries

and disorderly offenses

Figure 9. Discontinuity plots: over-aggregation. Notes: The scatter plot in each panel repre-
sents E[wjt |crimexjt−1] for each value of crimexjt−1, where wjt is described in the title and crimexjt−1
is described on the horizontal axis. The hollow dot represents E[wjt |crimexjt−1 = 0]. A cubic local
polynomial fit with its 95% confidence interval is also presented along with an out-of-sample
prediction at x= 0.

and during weekends in sector–weeks with no burglaries. Similarly, panel (e) shows that
the fraction of light crimes that are subclassified as drunk and disorderly behavior is dis-
continuously lower in sector–weeks with no burglaries. Panel (f) provides an example of
over-aggregation that is not binary: the police remain at the scene of a burglary discon-
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tinuously longer in sector–weeks when no assaults occur. Because the duration of the
police at crime scenes might affect the perception of how seriously the police respond
to crime, β might differ depending on this variable.

These plots show that our test has power to detect endogeneity from spatial over-
aggregation (j), temporal over-aggregation (t), and over-aggregation of crime types (C).

B.2.3 Contamination (i.e., j is too fine) If neighborhoods are too narrowly defined,
then crime in one neighborhood may have spillover effects on adjacent neighborhoods
(Anselin et al. (2000)). Because nearby neighborhoods are effectively used as control
groups for causal inference, we can understand this as a contamination problem. As-
sume that in the true model, current crime of type y is affected by past crime of type x

from nearby neighborhoods, which we denote as wjt . Then we can formalize the prob-
lem as

crimeyjt = crimexjt−1β
xy + crime−x

jt−1β
−xy + controlsjtγ

y +wjtβ
wy + ẽrroryjt︸ ︷︷ ︸

erroryjt

� (28)

Figure 10 shows examples of wjt that belong to WD
1 . Sector–weeks with zero auto

thefts (assaults) are near sectors that had a discontinuously higher number of assaults
(burglaries) in that week. This is true whether we define nearby sectors as those within
1 mile or 5 miles of sector j. These plots provide direct evidence that we can detect
whether j is too disaggregated.

B.2.4 Nonlinearities (i.e., f y(crimejt−1�otherjt) �= crimexjt−1β
xy + crime−x

jt−1β
−xy +

controlsjtγy ) The true equations of motion of crime may be nonlinear, which may lead
to endogeneity in our estimating equations. Here, we consider two types of nonlineari-
ties.

(a) Assaults in sectors within 1 mile (b) Burglaries in sectors within 5 miles

Figure 10. Discontinuity plots: under-aggregation (contamination). Notes: The scatter plot
in each panel represents E[wjt |crimexjt−1] for each value of crimexjt−1, where wjt is described
in the title and crimexjt−1 is described on the horizontal axis. The hollow dot represents
E[wjt |crimexjt−1 = 0]. A cubic local polynomial fit with its 95% confidence interval is also pre-
sented along with an out-of-sample prediction at x= 0.
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(a) Rapes (b) Motor vehicle theft

Figure 11. Discontinuity plots: nonlinear effects. Notes: The scatter plot in each panel repre-
sents E[wjt |crimexjt−1] for each value of crimexjt−1, where wjt is described in the title and crimexjt−1
is described on the horizontal axis. The hollow dot represents E[wjt |crimexjt−1 = 0]. A cubic local
polynomial fit with its 95% confidence interval is also presented along with an out-of-sample
prediction at x= 0.

Nonseparability If past crime of type x affects current crime of type y differently for
different values of crime−x

jt or otherjt , then our assumption of additive separability may
lead to endogeneity. Suppose the true model is given by

crimeyjt = crimexjt−1β
xy
jt + crime−x

jt−1β
−xy + controlsjtγ

y + ẽrroryjt � (29)

where E[βxy
jt ] is equal to βxy from equation (23). Then erroryjt = (β

xy
jt − βxy)crimexjt−1 +

ẽrror
y
jt . It is immediate that endogeneity might arise if Cov(wjt�β

xy
jt ) �= 0 for any x, x′,

where wjt = {crimex
′

jt−1�otherjt}. Thus, determinants of β
xy
jt , which are correlated to

other crimes or elements of otherjt , might be elements of W.
Figure 11 shows that past crimes of type x′ are discontinuous at crimexjt−1 = 0, x′ �= x,

and Figure 7 above shows that elements of otherjt are discontinuous at crimexjt−1 = 0.

These variables are all examples of w belonging to WD
1 , which suggests that we can de-

tect endogeneity from nonseparability assumptions both within crimejt−1 and between
crimejt−1 and otherjt .

Nonlinear treatment effects In principle, the spillovers that we want to estimate might
be nonlinear. For instance, it may take three or more weekly robberies to trigger a re-
sponse by police, criminals, or neighbors. Assume that the true model is given by

crimeyjt = f xy
(

crimexjt−1
) + crime−x

jt−1β
−xy + controlsjtγ

y + ẽrroryjt � (30)

where f xy(·) is continuous at 0. Then erroryjt = f xy(crimexjt−1) − crimexjt−1β
xy + ẽrroryjt ,

so crimexjt−1 is itself an element of W.
In Figure 12 we show that we can detect endogeneity from the misspecified func-

tional form of f xy(·). Panel (a) shows that sector–weeks with no robberies have dis-
continuously less light crimes on average, a drop from about 21 to about 12 light
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(a) First moment of distribution of light crimes (b) Cumulative distribution of light crimes

Figure 12. Discontinuity plots: nonlinear effects. Notes: Panel (a) shows the scatter plot of
E[wjt |crimexjt−1] for each value of crimexjt−1, where wjt is described in the title and crimexjt−1
is described on the horizontal axis. The hollow dot represents E[wjt |crimexjt−1 = 0]. A cubic local
polynomial fit with its 95% confidence interval is also presented along with an out-of-sample
prediction at x = 0. Panel (b) shows the cumulative probability (i.e., Pr(wj ≤ w) for each value of
w in the support) of the empirical distributions of wj conditional on xj = x for selected values of
x around x= 0.

crimes per sector–week on average. For simplicity, assume for a moment that there
was no heterogeneity across observations with the same value of crimexjt−1, so that
light crime = 21 for all sector–weeks with no robberies, and light crime = 12 for all
sector–weeks with one robbery. Then, as long as f xy(21)−f xy(12) �= 9βxy , we should find
erroryjt = f xy(crimexjt−1)−crimexjt−1β

xy + ẽrroryjt to vary discontinuously at crimexjt−1 = 0.
In reality, there could be heterogeneity across observations with the same value of

crimexjt−1. Panel (b) shows the cumulative distribution of light crimes across all sector–
weeks with robbery = 0�1�2�3. The distribution itself—not only its first moment—is dis-
continuous at 0. At the 20th percentile, the horizontal difference between the solid curve
(robbery = 0) and the dashed curve (robbery = 1) is about 18 (from 18 to 0), which sug-
gests that if f xy(18)− f xy(0) �= 18βxy , then this discontinuity at 0 for the 20th percentile
will show up in erroryjt . Similarly, the difference between the curves at the 80th percentile
is roughly 5 (from 27 to 22), which suggests that if f xy(27)− f xy(22) �= 5βxy , then this dis-
continuity at 0 for the 80th percentile will also show up in erroryjt . It is unlikely that a
nonlinear f xy(·) will behave like a linear function (f xy(d1) − f xy(d2) = βxy(d1 − d2)) for
the ranges of d1 and d2 suggested by panel (b). Thus, these plots provide direct evidence
that we can detect endogeneity from potential nonlinear treatment effects.54

Misspecification of controlsjt Finally, a misspecification of controlsjt may also generate
endogeneity. If wjt is discontinuous at crimexjt−1 = 0, then w′

jt = g(wjt) will also be dis-
continuous at crimexjt−1 = 0 for most functions g(·). Hence, the test will have the power
to detect endogeneity due to a misspecification of the functional form of observed con-
trols wjt .

54This discussion also implies that if there is any nonlinearity in the true model, then our test may have
much more power to detect endogeneity than we have shown because we have only assessed discontinuity
in the first moments of elements of W.
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Remark 9. We have argued that discontinuities in observables at the zero past crime
threshold provide power to detect nonlinear treatment effects. However, our test may
be capable of detecting nonlinearities in f xy(·) that lead to biased estimates even in the
absence of discontinuities at 0. If f xy(·) is nonlinear away from 0, then our linear model
may incorrectly predict a discontinuous impact of past crimes on future crimes at 0 even
if there is no discontinuity in confounders at that point. In this case, Δ will be signif-
icantly different from 0 because it corresponds to a misspecified model. Thus, in our
linear specification, the exogeneity test has the additional power to detect endogene-
ity stemming from functional form misspecification. In any case, when we performed
the test of exogeneity on nonlinear models in Section 7.1, we found no evidence of such
nonlinearity.

Remark 10. The examples of w shown in this section are observed yet omitted from
the model. Thus, this is direct evidence that we can detect endogeneity by omitting that
variable (in case our controls do not absorb them). This evidence is also useful because
it is suggestive indirect evidence of the kinds of omitted and unobserved variables that
we can detect. If, for example, w is an observed confounder and w′ is a correlated un-
observed confounder, then finding a discontinuity in w implies a discontinuity in w′ for
most joint distributions of (w�w′). For instance, in Figure 7 we find that the population,
the fraction of Whites, and the fraction of 20–34 year olds in the neighborhood vary dis-
continuously when burglaries are 0. This suggests that many other characteristics of the
neighborhood will also vary discontinuously when burglaries are 0, including character-
istics that we cannot observe.
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