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Endogenous sample selection: A laboratory study

Ignacio Esponda
Department of Economics, University of California, Santa Barbara

Emanuel Vespa
Department of Economics, University of California, Santa Barbara

Accounting for sample selection is a challenge not only for empirical researchers,
but also for the agents populating our models. Yet most models abstract from
these issues and assume that agents successfully tackle selection problems. We
design an experiment where a person who understands selection observes all
the data required to account for it. Subjects make choices under uncertainty and
their choices reveal valuable information that is biased due to the presence of
unobservables. We find that almost no subjects optimally account for endoge-
nous selection. On the other hand, behavior is far from random, but actually quite
amenable to analysis: Subjects follow simple heuristics that result in a partial ac-
counting of selection and mitigate mistakes.

Keywords. Contingent thinking, learning, sample selection.

JEL classification. C91, D83.

1. Introduction

Endogenous selection

Accounting for sample selection is a challenge for empirical researchers. Economic
agents must also deal with selection, with the difference that they usually have more
control over the process because data are endogenously generated by their actions. Yet,
a bit surprisingly, most models abstract from this difficulty and assume that agents suc-
cessfully tackle selection issues. Our main contribution is to examine how people be-
have in the presence of endogenous sample selection. The following examples illustrate
this phenomenon.1
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1. Bidding for procurement contracts. Each month, a firm bids on procurement con-
tracts. It uses data on finished projects to estimate its cost for a new job, but, naturally, it
does not observe the cost of projects completed by other firms. If, at the bidding stage,
other firms have private information about a common cost component, then the aver-
age cost of the projects awarded to the firm will be higher than the average cost of all
projects. The reason is that the firm is awarded the project when other firms submitted
higher bids. Similarly, the more aggressively the firm bids, then the lower is the average
cost of projects that it is awarded.

2. Demand estimation. A firm wants to estimate its own-price elasticity of demand.
Each period, the firm chooses a price and observes its sales. But the firm does not ob-
serve the prices of competing firms. Prices, however, are correlated, because industry
costs are correlated. Thus, the firm’s observed data will make demand appear less elas-
tic than it actually is, when in fact the price increase of the firm is being mitigated by the
(unobserved) price increases of other firms.

3. Mental states and well-being. A person is pessimistic about her life prospects, so
she becomes disinterested and prefers to avoid exercising, studying, and other costly
investments. As a result, she continues to obtain poor outcomes, which reinforces her
pessimism. She does not realize, however, that if she were optimistic, she would feel
more energetic and find it less costly to invest.

4. Investment in risky projects. A Hollywood studio can invest in either a sequel or a
new project. The studio can easily forecast the financial return of the sequel, but as-
sessing a new project is more involved. The standard industry practice is to hire readers
who, based on their experience, independently evaluate the screenplay and make a rec-
ommendation. Readers’ experience is based on projects that were effectively developed,
that is, they do not know what would have happened with movies that were never pro-
duced. If projects that were produced are on average better than those that were not, but
readers are unaware of the selection effect, they will recommend the new project more
often than is optimal.

In these examples, an agent wants to learn something (a cost estimate, the elastic-
ity of demand, her life prospects, the prospects of risky projects) so as to make deci-
sions. People often do not know these primitives, and must learn them from experience.
But data are often limited because people do not observe counterfactuals (the cost of a
project that is not awarded, the sales from a price that was not chosen, the benefits of
changing attitudes, the returns from a risky project that was not implemented). More-
over, observed data often come from a selected sample due to the presence of unobserv-
ables (such as the costs, information, or choices of other agents). Finally, the agent’s own
decision affects the sample that is actually observed.

The experiment

So as to understand how people tackle selection, we design a lab experiment where a
person who understands selection observes all the data required to account
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for it.2 Our subjects face a toy version of the “investment in risky projects” example.
For each of 100 rounds, a subject chooses between a risky and a safe project. The project
that is implemented in each round depends on the subject’s recommendation and the
recommendations of two computers (which represent the behavior of two other rec-
ommenders). In the “No Selection” treatment, the computers’ recommendations are
uninformative, and so there is no selection effect; that is, one can correctly assess the
chances that the risky project is good by simply looking at the percentage of rounds in
which it was observed to be good. In the “Selection” treatment, the computers’ recom-
mendations are correlated with the prospects of the risky project and, therefore, there is
a selection effect; that is, the risky project is more likely to be implemented if it is good,
and so evaluating its effectiveness based on its observed performance would lead to an
upward bias in beliefs.

Relationship to previous experiments

The unobservable driving sample selection in our experiment is the private information
of the computers. A large literature focuses on people’s failure to make inferences from
others’ private information. Experiments find that a majority of the subjects fail to cor-
rectly make such inferences, due to difficulty with both Bayesian updating and pivotal
thinking.3  Kagel and Levin (2002) survey their and others’ substantial early work, and
Charness and Levin (2009) and Ivanov, Levin, and Niederle (2010) provide more recent
contributions. Esponda and Vespa (2014) consider a setting where Bayesian updating is
trivial and continue to find that a significant fraction of subjects make mistakes due to
a failure of pivotal thinking. On the theory side, the initial contributions of Kagel and
Levin (1986) and Holt and Sherman (1994) in an auction context were generalized by
Eyster and Rabin (2005), Jehiel (2005), and Jehiel and Koessler (2008). These mistakes
are also studied under nonequilibrium concepts (e.g., Crawford and Iriberri (2007)).

Our experiment differs from previous work in that subjects do not know the prim-
itives and, importantly, do not observe counterfactual outcomes.4 Without either of
these modifications, there would be no endogenous selection problem to study; that
is, the probability distribution over the data observed by the subject regarding the per-
formance of the risky project would no longer depend on the subject’s decisions. To see
this point, suppose that subjects do not know the primitives but observe all counter-
factual outcomes. Then, asymptotically, the observed proportion of good risky projects
must equal the true proportion, irrespective of the subject’s choices, and so we are back
to the standard case in the literature where the subject knows the probability that the
project is good.

It is unclear how to extrapolate previous experimental findings, where primitives are
known, to our setting. In previous experiments, subjects should compute a conditional

2One benefit of this design is that we can distinguish a subject who does not understand selection from
a subject who understands selection but is unable to perfectly account for it (even professional researchers
struggle here).

3For difficulties with Bayesian updating, see Charness and Levin (2005) and references therein.
4From a theory perspective, Esponda (2008) formalizes (the failure to account for) endogenous sample

selection that is driven by others’ private information.
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expectation, and this computation requires knowledge of the primitives, which include
nature’s and other players’ strategies. In our experiment, subjects do not even need to
know these primitives to make the right decision. All they need to learn is the probabil-
ity that the risky project is good conditional on being pivotal. Subjects can easily esti-
mate this probability by keeping track of the proportion of successful projects that were
implemented in the past due to their pivotal recommendation.

Another reason why previous results are, at best, suggestive is that providing prim-
itives might actually induce mistakes. For example, in a previous paper (Esponda and
Vespa (2014)), we follow the standard approach of telling subjects the chance that a
project is successful. If this chance is say, 75%, the subject may be inclined to ignore
all other information and go for the risky project, even though a deeper analysis would
reveal that the chance of success conditional on being pivotal is actually very low. Thus,
by not providing primitives, we eliminate an important mechanism that underlies pre-
vious results. This comment, however, does not detract from previous work for two rea-
sons. First, the literature convincingly makes the important point that most people fail
to compute conditional expectations in environments with known primitives. Second,
there are many environments where it is natural to know the primitives. In contrast, our
focus is on settings in which a priori information is not available and people need to
form beliefs from endogenous data.

While not providing primitives was common in early experimental work, it is cur-
rently underexplored.5 There are two reasons why it is important to examine the case
where primitives are unknown and counterfactuals are unobserved. First, these assump-
tions match many real-world scenarios, where the agent learns from previous decisions
and cannot observe the payoff from alternatives that she does not choose. Second, an
important objective of experiments is to test for equilibrium behavior, but, in fact, justi-
fications of equilibrium often do not rely on the assumption that primitives are known.
As highlighted by the learning-in-games literature, equilibrium can be viewed as the re-
sult of a learning process, and it imposes steady-state restrictions on what people have
learned about both the strategies of “nature” and other players, without the presumption
that people a priori know the former.6

Findings and implications

We focus on long-run, steady-state behavior for two reasons. First, we want to see if mis-
takes persist in the long run, after extensive experience. Second, our approach is con-

5In early experiments on competitive equilibrium (e.g., Smith (1962)) and in more recent experiments on
Cournot equilibrium (e.g., Huck, Normann, and Oechssler (1999) and Rassenti, Reynolds, Smith, and Szi-
darovszky (2000)), subjects traded without any information about the distribution of sellers’ costs or buyers’
values, precisely because the objective was to understand how decentralized markets aggregate this infor-
mation. With the exception of the “penny jar” auctions that Bazerman and Samuelson (1983) conducted
among students (although, unlike our experiment, without the chance to learn), the experimental auctions
literature deviated from this premise and provided subjects with the distribution of valuations early on (e.g.,
Cox, Roberson, and Smith (1982)).

6See, for example, Fudenberg and Levine (1998), Dekel, Fudenberg, and Levine (2004), and Esponda
(2013), who also points out that uncertainty about fundamentals and strategies are treated in the same
manner by epistemic game theorists.
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sistent with the common focus in economics on equilibrium behavior. One important
benefit of focusing on equilibrium is that many possible learning dynamics can lead to
equilibrium—too many to be able to identify with just two treatments—but there are
only a few reasonable candidates for (“rational” or “boundedly rational”) steady-state
behavior.

The main finding is that the direction of the treatment effect is consistent with naive
subjects who do not understand endogenous selection. In both treatments, subjects end
up responding to the observed percentage of successful risky projects. In the No Selec-
tion treatment, this is an optimal response. In the Selection treatment, this is a subop-
timal response that does not take into account the bias in the sample and, therefore,
subjects select the risky project too often. At the end of the experiment, we elicit sub-
jects’ beliefs and corroborate these predictions: Reported beliefs mostly fail to account
for selection and are consistent with naive (biased) beliefs. In particular, subjects are,
on average, paying attention to the observed data, but not to the possibility that the
data may be biased. As a result, subjects do fairly well in the No Selection treatment, but
largely miss the problem in the Selection treatment.

We then examine the extent to which the naive theory can quantitatively rational-
ize the data. While naiveté predicts behavior in the No Selection treatment fairly well, it
tends to overpredict risky behavior in the Selection treatment. Controlling for risk aver-
sion, we find that subjects overestimate the benefits of choosing the risky alternative,
but not by the full amount predicted by naiveté. This finding raises the puzzle of how
subjects can be so clearly naive but still manage to partially account for selection.7 We
discover, however, that it is rather natural for subjects to be partially naive in our exper-
iment: Subjects are more likely to change their behavior (and in the expected direction)
in a given round if they were pivotal in the previous round. Thus, subjects partially ac-
count for selection by placing more weight on feedback from pivotal rounds.

Motivated by this finding, we propose a new model of partial naiveté and quantify
the extent to which subjects place more weight on feedback from pivotal rounds. We
estimate the model and find that the median subject places between four and five times
more weight on pivotal versus nonpivotal rounds. This weighting, however, has a small
effect on behavior, since subjects are pivotal in only a third of the rounds. This explains
why behavior is still much closer to the naive than to the sophisticated prediction.

Eyster and Rabin (2005) develop a notion of partial naiveté—partially cursed
equilibrium—that includes fully cursed and Nash equilibria as special cases. A partic-
ular value of their parameter of partial naiveté fits data from several experiments (with
known primitives) better than Nash equilibrium. Our notion of partial naiveté is moti-
vated by differential attention to limited feedback. While their model is defined for any
Bayesian game, our model illustrates the possibility of having a learning interpretation
of partial naiveté in a particular context.

7If subjects placed even a small prior probability on the event that the random process is informative,
then one might expect them eventually to learn that this correlation exists and correctly to account for it
(particularly in our experiment). Thus, it would seem that, in steady state, subjects should be either com-
pletely naive or fully sophisticated in this experiment.
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There are three main implications from our results. The first is that subjects have a
harder time with selection problems than documented by previous literature. The result
is a bit striking, particularly because there is a very simple way to account for selection
in our experiment that does not involve learning the primitives or computing difficult
conditional expectations. Our finding that only a couple of subjects understand selec-
tion can be contrasted with previous experiments in which subjects know the primitives
and a nonnegligible fraction—even nearing 50% in some treatments of Charness and
Levin (2009) and Esponda and Vespa (2014)—become sophisticated.

Second, there are reasons not to be too pessimistic about human behavior. Although
people do not understand selection, they follow certain heuristics (i.e., higher weight
on pivotal observations) that help mitigate their naiveté. In addition, the experiment
shows that behavior, far from being random, can be fairly accurately rationalized by sen-
sible heuristics. The experiment also raises new questions that should ultimately help us
build better models. Future work could seek to understand why people respond more to
pivotal events, despite not understanding selection. More broadly, what types of events
do people respond most to in general settings?

Fudenberg and Peysakhovich (2014) highlight the importance of not giving primi-
tives in an adverse selection experiment. They find that learning models that account
for recency bias provide a better fit than steady-state solution concepts such as Nash,
cursed, or behavioral equilibrium. In particular, subjects respond more to extreme out-
comes in the previous round compared to much earlier rounds. Their results are an
important reminder that steady-state solution concepts are not always appropriate to
explain behavior.

Road map

We describe the experiment and theoretical predictions in Section 2, show the results in
Section 3, and propose and estimate a model of partial naiveté in Section 4. We conclude
in Section 5, and relegate the instructions and robustness checks to the Supplementary
Material, available in supplementary files on the journal website, http://qeconomics.
org/supp/650/supplement.pdf and http://qeconomics.org/supp/650/code_and_data.
zip.

2. The experiment

2.1 Experimental design

Each of our subjects participates in a single-agent decision problem. We provide a sum-
mary of the instructions in language that is familiar to economists. We include detailed
instructions, with the exact wording given to subjects, in Appendix SD in the Supple-
mentary Material.

Part I (Rounds 1–100) Summary of instructions. In each of 100 rounds:

1. You will help your company decide between investing in a new project from indus-
try A or a new project from industry B. The chance that a project from industry A is good
is fixed between 0 and 100 percent and will not change throughout the experiment.

http://qeconomics.org/supp/650/supplement.pdf
http://qeconomics.org/supp/650/code_and_data.zip
http://qeconomics.org/supp/650/supplement.pdf
http://qeconomics.org/supp/650/code_and_data.zip
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Project A is
Good Bad

Majority’s A 5 1

choice B x x

Figure 1. Payoffs for the experiment. The project that is implemented is determined by the
choice of the subject and two other agents played by the computer. The payoff x from imple-
menting B varies each round from 1�25 to 4�75, and the subject observes the value of x before
making a choice.

2. Your company has programmed two computers, computer 1 and computer 2, to
assess whether project A is good or bad. If a computer assesses project A to be good,
then it recommends A; otherwise, it recommends B. The computers make two types of
mistakes: recommend A when A is bad and recommend B when A is good. Computer 1
and computer 2 make the same rates of mistakes. The chance that the computers make
the first type of mistake is fixed between 0 and 100 percent and will not change through-
out the experiment. The chance that the computers make the second type of mistake is
fixed between 0 and 100 percent and will not change throughout the experiment.

3. Next, the interface draws a value of x (all values from 1�25 to 4�75, with increments
in quarter points, are equally likely) that represents the payoff if the company invests in
the project from industry B. You will observe the value of x but not the recommendations
of the computers. You will then submit a recommendation for project A or B.

4. The company will invest in the project recommended by the majority, and the pay-
offs for the round are given by the table in Figure 1.

Feedback: After each round, a subject sees the entire past history of rounds consisting
of the recommendations of the computers, her own recommendation, the recommen-
dation of the majority, whether project A turned out to be good or not (provided it was
chosen by the majority), and her payoff. Crucially, a subject does not observe whether
or not A would have turned out to be good if project A is not implemented.

In the above design, we only observe a subject’s decision for a particular value of x,
but, ideally, we would like to know the entire strategy; that is, a decision in each round
for each possible value of x. To elicit this additional information, we introduce a nov-
elty to our design starting in round 26. The problem in rounds 26–100 is exactly iden-
tical to the problem faced in the previous 25 rounds, but we now ask subjects to make
one additional decision. At the beginning of the round, before the value of x is drawn,
each subject must submit a threshold strategy indicating what she would recommend
for each value of x. Subjects must choose a number from 1 to 5 by clicking on a slider on
the screen. If they click on x∗, this means that they would recommend B for x > x∗ and
A for x < x∗. After they submit their threshold strategy, the round continues as before:
a value of x is drawn and they must submit a recommendation for A or B. If the recom-
mendation submitted is not consistent with their previously selected threshold strategy,
we alert them, ask them to make a consistent choice, and remind them that they can
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Figure 2. Screen shot for round 26. In rounds 1–25, the subject must submit a recommendation
for a given value of x. In rounds 26–100, the subject must first submit a threshold recommenda-
tion that indicates a choice for each value of x. She is then prompted to submit a choice for a
particular value of x, as in rounds 1–25. In this figure, the subject has already submitted a thresh-
old recommendation (A if x ≤ 3 and B if x ≥ 3�25). A value of x = 3�50 is then drawn, and the
subject is asked to recommend A or B. If the subject were to recommend A, she would be alerted
that her choice is inconsistent with her previously submitted threshold recommendation and
would be asked to submit a recommendation that is consistent (in this example, B).

change their threshold strategy in the next round. This procedure is intended to clar-
ify the meaning of a strategy to the subjects. We introduce the change in round 26 to
make sure that subjects are familiar with the problem before having to report a strategy.
Figure 2 provides a screen shot of round 26 after the subject has selected a threshold.8

Part II (Belief elicitation) After round 100, we ask the subject to write an incentivized
report for the company explaining how they reached their decision by round 100.9 After
the report is written, we ask the subject three questions that are intended to elicit their
beliefs. The subject must answer one question before moving on to read the next ques-
tion. For each question, we pay $2 if the response is within 5 percentage points of the
correct value.

Question 1. What is the chance that a project from industry A is good?

8This design yields more (and less noisy) information in each round, compared to estimating a threshold
strategy from the data (pooling data from different rounds is less appealing in our setting because subjects
are likely to be learning and changing their thresholds over time). Of course, without this restriction, some
subjects might make a mistake and not follow threshold strategies. But this mistake is not the main focus
of this paper and, more generally, implications of the strategy method have been studied elsewhere (e.g.,
Brandts and Charness (2011)).

9This part was anticipated in the instructions of Part I to encourage subjects to pay attention to the data.
Subjects were also provided with paper and pencil in Part I to take notes about the observed data.
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Question 2. What is the mistake rate of the computers when A is good? What is the mistake
rate when A is bad?

Question 3. What is the chance that a project from industry A is good conditional on your
recommendation being pivotal?

Part III (Risk aversion) We measure risk aversion in the following way: In the last part,
the subject faces the same problem as in rounds 1–100, but with two exceptions: there
are no computers (so her decision alone determines the choice of project), and the
chance that project A is good is known. The subject must make a threshold choice in
each of five cases, where the probability that A is good is known to be 0�1, 0�3, 0�5, 0�7,
and 0�9.10

2.2 Two treatments

The primitives of the environment are given by (p�mG�mB), where p is the probability
that project A is good, mG is the mistake rate when A is good, and mB is the mistake
rate when A is bad. We consider two treatments. In both treatments, the probability that
a project from industry A is good is p = 1/4, and the (unconditional) probability that a
computer recommends A is 1/2. Treatments differ by the rates of mistakes of the com-
puters.11

No Selection treatment Each computer recommends A and B with equal probability,
irrespective of whether A is good or bad, that is, mG =mB = 1/2. The computers’ recom-
mendations in this treatment are uninformative of whether A is good or bad.

Selection treatment Each computer correctly recommends A if A is good. Each com-
puter mistakenly recommends A with probability 1/3 if A is bad, that is, mG = 0, mB =
1/3. The computers’ recommendations in this treatment are informative.

As explained in the next section, when the computers’ recommendations are infor-
mative (Selection treatment), the subject must make inferences from a biased sample.

2.3 Subjects

We ran a between subjects design at NYU’s Center for Experimental Social Science
(CESS). We conducted three sessions per treatment (68 subjects with No Selection and
66 subjects with Selection). Part I lasted approximately 60 minutes, and parts II and III
lasted about 25 minutes. Average payoffs were approximately $18.

10At the end of the experiment, we run the experiment conducted by Holt and Laury (2002) to obtain an
alternative measure of risk aversion in the population; as discussed in footnote 34, the two measures are
consistent with each other.

11An additional, atypical benefit of not providing the subjects with the primitives is that the instructions
for both treatments are exactly the same.
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Table 1. Example of feedback faced by a subject after 12 rounds in the Selection treatment.

Round Comp1\Comp2 You Majority Project A is . . . Payoff

1 A\A B A Good 5�00
2 B\B B B – 3�75
3 A\B B B – 1�25
4 A\B A A Bad 1�00
5 A\B A A Bad 1�00
6 A\A A A Good 5�00
7 B\B A B – 3�25
8 A\A A A Bad 1�00
9 A\B A A Bad 1�00

10 A\A B A Good 5�00
11 B\B A B – 1�75
12 A\A B A Good 5�00

Note: A naive approach is to estimate the probability of good by looking at the relative proportion of good versus bad
observed outcomes. A sophisticated approach is to look only at rounds in which a subject’s decision was pivotal. In the Selection
treatment, project A is always bad conditional on being pivotal.

2.4 Theoretical steady-state predictions

We begin with an informal discussion of the theoretical predictions and then character-
ize the solutions for each treatment. Table 1 shows an example of feedback from playing
the first 12 rounds of the Selection treatment. There are two natural steady-state pre-
dictions in our environment. The first prediction is that a subject will naively estimate
the chance that project A is good by the proportion of times that it has been observed
to be good in the past. Thus, in the example provided in Table 1, a naive subject will
estimate the chance that A is good to be 1/2 and then behave as in a decision problem
where she has to choose between a risky option that delivers a payoff of 5 or 1 with equal
probability and a safe option that delivers x for certain.12

The problem with this naive approach is that it does not account for the fact that the
sample from which the subject makes inferences will be biased if the recommendations
of the computers happen to be correlated with the state of the world. To see this point,
note that a subject only observes whether A is good or not when a majority chooses
to recommend A. But if the computers happen to have some expertise in determining
whether A is good or not (as in the Selection treatment), then the subject will observe
whether A is good or bad in those instances in which A is more likely to be good. In par-
ticular, the subject will overestimate the likelihood that A is good and choose a strategy
that is more risky than optimal.

The second natural steady-state prediction is that a subject is sophisticated, under-
stands the sample may be biased, learns to account for this bias, and eventually makes

12Following Esponda and Pouzo (2016b), this form of naiveté arises from a model of misspecified learn-
ing in which subjects believe that the behavior of the computers is independent of the state of the world.
This particular misspecification underlies the solution concepts of Eyster and Rabin (2005), Jehiel and
Koessler (2008), and Esponda (2008). Our characterization of naive behavior follows Esponda’s (2008) be-
havioral equilibrium because that solution concept accounts explicitly for the lack of counterfactual infor-
mation. See Kőszegi (2010) and Spiegler (2016) for related solution concepts.
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optimal decisions. There are two natural ways to account for sample selection bias in
our context. One way to account for the bias is for the subject to use data about the
realized payoff of A only from the subsample of rounds in which her recommendation
was pivotal; these are rounds 4, 5, and 9 in Table 1.13 In all of such rounds, project A
is observed to be bad. A subject following this rule will be more pessimistic about the
prospects of recommending A compared to a naive subject. A second way to reach an
optimal decision is simply to do so by trial and error. Subjects have 100 rounds to exper-
iment with different strategy choices and settle for the one that they think maximizes
their payoffs.

2.4.1 Steady-state behavior in the No Selection treatment In the No Selection treat-
ment, the strategies of the computers are independent of the state of the world (good
or bad). Thus, there is no selection in the data and both naive and sophisticated infer-
ences lead to the correct belief that the probability of A being good is 1/4. Thus, the naive
and sophisticated predictions coincide for this treatment.

Suppose, for example, that a subject is risk neutral. Then the steady-state belief
about the expected benefit from recommending A (whether or not conditional on being
pivotal) is (1/4) × 5 + (3/4) × 1 = 2. Thus, the steady-state threshold strategy is x∗ = 2:
for x > 2, a risk-neutral subject prefers to recommend the safe option B, and for x < 2, a
risk-neutral subject prefers to recommend the risky option A.

In practice, it is important to account for the fact that subjects in the experiment
might have different levels of risk aversion. Suppose, for concreteness, that a subject
has a constant relative risk aversion (CRRA) utility function ur(c) = c(1−r)/(1 − r) with
coefficient of risk aversion r, where the subject is risk neutral if r = 0, risk averse if r > 0,
and risk loving if r < 0.14 Then the optimal (naive and sophisticated) threshold x∗ for a
subject with risk aversion r is given by the solution to

1
4

× ur(5)+ 3
4

× ur(1) = ur
(
x∗)� (1)

Figure 3 plots the (naive and sophisticated) threshold as a function of the coefficient
of relative risk aversion, r. As expected, the threshold decreases as risk aversion in-
creases.15

2.4.2 Steady-state behavior in the Selection treatment In the Selection treatment, the
strategies of the computers are correlated with the state of the world (good or bad), and
naive and sophisticated behavior differ. Consider first the sophisticated case. Because
both computers correctly recommend A if it is good, then, if a subject is pivotal, A must

13The importance of “pivotality” in these types of environments is highlighted by Austen-Smith and
Banks (1996) and Feddersen and Pesendorfer (1997). Esponda and Pouzo (2016a) show that steady-state
behavior corresponds to Nash equilibrium under sophisticated learning and behavioral equilibrium under
naive learning.

14For r = 1, we let u(c) = ln c.
15For simplicity, the theory discussion assumes that both x (uniformly distributed) and the threshold

can take any value in the interval [1�5]. Of course, we account for the discreteness of the signal and action
space when discussing the results of the experiment.
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Figure 3. Theoretical prediction for the Selection and No Selection treatments. For the bench-
mark case of the No Selection treatment, naive and sophisticated thresholds coincide. Under Se-
lection, naive and sophisticated thresholds go in opposite direction: higher than the benchmark
in the naive case and lower than the benchmark (and equal to 1) in the sophisticated case.

be bad. Thus, it is optimal to always recommend B, x∗
NE = 1, irrespective of the risk aver-

sion coefficient. In terms of the sophisticated rule described above, it will be the case

that every time that the subject is pivotal and recommends A, she will observe that A

turned out to be bad. Thus, with enough experience, a sophisticated subject should stop

recommending A and converge to x∗
NE = 1.16

Next, consider the naive steady-state prediction. The steady-state belief that A is

good is given by the probability that A is observed to be good conditional on the event

that the subject obtains some information about A. The latter event is equivalent to the

event that the majority recommends A, which we denote by MA in the expression below.

Thus, the naive steady-state belief is

z
(
x∗) ≡ Pr

(
good | MA;x∗)

= Pr
(
MA | good;x∗)p

Pr
(
MA | good;x∗)p+ Pr

(
MA | bad;x∗)(1 −p)

(2)

16In Appendix SC, we show that a sophisticated agent can actually identify the primitives (p�mG�mB)

of the model, but that she would not be able to identify the primitives of a more general model where the
votes of the computers are correlated conditional on the state of the world (in our experiment, they are
conditionally independent and identically distributed (i.i.d.)). Of course, identifying these primitives is not
necessary, since all that is required is that the agent can identify the probability that A is good conditional
on being pivotal. This conditional probability, which is zero, can simply be identified by observing the pro-
portion of times that A was good when the subject was pivotal and voted for A, and this is true irrespective
of whether the agent thinks that votes are correlated or i.i.d. conditional on the state.
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=

(
(1 −mG)

2 + 2mG(1 −mG)

(
x∗ − 1

)
4

)
p

(
(1 −mG)

2 + 2mG(1 −mG)

(
x∗ − 1

)
4

)
p+

(
m2

B + 2mB(1 −mB)

(
x∗ − 1

)
4

)
(1 −p)

= 3
3 + x∗ �

where we have used the fact that, in the Selection treatment, mG = 0 and mB = 1/3. Note
that the steady-state belief is above the true unconditional probability that A is good,
which is p = 1/4; thus, the naive subject is overoptimistic about the risky project.

Equation (2) makes explicit that the sample selection problem facing the subject is
endogenous. The reason is that the probability that the majority recommends A depends
not only on the behavior of the two computers, but also on the behavior of the subject,
x∗. In particular, the steady-state belief z(x∗) is decreasing in x∗; the intuition is that the
higher is the threshold, then the more likely the subject is to vote for A, which means
the more likely A is chosen when it is bad and, therefore, the lower the observed payoff
from A.

Because beliefs are endogenous, a naive steady state is characterized as a fixed point
threshold x∗ with the property that (i) given that the subject chooses strategy x∗, then
her steady-state belief is z(x∗), and (ii) the strategy x∗ is the optimal threshold given
belief z(x∗), that is,

z
(
x∗) × ur(5)+ (

1 − z
(
x∗)) × ur(1) = ur

(
x∗)� (3)

In other words, the naive steady-state threshold x∗(r) is the unique solution to equation
(3).17 For example, if the subject is risk neutral, r = 0, then equation (3) becomes 4/(1 +
x∗/3) + 1 = x∗ and the naive threshold is x∗(0) = 3. Figure 3 plots the naive threshold
x∗(r) as a function of the coefficient of relative risk aversion, r. As expected, the threshold
decreases as risk aversion increases.

For comparison, in the No Selection treatment, the assumption that mB = mG = 1/2
implies that z(x∗) = p for all x∗. This result formalizes earlier claims that, in the No Se-
lection treatment, (i) beliefs do not depend on decisions (i.e., there is no endogenous
selection problem) and (ii) the subject has a correct belief about the unconditional prob-
ability that the risky project is good.

To summarize, the steady-state naive and sophisticated predictions coincide for the
No Selection treatment. On the other hand, naive and sophisticated behavior imply dif-
ferent treatment effects: For a given level of risk aversion, the naive steady-state thresh-
old increases and the sophisticated one decreases when going from the No Selection to
the Selection treatment.

2.5 Discussion of experimental design

Now that we have introduced the experiment and discussed the main theoretical pre-
dictions, it is easier to explain why we made certain choices in the experimental design.

17The solution is unique because the left-hand side (LHS) of equation (3) is decreasing (because z(·) is
decreasing) and the right-hand side (RHS) is increasing.
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Choice of environment As illustrated by the examples in the Introduction, the endoge-
nous selection problem arises in a wide range of environments. We focus on a collective
decision problem where the unobservable variable that leads to selection is the private
information of other agents (represented here by computers) for three main reasons.
First, as reviewed in the Introduction, there is a large literature that focuses on mistakes
in environments in which other players have private information. Second, our previous
work (Esponda and Vespa (2014)) looked at a collective action environment but followed
the more standard approach of telling the primitives to the subjects. By focusing on the
same environment, we can directly contrast our results to the previous literature and
understand the effect that lack of counterfactuals and primitives has on behavior. Third,
to concentrate on the selection problem, we wanted to make the inference problem as
simple as possible. In our environment, subjects only need to learn the chance that a
project is good versus bad. In an auction environment, for example, subjects would need
to learn both the value of an item and the probability of winning it.

Lack of primitives and counterfactuals We do not provide primitives or counterfactuals
to subjects because it is the lack of both types of information that results in the endoge-
nous selection problem that we wish to study. If subjects knew the primitives, then the
problem reduces to the problem studied in previous papers, and the source of the mis-
take is relatively well understood (e.g., Charness and Levin (2009), Ivanov, Levin, and
Niederle (2010), and Esponda and Vespa (2014)). If a subject were to observe counter-
factuals, then her choices would have no influence over the observed performance of
the risky project. Hence, there would be no endogenous sample selection problem to
study. Instead, by simply keeping track of the proportion of times that A was good, the
subject would learn the true probability that project A is good. Learning this probability
does not, however, imply that the subject would behave optimally. The reason is that
the relevant probability is the one that is conditional on being pivotal. But whether or
not the subject can carry out the pivotal calculation when the probability over the state
space is known is a problem that has been studied in the previous literature.

Use of computers and stationarity The use of computers (as opposed to letting subjects
interact with each other) is to make the environment stationary. This is not to downplay
the importance of nonstationary environments in real life, but it seems sensible to intro-
duce changes one at a time and to start by understanding how people respond to sample
selection in stationary environments before moving on to nonstationary settings.

Mistakes of the computers In the Selection treatment, mistakes need to be asymmetric
(i.e., different in the good and bad states) for the recommendations of the computers to
be informative and, hence, to obtain selection effects. There are of course many choices
of asymmetric mistake rates that lead to large selection effects. We choose the mistake
rates that make it easiest for a subject to realize that selection is an issue as well as to be
able to account for it. By choosing a zero mistake rate in the good state, it follows that
every time a subject causes A to be implemented, she finds out that A is bad. Without
this choice of mistake rates, we would be concerned about classifying as naive a subject
who in fact understand selection, but, due to the noisy nature of the data, is not able to
perfectly account for it.
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Size of incentives The incentives to behave optimally are fairly small in our setting be-
cause subjects are pivotal with a probability of 1/3. For example, in the Selection treat-
ment, the naive choice gives approximately 94% of the payoff of the sophisticated choice
for a risk-neutral agent. The significant treatment effects that we obtain, however, sug-
gest that subjects are indeed responding to these small incentives. In particular, subjects
do fairly well in the No Selection treatment, despite the fact that the incentives are sim-
ilar in both treatments.18 Similar responses to small incentives have been found in pre-
vious work (e.g., Esponda and Vespa (2014)). Moreover, incentives are also realistically
small in the type of collective action problems that our experiment represents, but the
aggregate effects of individual actions tend to have large welfare consequences.

Focus on steady-state behavior As argued in the Introduction, the experimental design
is intended to focus on steady-state behavior, which is typical in economics.19 We are
not able to identify the exact learning dynamics with just two treatments. For example,
subjects could have different incentives to experiment in the different treatments, due
to different observations, and differences in behavior in initial rounds could be driven
by these different incentives. Thus, we leave the important question of identifying the
learning rules used by subjects for future work. The important point to keep in mind
is that the steady-state predictions that we characterize and test for in this paper hold
irrespective of the subjects’ incentives to experiment.20

3. Results

We organize the presentation of the results around five main findings.

Finding 1. The direction of the treatment effect is consistent with naive,
not sophisticated, steady-state behavior

The first question is whether it is appropriate in our setting to focus on steady states,
i.e,. whether or not behavior actually converges. For each round k in Part I of the ex-
periment, we say that a subject chooses a convergent threshold if she chooses the same
threshold in all remaining rounds, from k to 100. Figure 4 shows convergence rates in

18For the No Selection treatment, the difference between the best and worst expected payoff is $2�20, and
the ratio of the worst divided by the best expected payoff is 80%. For the Selection treatment, the difference
is $2�67 and the ratio is 80%.

19For comparison, consider any experimental test of Nash equilibrium in a game with complete infor-
mation. Subjects are initially uncertain about the strategies of other players, and researchers typically have
participants face several repetitions of the game (with random matching) to provide them with experience.
The main focus is often to understand whether or not beliefs and behavior eventually stabilize, and, if so,
if they are consistent with a steady-state concept, such as Nash equilibrium. We follow this same approach
but in a context in which subjects do not know the primitives of the environment.

20This is where the assumption that x varies throughout the experiment is useful. Note that if x were
constant, then the problem would be similar to a bandit problem, where the focus is instead placed on
whether or not subjects experiment optimally. With variation in x, subjects will get enough information in
the steady state irrespective of their initial behavior, and so the steady-state prediction will not be affected
by a subjects’ discount factor (hence, by her incentives to experiment).
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Figure 4. Convergence rates by treatment.

Figure 5. Mean thresholds in all rounds by treatment. The left panel shows the mean threshold
for all subjects, for each round and treatment. The right panel shows the same information but
only for subjects whose behavior converges in the sense that their threshold choice is constant
for the last 10 rounds (approximately 80% of subjects in each treatment).

the population for each round in Part I, by treatment. For example, in round 30, only
18% of the subjects in the No Selection treatment and 29% in the Selection treatment
choose convergent thresholds. By round 90, however, these rates increase to 83% and
79%, respectively. Thus, we next focus on explaining steady-state behavior, although the
figure also cautions that this is appropriate in our setting because subjects have a lot of
experience (more so than in the typical experiment).

Figure 5 shows the average observed threshold choice in each round by treatment.
Recall that x takes only a finite number of values, so that we can only infer that the
threshold of a subject falls in an interval. For concreteness, we define the observed
threshold to be the minimum number in the corresponding interval. For example, if a
subject chooses A for all x̃ ≤ 1�75 and chooses B for all x̃ ≥ 2, then her preferred thresh-
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old is somewhere in the interval [1�75�2], and we code the observed threshold as 1�75.
The left panel of Figure 5 includes all subjects. The right panel of Figure 5 includes only
subjects who choose a convergent threshold in round 91, that is, whose behavior re-
mains the same in the last 10 rounds (about 81% of subjects; see Figure 4). We refer to
these subjects as the subjects who converge.

The patterns in the data are similar whether we look at all subjects or only those
subjects who converge. Early in round 25 (which is the first round where we observe a
threshold choice), subjects have yet to receive most of their feedback and, not surpris-
ingly, the average thresholds are similar in each treatment. As the experiment progresses
and subjects observe more feedback, the average threshold in the Selection treatment
remains above the No Selection treatment and the gap widens. Recall that in the No Se-
lection treatment, on average, subjects will observe that A is good about 25% of the time
(irrespective of their pivotality). Not surprisingly, the average threshold significantly de-
creases with experience in the No Selection treatment. In the Selection Treatment, in
contrast, behavior depends on whether a subject is sophisticated or naive. A sophisti-
cated subject realizes that every time she is pivotal, A is bad. Thus, the sophisticated
threshold converges to 1. In the naive case, a subject believes that the probability that
project A is good is closer to 50% than to 25%, since this is what is observed in her
upward-biased sample; thus, there should be a positive treatment effect. As observed
in Figure 5, the direction of the treatment effect is clearly consistent with naive, not so-
phisticated, behavior.

Because our objective is to explain steady-state behavior, from now on we will focus
on explaining behavior in the last rounds of the experiment, where beliefs and behav-
ior have presumably converged and steady-state predictions are potentially applicable.
Thus, from now on we will exclusively look at those subjects who converge, i.e., the 82%
of subjects who choose the same threshold in each of the last 10 rounds, and we refer
to their threshold choices as their convergent thresholds. In Appendix SA, we replicate
the analysis with all the subjects and we find essentially the same results. For those sub-
jects who converge, the mean convergent threshold is 1�90 under No Selection and 2�29
under Selection; the median convergent thresholds are 1�75 and 2�38, respectively. The
differences in the mean (0�39) and the median (0�63) are both statistically significant at
the 1% level.21

Finding 2. There is no shift of mass to lower thresholds under Selection

compared to the No Selection treatment

Even though average behavior is consistent with naiveté, it could still be possible that
some subjects are sophisticated and choose very low thresholds in the Selection treat-
ment. Figure 6 shows that this is not the case, so that there is essentially no evidence of

21To test for differences in the mean, we run a regression with the convergent threshold on the right-hand
side and a dummy variable for the treatment as a control. We compute the hypothesis test using robust
standard errors. To test for differences in the median, we use the same dependent and control variables,
but run a median quantile regression.
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Figure 6. Distribution of convergent threshold choices, by treatment. Convergent threshold
choices under Selection first-order stochastically dominate choices under No Selection.

sophistication in this experiment.22 Moreover, the empirical distribution of convergent
thresholds for the Selection treatment first-order stochastically dominates the distribu-
tion in the No Selection treatment.23

Finding 3. Reported beliefs are consistent with naive (biased) beliefs

Recall that after round 100, we ask subjects to report their beliefs. While one has to
be cautious when using reported beliefs to draw conclusions about behavior, here we
use the reported beliefs simply to assess what it is that subjects are paying attention to
(if anything) and as a robustness check to confirm whether beliefs are consistent with
naiveté. Table 2 compares, for each treatment, the averages in the data and the subjects’
average responses. For the averages in the data, we consider both the true, realized av-
erages (as observed by the researchers) and the averages that would be estimated by a
naive subject from the observed data. (The question on the chance A was good condi-
tional on being pivotal was asked last, but appears in the second row of the table; see
Section 2 for details.)

The first row in Table 2 shows the chance that A is good as observed in the data and
reported by the subjects. In the No Selection treatment, the state was good 25% of the

22In Part II of the experiment, we asked subjects to provide a written report to justify their round 100
choice. In the case of the Selection treatment, only three subjects provide a correct explanation of optimal
behavior. See footnote 15 in Appendix SD for further details on the reports.

23We test for first-order stochastic dominance using the test in Barrett and Donald (2003). The test con-
sists of two steps. We first test the null hypothesis that the distribution under the Selection treatment either
first-order stochastically dominates or is equal to the distribution under No Selection. We cannot reject this
null hypothesis; the corresponding p-value is 0�770. We then test the null hypothesis that the distribution
under the No Selection treatment first-order stochastically dominates the distribution under Selection. We
reject the null in this case, with a corresponding p-value of 0�002.
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Table 2. Mean values of data and reported beliefs, by treatment.

Mean Values No Selection Treatment Selection Treatment

Data Data Report Data Data Report
(True) (Naive) (True) (Naive)

% Good 25�0 24�9 30�6 25�6 56�1 48�4
% Good|Piv 26�1 24�9 28�0 0 56�1 44�6
% Mistake|good 49�7 49�9 43�4 0 50�1 36�1
% Mistake|bad 50�0 50�0 49�1 32�6 49�9 40�4

Note: Reported beliefs are consistent with naive (biased) beliefs, not with sophisticated beliefs. The label % Good denotes
the percentage of times that project A was good; % Good|Piv denotes the percentage of times that project A was good condi-
tional on the subject being pivotal; % Mistake|good denotes the percentage of times a computer mistakenly votes for B when
project A is good; % Mistake|bad denotes the percentage of times a computer mistakenly votes for A when project A is bad;
Data (True) denotes the actual figure in the data; Data (Naive) denotes the actual figure a naive subject would report given the
data; Report denotes the figure reported by subjects in Part II.

time, and of the times in which subjects got to observe whether A is good or bad (i.e.,
when the majority recommends A), alternative A turned out to be good 24�9% of the
time (recall that the true probability is 25% and that there is no selection, which explains
why the true and naive estimates from the data are similar). On average, subjects report
that the chance that A is good is 30�6%. For the Selection treatment, the state was good
25�6% of the time (again, the true probability is 25%). But, on average, subjects observe
that, conditional on having information about A being good or bad, alternative A was
good 56�1% of the time. As explained earlier, this higher number reflects the fact that
the sample is biased because the computers’ strategies are correlated with the state of
the world. On average, subjects report that the chance that A is good is 48�4%, which is
much closer to the naive figure in the data (56�1%) than to the true figure (25�6%). In
particular, it appears that subjects in both treatments are, on average, paying attention
to the data, but they are doing so naively.24

The second row in Table 2 shows the results when subjects are asked about the
chance that A is good conditional on being pivotal. In the No Selection treatment, where
the pivotal event conveys no information, the true and reported averages are similar to
the unconditional case. In the Selection treatment, as explained earlier, there is not one
case in which A is good when a subject is pivotal, so the realized proportion of good con-
ditional on being pivotal is 0%. On average, subjects miss this point and report 44�6%.

Finally, the last two rows show realized rates and beliefs for the computers’ mistakes.
As expected, the true realized rates in the data are very close to the true rates, which are
mG = mB = 1/2 under No Selection and mG = 0, mB = 1/3 under Selection. The naive es-
timates are given by the unconditional proportion of times that computers vote A, which

24As shown in Appendix SC, the true primitives can be identified from the data by a sophisticated subject
who believes that votes are i.i.d. conditional on the state of the world. If, for some reason, a sophisticated
subject were to believe that votes are correlated conditional on the state, then the primitives are not identi-
fied. In this second case, where multiple beliefs are consistent with sophistication (all of which, importantly,
make it optimal to always vote for B), the results of this section should be interpreted as a demonstration
that elicited beliefs are consistent with naiveté, rather than as a test of naivete versus sophistication.
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Figure 7. Distribution of reported beliefs on project A being good conditional on the recom-
mendation being pivotal, by treatment. Includes only subjects with a convergent threshold.

is close to the true unconditional probability of 1/2. In the No Selection treatment, sub-
jects are on average correct to respond that the computers’ strategies are uninformative.
In the Selection treatment, subjects realize that the rates of the computers’ mistakes are
lower, but are far from realizing that computers make no mistakes when project A is
good.

Even though the average reported belief is consistent with naiveté, it could still be
possible that some subjects are sophisticated and understand that the probability that
project A is good conditional on being pivotal is zero (or very low). Figure 7 shows the
distributions of reported beliefs in each treatment for the probability that project A is
good conditional on being pivotal. There is no mass point near zero in the Selection
treatment, showing that essentially no subject realizes that the probability of the rele-
vant event is zero.25 The figure also shows that the distribution of reported beliefs for
the Selection treatment first-order stochastically dominates the distribution for the No
Selection treatment.26 This is further evidence consistent with subjects being naive and
overestimating the benefits of project A in the Selection treatment.

Overall, it appears that, on average, subjects pay attention to the data, make naive
inferences, do not realize that the computers make no mistakes when project A is good,
and mostly fail to account for sample selection (though reported beliefs are slightly be-
low naive estimates from the data).

25In Appendix SA, we show that the same is true for the question about the probability that computers
make a mistake when project A is good.

26Following the test by Barrett and Donald (2003) (see footnote 23), we cannot reject the null hypothe-
sis that the distribution under the the Selection treatment either first-order stochastically dominates or is
equal to the distribution under No Selection (p-value of 0�731), but we reject the opposite null hypothesis
(p-value of 0�001).
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Finding 4. Convergent thresholds are lower than predicted by the naive

steady state

While naiveté correctly predicts the direction of the treatment effect, a more stringent
test is whether it can rationalize the levels observed in the data. As discussed earlier,
the average (median) convergent threshold is about 0�39 (0�62) points higher under Se-
lection compared to the No Selection treatment, while the naive steady-state solution
predicts a difference of about 1 point (where the exact difference depends on the risk
coefficient; see Figure 3). Similarly, we showed that reported beliefs are slightly lower
than naive estimates from the data.

For a more detailed comparison, we now contrast the observed distribution of
thresholds in each treatment with the theoretical prediction. We start by describing an
empirical model that we use to compute a prediction of the distribution of convergent
thresholds under the assumption that subjects are naive. As discussed earlier, the pre-
dicted threshold depends on the risk coefficient, and so the distribution of naive thresh-
olds predicted by the theory depends on the distribution of risk aversion in the pop-
ulation of subjects. In a first stage, we estimate the distribution of risk aversion using
data from the five decisions in Part III (decision problem). In particular, we assume that
subject i’s threshold choice is the optimal threshold plus some noise,

x∗
ik = u−1

ri

(
zk × uri(5)+ (1 − zk)× uri(1)

) + εik� (4)

where ri is her CRRA risk coefficient, zk is the probability that A is good, uri is the CRRA
utility function, εik represents decision noise, and k = 1� � � � �5 indexes the five decisions
taken by the subject. Recall that the probability that A is good is known and given by
z1 = 0�1, z2 = 0�3, z3 = 0�5, z4 = 0�7, and z5 = 0�9 in each of the five decisions.27 For
concreteness, we assume that the risk coefficient r ∼ N(μr�σ

2
r ) and the decision noise

ε ∼ N(με�σ
2
ε) are normally distributed and independent of each other and across sub-

jects and decisions, and we estimate the parameters using (simulated) maximum likeli-
hood.28

For a given value of r, we can compute the naive threshold (x∗(r)) in the No Selection
and the Selection treatments using, respectively, equations (1) and (3). We then assume
that

x∗
i = x∗(ri)+ ε′

i�

where x∗
i is the convergent threshold of subject i and ε′

i ∼ N(με′�σ2
ε′) is an error term. In

a second stage of the estimation, we use the first stage output and estimate the param-
eters of the distribution of ε′ that maximize the likelihood that the naive threshold plus

27In the data, we do not observe the exact threshold choice x∗
ik because we only observe a decision con-

tingent on a finite number of values of x. Each value of x∗
ik, however, translates immediately into a choice

in our environment, and we account for it in the estimation. For example, if x∗
ik = 2�33, this means that a

subject would choose A for all values of x lower than or equal to 2�25 and choose B for all values of x higher
than or equal to 2�5.

28We need to simulate the likelihood function because ri enters nonlinearly in equation (4).
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Figure 8. Predicted distribution of thresholds under the assumption of naive behavior versus
the observed distribution of convergent thresholds, by treatment. Includes only subjects with a
convergent threshold.

error is equal to the convergent threshold. Finally, we use estimates of the distributions
of r and ε′ to predict the distribution of convergent thresholds in each treatment.29

Figure 8 depicts the observed and predicted distributions of thresholds for the No
Selection (left panel) and Selection (right panel) treatments. The figure confirms that the
theory provides a good fit for the No Selection treatment and that naiveté, as opposed to
sophistication, correctly predicts the direction of the treatment effect. The figure shows,
however, that the distribution of thresholds predicted by naiveté first-order stochasti-
cally dominates the observed distribution for the Selection treatment, thus confirming
that naiveté overpredicts the treatment effect.

Finding 5. Subjects are more likely to change their thresholds in a given

round if they were pivotal in the previous round

The evidence so far suggests that subjects are naive but that they partially account for
the selection problem by choosing thresholds that are a bit lower than the naive thresh-
old. One reasonable explanation for this (admittedly, unexpected) behavior is that, while
subjects do not know how to account for the information content of the computers’ rec-
ommendations, they might be more likely to adjust their thresholds in rounds in which
they are pivotal.

Panel (a) of Table 3 shows the results of linear regressions of an indicator variable for
whether or not a subject changes her threshold xt in round t on two other indicator vari-
ables (and their interaction) that capture whether the subject was pivotal in the previous
round (Pivt−1) and whether project A was chosen by a majority in the previous period,

29Further details of the estimation procedure are presented Section 4, where we present a more general
model of partially naive subjects, and in Appendix SB.
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Table 3. Reduced-form analysis: reaction in threshold to events in the
previous period.

(a) The dependent variable and the controls are dummy variables1

Dep. Var.: 1{xt �= xt−1} Pooled No Selection Selection

Constant 0�040*** 0�051*** 0�029***
(0�006) (0�009) (0�008)

Pivt−1 0�003 −0�007 0�016**
(0�005) (0�008) (0�007)

Infot−1 0�016** 0�021* 0�012*
(0�007) (0�012) (0�007)

Pivt−1 × Infot−1 0�053*** 0�058*** 0�042**
(0�013) (0�020) (0�013)

(b) All controls are dummy variables2

Dep. Var.: xt − xt−1 Pooled No Selection Selection

Constant 0�008*** 0�009*** 0�008**
(0�002) (0�003) (0�003)

(Piv and good)t−1 0�020 0�020 –
(0�025) (0�025) –

(Piv and bad)t−1 −0�092*** −0�131*** −0�060***
(0�018) (0�029) (0�023)

(Not Piv and good)t−1 −0�002 −0�008 0�001
(0�005) (0�007) (0�006)

(Not Piv and bad)t−1 −0�024*** −0�022** −0�032**
(0�008) (0�010) (0�013)

Note: The asterisks *, **, and *** indicate significance at the 1, 5, and 10% levels, respectively.
Standard errors are given in parentheses. In both cases, we report the results of fixed effects
panel regressions and we cluster standard errors by subject. Both regressions include 109 sub-
jects that converged and for each subject, we use the last 74 rounds of Part I (we lose one ob-
servation due to the lag). The regressions pool subjects from both treatments. Conclusions do
not change if we add time dummies. 1The term 1{xt �= xt−1} takes value 1 if the threshold in pe-
riod t, xt , is different than the threshold in period t − 1, xt−1 ; Pivt−1 takes value 1 if the subject
was pivotal in the previous period; Infot−1 takes value 1 if, in the previous period, the subject
received feedback on whether project A was good or not. 2The variable (Piv and good)t−1 takes
value 1 if the subject was pivotal, the company invested in A, and it turned out to be good. Other
dummy variables are named accordingly. The excluded event is the case when the subject did
not receive information in the previous period because the company invested in B.

and hence she observed information about project A (Infot−1). The first column reports
results from a regression that pools data from both treatments, while the other columns
focus on each treatment separately.

It is not surprising that observing some information (positive or negative) about
project A in a previous period increases the probability that a subject will change her
threshold choice; it does so by about 1�6 percentage points (from a baseline of about
4%) in the pooled data. The key finding, however, is that the interaction effect is more
than three times stronger: In the pooled data, a subject is 5�3 percentage points more
likely to change her threshold if she received information and was pivotal in the previ-
ous round. The results are similar for each of the two treatments.
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While panel (a) looks at the probability of adjusting the threshold, panel (b) of Ta-

ble 3 looks at the magnitude of the change. The dependent variable measures the differ-

ence between the threshold in rounds t and t−1, and the independent variables include

indicators for whether or not a subject was pivotal and observed positive or negative in-

formation about project A. In the pooled data, observing that A was bad leads subjects

to decrease their threshold by 0�024 points on average when they were not pivotal and by

about four times this magnitude, 0�092, when they were pivotal. The results are similar

for each of the two treatments.30

The findings from Table 3 confirm that subjects tend to react more to pivotal versus

nonpivotal events, which explains why their behavior can be consistent with a partial

adjustment of selection despite their inherent naiveté.

4. A model of partial naiveté

Motivated by the finding that subjects are not sophisticated but seem, nevertheless, to

be responding more to feedback from pivotal rounds, we now propose and estimate a

model of partial naiveté.

4.1 Model

In Section 2.4.2, we assumed that a naive subject forms beliefs about the probability that

project A is good based on the proportion of times it was observed to be good in the past.

We continue to make this assumption, but now we distinguish between periods in which

a subject is pivotal or not. In particular, we assume that a subject pays more attention

to whether project A was good or bad if she was pivotal than if she was not pivotal. This

assumption is motivated by Finding 5 in Section 3, which suggests that subjects are more

responsive to data coming from pivotal periods.

Formally, let α denote the probability that a subject recalls an observation from a

period in which she was pivotal and let β denote the corresponding probability for a

period in which she was not pivotal. Let yτ denote the number of times that project A was

recalled to be good in the past τ recalled periods. Note that it is indeed possible that τ < t

after t periods since the subject does not necessarily recall all past data. Let zτ ≡ yτ/τ

denote the proportion of times that project A was good, as recalled by the subject, and

suppose that it represents the naive subject’s belief about the probability that A is good.

In the Appendix, we use tools from stochastic approximation to show that if the subject’s

30These numbers are small because the baseline probability of changing the threshold in a given round
is small; the results are similar if we restrict the regression to rounds in which a subject changes her thresh-
old. Also, the coefficient on being pivotal and observing that A was good is positive (as expected), but it is
estimated with a higher standard error due to the fact that this coefficient is only identified from the No
Selection treatment (because the event has zero probability under Selection).
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threshold converges to x∗, then her belief zτ converges to

z
(
x∗�η

) =
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(1 −mG)

2 +η2mG(1 −mG)

(
x∗ − 1

)
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)
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/((
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)
4

)
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(
x∗ − 1

)
4

)
(1 −p)

)
�

(5)

where η ≡ α/β. The above expression, which represents the steady-state belief of the
subject, is simply the probability that A is good conditional on the event that A is ob-
served to be good and that the agent recalls it. The probability of this event, in turn,
depends on the steady-state threshold choice of the subject, x∗, and the parameter η.
It is important to emphasize that the naive subject is in no way required to be able to
compute conditional expectations or to have an understanding of the selection prob-
lem. The subject simply follows the rules specified above, and equation (5) provides a
characterization of the steady-state belief of a subject who follows these rules.

Assuming, once again, a CRRA utility function for convenience, the steady-state
strategy x∗ is the unique solution to

z
(
x∗�η

) × ur(5)+ (
1 − z

(
x∗�η

)) × ur(1) = ur
(
x∗)� (6)

We denote the solution by x∗(r�η).
In the Appendix, we show that as time goes to infinity, the threshold converges to

x∗(r�η) provided that the subject is asymptotically myopic, meaning that there is a time
after which she always chooses a threshold to maximize current expected utility. The
advantage of this approach is that we do not have to make assumptions regarding how
subjects behave in the early periods of the experiment, where incentives to experiment
may justify deviations from myopic optimization.

The naive and sophisticated predictions discussed in Section 2.4 are special cases
of this model. As η goes to infinity, a subject puts increasingly higher weight on pivotal
rounds and the threshold converges to the sophisticated, optimal threshold character-
ized in Section 2.4. The case η = 1, which places equal weight on pivotal versus non-
pivotal rounds, corresponds to what we called the naive threshold in Section 2.4 (or,
equivalently, what Esponda (2008) calls a naive behavioral equilibrium). The parame-
ter η captures intermediate cases where subjects are naive but account for selection by
putting higher weight on feedback from pivotal rounds.

We now specialize the model to each of our treatments. For the No Selection treat-
ment (p = 1/4, mG = mB = 1/2), equation (5) becomes

z
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4

)
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= 0�25�
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Figure 9. Theoretical prediction for Selection and No Selection treatments for several values
of η.

As explained earlier, there is no selection in the data, and so the belief equals the true
probability that project A is good, 0�25, irrespective of the weight placed on pivotal versus
nonpivotal rounds. For the Selection treatment (p = 1/4, mG = 0, mB = 1/3),

z
(
x∗�η

) = 0�25

0�25 +
(

1
9

+η
4
9

(
x∗ − 1

)
4

)
0�75

(7)

for all x∗ > 1. As η increases, more weight is placed on pivotal rounds, where A always
turns out bad, and, therefore, z(x∗� ·) is decreasing.

Figure 9 plots the threshold prediction for several values of η. The prediction for the
No Selection treatment is the same for all values of η and is given by the solid line. The
prediction for the Selection treatment is decreasing in η, with η = 1 (naive behavior)
and η ≈ ∞ (sophisticated behavior) representing two extreme cases in the figure.31 The
figure also illustrates that the optimal threshold is not very responsive to η; for exam-
ple, a risk-neutral subject, r = 0, would exhibit no treatment effect even if she placed
η = 8 times more weight on pivotal versus nonpivotal rounds. The reason is that very
high weights are needed to compensate for the fact that the probability of being piv-
otal is small to begin with (1/3 in this case). Because we find a positive treatment effect
(Finding 1) but also that the theoretical prediction with η = 1 is above observed values
(Finding 4), Figure 9 already suggests that the average η in the population is between 1
and 8. In the next section, we obtain a more precise estimate of the distribution of η.

4.2 Empirical estimation and results

For each subject, we use data from steady-state decisions in Part I (either No Selection
or Selection treatments) and from the five decisions in Part III (decision problem).

31The model also allows for η< 1, which means that nonpivotal rounds receive relatively higher weight.
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We estimate the model in two stages. In the first stage, we use data from Part III (de-
cision problem) to estimate the distribution of risk coefficients. In particular, we follow
the same approach that we described in the analysis of Finding 4 in the previous sec-
tion. In the second stage, we use the steady-state threshold of each subject in period T

of Part I of the experiment to identify the extent to which subjects are partially naive. In
particular, we assume that

x∗
iT = x∗(ri�ηi)+ ε′

iT � (8)

where x∗
iT is the threshold choice in period T , x∗(ri�ηi) is the predicted threshold for a

subject with risk coefficient ri and naiveté coefficient ηi, and ε′
iT is an error term. For

the parameters of the distribution of risk aversion, we use the estimates from the first
stage. Thus, in this second stage, we estimate the error term (identified from the No
Selection treatment, since in that treatment x∗(ri� ·) does not depend on η) and the co-
efficient of naiveté (identified from the Selection treatment). We assume that η follows
a normal distribution with mean μ0 and variance σ2

0 that is truncated to be positive,
i.e., η ∈ [0�∞). We denote the corresponding mean and variance of η by μη and σ2

η, re-

spectively.32 We also assume that the error term ε′ ∼ N(με′�σ2
ε′), and that η and ε′ are

independent of each other and across subjects. We estimate the parameters using (sim-
ulated) maximum likelihood. Further details of the estimation procedure are presented
in Appendix SB.

To be consistent with the steady-state model, we use data from subjects whose
behavior has stabilized by round T , meaning that the threshold choice does not
change after round T . For robustness, we estimate the model for several values of
T ∈ {70�75� � � � �95�100}. Note that the case T = 100 corresponds to using data from all
subjects.

Table 4(a) presents the maximum likelihood estimates (including standard devia-
tions and 95% confidence intervals) for T = 90. With these estimates, we compute the
mean and median of η to be 5�45 and 4�65, respectively. Thus, the median subject puts
about 4�65 times more weight on pivotal versus nonpivotal events. The result is consis-
tent with the reduced-form results from Section 3, which suggested that subjects placed
more weight on pivotal events.

Table 4(b) presents further information on the median of η.33 Based on bootstrap-
ping the maximum likelihood estimates, we obtain a distribution for the median of η.
For T = 90, the 2�5th and 97�5th percentiles of the median of η are 1�69 and 10�82, re-
spectively. This shows that the estimate of the median is concentrated around the max-
imum likelihood estimate (4�65) and is far from being consistent with sophisticated be-
havior (η ≈ ∞). As explained earlier, even much higher weights on pivotal rounds are
not enough to approximate sophisticated behavior, since subjects are pivotal with a rel-
atively small probability of 1/3. Thus, the increased relative weights on pivotal events are
not nearly enough to correct for mistakes.

32Letting φ be the density and letting � be the cumulative density function (cdf) of the standard normal

distribution, it follows that μη = μ0 + φ(− μ0
σ0

)

1−�(− μ0
σ0

)
σ0 and σ2

η = σ2
0 [1 + φ(− μ0

σ0
)

1−�(− μ0
σ0

)
− (

φ(− μ0
σ0

)

1−�(− μ0
σ0

)
)2].

33We focus on the median as a measure of central tendency given that the distribution of η is asymmetric.
In Appendix SA, we provide statistics on the mean of η.
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Table 4. Maximum likelihood estimation and the distribution of η.

(a) Maximum likelihood estimates for T = 901

Estimate Std. Err. 95% Conf. Interval

μη 5�452 3�138 [1�986�12�747]
ση 7�938 4�554 [2�901�18�559]
μr 0�463 0�095 [0�264�0�630]
σr 0�589 0�339 [0�000�0�890]
με 0�119 0�047 [0�003�0�193]
σε 0�413 0�059 [0�322�0�543]
με′ 0�374 0�146 [0�026�0�595]
σε′ 0�488 0�084 [0�334�0�649]

(b) Statistics of the median of η using the bootstrap2

Percentile T = 70 T = 75 T = 80 T = 85 T = 90 T = 95 T = 100

2�5 1�62 1�68 1�58 1�54 1�69 1�95 1�94
5 1�78 1�79 1�69 1�67 1�85 2�11 2�07

25 2�49 2�40 2�17 2�16 2�70 2�99 2�85
50 3�70 3�76 2�90 3�03 4�30 4�76 4�35
75 5�84 5�21 4�38 4�59 6�05 6�40 5�68
95 9�16 7�96 6�59 6�88 9�16 9�78 8�37
97�5 10�50 9�44 7�21 7�84 10�82 11�63 9�64

Note: 1Standard errors and the 95% confidence intervals are computed using 1000 bootstrap repetitions. 2The bootstrap
delivers 1000 estimations of the parameters of the model. For each repetition, we compute the median of η and the table reports
percentiles of the distribution. Each column indicates the rounds of Part I that were included in the estimation.

As a robustness exercise, the other columns of Table 4(b) show how the computa-
tions change depending on the choice of T . When assessing robustness, it is important
to keep Figure 9 in mind, which shows that small differences in the value of η imply
small differences in behavior. Thus, Table 4(b) confirms that the main conclusions are
unaffected by the choice of T .

Next, we briefly comment on the other estimates of Table 4(a). The results for the risk
coefficient and noise levels appear to be consistent with previous work. For example, the
mean subject is risk averse with a risk coefficient of relative risk aversion of 0�463, and
95% of the population has a risk coefficient between 0�264 and 0�630, which is consistent
with previous estimates (see Holt and Laury (2002), Harrison and Ruström (2008)).34

The estimates also suggest that it is important to account for noise in actions to avoid
biasing our results for the coefficient of partial naiveté. The mean decision noise is 0�119
in the decision problem where the probabilities are known (Part III) and 0�374 where the
probabilities are unknown (Part I). Naturally, the decision error is higher in the problem
where the subject does not know the primitives.

34Following the maximum likelihood procedure in Harrison and Ruström (2008), we can estimate the
coefficient of risk aversion using answers to the Holt–Laury choice lists that we collected at the end of
the session. The coefficient equals 0�574 or 0�567, depending on whether we use only subjects who have
converged by T = 90 or all subjects. These estimates are comparable to those reported in Table 4 (which
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Figure 10. Goodness of fit using subjects who converged starting at T = 90. In the Selection
treatment, the distribution “Selection Predicted (Naive: η = 1)” corresponds to the prediction
under the assumption of full naiveté previously reported in Figure 8.

Finally, in Figure 10, we report goodness of fit for the estimated model, both for the
No Selection (left panel) and Selection (right panel) treatments. For the No Selection
treatment, the fit was already good under the naive model, where the parameter value
is exogenously fixed at η = 1, and continues to be good now that a distribution of η is
being estimated.35 For the Selection treatment, however, the model where the distribu-
tion of η is estimated provides a much better fit than the model where we fix η = 1 (and
which leads to overprediction of threshold choices, as discussed in Section 3). Thus, the
model of partial naiveté does a good job of rationalizing decisions in both treatments
simultaneously.36

5. Conclusion

Accounting for selection is a challenge not only for empirical researchers, but also for
economics agents in a wide range of important environments. Yet most models assume
that agents successfully tackle selection problems. We design an experiment where a
subject who understands sample selection has all the available data necessary to ac-

use data from Part III) and to previous estimates in the literature; for example, Harrison and Ruström (2008)
report an estimate of 0�66 using data from Hey and Orme (1994).

35This is not surprising since the theoretical prediction is that η does not affect decisions in the No Se-
lection treatment.

36Appendix SA shows that the results are robust to several different assumptions, including using a log-
normal distribution for η rather than a truncated normal, adding mass points to the distribution of η, and
assuming that the belief of a subject is given not by the model’s steady-state prediction, but rather by the
observed data. We also conduct an out-of-sample prediction exercise that estimates the model by excluding
one experimental session and then uses the parameter estimates to predict the results for the excluded
session.
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count for it. The design incorporates assumptions, such as the provision of no infor-
mation about primitives and counterfactual outcomes, that are nonstandard in the lit-
erature but are crucial to study endogenous selection. We find that almost no subjects
optimally account for endogenous selection. On the other hand, behavior is far from
random, but actually quite amenable to analysis. Subjects respond to the observed data
and partially account for selection by placing between four and five times more weight
on pivotal versus nonpivotal observations, thus mitigating losses from their (subopti-
mal) risky behavior. While more experiments are needed to confirm behavior in these
types of settings, our results suggest that we might want to think more seriously about
the types of identification problems faced by economic agents.

Appendix: Convergence to the steady state

In the text, we characterized steady-state behavior and beliefs for the model with partial
naiveté (which includes full naiveté and perfect sophistication as special cases). In this
Appendix, we use tools from the the theory of stochastic approximation to show that
if a subject eventually chooses a threshold to maximize her perceived current-period
payoff, then her beliefs and actions converge almost surely to those characterized in the
text.

Recall that yτ is the number of times in the past that a subject recalls project A being
good and that zτ ≡ yτ/τ, where τ is the number of times that the subject recalls project
A being either good or bad. By simple algebra,

zτ+1 = zτ + 1
τ + 1

(ξτ+1 − zτ)� (9)

where ξτ+1 = 1 if the subject registers project A to be good and ξτ+1 = 0 if the subject
registers project A to be bad. Without loss of generality, we only keep track of periods
in which a subject pays attention to the data she observes, so that, in period t, τ ≤ t. In
other words, if the subject does not register project A to be good or bad—either because
she is not paying attention or because project B is implemented in that period—then we
do not advance time from τ to τ + 1.37

Let p : [1�5] → [0�1] be the function that maps a threshold choice xτ+1 ∈ [1�5] into
the probability that project A is registered to be good, ξτ+1 = 1, where τ+ 1 is a period in
which project A is implemented and the subject registers information about project A.
In our context,

p(xτ+1)= β× 0�25

β× 0�25 +
(

1
9
β+ 4

9
(xτ − 1)

4
α

)
× 0�75

= 0�25

0�25 +
(

1
9

+ 4
9
(xτ+1 − 1)

4
η

)
× 0�75

�

(10)

37Note that τ goes to infinity as t goes to infinity because there is a strictly positive probability that project
A is implemented in any period and, therefore, that the subject receives information about project A.
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where η≡ α/β, and α ∈ (0�1] and β ∈ (0�1] are the probabilities of paying attention to an
observation that project A is good or bad conditional on being pivotal and not pivotal,
respectively. Note that x → p(x) is decreasing.

We assume that {zτ}τ is the naive subject’s sequence of beliefs and that there is a
period after which the subject always chooses her threshold to maximize current ex-
pected payoff, as perceived given her current belief.38 Thus, for all sufficiently large τ,
the threshold xτ+1 solves

zτ × u(5)+ (1 − zτ)× u(1) = u(xτ+1)�

where u is the utility function, assumed to be increasing, continuous, and bounded.
Therefore, the threshold given belief zτ is given by

xτ+1 = x∗(zτ) ≡ u−1(zτ × u(5)+ (1 − zτ)× u(1)
)
�

where u−1 is the inverse of the utility function. Note that z → x∗(z) is increasing.
Next, define the function q : [0�1] → [0�1] by letting

q(z)= p
(
x∗(z)

)

for all z ∈ [0�1]. The function q specifies the probability that project A is registered to be
good, given that some information about A is registered (i.e., ξτ+1 = 1), if the subject’s
belief is zτ = z and if she chooses a threshold to maximize current expected payoff. Note
that z → q(z) is decreasing. We can use this function to rewrite expression (9) as

zτ+1 = zτ + 1
τ + 1

(
q(zτ)− zτ

) + 1
τ + 1

Mτ+1� (11)

where Mτ+1 ≡ ξτ+1 − q(zτ) is a martingale difference sequence. The above equation can
be thought of as a noisy discretization for the ordinary differential equation (ODE)

ż(τ) = q
(
z(τ)

) − z(τ)� (12)

The ODE in (12) has a unique steady state that solves q(z∗) = z∗ and, moreover, ż > 0
for all z < z∗ and ż < 0 for all z > z∗.39 Thus, the trajectories of zτ converge to z∗ for any
initial condition z0 ∈ (0�1). A standard result from stochastic approximation (see, e.g.,
Borkar (2008)) says that as τ goes to infinity, the trajectories of {zτ} in (11) are almost
surely given by the trajectories of the ODE in (12). Thus, the sequence of beliefs {zτ}τ
converges to z∗ with probability 1. Moreover, by continuity of x∗(·), it follows that the
sequence of thresholds {xτ} converges to x∗(z∗) with probability 1. Finally, note that the
steady-state belief and thresholds z∗ and x∗(z∗) are those that solve equations (6) and
(7) in the text.

38This is a form of asymptotic myopia (Fudenberg and Kreps (1993)). Alternatively, we could assume that
the threshold choice of the agent converges, which is what we see in the data for most of the subjects, and
that the convergent threshold maximizes current expected payoff given beliefs.

39This is because q(·) is decreasing, is continuous, and satisfies q(0) > 0 and q(1) < 1.
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The result that the threshold converges relies on the continuity of x∗(·), which in
turn relies on the assumption that the agent can choose from a continuum of thresh-
olds, x ∈ [1�5]. In the experiment, the subject was restricted to choose from a finite set
of thresholds. In that case, the above result that the belief converges with probability 1
continues to be true, but now it is not necessarily the case that the threshold converges
to a unique threshold. For those cases where z∗ is such that the agent is indifferent be-
tween two thresholds, then the threshold choice will converge to a probability distribu-
tion over two contiguous thresholds (such as, for example, 2�5 with probability 1/2 and
2�75 with probability 1/2). We account for this issue in the estimation, as described in
Appendix SB.40
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