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Learning in network games
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Departamento Fundamentos Análisis Económico I, University of the Basque Country and CERGE–EI

Friederike Mengel
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José Gabriel Romero
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We report the findings of experiments designed to study how people learn in net-
work games. Network games offer new opportunities to identify learning rules,
since on networks (compared to, e.g., random matching) more rules differ in
terms of their information requirements. Our experimental design enables us to
observe both which actions participants choose and which information they con-
sult before making their choices. We use these data to estimate learning types us-
ing finite mixture models. Monitoring information requests turns out to be cru-
cial, as estimates based on choices alone show substantial biases. We also find
that learning depends on network position. Participants in more complex envi-
ronments (with more network neighbors) tend to resort to simpler rules compared
to those with only one network neighbor.

Keywords. Experiments, game theory, heterogeneity, learning, finite mixture
models, networks.
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1. Introduction

In many situations of economic interest people arrive at their decisions via a process
of learning. As examples, consider decisions such as how to conduct business negoti-
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ations, which projects to dedicate effort to, and in which assets to invest our money.
Economists have developed a number of different models to describe how people learn
in such situations (Fudenberg and Levine (1998)). These models, however, often lead
to very different predictions. In a Cournot duopoly, for example, imitation learning can
lead to the Walrasian outcome (Vega Redondo (1997)), while most belief learning mod-
els converge to the Cournot–Nash outcome. In the prisoner’s dilemma, some forms of
aspiration-based learning can lead to cooperation (Karandikar, Mookherjee, Ray, and
Vega-Redondo (1998)), while imitation and belief learning models typically lead to de-
fection. Hence to make predictions in these situations, it seems crucial to have some
understanding about how people learn.

In this paper, we conduct an experiment designed to study how people learn in
games. In the experiment participants play a network game over multiple rounds. We
keep track of which information participants request between rounds. We then com-
bine our knowledge of information requests with observed action choices to estimate a
distribution of learning types using mixture models. The advantage of observing both
action choices and information requests is that even if different learning rules predict
the same action choices, they can be distinguished as long as different information is
needed to make this choice.

Network games offer new opportunities to identify different learning rules. In net-
works (compared to random matching or fixed pairwise matching protocols) it is more
often possible to distinguish learning models via information requests. As an example,
consider myopic best-response and forward-looking learning. Under random match-
ing an agent needs to know the distribution of play in the previous period irrespective
of whether she is myopic or forward-looking. In a network, though, a myopic best re-
sponder needs to know only the past behavior of her first-order neighbors (with whom
she interacts), while a forward-looking learner may need to know the behavior of her
second-order neighbors to be able to predict what her first-order neighbors will choose
in the following period.1 An additional advantage of using networks is that doing so al-
lows us to systematically change the network topology (moving, e.g., from very homoge-
neous to heterogeneous situations) and see how this affects the estimated distribution of
learning types. We also ask whether an agent’s position within a network affects the way
she learns. Hence our study allows us to address two issues that previous studies have
found difficult to address: identifying learning rules based on information requests and
studying how stable learning is across differently structured social interactions.

In our main treatments, participants interacted in a 4 × 4 anti-coordination game.
Anti-coordination appears in many important economic situations such as conges-
tion, pollution, oligopolistic (quantity) competition, immunization, provision of public
goods, and whenever there are gains from differentiation. Compared to pure coordina-
tion games, anti-coordination games have the advantage that different learning rules
predict different choices more often (making identification easier) and, compared to,
for example, conflict games, they have the advantage that standard learning models do

1Which information she needs exactly will depend on her theory about how her first-order neighbors
learn. However, it is clear that a myopic best-response learner does not need information beyond her first-
order neighborhood.
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not lead to limit cycles. Since Nash equilibria are attractors of many of the learning rules
we will consider, these rules can only be distinguished using out-of-equilibrium choices.
With 4 × 4 games we hoped that, even if there is convergence to Nash equilibrium, such
convergence would not be immediate. Slow enough convergence is necessary to identify
learning rules using out-of-equilibrium choices (Knoepfle, Wang, and Camerer (2009)).

Our analysis considers different learning types, where a subject’s type first deter-
mines her information requests, possibly with error, and her type and information re-
quests jointly determine her decision, again possibly with error. Learning types are
drawn from a common prior distribution that we estimate using mixture models. We
consider learning models from three prominent classes as possible descriptions of par-
ticipants’ behavior: reinforcement learning, imitation, and belief-based models, in par-
ticular myopic best response, different variants of fictitious play, and forward-looking
learning. These rules differ widely in their degree of sophistication. While forward-
looking agents reason strategically, reinforcement learners do not even need to know
that they are playing a game at all.2

The experiment consists of nine main treatments. Three treatments have endoge-
nous information requests for three different network topologies. Three intermediate
treatments on the same networks have endogenous information requests about actions
and payoff, but not about the network structure. Those treatments were added to ad-
dress potential endogeneity concerns with respect to network position in the fully en-
dogenous treatments. We also conducted three treatments with the same networks but
without information requests. In these full-information treatments, participants were
given all the information that can be requested in the other treatments by default. We
use these treatments to see whether the existence of information requests per se affects
action choices and whether participants in the endogenous information treatments re-
quest all the information they would naturally use in making their decisions. We find no
significant pairwise differences between the distribution of action choices across these
three treatment variations.3

We now briefly summarize our main results. First, we find that monitoring informa-
tion requests is crucial. We compare our main results with simpler estimations based
on action choices alone (i.e., ignoring information requests) and detect substantial bi-
ases in these estimates. Estimations based solely on observed action choices lead us to
accept certain learning rules that participants could not have been using, simply be-
cause they did not consult the minimum amount of information necessary to identify
the corresponding actions. Since we use a relatively large 4 × 4 game, which allows us to
distinguish learning rules more easily on the basis of choice behavior only, this problem
is likely to be more severe in smaller 2 × 2 games often studied in experiments.

Second, we find that network position affects how people learn. Participants with
only one network neighbor resort more often to myopic best-response learning com-
pared to others with more neighbors who tend to resort more often to reinforcement

2All learning rules are described in detail in Section 4.
3In addition to these nine treatments, we also conducted three treatments using a coordination game

and find evidence for the same rules as in the anti-coordination game. We also conducted one treatment
where participants play the anti-coordination game bilaterally as a benchmark.
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learning. Those results suggest that people adapt the learning heuristics they employ
to the complexity of the environment. In particular, people facing more complex envi-
ronments (such as having more network neighbors) seem to resort to simpler learning
rules.

In terms of the specific rules participants use, there is substantial heterogeneity.
However, most of our participants’ decisions are best described by either reinforcement
learning or myopic best responses. There is very little evidence of forward-looking be-
havior and almost no evidence of imitation. This is true for all the networks we consider.

Since almost all our participants can be described by either reinforcement learn-
ing or (myopic) belief-based rules, our results support the assumptions of experience-
weighted attraction (EWA) learning (Camerer and Ho (1998, 1999), Camerer, Ho, and
Chong (2002)). EWA includes reinforcement and belief learning as special cases as well
as some hybrid versions of the two. Unlike in EWA we do not restrict to those models
ex ante, but our results suggest that—at least in the context considered—a researcher
may not be missing out on too much by focusing on those models. However, while EWA
should be a good description of behavior at the aggregate level, at the individual level
fewer than 15% of our participants persistently request information consistent with both
reinforcement learning and belief-based learning rules.

In the following discussion, we relate our paper to the experimental literature on
learning and also highlight some methodological differences between the existing liter-
ature and our approach. By far the most common method to study learning in experi-
ments has been the representative-agent approach, where one single learning model is
estimated to explain the average or median behavior of participants (see, e.g., Erev and
Roth (1998), Mookherjee and Sopher (1997), Apesteguia, Huck, and Oechssler (2007),
Kirchkamp and Nagel (2007), or Feltovich (2000), among others). While the represen-
tative approach is simple and allows for parsimonious rules, one downside of this ap-
proach is that if there is heterogeneity in learning types, it is far from clear how ro-
bust the insights are to small changes in the distribution of types or whether compar-
ative statics predictions based on the representative agent will be correct (e.g., Kirman
(1992)). In addition, Wilcox (2006) has shown that in the presence of heterogeneity, esti-
mating representative-agent models can produce significant biases favoring reinforce-
ment learning relative to belief learning models (see also Cheung and Friedman (1997),
Ho, Wang, and Camerer (2008), or Frechette (2009)). Overall, this research has provided
mixed evidence on which learning model best describes behavior, and models that have
found support in some studies have been rejected in others.4 Our approach is concep-
tually different from this literature. Instead of trying to find one rule that describes the
average or median behavior of a population, we try to understand the distribution of
learning rules.

One way to do so is to estimate learning models individually for each subject
(Cheung and Friedman (1997), Ho, Wang, and Camerer (2008)). This approach leads to

4Imitation learning has been shown to explain behavior well in, for example, Cournot games. See
Apesteguia, Huck, and Oechssler (2007) as well as the literature cited therein. Reinforcement learning has
done well in Erev and Roth (1998) and best-response learning has done well in Mookherjee and Sopher
(1997). Forward-looking behavior matches experimental data well in Mengel (2014).
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consistent estimates if the experiment involves “sufficient” time periods in which partic-
ipants learn, that is, before the learning process has converged.5 If both cross-sectional
and longitudinal variation is exploited, fewer periods of nonconvergence are needed
to avoid small-sample biases. Such studies have been conducted by Camerer and Ho
(1998, 1999), who assume that agents can be categorized into two subpopulations with
different parameter values, and by Camerer, Ho, and Chong (2002), who estimate a mix-
ture of standard and sophisticated EWA learning in the population. While the latter also
estimate mixture models, the class of learning rules they consider is limited to EWA with
its component rules reinforcement learning and fictitious play.6

There are two main differences between these studies and our research. First we
keep track of which information participants request between rounds. This allows us
to base our estimations on more than just choice data, making it easier to detect the un-
derlying data-generating process (Salmon (2001)). It also allows us to exploit the iden-
tification possibilities arising in network games if information requests are monitored.
Second, our design allows for any kind of learning rule or heuristic ex ante, and we re-
strict attention to certain rules only at the estimation stage. Since most other studies
restrict information feedback given to participants, they effectively rule out some types
of learning ex ante. If, for example, no information about payoffs of other participants is
provided, then payoff-based imitation learning is impossible.

Our paper is methodologically closely related to El-Gamal and Grether (1995),
Costa-Gomes, Crawford, and Broseta (2001; CCB, henceforth), and Knoepfle, Wang, and
Camerer (2009). CCB also monitor information lookups (using the software Mouse-
Lab) to study procedural models of decision-making, where a participant’s type reflects
his/her degree of sophistication. The main difference from our study is that they do not
study learning, but static decision rules instead. Knoepfle, Wang, and Camerer (2009)
study learning in different 4 × 4 normal form games using eye-tracking software. They
find that, while eye tracking seems to suggest that participants are quite sophisticated
(similar to our forward-looking types), their choices are more consistent with adaptive
learning models. One of their conclusions is that, due to the large degree of noise in
eye-tracking data, fundamental changes in the observational paradigm could help to
differentiate genuine information lookups from noise fixations. Our paper provides a
methodological contribution in this regard.

While there is a considerable amount of experimental research aimed at under-
standing how people learn in games, there is relatively little research on whether the
same rules are used in different contexts or whether people adapt the heuristics they use
in comparable environments of different complexity. Some studies ask whether learn-
ing differs across games. Camerer and Ho (1999), for example, estimate their EWA learn-
ing model on different classes of games (unique mixed equilibrium, coordination, and
dominance solvable). They find that EWA fits better than the comparison models across

5The term “sufficient” can often mean practically infeasible in a typical experiment. Cabrales and García-
Fontes (2000, footnote 17) report that the precision of estimates starts to be “reasonable” after observing
around 500 periods of play.

6Gill and Prowse (2016) estimate mixture models to study how cognitive and emotional skills affect level
k learning.
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all classes, but there are some differences across games in estimated EWA parameters.
Knoepfle, Wang, and Camerer (2009) study learning in different 4×4 normal form games
and find largely consistent patterns across games. In this paper, we also find evidence
for broad consistency across games in our anti-coordination as well as three additional
coordination treatments, in that reinforcement learning and myopic best-reply learning
are the most important rules in both games considered. Grimm and Mengel (2012) find
that learning is affected by the complexity of the environment (number of games), but
they do not compare different learning models. To the best of our knowledge our paper
is the first to study how the complexity of social interactions (measured by the number
of neighbors in the network) affects learning in a given game.

The paper proceeds as follows. Section 2 describes in detail the experimental design.
Section 3 gives an overview of behavior using simple descriptive statistics. Section 4 in-
troduces the learning models and the econometric framework. Section 5 contains the
main results. Section 6 presents additional results and robustness checks, and Section 7
concludes. Additional analyses, figures, and tables as well as the experimental instruc-
tions can be found in the Supplemental Material, available in a supplementary file on
the journal website, http://qeconomics.org/supp/688/supplement.pdf.

2. Experimental design

In this section we describe our design and provide details about the underlying two-
player game, the networks, and the information structure.

2.1 The game

In most of our treatments, participants repeatedly played the symmetric two-player
game depicted in Figure 1. We chose a 4 × 4 rather than a 2 × 2 game, because (i) we
hoped that this would generate sufficiently slow convergence to equilibrium to be able
to analyze learning in a meaningful way and since (ii) a larger game makes it easier to
identify a larger number of different learning rules from observing agents’ choices only.
Hence, by choosing such a game, we hoped to give good chances to estimations based
on action choices alone.

Within each session the networks were fixed, which means that each participant
played with the same first-order neighbors in all 20 periods. Each player had to choose
the same action against all her neighbors. If participants were allowed to choose dif-
ferent actions for their different neighbors, the network would become irrelevant for
choices and many learning rules would become indistinguishable in terms of informa-
tion requirements.

Payoffs in each period are given by the average payoff obtained in all the (bilat-
eral) games against the neighbors. We chose to pay the average rather than the sum
of payoffs to prevent too high inequality in earnings due to different connectivity. The
game payoffs are expressed in terms of experimental currency units (ECU), which were
converted into euros at the end of the experiment at exchange rate 1 euro to 75 ECU.
Our main focus is on an anti-coordination game (see, e.g., Bramoulle (2007)), since, as

http://qeconomics.org/supp/688/supplement.pdf
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A B C D

A 20�20 40�70 10�60 20�30

B 70�40 10�10 30�30 10�30

C 60�10 30�30 10�10 30�40

D 30�20 30�10 40�30 20�20

Anti-Coordination Game

Figure 1. The bilateral anti-coordination games used in the main treatments with pure strategy
Nash equilibria (A�B), (B�A), (C�D), and (D�C).

discussed above, in anti-coordination games different learning rules predict different
choices more often compared to coordination games (making identification easier). In
Section 6.5, we discuss results of treatments based on a coordination game.

Treatments differed along two dimensions: network topology and information.
Throughout the paper we denote network architectures by numbers 1, 2, and 3 (see Fig-
ures 2–4) and information levels by capital letters N (eN dogenous), M (interM ediate),
and F (F ull information). In Section 2.2, we present our three network topologies and in
Section 2.3, we explain the information conditions.

2.2 Network topology

As we argued in the Introduction, network games allow us to identify learning rules more
easily compared to, for example, random matching and fixed pairwise matching proto-
cols. Additional advantages of using networks (compared to pairwise matching proto-
cols) include the fact that participants cannot trade off different pieces of information
as easily. For instance, knowing one’s own action and the action of the opponent fully
reveals the latter’s payoff and vice versa in pairwise matching, but generally not in a net-
work. There are also independent reasons to study learning in networks, as arguably,
most real-life interactions take place via social networks, see, e.g., Jackson (2011). In our
design we systematically manipulate the network topology.

To select network topologies we focus on one particular property of networks,
namely the variance in degree. In networks with a low variance of the degree distri-
bution, players tend to have a similar amount of neighbors, while in networks with a
high variance in degree there will be some players who have many network neighbors
and others who have few. We are interested in whether and how learning differs across
these two types of players (few and many neighbors) and networks (low and high vari-
ance). The most symmetric situation we study is the circle network with zero variance
in the degree distribution. Starting from the circle, we then increase the variance in de-
gree (keeping some other network characteristics constant; see Table 1), thereby creat-
ing more asymmetric situations. Figures 2–4 show the three network architectures used
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Table 1. Network characteristics.

Network 1 Network 2 Network 3

Number of players 8 8 8
Number of links 8 8 7
Average degree 2 2 1�75
Variance degree 0 8 16�5
Characteristic path length 2�14 2�21 2�21
Clustering coefficient 0 0 0
Average betweenness 0�42 0�40 0�37
Variance betweenness 0 0�21 0�21

in the experiment and Table 1 summarizes the most standard network characteristics of
these networks.7

We used networks of eight players, because in smaller networks, identification of
learning rules is harder. For example, in a circle of three players, the sets of first-order
neighbors and second-order neighbors coincide. In a circle of four (or five) players the
same is true for the sets of first- (second-) and third-order neighbors, and so forth. To
distinguish, for example, myopic best-response learning from forward-looking learning
in terms of information requests, these sets of neighbors should not overlap too much
as we indicated above and make clearer in Section 4. While many real-life networks will
be even larger than eight players, choosing larger networks in our experimental setting
is likely to make the environment too complex for many participants. The trade-off be-
tween these two forces motivated us to choose networks of eight players.

Network equilibria An equilibrium in a network game (in our experiment of eight play-
ers) is obtained when all players choose an action that is a best response to whatever
their neighbors choose. In the following discussion, whenever we refer to equilibria we
will refer to such network equilibria. Essentially there are two types of equilibria. In some
equilibria all neighbors choose best responses. This means that neighbors alternate ei-
ther between actions A/B or between actions C/D.8 But there are also network equilib-
ria where agents only choose a best response to all neighbors on average but not to each
neighbor individually. A table describing all strict Nash equilibria in the three networks
can be found in Appendix A. Coordinating a network of eight players on any one of sev-
eral possible equilibria (between 9 and 12 depending on the network) is possible, but not
obvious. We hoped to see mis-coordination in early periods, and learning and conver-
gence to equilibrium afterward. The data show, that indeed, choices converge to a one-

7Degree measures the number of first-order neighbors of a node and the clustering coefficient measures
the share of a node’s first-order neighbors who are neighbors themselves. The characteristic path length is
the average length of shortest paths between any two nodes in the network and the betweenness central-
ity of a node measures the share of shortest paths between any two nodes that pass through the node in
question. For formal definitions of these network properties, see the textbook by Vega-Redondo (2007).

8For example, in Network 1 (see Figure 2), one network equilibrium is that players 1, . . . , 8 choose actions
(a1� � � � � a8) = (A�B�A�B�A�B�A�B). All players who choose A in this equilibrium get an average payoff
of 40 (because both their neighbors choose B) and all players who choose B get a payoff of 70 (because both
their neighbors choose A).
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Figure 2. Treatments N-1, M-1, and F-1.
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Figure 4. Treatments N-3, M-3, and F-3.

shot network equilibrium in several networks (see Section 3). It is important, though, to
note that whether or not participants do converge to a Nash equilibrium does not mat-
ter for us per se, as long as they do learn. In fact, as highlighted above, observing some
out-of-equilibrium choices helps identify learning rules.

2.3 Information

Our second treatment dimension varies how information about the network and histo-
ries of play is provided. We consider three variations labelled N (endogenous), M (inter-
mediate), and F (full).
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N treatments In the endogenous information treatments (N-1, N-2, and N-3), we did
not give our participants any information either on the network or on histories by de-
fault. Instead, at the beginning of each period, participants were asked which informa-
tion they would like to request. They could request three types of information: (i) the
network structure, (ii) past action choices, and (iii) past payoffs. More precisely, if a par-
ticipant requested the network position of her first-order neighbors, she was shown how
many neighbors she has and their experimental label (which is a number between 1
and 8; see Figures 2–4). With second-order neighbors, she was shown their experimental
label as well as the links between the first- and second-order neighbors, sand so forth.
Regarding actions and payoffs, participants were shown the actions and/or payoffs of
their first-, second-, third-, and/or fourth-order neighbors if they requested this infor-
mation. Participants were also not shown their own payoff by default, but instead had to
request it. This design feature allows us to have complete control over which informa-
tion participants held at any time of the experiment.

We placed two natural restrictions on information requests. First, participants were
only allowed to ask for the actions and/or payoffs of neighbors whose experimental label
they had previously requested. Second, they were not allowed to request the experimen-
tal label of higher-order neighbors without knowing the label of lower-order neighbors.
Each piece of information about actions and/or payoffs had a cost of 1 ECU. Requesting
information about the network had a larger cost of 10 ECU, since, once requested, this
information was permanently displayed to the participants.

Imposing a (small) cost on information requests is a crucial element of our design.
Of course, even though costs are “small,” this does affect incentives. We imposed costs
to avoid that participants request information they are not using to make their choices.
We also conducted one treatment that coincided with treatment N-2 but where there
was no cost at all to obtain information. In this treatment action, choices did not differ
significantly from N-2, but participants requested all the information (almost) all the
time. This essentially means that without costs, monitoring information requests does
not help us to identify learning rules.9

M treatments Data generated by our N treatments will allow consistent estimation of
learning rules as long as the information collected does not affect a participant’s learn-
ing type. However, we have conjectured that the complexity of social interactions, mea-
sured by the number of network neighbors, may affect learning. If this was indeed the
case, then learning type would be endogenous to the information collected about the
network structure, leading to model misspecification.10 As one way to address this is-
sue, we conducted the M treatments (M-1, M-2, and M-3). They only differ from the

9An alternative approach was taken by CCB. They use the computer interface MouseLab to monitor
mouse movements. However, as they state, “the space of possible lookup sequences is enormous, and our
participants’ sequences are very noisy and highly heterogeneous” (p. 1209). Knoepfle, Wang, and Camerer
(2009), who use eye-tracking software, report similar issues.

10Since 90% of participants request information about the network structure by period 5 (see Section 3)
in the N treatments (and this information is permanently displayed once requested), this should not be
too much of a problem. Still, the M treatments described here can provide evidence on how important this
issue is for the N-treatment estimates. We thank a reviewer for suggesting these treatments.
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N treatments in that the network structure was known since the beginning of the ex-
periment. Afterward, participants could request information on past action choices and
payoffs, as in the N treatments. While the M treatments avoid this possible endogeneity
problem, the N treatments allow for better separation of learning rules. We will always
show the results of both sets of treatments in parallel and discuss differences where they
arise.

F treatments Finally, to see whether information requests per se affect action choices
(e.g., because participants might not request “enough” information due to the costs), we
conducted three treatments with full information. Those treatments F-1, F-2, and F-3
coincided with N-1, N-2, and N-3, respectively, but there was no information request
stage. Instead, all the information was displayed at the end of each period to all partici-
pants.

Four more treatments were run. In a bilateral treatment, participants were matched
in pairs to play the game for 20 rounds (see the last column in Table 2). Further three
treatments were conducted with a coordination game (in the M condition) to see how
much learning changes across game forms. Results on the coordination games are dis-
cussed in Section 6.5. Table 2 summarizes the treatment structure of the experiment.11

All elements of the design were clearly explained in the Instructions, which can be
found in the Supplemental Material posted with the replication files. After finishing the
instructions, our participants had to answer several control questions regarding their
understanding of the game, network interactions, information requests, and how pay-
offs are computed. There was no time constraint, but participants were not allowed to
proceed without correctly answering all these questions. Experiments were conducted
at the BEE-Lab at Maastricht University (N and F treatments) and at the Bilbao LABEAN
at the University of the Basque Country (M treatments, bilateral treatment, coordination
treatments) using the software Z-tree (Fischbacher (2007)). A total of 442 students par-
ticipated. The experiment lasted between 60 and 90 minutes. Each 75 ECU were worth 1
euro and participants earned between 7�70 and 16�90 euros.

Table 2. Treatments and number of participants (number of observations; networks/pairs).

Network 1 Network 2 Network 3 Bilateral

Endogenous information (N) 40 (800; 5) 56 (1120; 7) 40 (800; 5)
Intermediate information (M) 40 (800; 5) 32 (640; 4) 32 (640; 4)
Full information (F) 24 (480; 3) 24 (480; 3) 24 (480; 3) 26 (520; 13)

Total anti-coordination 104 (2080; 13) 112 (2240; 14) 96 (1920; 12) 26 (520; 13)

Coordination (M-Co) 32 (640; 4) 32 (640; 4) 40 (800; 5)

11The table does not contain the treatment N-2 without costs mentioned above. We will not discuss
this treatment any further, but results are available upon request. Other than the treatments reported, we
did not conduct any other treatments or sessions and we did not run any pilot studies. The number of
observations reported in the table differs across treatments, because of different “show-up rates” in the
different treatments.
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3. Action choices and information requests

In this section, we provide a brief overview of action choices and information requests.
Since our main interest is in estimating learning types, we keep this section short. Ap-
pendix A as well as the Supplemental Material contain many additional tables and de-
tails.

3.1 Action choices and payoffs

We analyze three aspects of choice behavior, all related to the question of learning: (i) the
frequency of switches, (ii) the evolution of payoffs over time, and (iii) convergence to
Nash equilibrium.

Switching and payoffs Since it is only meaningful to analyze learning types if there is
learning, we report some evidence concerning the stability of action choices. Figure 5
illustrates that players change their action less and less often over time, indicating that
some convergence took place. Across periods, switching decreases by 1�4–2�3 percent-
age points on average, depending on treatment. Switching is also substantially lower
compared to the bilateral (pairwise matching) treatment. Participants also learned in
the sense that they were able to increase their mean payoffs over time. Figure 6 shows
that mean gross profits (i.e., game payoffs without taking into account the costs of infor-
mation requests) are increasing over time in all treatments. Payoffs range between two
benchmarks: (i) the mean payoff in bilateral Nash equilibria (C�D) and (D�C), which is
35, and (ii) the payoff implied by random play of C and D, which is 25.

Nash equilibria Players do not only switch less often and obtain higher payoffs over
time, they also are more likely to play a Nash equilibrium of the network game over time.
The entire network converges to an equilibrium between 0 and 46% of the time across
the last five periods of play, depending on treatment.12 Participants never reach a Nash
equilibrium in Network 3 and most often in Network 2. There seems to be no system-
atic effect of information conditions, with most coordination being observed in the F

treatments and the least observed in the M treatments (Tables 9 and 10 in Appendix A).
In line with previous evidence on the conflict between risk and payoff dominance (e.g.,
Camerer (2003)), action choices always converge toward the “risk-dominant” actions C

and D in our experiment. This also seems to be a result of learning, as the number of
participants playing these actions is lower in the first half of the experiment across all
three networks (see Table 11 in Appendix A). Full, intermediate, and endogenous in-
formation treatments are statistically no different in terms of the distribution of action
choices across the 20 periods (two-sided rank-sum test, p> 0�2).

Overall the evidence collected suggests that participants did learn in the experiment.
Interestingly, having full information (as in the F treatments) does not seem to improve
payoffs or lead to less switching compared to the N and M treatments. This suggests that
participants do request the information they need for learning in the M and N treat-
ments and that information requests do not per se affect participants’ behavior.

12To help interpret these numbers, note that if players did choose actions uniformly at random, the prob-
ability to coordinate on a Nash equilibrium would be 0�00018 for Network 1 and 0�00015 for Networks 2
and 3.
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(a) N treatments (b) M treatments

(c) F treatments

Figure 5. The frequency with which players change their action across rounds in different treat-
ments. The horizontal reference line indicates the mean frequency of switches in the bilateral
treatment.

3.2 Information requests

This subsection focuses on information requests. We focus on simple averages in this
subsection. Appendix C contains several figures showing the evolution of information
requests over time.

Network structure In the first period 77�5%, 76�8%, and 72�5% of participants in N-1,
N-2, and N-3, respectively, requested information about the experimental label of their
first-order neighbors. Roughly 90% of individuals end up requesting this information
by the fifth period of the experiment. Around 45% of participants request to know
the network structure up to their second-order neighbors. Only 12�5%, 23�2%, and
12�5%, respectively, request information about the entire social network. Remember
that information about the network structure—once requested—is permanently dis-
played.

Payoffs Around 50% of participants request their own payoffs in the N treatments and
around 30% do so in the M treatments. Only between 8 and 12% of the time (depend-
ing on treatment) is information about the payoffs of first-order neighbors requested
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(a) N treatments (b) M treatments

(c) F treatments

Figure 6. Mean gross payoffs across rounds in different treatments. The horizontal reference
line indicates the mean payoffs in the bilateral treatment.

across all N and M treatments. For higher-order neighbors, these percentages are all
below 2%.

Actions Around 50% and 40% of participants request information about past actions
of their first-order neighbors in the N and M treatments, respectively. Information re-
quests about actions decline over time, which is consistent with the decline in switch-
ing behavior observed in Figure 5 and could be attributed to convergence. Despite the
strategic effect of second-order neighbors’ action choices on the choices of direct op-
ponents, the interest in their behavior is relatively small (requested ≈10%–15% of the
time).

4. Framework and methods

This section discusses our selection of learning models and sets out basic issues in iden-
tifying learning rules from our data (i.e., from action choices and information requests).
In our baseline specification, we consider four possible learning types. One rule is rein-
forcement, another rule is based on imitation, and two rules are belief-based. The cri-
terion for the selection of these learning types is their prominent role in the theoretical
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and experimental literature. In what follows, we describe each of them informally; the
exact algorithms used for each learning model can be found in Appendix B.1.

C1. Under reinforcement learning (RL), participants in each period randomize be-
tween actions with probabilities that are proportional to the sum of past payoffs they
obtained with these actions (Roth and Erev (1995), Börgers and Sarin (1997), Erev and
Roth (1998), Sutton and Barto (1998), Skyrms and Pemantle (2000), Hopkins (2002)).13

C2. Under payoff-based imitation (PBI), participants choose the action with the high-
est average payoff in the previous period in their first-order neighborhood including
themselves (Eshel, Samuelson, and Shaked (1998), Vega Redondo (1997), Schlag (1998),
Skyrms and Pemantle (2000), Alós-Ferrer and Weidenholzer (2008), Fosco and Mengel
(2011)).14

C3. Under myopic best responses (MBR), players choose a myopic best response to
the distribution of choices of their first-order neighbors in the previous period (Ellison
(1993), Jackson and Watts (2002), Goyal and Vega-Redondo (2005), Hojman and Szeidl
(2006), Blume (1993)).

C4. Forward-looking (FL) players assume that their first-order neighbors are myopic
best responders and best respond to the anticipated distribution of choices in the fol-
lowing period (Blume (2004), Fujiwara-Greve and Krabbe-Nielsen (1999), Selten (1991),
Mengel (2014)).15

In Section 6, we also include some variants of these rules, such as fictitious play
learning with different memory lengths. In several robustness checks, we also included
less well known rules such as conformist imitation, aspiration-based reinforcement
learning, and several variants of payoff-based imitation (including imitation of different
sets of players, e.g., higher-order neighbors). These rules only differ from the above rules
in a few instances of predicted action choices and information requests. The four rules
singled out above are each representative of a larger class of learning models. Including
all possible variants would (a) overspecify the model considerably and (b) lead to many
instances of nonidentifiability (where two, possibly quite similar, rules prescribe both
the same action choice and information requests).

We exclude hybrid models, such as the experience-weighted attraction of Camerer
and Ho (1999). However, we can say something about how well EWA will be able to de-
scribe behavior by looking at how well its component rules perform. The reader may also
wonder why we did not include level-k learning rules. The main reason is that level-
k learning—despite its name—is a model of initial responses and is not defined as an
explicitly dynamic learning model. As a consequence, it is not clear how level-k types

13In our estimations we will assume that a participant perfectly consistent with RL chooses the most
preferred action with probability 1. This approximates some exponential choice rules used in the literature,
but is not the case with, for example, the linearly proportional rule.

14Some of these authors study, in fact, imitation of the action with the maximal payoff obtained by any
single agent instead of the highest average payoff. Using this variation does not fundamentally alter any of
our results.

15Tang (2001) experimentally tested the model of anticipatory learning by Selten (1991).
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should update their beliefs about the distribution of levels k in the population upon
receiving new information.16 There is a connection, though, between our myopic best-
response type and level-1, and between the forward-looking type and level-2 in that the
latter reasons about how their opponents learn (choose), while the former takes oppo-
nents’ choices as given.

4.1 Identifying learning rules from data

It is only possible to identify learning rules if different rules imply different choices
and/or information requests in the experiment. The average number of periods (out
of 19) in which two different learning types predict different action choices for a partic-
ipant given the history of play ranges between 7 and 15 periods for our rules (Table 19
in Appendix D). The fact that the learning rules considered entail different predictions
quite often is due to our design involving the 4 × 4 anti-coordination game and should
give good chances to estimations based on action choices alone. We will see below that,
despite this fact, estimates are substantially biased if only action choices are considered.

Apart from choices, we also observe participants’ information requests. Figure 7 pro-
vides an example of how different learning rules imply different information requests for
player 7 in Network 1. As a reinforcement learner, she does not need to know anything
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Figure 7. Player 7 in Network 1. Information required for rules (i) RL, (ii) PBI, (iii) MBR, and
(iv) FL. The term ati denotes the action taken by player i at time t, πt

i denotes the payoffs obtained
by player i at time t, and πi(a) denotes the vector of average payoffs obtained by player i with
each of the four actions.

16One proposal in this vein was made by Knoepfle, Wang, and Camerer (2009), who model a sophisti-
cated learning type (similar to our forward-looking type) that exhibits a recursive structure similar to level-k
models starting from Cournot best response as the anchoring C0 (level-0) type. Using eye-tracking technol-
ogy, they find information lookup patterns consistent with such a learning type, though choices are better
explained by adaptive models. Gill and Prowse (2016) estimate a mixture model based on level-k types to
analyze how cognitive ability and character skills affect equilibrium play.
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about the network or the choices of others. In fact she does not even have to know the
payoff matrix. She only has to know the payoffs she obtained in the past with each of the
different actions. A payoff-based imitator should have information about the choices of
her first-order neighbors and the payoffs they obtained in the previous period.17 Under
myopic best responses, she would need to know past choices of her first-order neigh-
bors, and as a forward-looking learner, she would also need to know her second-order
neighbors and their choices in the previous period. Table 20 in Appendix D summarizes
the information requirements for each rule.

If participants always requested at least the minimal information needed for a learn-
ing type, then all rules could be identified in all of the 20 periods in the N treatments.
An important question is whether participants can trade off different pieces of informa-
tion. One could imagine, for example, that a participant asks for choices of her first- and
second-order neighbors, and then uses this information together with the payoff matrix
to compute the payoffs of her first-order neighbors. Clearly, we cannot avoid this. Our
design is such, however, that in the N treatments, it is always more costly (in terms of
the costs we impose on information requests) to make indirect inference about desired
information rather than consulting it directly. This is, hence, an additional advantage
of having small costs for information requests (in addition to those mentioned in Sec-
tion 2). Because, in the M treatments, participants do not request information about
labels, identification is not as good. In particular, reinforcement learners can also infer
their payoffs from their neighbors’ action choices without having to request their labels
in addition. (The converse is not true: belief learners cannot, in general, identify choices
of neighbors from their own payoffs.) Since we can exploit correlations between infor-
mation requests and implied choices, identification is still reasonably good, even in the
M treatments.

4.2 Econometric framework

In this section, we introduce the econometric framework. Our aim is to estimate pop-
ulation shares pk of the different learning rules k discussed above. To do so, we will
estimate mixture models to try and find the distribution p = (p1�p2� � � � �pK) that can
best explain our data, that is, action choices and information requests. We start with the
following assumption, which links information requests to learning rules.

Occurrence Assumption. In every period, a participant requests at least the minimal
information she needs to identify the action choice corresponding to her learning type.

While this assumption seems quite innocuous, it can still be too strict in some cases
and we will relax it sometimes. For instance, after convergence has occurred, partici-
pants may not always ask for the minimal information. On the other hand, unlike in

17Note that we have not included a participant’s own payoff in the minimal information set for PBI. The
reason is that this information can be inferred from observing one’s own and neighbor’s action choices. The
minimal information set we are looking for hence excluded this information. We have, however, also run
all estimations with the larger set that requires PBI types to request their own payoffs as well. Results do not
change qualitatively, and quantitative changes are minimal.
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eye-tracking studies, it is unlikely that occurrence is satisfied by chance, since partici-
pants had to pay for each piece of information they requested (see Section 2).

We then proceed as follows. For each subject i and learning type k ∈ {1�2� � � � �K}, we
compute the number of periods IikO in which subject i asked at least for the minimum
information required to be consistent with learning rule k. Subscript O stands for com-
pliance with occurrence; IikZ = 19 − IikO measures the number of periods subject i did
not ask for the minimum information set corresponding to rule k, where subscript Z
stands for zero compliance with occurrence. Let θkj denote the probability that a partic-
ipant has compliance j with rule k in the experiment, where j ∈ {Z�O} and θkZ +θkO = 1
for each k. Hence θkZ = 1 − θkO is the probability that a participant of type k does not
request the information required for k. We define θk = (θkO�θkZ).18

We now turn to action choices. For a given subject in a given period, a learning type
may predict more than one possible action. We assume that in this case participants
choose uniformly at random among those actions. Let c ∈ {1�2�3�4} denote the num-
ber of action choices consistent with a given learning rule in a given period. A subject
employing rule k normally makes decisions consistent with k, but in each period, given
compliance j, she makes an error with probability εkj ∈ [0�1]. We assume that error rates
are independent and identically distributed (i.i.d.) across periods and participants. In
the event of an error, we assume that participants play each of the four actions with
probability 1

4 . As a result, given j and c, the probability for a decision-maker of type k to
choose a given action consistent with rule k (either by mistake or as a result of employing
rule k) is

(1 − εkj)
1
c

+ εkj

4
=

(
1 − 4 − c

4
εkj

)
1
c
� (1)

The probability to choose a given action that is inconsistent with rule k is
εkj
4 .19 We

define εk = (εkZ�εkO). Under the assumptions made, (low) compliance (“errors in in-
formation requests”) and action errors will be positively correlated. This is shown in Ap-
pendix B.2. In fact, for our main estimates, we will even assume that in the case of zero
compliance with rule k, participants can only be consistent with k by mistake, though
dropping this assumption only leads to minimal changes in estimates. Conditional on j

and k, however, errors are i.i.d across periods and participants.
For each learning rule k in each period, we observe which action a player chooses

and whether or not it is consistent with learning rule k. Let Iickj denote the number of
periods in which subject i has compliance j with learning type k and c action choices
that are consistent with k. Hence
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of periods in which i takes one of c possible action choices consistent with k and has
compliance j with k. Define
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k) when participant i

18In Section 6.3, we increase the number of compliance categories.
19Note that c(1 − 4−c
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and the log-likelihood function for the entire sample is
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Under mild conditions satisfied by (3), the maximum-likelihood method produces
consistent estimators for finite mixture models (Leroux (1992)). Our aim is to find a mix-
ture model p = (p1�p2� � � � �pK) that provides the best evidence in favor of our data set.
With K learning types, we have (4K− 1) free independent parameters: (K− 1) indepen-
dent probabilities pk, K information request probabilities θkj , and 2K error rates εkj .

It is well known that testing for the number of components in finite mixture mod-
els “is an important but very difficult problem, which has not been completely re-
solved” (McLachlan and Peel (2000, p. 175)). Standard information criteria for model
selection, such as the likelihood ratio test or the Aikaike or Bayesian information crite-
ria, might not perform satisfactorily (Prasad, Shi, and Chih-Ling (2007), Cameron and
Trivedi (2005, 2010)). In the literature there are two different approaches to deal with
with model selection (i.e., selection of components). Cameron and Trivedi (2005) pro-
pose to use the “natural” interpretation of the estimated parameters to select compo-
nents, while McLachlan and Peel (2000) argue that the true number of components
generating the data is the smallest value of K such that the estimated likelihoods dif-
fer across components and all the pk are nonzero. In the following discussion, we use a
procedure that combines these two criteria. First note that for given k, j, and c, xickj ex-
erts a significant positive influence on the estimated value of pk as long as the following
inequality holds:

ln
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⎤⎥⎥⎦ ≥ 0� (4)

The left hand side of (4) is decreasing in the error rate, approaching 0 as εk�j tends to 1.
This means that choices consistent with type k are taken as evidence of learning rule k

only if the estimated error rates suggest that those choices were made on purpose rather
than by error.

CCB show that, regardless of the level of compliance j, the log-likelihood function
favors type k when the estimated θkj are more concentrated on compliance j. CCB use
the unrestricted estimates of θkj as a diagnostic, giving more confidence to the estimated
values of pk for which θkO is high. High concentration at zero compliance, for exam-
ple, can lead to a probability θkZ very close to 1 and to a high estimated frequency pk.
However, a high value of θkZ and, consequently, low estimated values of θkO indicate



104 Kovářík, Mengel, and Romero Quantitative Economics 9 (2018)

that participants do not consult the minimum information corresponding to rule k very
often and it would be hard to argue that learning rule k explains the behavior of the par-
ticipants clustered in component k. In other words, if θkZ is very high, people classified
as type k almost never consult the information corresponding to rule k, and this is evi-
dence that their learning behavior was not actually generated by type k, irrespective of
the estimated pk.

With these considerations in mind, we will use the estimated values of θk as a tool for
selecting the components of our finite mixture model. In particular, we will (i) repeatedly
estimate the multiple learning rule model and (ii) eliminate after each repetition the
rule l with the highest estimated θlZ whenever it is larger than an elimination threshold
θZ . The process stops with the final estimation when either all remaining rules have
an estimated θlZ < θZ or when only one rule remains. We also would have eliminated
rules if estimated error rates did not increase as compliance decreased, but this never
did happen in our data.

The elimination threshold θZ can, in principle, be set to any level, depending on
when one starts to believe that a rule fails to explain behavior. The rules we eliminate
have an estimated θlZ > 0�9, meaning that participants clustered in these rules only con-
sult the information required for these rules with less than 10% probability.

Robustness checks We also artificially altered the order of elimination of types (for
which θlZ > θZ), and, in all cases, we converge to the same mixture composition as in the
benchmark cases (see the Supplemental Material). Hence, the results are robust to the
order of elimination of learning types. They are also robust to alternative assumptions
on the data-generating process, to changing the number of compliance categories, and
to relaxing the assumption of compliance with occurrence (Section 6). We now proceed
to presenting our main results.

5. Main results

5.1 Results based on information requests and choices

This section contains our main results. We start by illustrating how our algorithm selects
components using treatment N-1 as an example. Table 3 shows the estimated type fre-
quencies pk and parameters θkZ . After the first estimation with all rules, we find that
θ̂PBI�Z = 1 (in bold in Table 3), meaning that participants classified as PBI do not ever
consult the information required by this learning rule.20 Therefore, our selection crite-
rion suggests that there is no evidence that participants’ choice behavior was induced
by PBI, so we remove PBI from the estimation. In the second iteration, we eliminate
the forward-looking rule with θ̂FWL�Z = 0�99. The algorithm stops with only two rules,
RL and MBR, remaining. The selection algorithm selects the same learning rules in N-
2 for all thresholds θZ ∈ [0�48�0�97], and in treatment N-3, only MBR survives for all
θZ ∈ [0�17�0�97). We describe the results in more detail below.

20The acronyms PBI, FL, RL, and MBR stand for payoff-based imitation, forward-looking, reinforcement
learning, and myopic best responses, respectively (see Section 4).
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Table 3. Estimation results after different iterations of
the selection algorithm: treatment N-1.

Learning Types

Parameters RL PBI MBR FL

First iteration
pk 0�25 0�55 0�20 0
θkZ 0�04 1 0�07 –

Second iteration
pk 0�18 0�24 0�58
θkZ 0�09 0�07 0.99

Final iteration
pk 0�57 0�43
θkZ 0�56 0�10

How can it be that at the first step of estimations a rule that clearly does not describe
behavior well, such as PBI, obtains an estimated value of pPBI = 0�55? Remember that
the estimation procedure favors a rule k if its compliance with occurrence is more con-
centrated on one particular value. Hence if participants’ choices explain the variation in
information requests poorly, this will lead to a high concentration of zero compliance
(high θkZ) and will favor the estimated value of pk. For this reason, any estimated value
of pk can only be interpreted jointly with the vector θk (see also the discussion in Sec-
tion 4.2).

There is information, though, that can be gained by studying the sequence of estima-
tions (see the Supplemental Material). In N-3, for example, our population is overall best
described by MBR. But small percentages of decisions are also very accurately described
by other rules that eventually get eliminated by the algorithm. For example, 15% are very
accurately described by reinforcement learning with θ̂RL�O = 0�85 (first iteration). Hence,
while our selection algorithm forces the estimation to explain all decisions (by the en-
tire population) that attribute a significant share of decisions to noise or errors, studying
the sequence of estimations can also give us insights into which rules are able to explain
(a small) part of the data accurately and which rules can best account for the more noisy
decisions.

Table 4 reports the maximum-likelihood estimates of learning type probabilities
pk, compliance probabilities θkj , compliance conditional error rates εkj , and the cor-
responding standard errors (s.e.) in the selected models for the N treatments. In treat-
ment N-1, 57% of the population is best described as reinforcement learners and the
remaining 43% as myopic best responders. RL has high compliance with occurrence
(θ̂RL�O = 0�44), while θ̂MBR�O even equals 90%. In both cases, estimated error rates in-
crease as compliance decreases (i.e., the more frequently people classified as type k re-
quest information consistent with k, the more frequently their choices are consistent
with rule k). These results suggest that the estimated type frequencies of RL and MBR
are reliable. In N-2, 24% and 76% of participants are best described by RL and MBR,
respectively. The estimated θs and εs are also well behaved. For thresholds below 97%,
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Table 4. Main estimation results using both information requests and
action choices: N treatments.

Treatments

N-1 N-2 N-3

Parameters RL MBR RL MBR MBR FL

pk 0�57*** 0�43*** 0�24* 0�76*** 0�27*** 0�73***
(s.e.) (0�10) (0�10) (0�16) (0�17) (0�08) (0�08)
θZ 0�56* 0�10 0�05 0�47** 0�16*** 0�97***
(s.e.) (0�30) (0�26) (0�27) (0�20) (0�05) (0�04)
θO 0�44 0�9*** 0�95*** 0�53*** 0�84*** 0�03
(s.e.) (0�30) (0�26) (0�27) (0�20) (0�05) (0�04)
εZ 1*** 1*** 1*** 1*** 1*** 1***
(s.e.) (0�06) (0�06) (0�04) (0�04) (0�04) (0�04)
εO 0�51*** 0�45*** 0�48*** 0�43*** 0�64*** 0�72***
(s.e.) (0�09) (0�11) (0�08) (0�07) (0�08) (0�13)

ln LF −1325 −1861 −1203
Individuals 40 56 40
Observations 760 1064 760

Note: ***, significant at the 1% level; **, significant at the 5% level; *, significant at the 10% level.
Standard errors are computed using a bootstrapping method with 500 replications (Efron and Tib-
shirani (1994)). The rule FL is eliminated in this stage in N-3 as θZ > 0�9.

only MBR survives in N-3. In the final estimation, 73% of participants are classified as
forward-looking learners, but they request information consistent with this rule (i.e.,
their second-neighbors’ action choices) only with probability 0�03.

Table 5 shows the analogous results for the M treatments. In all three M treatments,
the population is described as composed of RL and MBR. In M-1, about equally many
participants are classified as RL (51%) and MBR (49%), even though the MBR estimate
is very noisy. In M-2, the percentage classified as MBR increases to 69% and it even
reaches 81% in M-3 (with the remainder being classified as RL). Across all treatments,
RL types are identified more precisely than MBR types, suggesting that many of the
more noisy learners are classified as MBR. This could possibly be due to the slightly
worse identification in the M treatments discussed above. Some participants who re-
quest their neighbors’ action choices may infer their own payoffs and, hence, display
choices less consistent with MBR.21 Overall the N and M estimates deliver a similar
picture. Reinforcement learning and myopic best-response learning are the two rules
selected in Networks 1 and 2, with a higher share of belief learning in Network 2. In
those two networks, estimated shares are less than 7 percentage points apart across the
two information conditions. There are seemingly more differences in Network 3. In M-3,
reinforcement learning receives a share of 19%, while in N-3, all participants are classi-

21Because of our assumption that a participant who does not request information consistent with k can
only choose an action consistent with rule k by chance and not as a result of employing rule k, the estimated
ε̂kZ = 1 for all networks and selected rules. If we drop this assumption, then the pk estimates are the same
in N-1, N-3, and M-3, we find slightly higher frequencies of RL in M-1 and M-2, and find more evidence of
MBR in N-2. In that case, the estimated εkZ ranges between 0�51 and 1 for the selected rules.
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Table 5. Main estimation results using both information requests and ac-
tion choices: M treatments.

Treatments

M-1 M-2 M-3

Parameters RL MBR RL MBR RL MBR

pk 0�51*** 0�49*** 0�31** 0�69*** 0�19** 0�81***
(s.e.) (0�00) (0�00) (0�13) (1�35) (0�07) (0�08)
θZ 0�20*** 0�90*** 0�22 0�68*** 0�09 0�68***
(s.e.) (0�040) (0�05) (0�13) (0�07) (0�11) (0�05)
θO 0�80*** 0�10** 0�78*** 0�14* 0�91*** 0�12**
(s.e.) (0�04) (0�05) (0�13) (0�07) (0�11) (0�05)
εZ 1*** 1*** 1*** 1*** 1*** 1***
(s.e.) (0�06) (0�00) (0�04) (0�04) (0�04) (0�04)
εO 0�57*** 0�48*** 0�6*** 0�49*** 0�84*** 0�63***
(s.e.) (0�00) (0�15) (0�11) (0�13) (0�11) (0�14)

ln LF −1316 −1082 −1060
Individuals 40 32 32
Observations 800 640 640

Note: ***, significant at the 1% level; **, significant at the 5% level; *, significant at the 10%
level. Standard errors are computed using bootstrapping with 500 replications (Efron and Tibshirani
(1994)).

fied as belief learners. Remember, though, that in the initial step of elimination, 15% of
decisions were very accurately described by reinforcement learning even in N-3 (Sup-
plemental Material).

Since almost all our data can be described by either reinforcement learning or belief-
based rules, our results support the assumptions of EWA (Camerer and Ho (1998),
Camerer, Ho, and Chong (2002)), which include reinforcement and belief-based learn-
ing as special cases as well as some hybrid versions of the two. Unlike in EWA, we do
not restrict to those models ex ante, but our results suggest that—at least in the context
considered—a researcher may not be missing out on too much by focusing on those
models. While EWA should be a good description of behavior at the aggregate level, at
the individual level, fewer than 15% of our participants persistently request informa-
tion consistent with both reinforcement learning and belief-based learning rules (see
Figure 12 in Appendix C). There is also a connection between our findings and the idea
of multidimensional iterative reasoning introduced by Arad and Rubinstein (2012). Our
participants who are best described by MBR (as opposed to FL) are myopic (level 1) both
in terms of assuming stationary behavior of neighbors and in terms of only reasoning
about first-order neighbors, but not higher-order neighbors.

Some readers might wonder whether we are overestimating the frequency of RL, be-
cause participants might look up their own payoffs just because they want to know their
payoffs and not because they use this information in their learning rule. We probably do,
but only to a small extent. Note, first, that the estimation procedure identifies high cor-
relations between information requests and “correct” choices given the learning models
consistent with the information request. As a result, if a decision-maker always looks up
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some information for other reasons (unrelated to the way she learns and plays), then
this will not lead to high correlations and, hence, will not mislead the estimation proce-
dure. In addition, the fact that we find no evidence for RL in N-3 indicates that this is a
minor issue in our study.

The comparison of the three networks suggests that network topology affects how
people learn. In both the N and M treatments, we observe an increase of belief-based
models at the expense of the simpler reinforcement learning as we move from Network 1
to Network 3. One possible reason for this pattern could lie in the fact that in Network 3
there are many (five) network positions with only one network neighbor and there are
some (three) in Network 2, but none in Network 1. A conjecture we will evaluate in Sec-
tion 5.3 is that players in simpler environments (i.e., with fewer network neighbors) rely
on more sophisticated learning rules, while players in more complex environments tend
to resort to simpler rules, such as reinforcement learning.

5.2 Results based only on action choices

In this section, we will try to understand how much is gained by using the methodology
outlined in the previous subsection compared to simpler estimations based on action
choices alone. If results obtained via the latter set of estimations are “worse” than those
obtained via our main estimations, then (at least in this context) collecting the addi-
tional information seems crucial and the advantage of the network approach would be
highlighted. Hence, the objective is to test whether estimates are less accurate if data on
information requests are ignored.

Recall that we assume that a type-k subject normally makes a decision consistent
with type k, but she can make an error with probability εk. Let T ic

k be the number of
periods in which subject i has c possible action choices consistent with rule k, and let
xick measure the number of periods in which subject i has c possible action choices and
makes a decision consistent with k. Under this model specification, the probability of
observing sample xik can then be written as
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As in (3), the influence of xick on the estimated value of pk decreases as εk tends to
1, meaning that learning type k’s decisions are taken as evidence of rule k only to the
extent that the estimated value of εk suggests they were made on purpose rather than in
error. The parameters of equation (6) are estimated using maximum likelihood methods
as before. Now we have 2K − 1 free independent parameters, (K − 1) corresponding to
frequency types pk, and K corresponding to the error rates.
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Table 6. Estimation based solely on observed action choices.

Treatment N-1 Treatment M-1

Parameters RL PBI MBR FL RL PBI MBR FL

pk 0�21*** 0�08 0�42*** 0�30*** 0�46*** 0�20** 0�24*** 0�10*
(s.e.) (0�08) (0�07) (0�12) (0�10) (0�09) (0�08) (0�09) (0�05)
εk 0�08 1*** 0�58*** 0�42*** 0�35*** 0�87*** 0�57*** 0�09
(s.e.) (0�16) (0�21) (0�16) (0�07) (0�06) (0�08) (0�08) (0�20)

ln LF −760 −794
Individuals 40 40
Observations 760 760

Treatment N-2 Treatment M-2

pk 0�49*** 0�04 0�35*** 0�11*** 0�17* 0�53*** 0�24*** 0�06
(s.e.) (0�08) (0�04) (0�08) (0�06) (0�10) (0�16) (0�09) (0�13)
εk 0�26*** 0�48** 0�47*** 0�76*** 0�33** 0�87*** 0�41*** 0�03
(s.e.) (0�04) (0�25) (0�08) (0�19) (0�17) (0�11) (0�09) (0�46)

ln LF −1022 −709
Individuals 56 32
Observations 1064 608

Treatment N-3 Treatment M-3

pk 0�51*** 0�23** 0�21*** 0�05 0�33** 0�50*** 0�08 0�09
(s.e.) (0�09) (0�08) (0�08) (0�05) (0�15) (0�17) (0�13) (0�11)
εk 0�34*** 0�70*** 0�42*** 0�28 0�48*** 0�88*** 0�27 0�15
(s.e.) (0�06) (0�21) (0�07) (0�26) (0�15) (0�22) (0�31) (0�32)

ln LF −772 −718
Individuals 40 32
Observations 760 608

Note: ***, significant at the 1% level; **, significant at the 5% level; *, significant at the 10% level. Standard errors are com-
puted using bootstrapping methods with 500 replications (Efron and Tibshirani (1994)).

Table 6 reports the estimated frequencies and error rates. There is evidence in favor
of all four learning types. Based on these results, we could conclude that there is evi-
dence of payoff-based imitation in N-3 (23%), M-1 (20%), M-2 (53%), and M-3 (50%)
even though we have already seen above (Section 4) that action choices and informa-
tion requests are inconsistent with PBI. We also obtain a significant share of FL (30%
for N-1 and 11% in N-2) despite the fact that participants hardly ever requested infor-
mation needed to identify the corresponding action choices. Consequently, it is very
unlikely that these learning rules have generated the behavior of participants in the ex-
periment.

How do we know that the model with information requests gives “better” and not
just “different” estimates than the model without information request? Obviously esti-
mations that take into account information requests use more information and, hence,
they can rule out learning rules that are plausible when looking at decisions only, but
simply not possible because the decision-maker did not have the minimal information



110 Kovářík, Mengel, and Romero Quantitative Economics 9 (2018)

needed for those rules. The estimation procedure identifies high correlations between
information requests and “correct” choices given the learning models consistent with
the information requests. Hence, if a decision-maker always requests some information
for other reasons (unrelated to the way she learns), then this will not lead to high corre-
lations and, hence, will not mislead the procedure based on information requests. The
only case in which the process with information requests could be misled is if (i) two dif-
ferent rules predict the same choices and (ii) information needed for one rule can be de-
duced from information needed for the other rule. Our experimental design renders (ii)
unlikely, and (i) is only very rarely the case in our experiment (Table 19 in Appendix D).
Note also that situations such as (i) will likely affect estimations that disregard informa-
tion requests even more.

We conducted analogous estimations for the full-information treatments (Table 24
in Appendix D). Note that in these treatments, since all information is available, we do
not know which information participants used in their decisions. Any inference, hence,
has to be made purely on the basis of observed action choices. The estimates show no
systematic shift of learning toward any rule when comparing these tables. This provides
further evidence that the small costs imposed on information requests did not distort
the way participants learn (see also Section 4).

To sum up, we have seen that straightforward maximum-likelihood estimation that
disregards information requests ends up accepting learning rules for which participants
would need information that we know they did not have. As our design (involving the
4×4 anti-coordination game) was chosen to give estimations using action choices alone
good chances to detect learning strategies (see Section 4.1), one might expect these bi-
ases to be much more severe for smaller games or pure coordination games, where iden-
tification based on choices alone is more difficult.

5.3 Estimates by network position

To understand whether learning is affected by network position, we estimate our model
separately for different groups of network positions. In particular, we ask whether the
number of network neighbors affects how people learn. Since having more neighbors
involves collecting and processing more pieces of information and, hence, higher cog-
nitive costs, players with many neighbors might resort to rules that are less demand-
ing in terms of information requirements.22 Since reinforcement learning requires stor-
ing and processing one piece of information (own payoff) irrespective of the number
of neighbors, it is arguably less costly in terms of cognitive resources to resort to this
rule in positions with many neighbors. The number of different pieces of information a
decision-maker needs to process under MBR learning, however, is linearly proportional
to the number of neighbors (action choices for each neighbor).23

22In a different context, Brock and Hommes (1997) show that acknowledging agent’s choice between sim-
ple and more complex learning or predictor rules can dramatically alter our understanding of equilibrium
(or nonequilibrium) behavior.

23In particular, agents with more than one neighbor need to consider multiple past/future action choices
and take weighted averages to make their choice (under the more sophisticated rules MBR and FL), while
agents with only one neighbor do not need to do this. Note, though, that only one request is needed to
receive information about choices for all neighbors.
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To estimate the model separately for each position in the networks would lead to
very small samples and likely to small-sample biases. Hence, we aggregate data from
the heterogeneous networks (Networks 2 and 3) and categorize people into two groups
according to whether they have one neighbor or more than one neighbor. To have bal-
anced groups, we omit Network 1, but it is included in Tables 22 and 23 in Appendix D
without substantially affecting results. Group 1 (with one network neighbor) contains
players 1, 7, and 8 in Network 2 and players 1, 5, 6, 7, and 8 in Network 3, whereas Group 2
(multiple network neighbors) contains players 2, 3, 4, 5, and 6 in Network 2 and players
2, 3, and 4 in Network 3. Table 7 reports the estimation results.

Table 7. Participants with one network neighbor (players 1, 7, and 8 in M-2 and players 1, 5, 6,
7, and 8 in M-3) versus participants with multiple network neighbors (players 2, 3, 4, 5, and 6 in
M-2 and players 2, 3, and 4 in M-3).

N Treatments

Group 1: One Network Neighbor Group 2: Multiple Network Neighbors

Parameters RL PBI MBR FL RL PBI MBR FL

pk 0�54*** 0�46*** 0�65*** 0�35*
(s.e.) (0�10) (0�10) (0�18) (0�18)
θZ 0�87*** 0�74** 0�61* 0�11
(s.e.) (0�26) (0�33) (0�37) (0�21)
θO 0�13 0�26 0�39 0�89***
(s.e.) (0�26) (0�33) (0�37) (0�21)
εZ 1*** 1*** 1*** 1***
(s.e.) (0�04) (0�04) (0�04) (0�04)
εO 0�63*** 0�7*** 0�49*** 0�35***
(s.e.) (0�12) (0�11) (0�16) (0�07)

ln LF −1630 −1652
Individuals 46 50
Observations 874 950

M Treatments

pk 0�23*** 0�77*** 0�41*** 0�59***
(s.e.) (0�09) (0�09) (0�117) (0�117)
θZ 0�21 0�86*** 0�27** 0�95***
(s.e.) (0�149) (0�053) (0�118) (0�072)
θO 0�79*** 0�14*** 0�73*** 0�05
(s.e.) (0�149) (0�053) (0�118) (0�072)
εZ 1*** 1*** 1*** 1***
(s.e.) (0�045) (0�045) (0�065) (0�045)
εO 0�68*** 0�64*** 0�69*** 0�49**
(s.e.) (0�155) (0�115) (0�091) (0�203)

ln LF −1091 −1051
Individuals 32 32
Observations 640 640

Note: ***, significant at the 1% level; **, significant at the 5% level; *, significant at the 10% level. Standard errors are com-
puted via bootstrapping with 500 replications (Efron and Tibshirani (1994)).
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The estimates seem to support our conjecture. More complex situations (more net-
work neighbors) trigger the use of less sophisticated rules. In the N treatments (reported
in Table 7), reinforcement learning gets attributed somewhat more and belief learning
somewhat less than 50% in Group 1. In Group 2, by contrast, the shares attributed to
reinforcement learning (65%) are almost double those of MBR (35%). The difference
between Group 1 and Group 2 estimates is statistically highly significant (z = 5�058,
p< 0�001).24 In the M treatments, somewhat more participants are classified as MBR in
both groups. But again, the estimated population share of RL is higher in the more com-
plex environment, with 41% being classified as RL in Group 2 and only 23% in Group 1
(z = 22�220, p< 0�001).

To sum up, these results suggest that learning depends on network position. In par-
ticular, the complexity of the environment measured by the number of network neigh-
bors seems to affect the learning rules to which participants resort.

6. Additional results

In this section, we report several robustness checks. First, using simulated data, we eval-
uate the extent to which our econometric model is capable of identifying the learn-
ing rules present in the population. Second, we discuss specifications with alternative
learning rules. Third, we study alternative assumptions on compliance with occurrence.
Fourth, we discuss alternative assumptions on the data-generating process. Last, we re-
port results on our coordination game treatments. For reasons of space, all robustness
checks in Sections 6.1–6.3 are reported only for the N treatments, but they all extend to
the M treatments.

6.1 Recovering the data-generating process from simulated data

We test how well our estimation procedure can recover the type distribution from simu-
lated data. We use two different type compositions for this purpose. We first ask whether
we can recover the underlying data-generating process if the true composition is simi-
lar to the estimated shares from Section 5.1 with two rules, RL and MBR. To this aim,
we assume that 57% of participants are RL and 43% are MBR in all simulations (Exer-
cise 1) mimicking the population composition estimated in the case of treatment N-1.
As a second exercise (Exercise 2), we ask how well our procedure performs with three
rules in the population. Including three rules also provides a test for whether there is a
general tendency for our procedure to favor RL and MBR, selected in most of our mod-
els. To this aim, we simulate the behavior of three different learning types: RL (15% of
the population), MBR (40%), and FL (45% of the population). The specific frequencies
for Exercise 2 were picked in an ad hoc manner with the idea in mind, however, to have
a low frequency of RL and a higher frequency of FL types than what we find in our main
estimates.

24The bootstrapped estimates return a covariance between the estimated pRL across the groups of
<0�0007. Hence, we treat them as independent and test the null hypothesis of equality of coefficients across
Groups 1 and 2 using a z-statistic, which accounts for degrees of freedom across the groups.
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Figure 8. Difference between estimated parameters p̂RL and the true value depending on
(dashed line) the extent of error in information requests θZ;RL (left panel) and the extent of error
in action choices (right panel).

To mimic our experiment, we simulate data for five groups of eight players (40
computer-simulated participants in total) and randomly distribute learning types across
computer-simulated participants. For each case, we have 500 computer-generated sam-
ples with these characteristics. We then conduct two different types of simulations. In
this section, we report on simulations where we vary noise in one dimension only, that
is, either in information requests or in action choices, assuming very little noise in the
other dimension. Noise parameters θ and ε are separately varied between 0 and 1 in
steps of 0�2 (keeping the other parameter fixed at 0�05). In all cases, our selection algo-
rithm correctly identifies the rules present in the population.

Figure 8 shows the extent of bias (the difference between estimated and true param-
eter pk) as a function of noise in information requests (left panel) and action choices
(right panel). The solid line refers to Exercise 1 (two types) and the dashed line refers to
Exercise 2 (three types). With noise only in information requests, the bias is near zero
for θZ � 0�2; estimates are moderately biased for 0�2 < θZ � 0�8 and severely biased for
θZ � 0�8. In our main estimates (Tables 4 and 5), values of θZ are generally in the accu-
rate range θZ � 0�2 with the exception of N-1, where the estimated value is 0�56, sug-
gesting that pRL may be somewhat underestimated in that network. With noise only in
action choices, we find that estimates are accurate until values of ε ≈ 0�4 and imply mod-
erate biases afterward. If information requests are not very noisy (θZ = 0�05), then action
requests can be pure noise (ε = 1) and the biases will still only be around 10 percentage
points. In Appendix B.6, we report on simulations where we simultaneously vary noise
in action choices and information requests. Those simulations show that even if we vary
noise along both dimensions, biases are small as long as noise levels are not too high.
Overall these results make us confident that our estimation procedure works well.

By comparing the left and right panels of Figure 8, we can also say something about
how detrimental noise in information requests is as opposed to noise in action choices
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for recovering the true parameters. This comparison shows that noise in information re-
quests is more likely to lead to biased estimates. In fact, action choices can be complete
noise (ε = 1), but as long as information requests are accurate, the bias will remain below
15 percentage points. By contrast, if information requests are pure noise (θZ = 1), then
the fact that there is little noise in action choices does not help to contain the bias. In
this case, the frequency of reinforcement learning is severely overestimated, a problem
pointed out by Wilcox (2006). These results highlight the importance of incorporating
good quality data on information requests in the analysis.

6.2 Alternative learning rules

In this section, we report results from estimating our model (3) with different variations
of belief learning. Under all these variations, participants form beliefs based on a fixed
number of past periods. We consider six alternative specifications, where players form
beliefs based on choices of their opponents in the last 3, 6, 9, 12, 15, and 20 past periods
to construct their beliefs. Note that the last variation corresponds to standard fictitious
play learning in our context, since our game lasts only 20 periods. Myopic best respon-
ders, by contrast, base their decisions on the last period only. Denote by FPs the varia-
tion under which participants form beliefs based on the last s periods. Hence, under this
terminology, the myopic best-response rule is denoted by FP1, and fictitious play cor-
responds to FP20. We compare these alternatives with the benchmark model and rank
them according to their log-likelihood values.

In all treatments, the best-performing model is the benchmark from Section 5.1 with
MBR (i.e., FP1). However, the increment in the log-likelihood value in the benchmark
model with respect to the second best-performing model is very small (lower than 1%
in all cases). In N-1 there is virtually no difference between the benchmark model and
the model with FP3, and the estimated parameters are remarkably similar. In the other
two treatments, the model including FP6 outperforms the other alternative models and
the estimated frequency types are again very similar to the benchmark model containing
MBR. In all cases FP20 is among the last in the ranking. These results show that includ-
ing fictitious play (or variants of it) instead of myopic best-response learning does not
significantly alter any of the results. They also show that belief-based models focused on
few past periods tend to explain data better than those based on many periods.

6.3 Compliance with occurrence

In this section, we discuss three variations on our assumption of compliance with oc-
currence.

Easier compliance Our first variation is more permissive on how often participants
should request the minimal information required by each rule so as to classify as com-
pliant. This could be important, if participants consult information less frequently, for
example, after convergence (Section 3). Under the first variation, we then assume that a
participant has the information she needs to identify the action choice corresponding to
her type if she requested the minimal information set at least once in the preceding four
periods. The estimates are in line with the main results reported in Section 4.2. In N-1
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and N-2, we have evidence in favor of RL and MBR; their estimated population shares
are about the same as in the benchmark model in N-1, while in N-2, p̂RL is higher com-
pared to our benchmark model. In N-3, we now have evidence in favor of MBR and FL.
In all cases the estimated θs and εs are well behaved (Table 15 in Appendix B.5).

Knowledge about network structure The second variation focuses on observations
where a participant has not yet requested information about the network structure and,
hence, cannot (by design) request information about action choices and payoffs of these
neighbors. This is the case for less than 10% of our observations. To evaluate extent to
which this affects the results, we then classify all observations where this is the case
as compliant with all rules. The estimated frequencies are unchanged for N-1 and N-2
(compared to Table 4). The same is true for N-3, where all participants end up clas-
sified as MBR learners. The rule surviving prior to the last step of elimination is now
reinforcement learning rather than forward-looking learning as in Table 4 (Table 17 in
Appendix B.5).

Number of compliance categories Third, we analyze how our findings are to the num-
ber of compliance categories. Instead of two, we consider three compliance categories
under this variation. For each subject i and learning type k ∈ {1�2� � � � �K}, we compute
the percentage of times subject i asked for the minimum information required to learn
rule k and sort these percentages into three categories: (i) Z, 0 compliance with occur-
rence; (ii) M , 1%–49% compliance with occurrence; (iii) H, 50%–100% compliance with
occurrence. We then estimate a model similar to (3) with θkZ +θkM +θkH = 1 for each k.

The results generally confirm our estimates in Section 4.2: RL and MBR are selected
in treatments N-1 and N-2, and only MBR is selected in N-3 (Table 16 in Appendix B.5).
Why do we prefer the two-level compliance model (3) in Section 4.2 to this one? Notice
that in all treatments and for all learning types in Table 16, at least one compliance level
(θkj) is estimated as exactly 0. This indicates that the true number of compliance levels is
lower than 3 and estimating the three-compliance variation may result in identification
problems, since (if θkM = 0) it is possible to find a set of parameters Ω such that all
(p�θ�ε) ∈Ω generate the same distribution (p̂� θ̂� ε̂) as in Table 16.

6.4 Alternative assumptions on the data-generating process

Poisson distribution In this subsection, we evaluate some alternative assumptions on
the data-generating process. First, we reestimate the model assuming that the data-
generating process (information requests and choices) follows a Poisson distribution.
Let Iik denote the number of periods in which subject i searches information consistent
with learning type k during the experiment and let xik denote the number of periods in
which subject i makes a decision consistent with learning rule k. We assume that the
variables Iik and xik follow a Poisson distribution with means μk and λk, respectively.
Note that we again assume type-dependent parameters, which take into account that
the difficulty in processing information may vary across learning rules. Again, in N-1
and N-2, the population is best described by a mix of reinforcement and myopic best-
response learners, while in N-3, myopic best-response and forward-looking learning
describe the population best (Table 14 in Appendix B.4).
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Autocorrelation It is well known that it can be important to explicitly account for the
panel structure of data when estimating learning models Frechette (2009). We hence
study an alternative process where we allow for autocorrelation of information requests.
We model autocorrelation as a one unit recall Markov process and show that there is
some evidence for autocorrelation, especially in early periods (1–5) and for own payoff
requests, but not for requests in later periods and for information associated with best-
response learning. Despite there being some evidence for autocorrelation (especially
for RL and early periods), the estimates are roughly similar to those reported in Tables 4
and 5. In fact, for N-1, the estimates are exactly identical and they are nearly identical for
M-1 (compared to the case without autocorrelation). For N-2, N-3, and M-3, the share
attributed to reinforcement learning is higher with autocorrelation, and for M-2, it is
lower compared to Tables 4 and 5. In all cases, the two rules selected are reinforcement
and myopic best-response learning as in the case without autocorrelation (Tables 12
and 13 in Appendix B.3).

6.5 Coordination game

So far all of our results were based on anti-coordination games. This raises the question
regarding the extent to which the results could be game-specific. One might conjecture,
for instance, that imitation learning might be more prominent in coordination games
where neighbors have incentives to choose the same rather than different actions. Our
last result in this section refers to treatments conducted using a coordination rather than
an anti-coordination game to get a better sense of the extent to which the results are
game-specific. In three treatments, participants played the coordination game shown
in Figure 9 on our networks with intermediate information, that is, as M treatments.
The bilateral one-shot game has four pure strategy Nash equilibria on the diagonal (i.e.,
(A�A), (B�B), (C�C), and (D�D)). Strategy (A�A) is efficient. Choosing action D has
no risk since it guarantees a payoff of 20. As such, D is also the maxmin choice. Action
B, however, maximizes payoffs against a uniform opponent and is in that sense risk-
dominant.

A B C D

A 60�60 10�40 0�20 0�20

B 40�10 40�40 10�10 10�20

C 20�0 10�10 30�30 20�20

D 20�20 20�20 20�20 20�20

Coordination Game

Figure 9. The (bilateral) coordination game used in the experiment.
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In all networks, reinforcement learning and myopic best-response learning are the
two surviving rules. Despite the fact that imitation seems much more intuitive in the
coordination game, there is again no evidence of imitation learning. In contrast to the
anti-coordination treatments, in the last stage of the algorithm, MBR is now very impre-
cisely estimated with a high θZ . One possible reason could be that participants converge
faster to equilibrium in the coordination game and request little information afterward.
Indeed, we do see this in the data. The percentage of successful coordination is 90%
in M-Co-1, 87% in M-Co-2, and 88% in M-Co-3 across all periods. Since many partici-
pants will stop requesting information after the network has been coordinated for a few
periods, identification will be harder after convergence. If we estimate the coordination
game for the first 10 periods only, where there is still somewhat more miscoordination,
we find evidence for only reinforcement learning in M-Co-1, evidence for 49% of RL
(θZ = 0�21) and 51% of MBR (θZ = 0�78) in M-Co-2, and 45% of RL (θZ = 0�14) and 55%
of MBR (θZ = 0�84) in M-Co-3 (Table 25 in Appendix D). Hence, even in this case esti-
mates are still quite imprecise. In sum, these results suggest that our findings are not
specific to anti-coordination games. They further underline the importance of choosing
a setting where enough off equilibrium choices can be observed, as too quick conver-
gence can lead to imprecise estimates.

7. Concluding remarks

We use maximum-likelihood methods to estimate learning types in network games. Our
estimates are based on knowledge about both which actions participants choose and
which information they request so as to make their choice. The latter turns out to be
crucial, as estimates that disregard information requests display substantial biases. We
also find that network position affects how people learn. In particular, those people with
fewer network neighbors tend to resort to more complex rules. Finally, we find that,
while there is substantial heterogeneity in the way people learn in our data, most can be
classified as either reinforcement learners or belief learners. Future research is needed
to explore the question of heterogeneity and context stability across other dimensions,
and within rather than between subjects. Finally, it would be interesting to see how per-
sonality characteristics lead people to adopt one or the other learning type as in Gill and
Prowse (2016).

Appendix A: Detailed analysis Nash equilibrium

Table 8 below lists the strict Nash equilibria of the one-shot network game. The entries
are vectors (a1� � � � � a8) that show the action choices of players 1, . . . , 8 as labelled in Sec-
tion 2.2. The Nash equilibria marked in bold type are also Nash equilibria in every pair-
wise interaction between first-order neighbors viewed in isolation. This is not true for
the other Nash equilibria.

There are also many nonstrict and, in particular, also mixed equilibria in these
games, even though the game with only one neighbor (the bilateral game) has only pure
strategy equilibria. We focus predominantly on strict Nash equilibria, since the set of
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Table 8. Strict Nash equilibria.

Nash Equilibria

Network 1 Network 2 Network 3

(A�B�A�B�A�B�A�B)

(B�A�B�A�B�A�B�A)

(C�D�C�D�C�D�C�D)

(D�C�D�C�D�C�D�C)

(D�D�C�D�C�D�D�C)

(D�C�D�C�D�D�C�D)

(C�D�C�D�D�C�D�D)

(D�C�D�D�C�D�D�C)

(C�D�D�C�D�D�C�D)

(D�D�C�D�D�C�D�C)

(D�C�D�D�C�D�C�D)

(C�D�D�C�D�C�D�D)

(A�B�A�B�B�A�A�A)

(B�A�B�A�A�B�B�B)

(C�D�C�D�D�C�C�C)

(D�C�D�C�C�D�D�D)

(C�D�D�D�C�D�C�C)

(D�C�D�D�C�D�C�C)

(D�C�D�D�D�C�C�C)

(C�D�D�C�C�D�D�D)

(A�B�C�D�D�C�C�C)

(A�B�A�B�A�A�A�A)

(B�A�B�A�B�B�B�B)

(C�D�C�D�C�C�C�C)

(D�C�D�C�D�D�D�D)

(D�C�D�D�C�C�C�C)

(C�D�D�C�D�D�D�D)

(A�B�C�A�B�B�B�B)

(D�C�D�B�A�A�A�A)

(C�D�C�A�B�B�B�B)

(B�A�B�C�D�D�D�D)

Note: The format is (a1� � � � � a8), where ai� i = 1� � � � �8 is the action of player i.

strict Nash equilibria coincides with the set of asymptotically stable outcomes under the
multipopulation replicator dynamics. The replicator dynamics in turn has been shown
to approximate many well known learning models, including reinforcement, fictitious
play, and variants of imitation learning (see, e.g., Hopkins (2002)).

Table 9 shows the percentage of successfully coordinated networks in the last five
periods (on any one-shot Nash equilibrium). Note that coordinating a network of eight
players is difficult and the probability that a network would be coordinated by chance if
all players choose actions uniformly at random is ≈0�00018 for Network 1 and ≈0�00015
for Networks 2 and 3. The table shows that across all information conditions, coordina-
tion is best in Network 2 and worst in Network 3, where participants never manage to
coordinate fully.

Is there more coordination to Nash equilibrium over time? Table 10 shows the results
of a logit regression of a binary variable that indicates whether a network was in Nash
equilibrium (NE) regressed on period 1, . . . , 20 as well as a square polynomial of period
in odd columns. For each network, we pool data across the three information conditions
in this table (though the results look similar if we disaggregate). There is no regression
for Network 3 because it is never coordinated in any of the treatments. The regression
shows that there is more coordination over time in both networks. In Network 1, the

Table 9. Percentage of successful coordination on a strict
Nash equilibrium in the last five rounds.

Network 1 Network 2 Network 3

N treatments 0�12 0�17 0�00
M treatments 0�04 0�12 0�00
F treatments 0�13 0�46 0�00
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Table 10. Convergence to Nash equilibrium: logit regressions of binary
variable indicating whether network was in NE on period and square term.

Network 1 Network 2

Variables (1) (2) (3) (4)

Period 1�393*** 0�227*** 0�154 0�213***
(0�463) (0�037) (0�113) (0�047)

Period × period −0�040** 0�002
(0�017) (0�005)

Constant −14�09*** −6�18*** −5�05*** −5�38***
(2�86) (0�97) (0�55) (1�01)

Observations 2080 2080 2240 2240

Note: Robust standard are given in errors in parentheses. ***, p< 0�01; **, p< 0�05; *, p< 0�1.

square term is negative and statistically significant, indicating that learning slows down
in later periods, while in Network 2, the square term is close to zero and not statistically
significant.

Table 11 shows the distribution of choices in the last 10 periods. Actions C and D are
most frequently chosen, indicating that players in all networks and treatments attempt
to coordinate on equilibria involving these actions.

Appendix B: Additional background and results

In this appendix, we collect additional results. Appendix B.1 describes the algorithms
behind each learning rule. In Appendix B.2, we compute the correlation coefficient be-
tween compliance and action errors. In Appendix B.3, we study a process with autocor-
relation. In Appendix B.4, we study a Poisson process. Appendix B.5 collects a variety of
robustness checks on the estimates from the N treatments. Finally, in Appendix B.6, we
discuss the simulation results in more detail.

Table 11. Distribution of choices in the last 10 periods.

N Treatments M Treatments

Network 1 Network 2 Network 3 Network 1 Network 2 Network 3

A 0�04 0�05 0�06 0�06 0�07 0�09
B 0�08 0�06 0�07 0�10 0�18 0�13
C 0�36 0�43 0�35 0�32 0�26 0�36
D 0�52 0�46 0�52 0�53 0�49 0�41

F Treatments

Network 1 Network 2 Network 3 Bilateral

A 0�05 0�00 0�06 0�09
B 0�13 0�03 0�06 0�25
C 0�33 0�46 0�37 0�25
D 0�49 0�51 0�51 0�38
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B.1 Algorithms learning rules

We present the algorithms that correspond to each learning rule. In each period, partic-
ipants play a 4 × 4 game against their neighbors and the set of actions is {a�b� c�d} for all
players.

Under reinforcement learning, participants choose strategies that have performed
well in the past with larger probabilities. More precisely, at period t each participant
i has a propensity to play each of her four actions. Let qi(z� t) represent participant i’s
propensity at time t of playing action z for z ∈ {a�b� c�d}. These propensities are updated
using the updating rule: qi(z� t+1)= qi(z� t)+φ if i played z in t and qi(z� t+1) = qi(z� t)

when i chose an action different from z in period t. Thus actions that achieved higher
returns are reinforced and player i chooses action z at period t + 1 if

qi(z� t) ∈ max
{
qi(a� t)�qi(b� t)�qi(c� t)� qi(d� t)

}
� (7)

In the theoretical literature, the choice rule is usually “less deterministic.” Typically
players are assumed to choose actions with a probability that is linearly proportional
to propensities. The latter assumption means that a larger share of choices can be at-
tributed to reinforcement learning because of the randomization. The second class of
learning model we consider is imitation learning. Let NR

i denote the set of Rth order
neighbors of i, with R ∈ {1�2�3�4}. Under payoff based imitation of order R, learners
copy the most successful strategy among their Rth order neighbors. Let ΔR

i (z� t) repre-
sent the average payoff of those players who played action z in period t within partici-
pant’s i Rth order neighborhood. Then player i at time t + 1 chooses action z if

ΔR
i (z� t) ∈ max

{
ΔR
i (a� t)�Δ

R
i (b� t)�Δ

R
i (c� t)�Δ

R
i (d� t)

}
� (8)

Under belief learning models, participants form beliefs on their opponents’ strate-
gies and choose an action that best responds to those beliefs. Let vi be a vector whose
elements vi(z� t) represent the weight participant i gives to her opponents playing each
pure strategy z in period t. Therefore, player i believes her opponents in period t play ac-
tion z with probability pi(z) = vi(z�t)∑

s∈{a�b�c�d} vi(s�t)
. Player i then chooses a pure strategy that

is a best response to that probability distribution. Under fictitious play, agents consider
the whole history of the game to compute these probability distributions. Let Zi(z� t)

represent the set of player i’s first-order neighbors who played pure strategy z at period
t with cardinality ni(z� t). In the first period, fictitious players choose randomly. For all
subsequent periods, players update their belief vector as vi(z� t) = vi(z� t − 1)+ ni(z� t).
A myopic best responder only uses the most recent period to form her beliefs. Therefore,
the updating rule for a myopic best responder is vi(z� t) = ni(z� t).

Our last learning model is forward-looking learning in which players assume their
first-order neighbors are myopic best responders and, consequently, choose a best re-
sponse to their first-order neighbors’ myopic best response. Let q(i� t) be a vector con-
taining a number of elements equal to the number of player i’s first-order neighbors.
Each element of q(i� t) represents player i’s first-order neighbors’ myopic best response
at period t. Thus player i chooses a pure strategy that is a best response to q(i� t). For
all learning rules, in case of tie, the player is assumed to choose randomly between the
options that tie.
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B.2 Correlation between compliance and action errors

We ask how errors are correlated. If we define by IitkO a random variable that equals 1
if participant i searches information consistent with k at period t and define by Xit

kO
a random variable that equals 1 if participant i chooses an action consistent with k at
period t (conditional on compliance O), then we can derive the following correlation
coefficient.

From now on we consider a given learning rule k, a given subject i, and c possible
action choices. Hereafter, we omit subscript k and superscripts i and t. We compute the
correlation between IO(t) and XO(t).

The conditional probability of taking one of the decisions consistent with k at t is
equal to

P(XO(t) = 1|IO(t) = 1) =
(

1 − 4 − c

4
εO

)
1
c
� (9)

and the probability of choosing a given action that is inconsistent with k is P(XO(t) = 0|
IO(t) = 1)= εO

4 .25 The expected value and the variance of IO(t) are hence equal to

E[IO(t)] = 1 − θZ� (10)

V [IO(t)] = θZ(1 − θZ)� (11)

We now compute the conditional expectation of XO(t),

E[XO(t)|IO(t) = s] =
1∑

r=0

r × P(XO(t) = r|IO(t) = s)

= P(XO(t) = 1|IO(t) = s)� with s = {0�1}�
(12)

and the expected value of XO(t) is

E[XO(t)] =
((

1 − 4 − c

4
εO

)
1
c

)
(1 − θZ)� (13)

To abbreviate notation, let αO = (1 − 4−c
4 εO)

1
c . The unconditional variance of XO(t) is

equal to

V [XO(t)] = EIO(t)

[
V [XO(t)|IO(t) = s]] + VIO(t)

[
E[XO(t)|IO(t)]

]
= αO(1 − θZ)

(
αO

εO
4

+ (1 − αO)
2 + αOθZ

)
�

(14)

Note that if θZ = 1, then V [XO(t)] = 0 since XO(t) is always equal to 0; individuals cannot
identify the corresponding action choices simply because they do not have the neces-
sary information to do so.

We now compute the covariance between IO(t) and XO(t),

Cov(IO(t)�XO(t)) =E[IO(t)XO(t)] −E[IO(t)]E[XO(t)] = θZ(1 − θZ)αO > 0� (15)

25This is similar to CCB; see p. 1223.
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and the correlation coefficient between information acquisition and action choices is
equal to

ρ = θZ(1 − θZ)αO√
V [IO(t)]

√
V [XO(t)]

> 0� (16)

This coefficient depends on the parameters θZ (probability of making a mistake when
searching information consistent with rule k) and εO (the conditional probability of
making a mistake with compliance O).

B.3 Autocorrelation information requests

We use a Markov chain over two states as a way to model the binary time series Iitkj with
j ∈ {Z�O}, k ∈ {1�2� � � � �K}, and for t = {1�2� � � � �T }. In particular, we assume that the
probability that Ii;t+1

kO takes value 0 or 1 depends only on the value of the previous out-
come IitkO . The process starts at t = 1 with the probabilities26

Pr
(
Ii1kZ = 0

) = Pr
(
IitkO = 1

) = 1 − θkZ�

Pr
(
Ii1kZ = 1

) = Pr
(
IitkO = 0

) = θkZ�

The transition matrix is equal to[
πk

00 1 −πk
00

1 −πk
11 πk

11

]
�

where πk
00 = P(Ii;t+1

kO = 0|IitkO = 0) and πk
11 = P(Ii;t+1

kO = 1|IitkO = 1).
The Markov structure implies that the probability of deviating from information

search consistent with k at time (t + 1) equals

θkZ(t+1) = (1 − θkZ(t))
(
1 −πk

11
) + θkZ(t)π

k
00�

After rearranging terms, we have

θkZ(t+1) = (
1 −πk

11
)1 −Δt

1 −Δ
+ΔtθkZ� (17)

with Δ= (πk
00 +πk

11 − 1).
The probability of requesting information consistent with k at (t + 1) is then

θkO(t+1) = πk
11

1 −Δt

1 −Δt − Δt
(
1 −Δt−1)
1 −Δt −ΔtθkZ� (18)

The log-likelihood function is

logL(Ψ) =
N∑
i=1

ln

(
K∑

k=1

pk

( ∏
j∈{Z�O}

(
T∏
t=1

θ
Iikjt
kjt

)(
εjk

4

)(Iikj−Xi
kj)

4∏
c=1

((
1 − 4 − c

4
εjk

)
1
c

)Xic
kj

))
�

26Recall that IitkZ = 1 − IitkO .
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where now θkj(t=1) = θkZ for j = Z and θkj(t=1) = 1 − θkZ for j = O; and θkZ(t) and
θkO(t), for t = {2�3� � � � �T } are given by expressions (17) and (18), respectively. The
term Ψ is a vector with the parameters of interest: (pk�θkZ�π

k
00�π

k
11� εkZ�εkO) for

k = {1�2� � � � �K}. We estimate logL(Ψ) by applying the expectation maximization algo-
rithm (see McLachlan and Peel (2000)).

If there is no autocorrelation in the binary time series Dit
kj(I), then we should ob-

serve that the probability θkj remains constant through time. Figure 10 illustrates the
evolution of the estimated parameter θkZ(t) for k= {RL�MBR} during the experiment.

For reinforcement learning, the figure shows that estimated θRL;Z are monotonically
increasing in N-1 and N-2 (less compliance over time), though by a small amount. In
N-3 they are increasing until about period 10, after which there is near zero compliance.

Figure 10. Estimated zero compliance probability θkZ . Top panels, reinforcement learning;
bottom panels, myopic best-response learning (N treatments).
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Table 12. The N treatments with autocorrelation of order 1 in information requests.

N Treatments

Network 1 Network 2 Network 3

RL MB RL MB RL MB

Pr. learning type 0�57*** 0�43*** 0�66*** 0�34** 0�48*** 0�52***
s.e. (0�092) (0�092) (0�158) (0�158) (0�109) (0�109)
θZ 0�51*** 0�53*** 0�4* 0�5*** 0�66*** 0�76***
s.e. (0�179) (0�167) (0�205) (0�174) (0�127) (0�117)
π00 1*** 0�19 0�99*** 0�38 1*** 0�57***
s.e. (0�282) (0�312) (0�306) (0�31) (0�088) (0�22)
π11 0�99*** 0�94*** 0�97*** 0�95*** 0�73** 0�48*
s.e. (0�316) (0�183) (0�31) (0�179) (0�289) (0�282)
εZ 1*** 1*** 1*** 1*** 1*** 1***
s.e. (0�057) (0�086) (0�057) (0�037) (0�077) (0�077)
εO 0�51*** 0�45*** 0�51*** 0�4*** 0�79*** 0�58***
s.e. (0�101) (0�068) (0�096) (0�044) (0�259) (0�089)

θZ (average) 0�55 0�1 0�51 0�1 0�93 0�56
θO (average) 0�45 0�9 0�49 0�9 0�07 0�44

Observations 760 1064 760
ln LF −1313�48 −1854�79 −1383�45

Note: ***, significant at the 1% level; **, significant at the 5% level; *, significant at the 10% level.

For myopic best-response learning, the estimated θMBR;Z are quickly decreasing during
the first 2–3 rounds and are constant afterward. Overall, the evidence seems to suggest
weak autocorrelation. The patterns are very similar across networks, though the levels
differ somewhat.

Tables 12 and 13 show results when allowing for autocorrelation for both the N and
the M treatments. It can be seen that despite there being some evidence for autocor-
relation (especially for RL and early periods), the estimates are roughly similar to those
reported in Tables 4 and 5. In fact, for N-1, the estimates are exactly identical and they
are nearly identical for M-1 (compared to the case without autocorrelation). For N-2, N-
3, and M-3, the share attributed to reinforcement learning is higher with autocorrelation
and for M-2 it is lower compared to Tables 4 and 5.

B.4 Poisson process

To assess the extent to which our results depend on the distributional assumptions be-
hind the likelihood function, in this section we reestimate the model assuming that the
data-generating process (information requests and choices) follows a Poisson distribu-
tion.

Let Iik denote the number of periods in which subject i searches information con-
sistent with learning type k during the experiment and let xik denotes the number of
periods in which subject i makes a decision consistent with learning rule k. We assume
that the variables Iik and xik follow a Poisson distribution with means μk and λk, respec-
tively. Note that we again assume type-dependent parameters, which takes into account
that the difficulty in processing information varies across learning rules.
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Table 13. The M treatments with autocorrelation of order 1 in information requests.

M Treatments

Network 1 Network 2 Network 3

RL MBR RL MBR RL MBR

pk 0�5*** 0�5*** 0�28*** 0�72*** 0�22*** 0�78***
s.e. (0�073) (0�074) (0�08) (0�09) (0�062) (0�08)
θZ 0�05 0�67*** 0�1 0�58*** 0 0�73***
s.e. (0�106) (0�164) (0�136) (0�141) (0�128) (0�126)
π00 1*** 0�99*** 0 1*** 0�81*** 1***
s.e. (0�316) (0�084) (0�33) (0�085) (0�300) (0�080)
π11 0�98*** 0�76** 0�72*** 0�85*** 0�96*** 0�88***
s.e. (0�104) (0�306) (0�133) (0�318) (0�123) (0�306)
εZ 1*** 1*** 1*** 1*** 1*** 1***
s.e. (0�077) (0�077) (0�077) (0�077) (0�077) (0�077)
εO 0�58*** 0�49*** 0�58*** 0�51*** 0�8*** 0�61***
s.e. (0�072) (0�136) (0�121) (0�116) (0�109) (0�118)

θZ 0�2 0�9 0�21 0�86 0�15 0�89
θO 0�8 0�1 0�79 0�14 0�85 0�11

Observations 760 608 608
ln LF −1295�69 −1060�22 −1047�2

Note: ***, significant at the 1% level; **, significant at the 5% level; *, significant at the 10% level.

The probability of observing sample (Iik�x
i
k) is

Li
k

(
μk�λk|Iik�xik

) = e−μkμ
Iik
k

Iik!
e−λkλ

xik
k

xik! �

and the log-likelihood function is

ln LF(p�μ�λ|I�x) =
N∑
i=1

ln

(
K∑

k=1

pk

e−μkμ
Iik
k

Iik!
e−λkλ

xik
k

xik!

)
� (19)

We apply a selection algorithm similar to that of Section 5. If a learning rule has an
estimated μk higher than a threshold μ, we remove it from the set of rules considered.
Table 14 shows the estimation results.

B.5 Robustness estimates N treatments

This subsection collects a number of tables with robustness estimates for the N treat-
ments. Tables 15 and 16 show estimates under alternative assumptions on occurrence.
Specifically in Table 15, we assume that a subject has the information she needs to iden-
tify the action choice corresponding to her type if she has asked for the minimal infor-
mation set at least once in the preceding four periods (see Section 6.3). For the esti-
mates reported in Table 16, we allow for three rather than two compliance levels (see
Section 6.3).
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Table 14. Poisson distribution: estimation based on information request and observed behav-
ior.

Endogenous Information Treatments

N-1 N-2 N-3

RL MBR RL MBR MBR FL

pk 0�58*** 0�42*** 0�52*** 0�48*** 0�30*** 0�70***
(s.e.) (0�09) (0�09) (0�08) (0�08) (0�08) (0�08)
μk 1�92 7*** 2�15 6�34*** 12�76*** 0�21
(s.e.) (3�09) (2�95) (2�48) (2�24) (2�18) (0�27)
λk 1�02 4�41*** 1�15 3�99*** 5�68*** 0
(s.e.) (1�83) (1�95) (1�54) (1�58) (1�85) (0�14)

ln LF −255 −339 −114
Individuals 40 56 40
Observations 760 1064 760

Note: ***, significant at the 1% level; **, significant at the 5% level; *, significant at the 10% level. Standard errors are com-
puted by bootstrapping methods with 500 replications (Efron and Tibshirani (1994)).

We also conduct a robustness check to deal with participants in the N treatments
who do not request information about labels of first-order neighbors (and, hence, can-
not by design request information about their actions or payoffs). Remember that those
are relatively few observations. In period 1 already more than 70% of participants re-
quest information about first-order neighbors and ≈90% do so at some point during the
experiment.

Table 17 shows estimates where these observations are classified automatically as
compliant for all rules. The estimated frequencies are unchanged for N-1 and N-2 (com-

Table 15. Estimation results under relaxed assumptions on occurrence.

Treatments

N-1 N-2 N-3

Parameters RL MBR RL MBR MBR FL

pk 0�5*** 0�5*** 0�49*** 0�51*** 0�43*** 0�57***
(s.e.) (0�087) (0�087) (0�076) (0�076) (0�091) (0�090)
θZ 0�04* 0�11** 0�11*** 0.02 0�21*** 0�04
(s.e.) (0�023) (0�049) (0�014) (0�045) (0�009) (0�045)
θO 0�96*** 0�89*** 0�89*** 0�98*** 0�79*** 0�96***
(s.e.) (0�023) (0�049) (0�014) (0�045) (0�009) (0�045)
εZ 1*** 1*** 1*** 1*** 1*** 1***
(s.e.) (0�045) (0�045) (0�045) (0�045) (0�051) (0�045)
εO 0�63*** 0�44 0�44*** 0�51* 0�41*** 0�73**
(s.e.) (0�068) (0�31) (0�046) (0�287) (0�018) (0�297)

ln LF −1071 −1407 −1173
Individuals 40 56 40
Observations 760 1064 760
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Table 16. Estimation results with three compliance levels.

Treatments

N-1 N-2 N-3

Parameters RL MBR RL MBR RL MBR

pk 0�57*** 0�43*** 0�59*** 0�41*** 0�68*** 0�32**
(s.e.) (0�109) (0�109) (0�12) (0�12) (0�139) (0�139)
θkZ 0�55* 0�1 0�48 0�14 0.9*** 0�65***
(s.e.) (0�307) (0�260) (0�292) (0�253) (0�142) (0�225)

θkM 0�06 0 0�09* 0 0�1* 0�11*
(s.e.) (0�039) (0�032) (0�048) (0�059) (0�052) (0�061)

θkH 0�39 0�9*** 0�43 0�85* 0 0�23
(s.e.) (0�373) (0�316) (0�329) (0�306) (0�1967) (0�313)

εkZ 1*** 1*** 1*** 1*** 1*** 1***
(s.e.) (0�046) (0�045) (0�045) (0�045) (0�045) (0�064)
εkM 0�52** 0�9*** 0�5*** 0�87*** 0�58*** 0�74***
(s.e.) (0�202) (0�263) (0�171) (0�248) (0�178) (0�229)
εkH 0�51*** 0�46*** 0�5*** 0�41*** 0�47* 0�57***
(s.e.) (0�123) (0�136) (0�118) (0�134) (0�240) (0�15007)

ln LF −1406 −2019 −1474
Individuals 40 56 40
Observations 760 1064 760

Note: ***, significant at the 1% level; **, significant at the 5% level; *, significance at the 10% level. Standard errors computed
by bootstrapping method with 500 replications (Efron and Tibshirani (1994)).

Table 17. Main estimation results using both information requests and action choices: N treat-
ments.

Treatments

M-1 M-2 M-3

Parameters RL MBR RL MBR RL MBR

pk 0�57*** 0�43*** 0�24 0�76*** 0�47*** 0�53***
(s.e.) (0�100) (0�100) (0�167) (0�167) (0�118) (0�118)
θZ 0�56* 0�10 0.05 0�47** 0�93*** 0�60**
(s.e.) (0�307) (0�267) (0�283) (0�208) (0�200) (0�298)
θO 0�44 0�90** 0�95*** 0�53** 0�07 0�40
(s.e.) (0�307) (0�267) (0�283) (0�208) (0�200) (0�298)
εZ 1*** 1*** 1*** 1*** 1*** 1***
(s.e.) (0�045) (0�045) (0�045) (0�045) (0�045) (0�045)
εO 0�51*** 0�45*** 0�48*** 0�43*** 0�49*** 0�59***
(s.e.) (0�088) (0�113) (0�07) (0�068) (0�186) (0�148)

ln LF −1325 −1861 −1398
Individuals 40 56 40
Observations 800 1120 800

Note: All observations where a participant does not know anything about the network structure are automatically classified
as compliant. ***, significant at the 1% level; **, significant at the 5% level; *, significant at the 10% level. Standard errors are
computed using a bootstrapping method with 500 replications (Efron and Tibshirani (1994)).
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pared to Table 4). The same is true for N-3, where all participants end up classified as
MBR learners. The rule surviving prior to the last step of elimination is now reinforce-
ment learning rather than forward-looking learning as in Table 4.

B.6 Simulations

This subsection contains additional information, tables, and results regarding the sim-
ulations reported on in Section 6.1. In addition to the simulations described in the main
text, we also ran simulations where we simultaneously increase noise in information re-
quests and noise in action choices. We use the same type distributions as in Exercise 1 in
Section 6.1. For each parameter combination, we ran 500 replications. We first consider
three different parameter constellations as follows:

1. Full Compliance (FC). Participants search their respective information set with
probability 1 and make no mistake in choosing the corresponding action choice.

2. High Compliance (HC). Participants search their corresponding information re-
quest with high probability and make mistakes with low probability.

3. Low Compliance (LC). Participants have low compliance with occurrence and
make mistakes with high probability.

Table 18 reports the results. Our selection algorithm always correctly identifies the
learning rules present in the population. The shares of PBI and FL are virtually zero in
the two-type case; the same holds for PBI in Exercise 2. Moreover, we find only small
biases (less than 1%) in the estimated frequencies in both FC and HC. Hence, if people
are relatively precise both making their choices and looking up the information, our es-
timation procedure succeeds in recovering the population composition in all cases. As
participants become less precise in their information requests and decisions (LC), we
still recover which types are present in the population, but there are biases in the esti-
mated values. In the two-type case, the mechanism overestimates the presence of MBR
by 11% and underestimates the share of RL by 16% (4% and 1% of the biases correspond
to PBI and FL, respectively, though they are not significantly different from zero). Similar
conclusions hold for Exercise 2.

We then increase noise simultaneously in steps of 0�1. Figure 11 shows the distri-
bution of estimated parameters p̂RL across the 500 runs for Exercise 1. The leftmost
panel shows the case where (θZ�εO) = (0�15�0�1). Estimated parameters are concen-
trated around the true value of 0�575, the standard deviation is 0�01, and the mean bias
is 0. Estimates at these noise levels are, hence, extremely accurate. As we increase noise,
estimates tend toward uniform distribution, which means that since the “true” value
of pRL is above 0�5, the estimates will be downward biased. The middle panel shows
the case (θZ�εO) = (0�55�0�55), where the mean bias is −0�17, that is, most simulations
converge to a case where the parameter is underestimated. Only around 5% of sim-
ulations converge to the true value. Further increasing the amount of noise does not
substantially worsen the bias as the rightmost panel illustrates, which shows the case
(θZ�εO) = (0�75�0�70).
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Table 18. Monte Carlo simulations.

Exercise 1 Exercise 2

RL PBI MBR FL RL PBI MBR FL

True pk 0�57 0�00 0�43 0�00 0�15 0�00 0�40 0�45

FC
p̂k 0�562 0�014 0�423 0�001 0�150 0�000 0�400 0�450
(s.e.) (0�09) (0�04) (0�09) (0�004) (0�001) (0�000) (0�002) (0�001)
Bias −0�0077 0�014 −0�007 0�0008 −0�001 0�000 0�000 0�000

HC
p̂k 0�57 0 0�425 0 0�1500 0�0000 0�4000 0�4500
(s.e.) (0�0049) (0) (0) (0) (0�0000) (0�0000) (0�0005) (0�0004)
Bias 0�005 0 −0�005 0 0�0001 0�0000 0�0000 0�0000

LC
p̂k 0�404 0�042 0�542 0�012 0�271 0�05 0�323 0�355
(s.e.) (0�203) (0�205) (0�183) (0�109) (0�376) (0�224) (0�248) (0�213)
Bias −0�165 0�041 0�111 0�0119 0�121 0�050 −0�077 −0�095

Assumptions
θkZ 0 0�15 0�55 0 0�15 0�55
θkO 1 0�85 0�45 1 0�85 0�45
εkZ 1 1 1 1 1 1
εkO 0 0�1 0�55 0 0�1 0�55

Figure 11. Distribution of estimated parameters p̂RL across 500 runs of simulations of Exer-
cise 1 (note the different scale on the x axis across panels).
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Appendix C: Additional figures

Figure 12 provides an overview of information requests over time in the N treatments.
Figure 13 shows the analogous information for the M treatment. Figure 14 shows the
fractions of participants who both request the minimal necessary information corre-
sponding to a rule and choose as prescribed by that rule.

(a) N-1 (b) N-2

(c) N-3

Figure 12. Share of participants (i) requesting information about all three: first-order
neighbors identification (experimental label) + actions as well as own payoffs (bottom area),
(ii) requesting only first-order neighbors identification and actions, but not payoffs (dark area),
(iii) requesting own payoffs (black solid line), and (iv) requesting only own payoff (area between
lower bound of dark area and black line). N treatments.
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(a) M-1 (b) M-2

(c) M-3

Figure 13. Share of participants requesting information about all three: first-order neighbors
actions as well as own payoffs (bottom area), requesting only first-order neighbors actions, but
not payoffs (dark area), requesting own payoffs (black curve), and requesting only own payoff
(area between lower bound of dark area and black curve). M treatments.

(a) At least 25% consistency (b) At least 50% consistency

Figure 14. Fraction of participants who request the minimal information set and play the ac-
tion prescribed by the corresponding learning type more than 25% (panel (a)) or 50% (panel (b))
of periods.
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Table 19. Separation between learning types on the basis of action choices.

Treatments

N-1 F-1

Learning Rules RL PBI MBR RL PBI MBR

PBI 11 11
MBR 9 14 10 13
FL 7 11 9 8 11 10

N-2 F-2

PBI 11 15
MBR 9 14 8 16
FL 8 13 8 7 14 7

N-3 F-3

PBI 11 11
MBR 11 15 9 15
FL 8 11 11 8 12 10

Note: Each cell contains the average number of periods in which the two corresponding learning
types predict different choices for a participant (given the history of play in the experiment).

Appendix D: Additional tables

Table 19 shows how often different rules predict different choices conditional on the
histories in our experiment and Table 20 shows the minimal information required for
each rule.

Table 21 shows the results separately for periods 1–10 and 11–20 for the N treat-
ments. Results seem overall robust. The two surviving rules are always reinforce-
ment learning and/or myopic best responses. In N-1, reinforcement learning has a
share of 59% across periods 1–10 and 63% across periods 11–20, with the remain-
der being attributed to MBR. In N-2, reinforcement learning receives a share of
55% across periods 1–10 and 73% across periods 11–20, and in N-3, MBR is the
unique surviving rule in both cases. Hence, in N-1 and N-3, estimates are very

Table 20. Minimal information required for each rule.

Learning Type

Info Neighbor RL PBI MBR FL

Label 1 x x x
2 x

Action 1 x x
2 x

Payoff Own x
1 x

Note: x indicates that a piece of information is required for the corresponding learning rule.
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Table 21. Estimations separately for periods 1–10 and 11–20: N treatments.

Treatment N-1 Treatment N-2 Treatment N-3

Periods 1 to 10 Periods 11 to 20 Periods 1 to 10 Periods 11 to 20 Periods 1 to 10 Periods 11 to 20

RL MBR RL MBR RL MBR RL MBR RL MBR RL MBR

pk 0�59*** 0�41*** 0�63*** 0�37*** 0�55*** 0�45*** 0�73*** 0�27** 0�31*** 0�69*** 0�65*** 0�35***
(s.e.) (0�109) (0�109) (0�116) (0�115) (0�117) (0�117) (0�193) (0�193) (0�148) (0�148) (0�101) (0�101)
θZ 0�48* 0�07 0�57* 0�04 0�41 0�11 0�62* 0.02 0�99*** 0�55*** 0�96*** 0�62**
(s.e.) (0�256) (0�338) (0�291) (0�268) (0�190) (0�159) (0�303) (0�281) (0�216) (0�223) (0�232) (0�263)
θO 0�52** 0�93* 0�43* 0�96*** 0�59*** 0�89*** 0�38 0�98*** 0�01 0�45* 0�04 0�38
(s.e.) (0�256) (0�338) (0�291) (0�268) (0�190) (0�159) (0�303) (0�281) (0�216) (0�223) (0�232) (0�263)
εZ 1*** 1*** 1*** 1*** 1*** 1*** 1*** 1*** 1*** 1*** 1*** 1***
(s.e.) (0�045) (0�044) (0�071) (0�059) (0�045) (0�045) (0�063) (0�057) (0�045) (0�045) (0�045) (0�045)
εO 0�69*** 0�58*** 0�3* 0�35*** 0�61*** 0�49*** 0�32* 0�32*** 1 0�68*** 0 0�51***
(s.e.) (0�125) (0�154) (0�141) (0�119) (0�062) (0�069) (0�138) (0�093) (0�296) (0�174) (0�157) (0�218)

ln LF −663�36 −581�75 −903�09 −833�1 −686�96 −617�02
Individuals 40 40 56 56 40 40
Observations 360 360 504 504 360 360
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Table 22. Participants with one network neighbor (1, 7, and 8 in N-2 and 1, 5, 6, 7, and 8 in N-3)
versus participants with multiple network neighbors (1–8 in N-1, 2–6 in N-2, and 2, 3, and 4 in
N-3).

Group 1: One Network Neighbor Group 2: Multiple Network Neighbors

Parameters RL PBI MBR FL RL PBI MBR FL

pk 0�54*** 0�46*** 0�61*** 0�39***
(s.e.) (0�10) (0�10) (0�147) (0�147)
θZ 0�87*** 0�74* 0�58* 0�11
(s.e.) (0�26) (0�33) (0�327) (0�203)
θO 0�13 0�26 0�42 0�89***
(s.e.) (0�26) (0�33) (0�327) (0�203)
εZ 1*** 1*** 1*** 1***
(s.e.) (0�04) (0�04) (0�045) (0�045)
εO 0�63*** 0�7*** 0�5*** 0�41***
(s.e.) (0�12) (0�11) (0�063) (0�063)

ln LF −163 −2981
Individuals 46 90
Observations 874 1710

Note: ***, significant at the 1% level; **, significant at rhe 5% level; *, significant at the 10% level. Standard errors are com-
puted by bootstrapping methods with 500 replications (Efron and Tibshirani (1994)).

Table 23. Participants with one network neighbor (1, 7, and 8 in M-2 and 1, 5, 6, 7, and 8 in
M-3) versus participants with multiple network neighbors (all players M-1, players 2, 3, 4, 5, 6 in
M-2 and 2, 3, 4 in M-3).

Group 1: One Network Neighbor Group 2: Multiple Network Neighbors

Parameters RL PBI MBR FL RL PBI MBR FL

pk 0�23*** 0�77*** 0�44*** 0�56***
(s.e.) (0�09) (0�09) (0�068) (0�07)
θZ 0�21 0�86*** 0�21*** 0�91***
(s.e.) (0�149) (0�053) (0�04) (0�051)
θO 0�79*** 0�14*** 0�79*** 0�09*
(s.e.) (0�149) (0�053) (0�04) (0�051)
εZ 1*** 1*** 1*** 1***
(s.e.) (0�045) (0�045) (0�045) (0�045)
εO 0�68*** 0�64*** 0�61*** 0�44***
(s.e.) (0�155) (0�115) (0�058) (0�101)

ln LF −1091 −2374
Individuals 32 72
Observations 640 1440

Note: ***, significant at the 1% level; **, significant at the 5% level; *, significant at the 10% level. Standard errors are com-
puted by bootstrapping methods with 500 replications (Efron and Tibshirani (1994)).
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Table 24. Estimations based solely on observed behavior in F treaments.

Treatment F-1

RL PBI MBR FL

pk 0�52** 0�10 0�34*** 0�04
(s.e.) (0�168) (0�094) (0�123) (0�123)
εk 0�53** 1 0�37*** 0
(s.e.) (0�224) (0�193) (0�095) (0�255)

ln LL −489
Individuals 24
Observations 456

Treatment F-2

pk 0�12 0�21** 0�58*** 0�08
(s.e.) (0�093) (0�093) (0�117) (0�065)
εk 0�58 0�68*** 0�26*** 0
(s.e.) (0�304) (0�095) (0�062) (0�286)

ln LL −400
Individuals 24
Observations 456

Treatment F-3

pk 0�32** 0�04 0�34** 0�30**
(s.e.) (0�124) (0�062) (0�144) (0�118)
εk 0�34** 0 0�48*** 0�57***
(s.e.) (0�163) (0�367) (0�108) (0�057)

ln LF −467
Individuals 24
Observations 456

Note: ***, significant at the 1% level; **, significant at the 5% level; *, significant at the 10% level.
Standard errors are computed by bootstrapping methods with 500 replications (Efron and Tibshi-
rani (1994)).

similar across the two blocks and also very similar to the estimates based on all 20 pe-
riods. In N-2, the estimates based on subperiods differ somewhat from the estimates
using all periods attributing a higher share to RL. One possible reason for this difference
seems to be that lots of noisy decisions are attributed to RL in this network, as indicated
by relatively high values of θRL;Z in the estimations based on subperiods.

Table 22 shows results for splitting the N treatment data by whether participants
have one or more than one network neighbor. The difference from the results reported
in Table 7 in the main text is that for the estimates here, network N-1 data are included
(in Group 2). Table 23 reports the same results for the M treatments. Table 24 shows
estimates using only choice behavior in the F treatments. Table 25 reports the estimates
from our coordination game treatments.
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Table 25. Main estimation results using both information requests and action choices: M treat-
ments and coordination game.

Treatments

M-Co-1 M-Co-2 M-Co-3

Parameters RL MBR RL MBR RL MBR

pk 0�54*** 0�46*** 0�48*** 0�52*** 0�68*** 0�32**
(s.e.) (0�105) (0�105) (0�095) (0�095) (0�139) (0�139)
θZ 0�31*** 0�95*** 0�27*** 0�9*** 0�34*** 0�92***
(s.e.) (0�069) (0�052) (0�072) (0�049) (0�109) (0�081)
θO 0�69*** 0�05 0�73*** 0�1** 0�66*** 0�08
(s.e.) (0�069) (0�052) (0�072) (0�049) (0�109) (0�081)
εZ 1*** 1*** 1*** 1*** 1*** 1***
(s.e.) (0�06) (0�00) (0�04) (0�04) (0�04) (0�04)
εO 0�37*** 1*** 0�38*** 1*** 0�43*** 1***
(s.e.) (0�072) (0�116) (0�098) (0�05) (0�057) (0�059)

ln LF −1015 −1039 −1335
Individuals 32 32 40
Observations 640 640 800

Note: ***, significant at the 1% level; **, significant at the 5% level; *, significant at the 10% level. Standard errors are com-
puted using bootstrapping with 500 replications (Efron and Tibshirani (1994)).
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