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Determining the number of groups in latent panel structures
with an application to income and democracy

Xun Lu
Department of Economics, Hong Kong University of Science and Technology

Liangjun Su
School of Economics, Singapore Management University

We consider a latent group panel structure as recently studied by Su, Shi, and
Phillips (2016), where the number of groups is unknown and has to be determined
empirically. We propose a testing procedure to determine the number of groups.
Our test is a residual-based Lagrange multiplier-type test. We show that after being
appropriately standardized, our test is asymptotically normally distributed under
the null hypothesis of a given number of groups and has the power to detect devia-
tions from the null. Monte Carlo simulations show that our test performs remark-
ably well in finite samples. We apply our method to study the effect of income
on democracy and find strong evidence of heterogeneity in the slope coefficients.
Our testing procedure determines three latent groups among 74 countries.

Keywords. Classifier Lasso, dynamic panel, latent structure, penalized least
square, number of groups, test.

JEL classification. C12, C23, C33, C38, C52.

1. Introduction

Recently, latent group structures have received much attention in the panel data litera-
ture; see, for example, Sun (2005), Lin and Ng (2012), Deb and Trivedi (2013), Bonhomme
and Manresa (2015; BM hereafter), Sarafidis and Weber (2015), Ando and Bai (2016),
Bester and Hansen (2016), Su, Shi, and Phillips (2016; SSP hereafter), and Su and Ju
(forthcoming). In comparison with some other popular approaches to model unob-
served heterogeneity in panel data models such as random coefficient models (see, e.g.,
Hsiao (2014, Chapter 6)), one important advantage of the latent group structure is that
it allows flexible forms of unobservable heterogeneity while remaining parsimonious.
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In addition, the group structure has sound theoretical foundations from game theory
or macroeconomic models where multiplicity of Nash equilibria is expected (cf. Hahn
and Moon (2010)). The key question in latent group structures is how to identify each
individual’s group membership. Bester and Hansen (2016) assume that membership
is known and determined by external information, say, external classification or geo-
graphic location, while others assume that it is unrestricted and unknown, and propose
statistical methods to achieve classification. Sun (2005) uses a parametric multinomial
logit regression to model membership. Lin and Ng (2012), BM, Sarafidis and Weber
(2015), and Ando and Bai (2016) extend K-means classification algorithms to the panel
regression framework. Deb and Trivedi (2013) propose expectation–maximization (EM)
algorithms to estimate finite mixture panel data models with fixed effects. Motivated by
the sparse feature of the individual regression coefficients under latent group structures,
SSP propose a novel variant of the Lasso (least absolute shrinkage and selection oper-
ator) procedure, that is, the classifier Lasso (C-Lasso), to achieve classification. While
these methods make important contributions by empirically grouping individuals, to
implement these methods, we often need to determine the number of groups first. Some
information criteria have been proposed to achieve this goal (see, e.g., BM and SSP),
which often rely on certain tuning parameters. This paper provides a hypothesis-testing-
based solution to determine the number of groups.

Specifically, we consider the panel data structure as in SSP,

yit = β0′
i Xit +μi + uit� i = 1� � � � �N and t = 1� � � � �T� (1.1)

where Xit , μi, and uit are the vector of regressors, individual fixed effect, and idiosyn-
cratic error term, respectively, and β0

i is the slope coefficient that can depend on indi-
vidual i. We assume that the N individuals belong to K groups and all individuals in
the same group share the same slope coefficients. That is, β0

i s are homogeneous within
each of the K groups but heterogeneous across the K groups. For a given K, we can apply
SSP’s C-Lasso procedure or the K-means algorithm to determine the group membership
and to estimate β0

i s. However, in practice, K is unknown and has to be determined from
data. This motivates us to test the hypothesis

H0(K0) : K = K0 versus H1(K0) :K0 <K ≤Kmax�

where K0 and Kmax are prespecified by researchers. We can sequentially test the hy-
potheses H0(1)�H0(2)� � � � , until we fail to reject H0(K

∗) for some K∗ ≤ Kmax and con-
clude that the number of groups is K∗. Onatski (2009) applies a similar procedure to
determine the number of latent factors in panel factor structures.

In addition to helping to determine the number of groups, testing H0(K0) itself is
also useful for empirical research. When K0 = 1, the test becomes a test for homogene-
ity in the slope coefficients, which is often assumed in empirical applications. When K0

is some integer greater than 1, we test whether the group structure is correctly specified.
Although the group structure is flexible in terms of modeling unobserved slope hetero-
geneity, it could still be misspecified. Inferences based on misspecified models are often
misleading. Thus conducting a formal specification test is highly desirable. Although we
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work in the same framework as SSP, the questions of interest are different. SSP study the
classification and estimation problem, while we consider the specification testing. To
avoid overlapping with SSP’s paper, we omit the detailed discussions on the estimation
in this paper.

Our test is a residual-based Lagrange multiplier (LM) type test. We estimate the
model under the null hypothesis H0(K0) to obtain the restricted residuals, and the test
statistic is based on whether the regressors have predictive power for the restricted resid-
uals. Under the null of the correct number of latent groups, the regressors should not
contain any useful information about the restricted residuals. We show that after being
appropriately standardized, our test statistic is asymptotically normal under the null.
The p values can be obtained based on the standard normal approximation, and thus
the test is easy to implement. Our test is related to the literature on testing slope homo-
geneity and poolability for panel data models in which K0 = 1. See, for example, Pesaran,
Smith, and Im (1996), Phillips and Sul (2003), Pesaran and Yamagata (2008), and Su and
Chen (2013), among others. Nevertheless, none of the existing tests can be directly ap-
plied to test K =K0, where K0 > 1. Also, the test proposed in this paper substantially dif-
fers from the existing tests in technical details, as we need to apply the C-Lasso method
or K-means algorithm to estimate the model under the null.

When there are no time fixed effects in the model, both SSP’s C-Lasso method and
the K-means algorithm can be used to estimate the model under H0(K0). So the resid-
uals that are used to construct our LM statistic can be obtained from either method.
When time fixed effects are present in the model, we extend SSP’s method to allow for
time fixed effects and show that the LM statistic behavior is asymptotically equivalent to
that in the absence of time fixed effects.

We conduct Monte Carlo simulations to show the excellent finite-sample perfor-
mance of our test. Both the levels and powers of our test perform well in finite samples.
For the data generating processes (DGPs) considered, when both N and T are large, our
method can determine the number of groups correctly with a high probability.

Our method is applicable to a wide range of empirical studies. In this paper, we pro-
vide detailed empirical analysis on the relationship between income and democracy.
Specifically, yit is a measure of democracy for country i in period t: Xit includes its in-
come (the logarithm of its real gross domestic product (GDP) per capita) and lagged yit .
The main parameter of interest is the effect of income on democracy. In an influential
paper, Acemoglu et al. (2008; AJRY hereafter) use the standard panel data model with
common slope coefficients and find that the effect of income on democracy is insignif-
icant. We find that the slope coefficients (the effects of income and lagged democracy
on democracy) are actually heterogeneous. The hypothesis of homogeneous slope co-
efficients is strongly rejected with p values being less than 0�001. This suggests that the
common coefficient model is likely to be misspecified. Further, we determine the num-
ber of heterogeneous groups to be three and find that the slope coefficients of the three
groups differ substantially. In particular, for one group, the effect of income on democ-
racy is positive and significant, and for the other two groups, the income effects are also
significant, but negative with different magnitudes. Therefore, our method provides the
new insight that the effect of income on democracy is heterogeneous and significant, in
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sharp contrast to the existing finding that the income effect is insignificant. Our classi-
fication of groups is completely data-driven and the result does not show any apparent
pattern, for example, in geographic locations. We further investigate the determinants
of the group pattern by running a cross-country multinomial logit regression on some
country-specific covariates. We find that two variables, namely, the constraints on the
executive at independence and the long-run economic growth, are important determi-
nants.

There are numerous potential applications of our method. For example, SSP study
the determinants of saving rates across countries. That is, Yit is the ratio of saving to
GDP, and Xit includes the lagged saving rates, inflation rates, real interest rates, and per
capita GDP growth rates. Using an information criterion, they find a two-group struc-
ture in the slope coefficients. Our method is perfectly applicable to their setting. Another
example is Hsiao and Tahmiscioglu (1997, HT), who study the effect of firms’ liquidity
constraints on their investment expenditure. Specifically, their Yit is the ratio of firm i’s
capital investment to its capital stock at time t and Xit includes its liquidity (defined as
cash flow minus dividends), sales, and Tobin’s q. HT classify firms into two groups—less-
capital-intensive firms and more-capital-intensive firms—using the capital intensity ra-
tio of 0�55 as a cutoff point. Our method can be applied to their setting by classifying
the firms into heterogeneous groups in a data-driven way, which allows unobservable
heterogeneity in the slope coefficients. In general, our method provides a powerful tool
to detect unobserved heterogeneity, which is an important phenomenon in panel data
analysis. It can be applied to any linear model for panel data where the time dimension
is relatively long.

There are two limitations of our approach. First, we treat the unknown parameters as
fixed; thus our asymptotic analysis is only pointwise. We do not consider the uniform in-
ference here. Second, our method requires that both N and T be large. In particular, the
finite-sample results may not be reliable when T is small, and the poor performance can
occur when the true number of groups is large relative to N or the differences between
the values of the parameters in different groups are small.

The remainder of the paper is organized as follows. In Section 2, we introduce the
hypotheses and the test statistic for panel data models with individual fixed effects only.
In Section 3, we derive the asymptotic distribution of our test statistic under the null
and study the global power of our test. In Section 4, we extend the analysis to allow
for both individual and time fixed effects in the models. We conduct Monte Carlo ex-
periments to evaluate the finite-sample performance of our test in Section 5 and ap-
ply it to the income–democracy data set in Section 6. Section 7 concludes. All proofs
are relegated to the Appendix, available in a supplementary file on the journal website,
http://qeconomics.org/supp/517/supplement.pdf.

Notation. For an m×n real matrix A, we denote its transpose as A′ and its Frobenius
norm as ‖A‖ (≡ [tr(AA′)]1/2), where ≡ means “is defined as.” Let PA ≡ A(A′A)−1A′
and MA ≡ Im − PA, where Im denotes an m×m identity matrix. When A = {aij} is sym-
metric, we use λmax(A) and λmin(A) to denote its maximum and minimum eigenvalues,
respectively, and denote diag(A) as a diagonal matrix whose (i� i)th diagonal element
is given by aii. Let P0 ≡ T−1iT i′T and M0 ≡ IT − T−1iT i′T , where iT is a T × 1 vector of

http://qeconomics.org/supp/517/supplement.pdf


Quantitative Economics 8 (2017) Number of groups in latent panel structures 733

1s. Moreover, the operator −→P denotes convergence in probability, and −→D denotes
convergence in distribution. We use (N�T) → ∞ to denote the joint convergence of N
and T when N and T pass to infinity simultaneously. We abbreviate positive semidefi-
nite, with probability approaching 1, and without loss of generality as p.s.d., w.p.a.1, and
wlog, respectively.

2. Hypotheses and test statistic

In this section, we introduce the hypotheses and test statistic.

2.1 Hypotheses

We consider the panel structure model

yit = β0′
i Xit +μi + uit� i = 1� � � � �N and t = 1� � � � �T� (2.1)

where Xit is a p × 1 vector of strictly exogenous or predetermined regressors, μi is an
individual fixed effect, and uit is the idiosyncratic error term. The model with both in-
dividual and time fixed effects will be studied in Section 4. We assume that β0

i has the
group structure

β0
i =

K0∑
k=1

α0
k1

{
i ∈G0

k

}
� (2.2)

where 1{·} is the indicator function, K is an integer, and {G0
1� � � � �G

0
K} forms a partition of

{1� � � � �N} such that
⋃K

k=1 G
0
k = {1� � � � �N} and G0

k∩G0
j = ∅ for any j �= k. Further, α0

k �= α0
j

for any j �= k. Let Nk = #G0
k denote the cardinality of the set G0

k. We assume that K,

G0 ≡ {G0
1� � � � �G

0
K}, α0

K ≡ (α0
1� � � � �α

0
K), and β0 ≡ (β0

1� � � � �β
0
N) are all unknown. One key

step in estimating all these parameters is to first determine K, as once K is determined,
we can readily apply SSP’s C-Lasso method or the K-means algorithm. This motivates
us to test the hypothesis

H0(K0) : K =K0 versus H1(K0) : K0 <K ≤Kmax� (2.3)

Here we assume that K, Kmax, and p are fixed, that is, they do not increase with the
sample size N or T .

The testing procedure developed below can be used to determine K. Suppose that
we have a priori information such that Kmin ≤ K ≤ Kmax, where Kmin is typically 1. Then
we can first test H0(Kmin) against H1(Kmin). If we fail to reject the null, then we conclude
that K = Kmin. Otherwise, we continue to test H0(Kmin + 1) against H1(Kmin + 1). We
repeat this procedure until we fail to reject the null H0(K

∗) and conclude that K = K∗.
If we reject K = Kmax, then we can use the random coefficient model to estimate the
model, that is, K = N . This procedure is also used in other contexts, for example, to
determine the number of lags in autoregressive (AR) models, the cointegration rank, the
rank of a matrix, and the number of latent factors in panel factor structures Onatski
(2009).
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In theory, Kmax can be any finite number. However, in practice, we do not suggest
choosing too large a value for Kmax. Our method is powerful when the number of groups
is small. When the number of groups is large, the classification errors can be large.
Therefore, if we reject K = Kmax for a reasonably large Kmax, then we can simply adopt
the random coefficient model to avoid classification errors.

2.2 Estimation under the null and test statistic

Our test is a residual-based test and so we only need to estimate the model under
H0(K0) : K = K0. In the special case where K0 = 1, the panel structure model reduces
to a homogeneous panel data model so that β0

i = β0 for all i = 1� � � � �N , and we can
estimate the homogeneous slope coefficient using the usual within-group estimator β̂.

In the general case where K0 > 1, we can consider two popular ways to estimate
the unknown group structure and the group-specific parameters. For example, we can
apply SSP’s C-Lasso procedure. Let ỹit = yit − ȳi·, where ȳi· = T−1 ∑T

t=1 yit . Define X̃it and
X̄i· analogously. Let β̃≡ (β̃1� � � � � β̃N) and α̃K0 ≡ (α̃1� � � � � α̃K0) be the C-Lasso estimators
proposed in SSP, which are defined as the minimizer of the criterion function

Q
(K0)
1NT�λ(β�αK0) =Q1�NT (β)+ λ

N

N∑
i=1

K0∏
k=1

∣∣|βi − αk|∣∣� (2.4)

where λ≡ λNT is a tuning parameter and

Q1�NT (β)= 1
NT

N∑
i=1

T∑
t=1

(
ỹit −β′

iX̃it

)2
�

Let Ĝk = {i ∈ {1�2� � � � �N} : β̃i = α̃k} for k = 1� � � � �K0. Let Ĝ0 = {1�2� � � � �N} \ (⋃K0
k=1 Ĝk).

Although SSP demonstrate that the number of elements in Ĝ0 shrinks to zero as T → ∞,
in finite samples, Ĝ0 may not be empty. To fully impose the null hypothesis H0(K0),
we can force all the estimates of the slope coefficients to be grouped into K0 groups.
Specifically, we classify member i in Ĝ0 to group k∗, where k∗ ≡ arg mink{‖β̃i − α̃k‖�k =
1� � � � �K0}. Our final estimators of β0

i s are the post-Lasso estimators. Specifically, for
each of the classified groups, we reestimate the homogeneous slope coefficient using
the usual within-group estimator. Let α̂k (k = 1� � � � �K0) be the estimator for group k.
Then the final estimators of β0

i s are β̂≡ (β̂1� � � � � β̂N), where β̂i = α̂k for i ∈ Ĝk.
Alternatively, one can apply the K-means algorithm as advocated by Lin and Ng

(2012), BM, Sarafidis and Weber (2015), and Ando and Bai (2016). Let g = {g1� � � � � gN }
denote the group membership such that gi ∈ {1� � � � �K0}. The K-means algorithm esti-
mates of αK0 and g can be obtained as the minimizer of the objective function

Q
(K0)
NT (αK0�g) = 1

NT

K0∑
k=1

∑
i:gi=k

T∑
t=1

(
ỹit − α′

gi
X̃it

)2
� (2.5)

Let ĝ ≡ {ĝ1� � � � � ĝN } denote the K-means algorithm estimate of g. With a little abuse of
notation, we also use α̂K0 ≡ (α̂1� � � � � α̂K0) and β̂ ≡ (β̂1� � � � � β̂N) to denote the K-means
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algorithm estimate of α0
K0

and β0, where β̂i = α̂ĝi . Define Ĝk = {i ∈ {1�2� � � � �N} : ĝi = k}
for k= 1� � � � �K0. Note that the K-means algorithm forces all individuals to be classified
into one of the K0 groups automatically so that Ĝ0 becomes an empty set in this case.

Given {β̂i}, we can estimate the individual fixed effects using μ̂i = 1
T

∑T
t=1(yit −

β̂′
iXit).1 The residuals are obtained by

ûit ≡ yit − β̂′
iXit − μ̂i� (2.6)

It is easy to show that

ûit = (yit − ȳi·)− (Xit − X̄i·)′β̂i

= uit − ūi· + (Xit − X̄i·)′
(
β0
i − β̂i

)
�

(2.7)

where ūi· = T−1 ∑T
t=1 uit . Under the null hypothesis, β̂i is a consistent estimator of β0

i .2

Hence, ûit should be close to uit . By the assumption that the regressors are predeter-
mined, Xit should not have any predictive power for uit . Specifically, we assume that
the error term uit is a martingale difference sequence (m.d.s.) (Assumption 1(v) below),
which implies that E(uit | Xit) = 0. If we write uit in linear regression form, we have

uit = υi +φ′
iXit +ηit� i = 1� � � � �N� t = 1� � � � �T�

where υi and φi are the intercept and slope coefficients, respectively, and ηit is the re-
gression error. Then the m.d.s. assumption implies that φi = 0 for all i’s. This motivates
us to run the auxiliary regression model

ûit = υi +φ′
iXit +ηit� i = 1� � � � �N� t = 1� � � � �T� (2.8)

and test the null hypothesis

H∗
0 :φi = 0 for all i = 1� � � � �N�

We construct an LM-type test statistic by concentrating the intercept υi out in (2.8).
Consider the Gaussian quasi-likelihood function for ûit ,


(φ)=
N∑
i=1

(ûi −M0Xiφi)
′(ûi −M0Xiφi)�

where φ ≡ (φ1� � � � �φN)′, ûi ≡ (ûi1� � � � � ûiT )
′, Xi ≡ (Xi1� � � � �XiT )

′, M0 ≡ IT − T−1iT i′T ,
and iT is a T × 1 vector of 1s. Define the LM statistic as

LM1NT (K0)=
(
T−1/2 ∂
(0)

∂φ

)′(
−T−1 ∂

2
(0)
∂φ∂φ′

)−1(
T−1/2 ∂
(0)

∂φ

)
� (2.9)

1If K0 = 1, we set β̂i = β̂, the within-group estimator of the homogeneous slope coefficient. Note that we
also suppress the dependence of μ̂i on K0.

2Strictly speaking, β̃i is a consistent estimator of β0
i under the null. But because the cardinality of the set

Ĝ0 shrinks to zero under the null as T → ∞, the difference between β̃i and β̂i is asymptotically negligible.
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where we make the dependence of LM1NT (K0) on K0 explicit. We can verify that

LM1NT (K0) =
N∑
i=1

û′
iM0Xi

(
X ′

iM0Xi

)−1
X ′

iM0ûi� (2.10)

where the dependence of LM1NT (K0) on K0 is through that of ûi on K0. We will show that
after being appropriately scaled and centered, LM1NT (K0) is asymptotically normally
distributed under H0(K0) and diverges to infinity under H1(K0).

Remark 2.1. We have included a constant term in the regression in (2.8). Under the
assumption that E(uit) = 0 and N and T pass to infinity jointly, one can also omit the
constant term and obtain the LM test statistic

LM1NT (K0)=
N∑
i=1

û′
iXi

(
X ′

iXi

)−1
X ′

i ûi� (2.11)

The asymptotic distribution of LMNT (K0) can be similarly studied with little modifica-
tion. In case T is not very large as in our empirical applications, we recommend includ-
ing a constant term in the auxiliary regression in (2.8) and thus only focus on the study
of LM1NT (K0) below.

3. Asymptotic properties

In this section, we first present a set of assumptions that are necessary for asymptotic
analyses and then study the asymptotic distributions of LM1NT (K0) under both H0(K0)

and H1(K0).

3.1 Assumptions

Let ‖A‖q ≡ [E(‖A‖q)]1/q for q ≥ 1. Let Ω̂i ≡ T−1X ′
iM0Xi and Ωi ≡E(Ω̂i). Define FNT�t ≡

σ({Xi�t+1�Xit�uit�Xi�t−1�ui�t−1� � � �}Ni=1). Let C < ∞ be a generic constant that may vary
across lines. Following SSP, we define the two types of classification errors

ÊkNT�i =
{
i /∈ Ĝk | i ∈G0

k

}
and F̂kNT�i =

{
i /∈G0

k | i ∈ Ĝk

}
� (3.1)

where i = 1� � � � �N and k = 1� � � � �K0. Let ÊkNT = ⋃
i∈G0

k
ÊkNT�i and F̂kNT = ⋃

i∈Ĝk
F̂kNT�i.

We make the following assumptions.

Assumption 1. (i) We have max1≤i≤N max1≤t≤N ‖ζit‖8+4σ ≤ C for some σ > 0 for ζit =
Xit , uit , and Xituit .

(ii) There exist positive constants ¯cΩ and c̄Ω such that ¯cΩ ≤ min1≤i≤N λmin(Ωi) ≤
max1≤i≤N λmax(Ωi)≤ c̄Ω.

(iii) For each i = 1� � � � �N , {(Xit�uit) : t = 1�2� � � �} is a strong mixing process with
mixing coefficients {αNT�i(·)}. The equality α(·) ≡ αNT (·) ≡ max1≤i≤N αNT�i(·) satisfies
α(s) = Oa�s�(s

−ρ), where ρ = 3(2 + σ)/σ + ε for some ε > 0. In addition, there exist in-
tegers τ0� τ∗ ∈ (1�T ) such that NTα(τ0) = o(1), T(T + N1/2)α(τ∗)(1+σ)/(2+σ) = o(1), and
N1/2T−1τ2∗ = o(1).
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(iv) Let ui ≡ (ui1� � � � � uiT )
′. Then (Xi�ui), i = 1� � � � �N , are mutually independent of

each other.

(v) For each i = 1� � � � �N , E(uit | FNT�t−1)= 0 almost surely (a.s.).

Assumption 2. Under H0(K0), we have

(i) Nk/N → τk ∈ (0�1) for each k= 1� � � � �K0 as N → ∞,

(ii)
∑K0

k=1 ‖α̂k − α0
k‖2 = OP((NT)−1 + T−2),

(iii) P(
⋃K0

k=1 ÊkNT ) = o(1) and P(
⋃K0

k=1 F̂kNT ) = o(1).

Assumption 3. There exist finite nonnegative numbers c1 and c2 such that

lim sup
(N�T)→∞

N log(NT)/T 2 = c1 and

lim sup
(N�T)→∞

log(NT)N(3+σ)/(4+2σ)T−(5+3σ)/(4+2σ) = c2�

Assumption 1(i) imposes moment conditions on Xit and uit . Assumption 1(ii) re-
quires that Ωi be positive definite uniformly in i. Assumption 1(iii) requires that each
individual time series {(Xit�uit) : t = 1�2� � � �} be strong mixing. This condition can be
verified if Xit does not contain lagged dependent variables regardless of whether one
treats the fixed effects μis as random or fixed. In the case of dynamic panel data models,
Hahn and Kuersteiner (2011) assume that μis are nonrandom and uniformly bounded,
in which case the strong mixing condition can also be verified. In the case of random
fixed effects, they suggest adopting the concept of conditional strong mixing, where the
mixing coefficient is defined by conditioning on the fixed effects. The dependence of
the mixing rate on σ defined in Assumption 1(i) reflects the trade-off between the de-
gree of dependence and the moment bounds of the process {(Xit�uit)� t ≥ 1}. The last
set of conditions in Assumption 1(iii) can easily be met. In particular, if the process is
strong mixing with a geometric mixing rate, the conditions on α(·) can be met simply
by specifying τ0 = τ∗ = �Cτ logT � for some sufficiently large Cτ , where �a� denotes the
integer part of a. Assumption 1(iv) rules out cross-sectional dependence among (Xi�ui)

and greatly facilitates our asymptotic analysis. Assumption 1(v) requires that the error
term uit be a martingale difference sequence (m.d.s.) with respect to the filter FNT�t ,
which allows for lagged dependent variables in Xit , and conditional heteroskedasticity,
skewness, or kurtosis of unknown form in uit .3

Assumption 2(i) is typically imposed in the literature on panel data models with la-
tent group structure; see BM, Ando and Bai (2016) and SSP who have rigorous asymp-
totic analysis for clustering estimators in different contexts. It implies that each group

3If the error terms are serially correlated in a static panel, it is well known that by adding lagged depen-
dent and independent variables in the model, one can potentially ameliorate problems caused by such se-
rial correlation. See Su and Chen (2013, p. 1090). For dynamic panel data models (e.g., panel AR(1) model),
we cannot allow for serial correlation in the error terms (e.g., AR(1) errors); otherwise, the error terms will
be correlated with the lagged dependent variables, causing the endogeneity issue, which we do not address
in this paper.
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has asymptotically nonnegligible members as N → ∞. Assumption 2(ii) and(iii) can
be verified for either the SSP’s C-Lasso estimators or the K-means algorithm estima-
tors under suitable conditions. Please note neither BM nor Ando and Bai (2016) study
the same model as ours. But it is not difficult to extend their analysis to our model
and verify Assumption 2(ii) and (iii). Our model is a special case considered by SSP.
We can readily verify Assumption 2(ii) and (iii) under Assumption 1 and the addi-
tional conditions (i) N1/2T−1(lnT)9 → 0 and N2T−(3+2σ) → c ∈ [0�∞) as (N�T) → ∞,
and (ii) Tλ2/(lnT)6+2υ → ∞ and λ(lnT)υ → 0 for some υ > 0 as (N�T) → ∞. Note
that we allow Xit to include the lagged dependent variables, in which case, both the
SSP’s post-Lasso estimators α̂k or the K-means algorithm estimators have asymptotic
bias of order O(T−1). In the absence of dynamics in the model, one would expect that
α̂k − α0

k =OP((NT)−1/2).
Assumption 3 imposes conditions on the rates at which N and T pass to infinity,

and the interaction between (N�T) and σ . Note that we allow N and T to pass to infin-
ity at either identical or suitably restricted different rates. The appearance of the loga-
rithm terms is due to the use of a Bernstein inequality for strong mixing processes. If the
mixing process {(Xit�uit)� t ≥ 1} has a geometric decay rate, one can take an arbitrarily
small σ in Assumption 1(i). In this case, Assumption 3 puts the most stringent restric-
tions on (N�T) by passing σ → 0: N3/5/T → 0 as (N�T) → ∞, ignoring the logarithm
term. On the other hand, if σ ≥ 1 in Assumption 1(i), then the second condition in As-
sumption 3 becomes redundant given the first condition. In the case of conventional
panel data models with strictly exogenous regressors only, Pesaran and Yamagata (2008)
require that either

√
N/T → 0 or

√
N/T 2 → 0 for two of their tests; but for stationary

dynamic panel data models, they prove the asymptotic validity of their test only under
the condition that N/T → κ ∈ [0�∞).

3.2 Asymptotic null distribution

Let hi�ts denote the (t� s)th element of Hi ≡ M0Xi(X
′
iM0Xi)

−1X ′
iM0. Let X†

it ≡ Xit −
T−1 ∑T

s=1 E(Xis) and b̄it ≡Ω
−1/2
i X†

it . Define

BNT ≡N−1/2
N∑
i=1

T∑
t=1

u2
ithi�tt and VNT ≡ 4T−2N−1

N∑
i=1

T∑
t=2

E

[
uit b̄

′
it

t−1∑
s=1

b̄isuis

]2

� (3.2)

The following theorem studies the asymptotic null distribution of the infeasible statistic
LM1NT .

Theorem 3.1. Suppose Assumptions 1–3 hold. Then under H0(K0),

J1NT (K0) ≡ (
N−1/2 LM1NT (K0)−BNT

)
/
√
VNT

D−→N(0�1) as (N�T) → ∞�

The proof of the above theorem is tedious and is relegated to the Appendix. To imple-
ment the test, we need consistent estimates of both BNT and VNT . Let b̂it = Ω̂

−1/2
i (Xit −
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T−1 ∑T
s=1 Xis) and b̂i ≡ (b̂i1� � � � � b̂iT )

′. Note that b̂i =M0XiΩ̂
−1/2
i . We propose to estimate

BNT by

B̂NT (K0) =N−1/2
N∑
i=1

T∑
t=1

û2
ithi�tt (3.3)

and VNT by

V̂NT (K0)= 4T−2N−1
N∑
i=1

T∑
t=2

[
ûit b̂

′
it

t−1∑
s=1

b̂isûis

]2

� (3.4)

Define

Ĵ1NT (K0) ≡ (
N−1/2 LM1NT (K0)− B̂NT (K0)

)
/

√
V̂NT (K0)� (3.5)

The following theorem establishes the consistency of B̂NT (K0) and V̂NT (K0) and the
asymptotic distribution of Ĵ1NT (K0) under H0(K0).

Theorem 3.2. Suppose Assumptions 1–3 hold. Then under H0(K0), B̂NT (K0) = BNT +
oP(1), V̂NT (K0)= VNT + oP(1), and Ĵ1NT (K0)−→DN(0�1) as (N�T) → ∞.

Theorem 3.2 implies that the test statistic Ĵ1NT (K0) is asymptotically pivotal under
H0(K0) and we reject H0(K0) for a sufficiently large value of Ĵ1NT (K0).

We obtain the distributional results in Theorems 3.1 and 3.2 despite the fact that
the individual effects μi can only be estimated at the slower rate T−1/2 rather than
the rate (NT)−1/2 or (NT)−1/2 + T−1 at which the group-specific parameter estimates
{α̂k�k = 1� � � � �K0} converge to their true values under H0(K0). The slow convergence
rate of these individual effect estimates does not have adverse asymptotic effects on the
estimation of the bias term BNT , the variance term VNT , and the asymptotic distribution
of Ĵ1NT (K0). Nevertheless, they can play an important role in finite samples, which we
verify through Monte Carlo simulations.

3.3 Consistency

Let GK = {(G1� � � � �GK) : ⋃K
k=1 Gk = {1� � � � �N} and Gk ∩ Gj = ∅ for any j �= k}. That is,

GK denotes the class of all possible K-group partitions of {1� � � � �N}. To study the con-
sistency of our test, we add the following assumption.

Assumption 4. (i) We have N−1 ∑N
i=1 ‖β0

i ‖2 = OP(1).

(ii) We have inf(G1�����GK0 )∈GK0
min(α1�����αK0 )

N−1 ∑K0
k=1

∑
i∈Gk

‖β0
i − αk‖2 →P

¯cK0 > 0 as
N → ∞.

Assumption 4(i) is trivially satisfied if β0
i s are uniformly bounded or random with

finite second moments. Assumption 4(ii) essentially says that one cannot group the N

parameter vectors {β0
i �1 ≤ i ≤N} into K0 groups by leaving out an insignificant number

of unclassified individuals. It is satisfied for a variety of global alternatives:
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(i) The number of groups is K =K0 + r for some positive integer r such that Nk/N →
τk ∈ (0�1) for each k= 1� � � � �K0 + r.

(ii) There is no grouped pattern among {β0
i �1 ≤ i ≤ N} such that we have a com-

pletely heterogeneous population of individuals.

(iii) The regression model is actually a random coefficient model β0
i = β0 + vi, where

β0 is a fixed parameter vector, and vis are independent and identical draws from a con-
tinuous distribution with zero mean and finite variance.

(iv) The regression model is a hierarchical random coefficient model β0
i = ∑K

k=1(α
0
k+

vki) × 1{i ∈ G0
k}, where α0

1� � � � �α
0
K are defined as before, vkis (for k = 1� � � � �K) are inde-

pendent and identical draws from a continuous distribution with zero mean and finite
variance, and K may be different from K0.

The following theorem establishes the consistency of Ĵ1NT .

Theorem 3.3. Suppose Assumptions 1, 3, and 4 hold. Then under H1(K0) with possible
diverging Kmax and random coefficients, P(Ĵ1NT (K0) ≥ cNT ) → 1 as (N�T) → ∞ for any
nonstochastic sequence cNT = o(N1/2T).

The above theorem indicates that our test statistic Ĵ1NT (K0) is divergent at N1/2T

rate under H1(K0) and thus has the power to detect any alternatives such that Assump-
tion 4 is satisfied.

Remark 3.1. Our asymptotic theories here are “pointwise,”as the unknown parameters
are treated as fixed. We do not consider the uniformity issue, and so our procedures
may suffer from the same problem as the other post-selection inference (see, e.g., Leeb
and Pötscher (2005, 2008, 2009) and Schneider and Pötscher (2009)). This seems to be a
well known challenge in the literature of model selection or pretest estimation. Although
it is a very important question, developing a thorough theory on uniform inference is
beyond the scope of this paper.

4. Time fixed effects

In applications, we may also consider the model with both individual and time fixed
effects,

yit = β0′
i Xit +μi + γt + uit� i = 1� � � � �N and t = 1� � � � �T� (4.1)

where γt is the time fixed effects, the other variables are defined as above, and we as-
sume that β0

i s have the unknown group structure defined in (2.2). We treat μi and γt as
unknown fixed parameters that are not separately identifiable. Despite this, it is possi-
ble to estimate the group-specific parameters α0

k and identify each individual’s group
membership consistently.
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4.1 Estimation under the null and test statistic

When β0
i = β0 for all i = 1� � � � �N , one can follow Hsiao (2014, Chapter 3.6) and sweep

out both the individual and time effects from (4.1) via suitable transformation. We do a
similar thing in the presence of heterogeneous slope coefficients β0

i . As before, we first
eliminate the individual effects μi in (4.1) via the within-group transformation

ỹit = β′
iX̃it + γ̃t + ũit � (4.2)

where ũit = uit − ūi·, γ̃t = γt − γ̄, and γ̄ = T−1 ∑T
t=1 γt . Then we eliminate γ̃t from the

above model to obtain

ÿit = β′
iX̃it − 1

N

N∑
j=1

β′
jX̃jt + üit � (4.3)

where ÿit = yit − ȳi· − ȳ·t + ȳ, ȳ·t = 1
N

∑N
i=1 yit , ȳ = 1

NT

∑N
i=1

∑T
t=1 yit , and üit , ū·t , and

ū are similarly defined. Under H0(K0): K = K0, we can follow SSP and estimate β ≡
(β0

1� � � � �β
0
N) and αK0 ≡ (α0

1� � � � �α
0
K0
) by minimizing the criterion function

Q
(K0)
2NT�λ(β�αK0) =Q2�NT (β)+ λ

N

N∑
i=1

K0∏
k=1

‖βi − αk‖� (4.4)

where

Q2�NT (β)= 1
NT

N∑
i=1

T∑
t=1

(
ÿit −β′

iX̃it + 1
N

N∑
j=1

β′
jX̃jt

)2

�

Let β̃ ≡ (β̃1� � � � � β̃N) and α̃K0 ≡ (α̃1� � � � � α̃K0) denote the estimates of β and αK0 , respec-

tively. If necessary, we can estimate γ̃t by ˜̃γt = 1
N

∑N
i=1(ỹit − β̃′

iX̃it) for t = 1� � � � �T . Given
β̃ and α̃K0 , we classify the N individuals into K0 groups as in Section 2. As before, we use

Ĝ1� � � � � ĜK0 to denote the K0 estimated groups and N̂k to denote the cardinality of Ĝk.
The post-Lasso estimates can be obtained in two ways. One is to pool all the observa-

tions within each estimated group and estimate the group-specific parameters for each
group separately after we demean over time and across individuals within the group. In
this way, one can easily work out the standard error for each group-specific estimate as
usual. Alternatively, we consider estimation based on (4.3) by using the estimated group
membership. Assuming all individuals are classified into one of the K0 groups, we obtain
the post-Lasso estimates {α̂k} of {α0

k} as the solution to the minimization problem

min{αk}
1

NT

K0∑
k=1

∑
i∈Ĝk

T∑
t=1

(
ÿit − α′

kX̃it + 1
N

K0∑
l=1

∑
j∈Ĝk

α′
jX̃jt

)2

� (4.5)

Let β̂i = α̂k for i ∈ Ĝk and k= 1� � � � �K0. Let α̂K0 = (α̂1� � � � � α̂K0).
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Given the above post-Lasso estimates, we define the restricted residual as

̂̈uit = ÿit − β̂′
iX̃it + 1

N

N∑
j=1

β̂′
jX̃jt � (4.6)

Following the analysis in Section 2.2, we propose to test H0(K0) by using the LM-type
test statistic

LM2NT (K0) =
N∑
i=1

̂̈u′
iM0Xi

(
X ′

iM0Xi

)−1
X ′

iM0̂̈ui�
where ̂̈ui = (̂üi1� � � � �̂̈uiT )′. We will show that after being appropriately centered, N−1/2 ×
LM2NT (K0) follows the same asymptotic distribution as N−1/2 LM1NT (K0) under the
null.

4.2 Asymptotic properties of the C-Lasso estimates

Since SSP do not allow the fixed time effects in their model, their asymptotic theory does
not apply to our C-Lasso estimates of the parameters and group identity. Fortunately, we
can study the preliminary convergence rates of various estimates under Assumptions 1,
2(i), and 3.

Theorem 4.1. Suppose that Assumptions 1, 2(i), and 3 hold. Then under H0(K0),

(i) 1
N

∑N
i=1 ‖β̃i −β0

i ‖2 =OP(T
−1),

(ii) (α̃(1)� � � � � α̃(K0))− (α0
1� � � � �α

0
K0
)= OP(T

−1/2),

(iii) max1≤i≤N ‖β̃i −β0
i ‖ = OP(aNT + λ),

where aNT = max{(NT)1/(4+2σ) log(NT)/T� (log(NT)/T)1/2} and (α̃(1)� � � � � α̃(K0)) is some
suitable permutation of (α̃1� � � � � α̃K0).

Theorem 4.1(i)–(iii) establishes the mean square convergence rate of {β̃i}, the con-
vergence rate of the group-specific estimates {α̃k}, and the uniform convergence rate of
β̃is, respectively. The findings are similar to those in SSP. In particular, the estimates of
the group-specific parameters do not depend on λ. Note that aNT = O((log(T)/T)1/2)

under the additional restriction that lim sup(N�T)→∞ NT−(1+σ) = c ∈ [0�∞). For nota-
tional simplicity, hereafter we simply write α̃k for α̃(k) as the consistent estimator of α0

ks.

Define the two types of classification errors ÊkNT and F̂kNT as before. To study the
consistency of our classification method, we add the following assumption.

Assumption 5. (i) We have N1/2T−1(lnT)9 → 0 and lim sup(N�T)→∞ NT−(1+σ) = c ∈
[0�∞).

(ii) We have Tλ2/(lnT)6+2υ → ∞ and λ(lnT)υ → 0 for some υ> 0 as (N�T) → ∞.
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Assumption 5(i) and (ii) strengthens the conditions on N , T , and λ. Note that As-
sumption 5(ii) implies that it suffices to choose λ ∝ T−a for some a ∈ (1/4�1/2).

The following theorem establishes the uniform consistency for our classification
method.

Theorem 4.2. Suppose that Assumptions 1, 2(i), 3, and 5 hold. Then under H0(K0),

(i) P(
⋃K0

k=1 ÊkNT ) ≤ ∑K0
k=1 P(ÊkNT ) → 0 as (N�T) → ∞,

(ii) P(
⋃K0

k=1 F̂kNT ) ≤ ∑K0
k=1 P(F̂kNT )→ 0 as (N�T) → ∞.

Given the results in Theorems 4.1 and 4.2, we will show that the post-Lasso estima-
tors {α̂k} are asymptotically oracle efficient in the sense that they are as efficient as the
infeasible estimators {ᾱk} under some regularity conditions:

{ᾱk} ≡ arg min{αk}
1

NT

K0∑
k=1

∑
i∈G0

k

T∑
t=1

(
ÿit − α′

kX̃it + 1
N

K0∑
l=1

∑
j∈G0

k

α′
jX̃jt

)2

� (4.7)

Let ᾱK0 = (ᾱ1� � � � � ᾱK0). Let QkNT = 1
NkT

∑
i∈G0

k
X̃

′
iX̃i, Qk�l = 1

NNkT

∑
i∈G0

k

∑
j∈G0

l
X̃

′
iX̃j ,

and VkNT = 1
NkT

∑
i∈G0

k
X̃

′
iÿi for k� l = 1� � � � �K0, where X̃i = X̃i − N−1 ∑

j∈G0
k
X̃j and

ÿi = (ÿi1� � � � � ÿiT )
′. Define

QNT =

⎛⎜⎜⎜⎜⎝
Q1NT −Q1�1 −Q1�2 · · · −Q1�K0

−Q2�1 Q2NT −Q2�2 · · · −Q2�K0
���

���
� � �

���

−QK0�1 −QK0�2 · · · QK0NT −QK0�K0

⎞⎟⎟⎟⎟⎠ and

VNT =

⎛⎜⎜⎜⎜⎝
V1NT

V2NT
���

VK0NT

⎞⎟⎟⎟⎟⎠ �

(4.8)

Let Q̂NT and V̂NT be analogously defined as QNT and VNT with G0
ks and Nks replaced

by Ĝks and N̂ks. We can verify that

vec(ᾱK0) =Q−1
NTVNT and vec(α̂K0) = Q̂

−1
NT V̂NT �

Let BkNT ≡ 1
NkT 2

∑
i∈G0

k

∑T
t=1

∑T
s=1 Xisuit , UkNT ≡ 1

NkT

∑
i∈G0

k

∑T
t=1 X

⊥
it uit , and ΩkNT =

N
N2

kT

∑
i∈G0

k

∑T
t=1 E(X

⊥
it X

⊥′
it u

2
it ) for k = 1� � � � �K0, where X⊥

it = Xit − E(X̄(k)
·t − X̄(k)),

X̄
(k)
·t = 1

N

∑
i∈G0

k
Xit , and X̄(k) = 1

T

∑T
t=1 X̄

(k)
·t .4 Let BNT = (B′

1NT � � � � �B
′
K0NT )

′, UNT =
(U′

1NT � � � � �U
′
K0NT )

′, and ΩNT = diag(Ω1NT � � � � �ΩK0NT ).
We add the following assumption.

4If {Xit� t ≥ 1} is mean-stationary, then X⊥
it = Xit .
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Assumption 6. (i) We have QNT →P Q0 > 0 as (N�T) → ∞.

(ii) We have
√
NTUNT →DN(0�Ω0) as (N�T) → ∞ where Ω0 = lim(N�T)→∞ ΩNT .

Assumption 6 imposes conditions to ensure the asymptotic normality of the post-
Lasso estimators of the group-specific parameters. When K0 = 1, QNT reduces to Q1NT −
Q1�1, which is required to be asymptotically nonsingular so that the usual fixed effects
estimator in a two-way error component model is asymptotically normal.

Theorem 4.3. Suppose Assumptions 1, 2(i), 3, 5, and 6 hold. Then under H0(K0),

(i) α̂k − α0
k = ᾱk − α0

k + oP((NT)−1/2) =OP((NT)−1/2 + T−1) for k= 1� � � � �K0,

(ii)
√
NT [vec(α̂K0 −α0

K0
)+Q−1

NTBNT ]→DN(0�Q−1
0 Ω0Q

−1
0 ).

Theorem 4.3(i) indicates that α̂k is asymptotically equivalent to the infeasible esti-
mator ᾱk. It also reports the convergence rate of α̂k and implies that 1

N

∑N
i=1 ‖β̂i−β0

i ‖2 =
OP((NT)−1 + T−2). Theorem 4.3(ii) reports the asymptotic distribution of α̂K0 . By the
Davydov inequality, we can readily show that Q−1

NTBNT is OP(T
−1), which suggests that

the order of the asymptotic bias of vec(α̂K0) is given by O(T−1). Note that this bias term
has the exact form as the bias term in the linear panel data model with individual fixed
effects alone considered by SSP. As in SSP, the bias is asymptotically vanishing in the case
where Xit only contains strictly exogenous regressors or N = o(T).

For inference, one needs to estimate Q0, Ω0, and Q−1
NTBNT . When necessary, one can

follow SSP to estimate Q−1
NTBNT . A consistent estimate of Q0 is given by Q̂NT . Similarly,

we can consistently estimate Ω0 by a sample analogue of ΩNT . For brevity, we do not
give the details.

4.3 Asymptotic null distribution of LM2NT (K0)

Despite the presence of time fixed effects, we can show that LM2NT (K0) shares the same
asymptotic null distribution as LM1NT (K0). This is summarized in the following theo-
rem.

Theorem 4.4. Suppose Assumptions 1, 2(i), 3, 5, and 6 hold. Then under H0(K0),

J2NT (K0) ≡ (
N−1/2 LM2NT (K0)−BNT

)
/
√
VNT

D−→N(0�1) as (N�T) → ∞�

That is, N−1/2 LM2NT (K0) shares the same asymptotic bias (BNT ) and asymptotic
variance (VNT ) as N−1/2 LM1NT (K0).

As before, we can consistently estimate both BNT and VNT by B̂NT (K0) and V̂NT (K0).
The major difference is that we now need to use the residuals ̂̈uit to replace ûit through-
out. Given B̂NT (K0) and V̂NT (K0), we can obtain a feasible version of J2NT (K0):

Ĵ2NT (K0)≡ (
N−1/2 LM2NT (K0)− B̂NT (K0)

)
/

√
V̂NT (K0)�

Following the proofs of Theorems 3.2 and 3.3, we can readily show that Ĵ2NT (K0) is
asymptotically N(0�1) under H0(K0) and is divergent at N1/2T rate under under H1(K0).
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That is, results analogous to those in Theorems 3.2 and 3.3 also hold. For brevity we omit
the details.

5. Monte Carlo simulations

In this section, we conduct Monte Carlo simulations to examine the finite-sample per-
formance of our proposed testing method.

5.1 Data generating processes and implementation

We consider five generating processes (DGPs). The first four DGPs only have individual
fixed effects:

DGP 1: yit = β0
1iX1it +β0

2iX2it +μi + uit .

DGPs 2–4: yit = β0
1iX1it + β0

2iyi�t−1 + μi + uit , where Xjit = ξjit + μi, j = 1, 2, and μi,
ξ1it , ξ2it , and uit are independent and identically distributed (IID) N(0�1) variables and
are mutually independent of each other.

DGP 5 has both individual and time fixed effects:

DGP 5: yit = β0
1iX1it +β0

2iyi�t−1 + 0�5μi + 0�5γt +uit , where X1it = ξ1it +μi +γt , and μi,
γt , ξ1it , and uit are mutually independent IID N(0�1) variables.

DGP 1 is a static panel structure, while DGPs 2–5 are dynamic panel structures. In
DGPs 1, 2 and 5, (β0

1i�β
0
2i) has a group structure:

(
β0

1i�β
0
2i

) =

⎧⎪⎪⎨⎪⎪⎩
(0�5�−0�5) with probability 0.3�

(−0�5�0�5) with probability 0.3�

(0�0) with probability 0.4�

Therefore, in DGPs 1, 2, and 5, the true number of groups is three. In DGP 3, we consider
a completely heterogeneous (random coefficient) panel structure where β0

1i and β0
2i fol-

low N(0�5�1) and U(−0�5�0�5), respectively. In principle, the true number of groups is
the cross-sectional dimension N in this case. In DGP 4, (β0

1i�β
0
2i) is similar to that in

DGPs 1, 2, and 5 except that it has some additional small disturbance. Specifically,

(
β0

1i�β
0
2i

) =

⎧⎪⎪⎨⎪⎪⎩
(0�5 + 0�1ν1i�−0�5 + 0�1ν2i) with probability 0.3�

(−0�5 + 0�1ν1i�0�5 + 0�1ν2i) with probability 0.3�

(0�1ν1i�0�1ν2i) with probability 0.4�

where ν1i and ν2i are each IID N(0�1), mutually independent, and independent of μi,
ξit , and uit . DGP 4 can be thought of as a small deviation from a group structure.

For each DGP, we first test the null hypotheses H0(1), H0(2), and H0(3) to examine
the level and power of our test.

We then use our tests to determine the number of groups as described in Section 2.1.
We set Kmax = 8 and let the nominal size decrease with the time series dimension T to
ensure that the type I error decreases with T . Specifically, we let the nominal size be
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1/T , which equals 0�10 and 0�025 for T = 10 and 40, respectively.5 If all eight hypotheses,
H0(1)� � � � �H0(8), are rejected, then we stop and conclude that the number of groups is
greater than eight and we can adopt the random coefficient model.

For the combination of N and T , we consider the typical case in empirical applica-
tions that T is smaller than or comparable to N and let (N�T) = (40�10), (80�10), and
(40�40). The number of replications in the simulations is 1000.

One important step in implementing our testing procedure is to choose the tuning
parameter λ. Following the theory in SSP, we let λ= c · s2

Y · T−1/3, where sY is the sample
standard deviation of Yit and c is some constant. We use three different values of c (0�25,
0�5, and 0�75) to examine the sensitivity of our results to c (thus λ).

As a comparison, we also consider the information criterion (IC) proposed in SSP to
determine the number of groups. Specifically, we choose K to minimize the IC,

IC(K�λ)= ln
(
σ̂2
(K�λ)

) + ρ1NTpK� K = 1� � � � �Kmax� (5.1)

where σ̂2
(K�λ) = 1

NT

∑N
i=1

∑T
t=1 û

2
it , and û′

its are the residuals under the specification of K
groups with the tuning parameter λ. The û′

its are defined in (2.6) or (4.6) in the presence
of both individual and time fixed effects. The notation ρ1NT is a tuning parameter and
we set ρ1NT = 2

3(NT)−1/2 as in SSP. Note that SSP’s IC can also be used to choose the
tuning parameter λ and K jointly by minimizing IC(K�λ) over both λ and K.

5.2 Simulation results

Table 1 shows the level and power behavior of our test statistics for testing the three
null hypotheses: H0(1), H0(2), and H0(3). We choose three conventional nominal levels:
0�01, 0�05, and 0�10. For DGPs 1, 2, and 5, the true number of groups is three. For H0(1),
the rejection frequencies are all 1 for all combinations of N and T and all three DGPs
at all three nominal levels. For H0(2), the power of the test increases rapidly with both

Table 1. Empirical rejection frequency.

c = 0�25 c = 0�5 c = 0�75

N T 0�01 0�05 0�10 0�01 0�05 0�10 0�01 0�05 0�10

DGP 1 K = 1 40 10 1 1 1 1 1 1 1 1 1
(alternative) 80 10 1 1 1 1 1 1 1 1 1

40 40 1 1 1 1 1 1 1 1 1

K = 2 40 10 0�13 0�31 0�43 0�12 0�30 0�41 0�12 0�29 0�41
(alternative) 80 10 0�28 0�53 0�67 0�28 0�52 0�66 0�26 0�52 0�65

40 40 1 1 1 1 1 1 1 1 1

K = 3 40 10 0�000 0�01 0�04 0�01 0�03 0�06 0�01 0�06 0�10
(null) 80 10 0�001 0�01 0�04 0�003 0�03 0�07 0�02 0�06 0�12

40 40 0�003 0�02 0�04 0�01 0�03 0�07 0�02 0�06 0�12

(Continues)

5We also try fixing the nominal level at 0�05. The results are similar and available upon request.
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Table 1. Continued.

c = 0�25 c = 0�5 c = 0�75

N T 0�01 0�05 0�10 0�01 0�05 0�10 0�01 0�05 0�10

DGP 2 K = 1 40 10 1 1 1 1 1 1 1 1 1
(alternative) 80 10 1 1 1 1 1 1 1 1 1

40 40 1 1 1 1 1 1 1 1 1

K = 2 40 10 0�06 0�21 0�32 0�06 0�18 0�30 0�05 0�17 0�29
(alternative) 80 10 0�16 0�38 0�54 0�14 0�36 0�51 0�14 0�35 0�50

40 40 1 1 1 1 1 1 1 1 1

K = 3 40 10 0�001 0�01 0�01 0�001 0�01 0�02 0�001 0�02 0�04
(null) 80 10 0�000 0�003 0�01 0�002 0�01 0�02 0�001 0�02 0�05

40 40 0�001 0�01 0�03 0�01 0�02 0�04 0�01 0�05 0�09

DGP 3 K = 1 40 10 1 1 1 1 1 1 1 1 1
(alternative) 80 10 1 1 1 1 1 1 1 1 1

40 40 1 1 1 1 1 1 1 1 1

K = 2 40 10 1 1 1 1 1 1 1 1 1
(alternative) 80 10 1 1 1 1 1 1 1 1 1

40 40 1 1 1 1 1 1 1 1 1

K = 3 40 10 0�98 1 1 0�98 1 1 0�99 1 1
(alternative) 80 10 1 1 1 1 1 1 1 1 1

40 40 1 1 1 1 1 1 1 1 1

DGP 4 K = 1 40 10 1 1 1 1 1 1 1 1 1
(alternative) 80 10 1 1 1 1 1 1 1 1 1

40 40 1 1 1 1 1 1 1 1 1

K = 2 40 10 0�12 0�30 0�44 0�12 0�28 0�42 0�10 0�27 0�41
(alternative) 80 10 0�34 0�60 0�72 0�32 0�57 0�70 0�31 0�53 0�69

40 40 1 1 1 1 1 1 1 1 1

K = 3 40 10 0�001 0�02 0�04 0�004 0�02 0�05 0�004 0�03 0�08
(alternative) 80 10 0�01 0�05 0�08 0�02 0�06 0�10 0�02 0�08 0�15

40 40 0�26 0�49 0�62 0�32 0�54 0�67 0�38 0�62 0�74

DGP 5 K = 1 40 10 1 1 1 1 1 1 1 1 1
(alternative) 80 10 1 1 1 1 1 1 1 1 1

40 40 1 1 1 1 1 1 1 1 1

K = 2 40 10 0�38 0�61 0�75 0�36 0�60 0�74 0�37 0�61 0�74
(alternative) 80 10 0�72 0�89 0�94 0�71 0�89 0�94 0�71 0�89 0�94

40 40 1 1 1 1 1 1 1 1 1

K = 3 40 10 0�01 0�04 0�06 0�01 0�03 0�06 0�01 0�04 0�07
(null) 80 10 0�01 0�04 0�07 0�01 0�05 0�09 0�03 0�07 0�13

40 40 0�002 0�02 0�05 0�003 0�02 0�06 0�01 0�03 0�07

Note: Numbers in the main entries are the rejection frequencies under the null or the alternative for three nominal levels:
0�01, 0�05, and 0�10. We consider three values of the constant c in the tuning parameter λ: 0�25, 0�5, and 0�75.

N and T . For example, when N = 40 and T = 40, the rejection frequencies are all 1 at
all three nominal levels. For H0(3), we examine the level of our test and find that the
rejection frequencies are fairly close to the nominal levels.
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For the heterogeneous DGP 3, our test rejects all three hypotheses with the frequen-
cies being 1 or nearly 1 at all three nominal levels. This reflects the power of our test
against global alternatives. For DGP 4, which represents a small deviation from the group
structure, our test shows reasonable power for large T , though it rejects K = 3 with a
small frequency when T is small, as expected. Also note that all the testing results are
quite robust to the values of c (thus λ).

Table 2A shows how our method performs in terms of determining the number of
groups. Specifically, the numbers in the main entries are the proportions of the replica-
tions in which the number of groups determined by our method is equal to, less than (<5
in DGP 3), or greater than (>5 in DGPs 1, 2, 4, and 5; >8 in DGP 3) a number. For DGPs
1, 2, and 5, our method determines the correct number of groups (three) with a large
probability. For example, when N = 40 and T = 40, for DGP 5, the number of groups
determined by our testing procedure equals the true number (three) with a probabil-
ity of 0�99. For DGP 3, where the true number of groups is N , our method determines a
large number of groups (greater than 8) with a probability of 1 when N = 40 and T = 40.
DGP 4 represents a small deviation from a three-group structure. When the sample size
is small (N = 40 and T = 10), with a high probability, the number of groups determined
by our method is two or three. When the sample size increases to N = 40 and T = 40,
our method determines four groups with a probability larger than 0�25. These results are
reasonable. Intuitively, if N and T are small, the data can only provide limited informa-
tion on the underlying DGP, and it is reasonable to apply a small group structure to serve
as a good approximation to the true model. As N and T become large, more information
on the underlying DGP is revealed, and it is sensible to adopt a larger number of groups
to approximate the true model more accurately.

Table 2B shows the performance of SSP’s information criterion (IC). Comparing Ta-
bles 2A and 2B, we find that for DGPs 1, 2, and 5, the performances of our method
and SSP’s IC are comparable. However, for DGPs 3 and 4, our method dominates SSP’s.
Specifically, for DGP 3, where the number of groups is N , SSP tend to determine a small
number of groups (less than six even when N = 40 and T = 40), while our method deter-
mines that the number of groups is greater than eight for most cases. For DGP 4, in large

Table 2A. Frequency of the number of groups determined by our method.

N T K = 1 K = 2 K = 3 K = 4 K = 5 K > 5

DGP 1 c = 0�25 40 10 0 0�57 0�40 0�03 0 0
80 10 0 0�34 0�63 0�03 0 0
40 40 0 0 0�99 0�01 0 0

c = 0�5 40 10 0 0�59 0�35 0�05 0�01 0
80 10 0 0�34 0�60 0�05 0�01 0
40 40 0 0 0�98 0�02 0 0

c = 0�75 40 10 0 0�59 0�31 0�07 0�02 0�01
80 10 0 0�35 0�53 0�08 0�04 0�01
40 40 0 0 0�96 0�03 0�01 0

(Continues)
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Table 2A. Continued.

N T K = 1 K = 2 K = 3 K = 4 K = 5 K > 5

DGP 2 c = 0�25 40 10 0 0�68 0�30 0�01 0 0
80 10 0 0�46 0�52 0�01 0 0
40 40 0 0 1 0 0 0

c = 0�5 40 10 0 0�71 0�28 0�02 0 0
80 10 0 0�49 0�49 0�01 0�01 0
40 40 0 0 0�99 0�01 0 0

c = 0�75 40 10 0 0�72 0�25 0�03 0�01 0
80 10 0 0�51 0�45 0�04 0�01 0
40 40 0 0 0�98 0�02 0 0

N T K < 5 K = 5 K = 6 K = 7 K = 8 K > 8

DGP 3 c = 0�25 40 10 0�02 0�03 0�04 0�05 0�01 0�86
80 10 0 0 0 0 0 1
40 40 0 0 0 0 0 1

c = 0�5 40 10 0�01 0�01 0�01 0�02 0�01 0�93
80 10 0 0 0 0 0 1
40 40 0 0 0 0 0 1

c = 0�75 40 10 0 0 0�01 0�01 0�01 0�97
80 10 0 0 0 0 0 1
40 40 0 0 0 0 0 1

N T K = 1 K = 2 K = 3 K = 4 K = 5 K > 5

DGP 4 c = 0�25 40 10 0 0�56 0�39 0�04 0�01 0
80 10 0 0�28 0�64 0�07 0�01 0
40 40 0 0 0�62 0�26 0�11 0�01

c = 0�5 40 10 0 0�58 0�37 0�04 0�01 0
80 10 0 0�30 0�60 0�09 0�02 0
40 40 0 0 0�58 0�28 0�13 0�01

c = 0�75 40 10 0 0�59 0�33 0�06 0�02 0
80 10 0 0�31 0�54 0�11 0�03 0�01
40 40 0 0 0�49 0�34 0�16 0�01

N T K = 1 K = 2 K = 3 K = 4 K = 5 K > 5

DGP 5 c = 0�25 40 10 0 0�25 0�69 0�05 0 0
80 10 0 0�06 0�87 0�06 0�01 0
40 40 0 0 0�99 0�01 0 0

c = 0�5 40 10 0 0�26 0�68 0�05 0 0
80 10 0 0�06 0�85 0�08 0 0
40 40 0 0 0�99 0�01 0 0

c = 0�75 40 10 0 0�27 0�67 0�06 0�01 0
80 10 0 0�06 0�81 0�12 0�01 0
40 40 0 0 0�99 0�01 0 0

Note: Numbers in the main entries are the proportions of the replications in which the determined number of groups is less
than, equal to, or greater than a number. We consider three values of the constant c in the tuning parameter λ: 0�25, 0�5, and
0�75.
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Table 2B. Frequency of the number of groups determined by the information criterion.

N T K = 1 K = 2 K = 3 K = 4 K = 5 K > 5

DGP 1 c = 0�25 40 10 0 0�49 0�50 0�01 0 0
80 10 0 0�13 0�81 0�06 0�01 0
40 40 0 0 1 0 0 0

c = 0�5 40 10 0 0�67 0�33 0�01 0 0
80 10 0 0�28 0�68 0�04 0 0
40 40 0 0 1 0 0 0

c = 0�75 40 10 0 0�80 0�20 0 0 0
80 10 0 0�46 0�52 0�02 0 0
40 40 0 0 1 0 0 0

N T K = 1 K = 2 K = 3 K = 4 K = 5 K > 5

DGP 2 c = 0�25 40 10 0 0�55 0�44 0�01 0 0
80 10 0 0�17 0�79 0�04 0 0
40 40 0 0 1 0 0 0

c = 0�5 40 10 0 0�70 0�30 0 0 0
80 10 0 0�31 0�66 0�02 0�01 0
40 40 0 0 1 0 0 0

c = 0�75 40 10 0 0�81 0�19 0 0 0
80 10 0 0�51 0�46 0�03 0 0
40 40 0 0 1 0 0 0

N T K < 5 K = 5 K = 6 K = 7 K = 8 K > 8

DGP 3 c = 0�25 40 10 0�96 0�03 0�01 0 0 0
80 10 0�95 0�05 0 0 0 0
40 40 0�67 0�21 0�10 0�02 0 0

c = 0�5 40 10 0�99 0�01 0 0 0 0
80 10 0�98 0�02 0 0 0 0
40 40 0�81 0�13 0�05 0�01 0 0

c = 0�75 40 10 0�99 0�01 0 0 0 0
80 10 0�99 0�01 0 0�00 0 0
40 40 0�85 0�11 0�02 0�01 0 0

N T K = 1 K = 2 K = 3 K = 4 K = 5 K > 5

DGP 4 c = 0�25 40 10 0 0�51 0�46 0�03 0 0
80 10 0 0�16 0�74 0�10 0�01 0
40 40 0 0 1 0 0 0

c = 0�5 40 10 0 0�65 0�34 0�02 0 0
80 10 0 0�30 0�65 0�05 0�01 0
40 40 0 0 1 0 0 0

c = 0�75 40 10 0 0�77 0�22 0�01 0 0
80 10 0 0�50 0�45 0�04 0�01 0
40 40 0 0 0�99 0�01 0 0

(Continues)
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Table 2B. Continued.

N T K = 1 K = 2 K = 3 K = 4 K = 5 K > 5

DGP 5 c = 0�25 40 10 0 0�16 0�79 0�06 0 0
80 10 0 0�01 0�89 0�10 0�01 0
40 40 0 0 1 0 0 0

c = 0�5 40 10 0 0�18 0�75 0�07 0 0
80 10 0 0�02 0�83 0�16 0 0
40 40 0 0 1 0 0 0

c = 0�75 40 10 0 0�22 0�70 0�08 0 0
80 10 0 0�03 0�70 0�27 0 0
40 40 0 0 1 0 0 0

Note: Numbers in the main entries are the proportions of the replications in which the determined number of groups is less
than, equal to, or greater than a number. We consider three values of the constant c in the tuning parameter λ: 0�25, 0�5, and
0�75.

samples (N = 40 and T = 40), SSP determine three groups with a high probability, while
our method determines a relatively large number of groups.

To examine the performance of the C-Lasso estimator following our method to de-
termine the number of groups, we compare the following four estimators: (i) the com-
mon coefficient estimator, (ii) the random coefficient estimator, (iii) the post C-Lasso
estimator with the number of groups determined by our method, and (iv) the infeasible
estimator where the true number of groups and group classification are known. We re-
port the mean squared errors (MSE), calculated as the average values of 1

N

∑N
i=1 ‖β̂i −

β0
i ‖2 over 1000 replications, where β̂i denotes the estimator. Table 3 presents the results

for DGP 1.6 It is clear that our estimator dominates the common coefficient estimator
and the random coefficient estimator. However it performs worse than the infeasible es-
timator, especially when the sample size is small. This reflects the effect of classification
errors in finite samples.

6. Empirical application: Income and democracy

The relationship between income and democracy has attracted much attention in em-
pirical research; see, for example, Lipset (1959), Barro (1999), AJRY, and BM. To the best

Table 3. Comparison of the MSE of various estimators: DGP 1.

Post C-Lasso
Common Random

N T Coefficient Coefficient c = 0�25 c = 0�5 c = 0�75 Infeasible

40 10 0�31 0�33 0�18 0�18 0�18 0�02
80 10 0�30 0�33 0�16 0�17 0�17 0�01
40 40 0�30 0�06 0�02 0�02 0�03 0�004

Note: Numbers in the main entries are the MSE of various estimators. For the post C-Lasso estimators, we consider three
values of the constant c in the tuning parameter λ: 0�25, 0�5, and 0�75.

6The results for other DGPs are available upon request.
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of our knowledge, none of the existing studies allows for heterogeneity in the slope co-
efficients in their model specifications. As discussed in AJRY, “societies may embark on
divergent political-economic development paths.” Thus, ignoring the heterogeneity in
the slope coefficients may result in model misspecification and invalidate subsequent
inferences. Hence, it is important to know whether the data support the assumption of
homogeneous slope coefficients. If not, then we need to determine the number of het-
erogeneous groups and classify the countries using statistic methods. We apply our new
method to study this important question.

6.1 Data and implementation

We let yit be a measure of democracy for country i in period t and let Xit be the logarithm
of its real GDP per capita. The measure of democracy and real GDP per capita are from
the Freedom House and Penn World Tables, respectively.7 Note that the Freedom House
measures of democracy (yit) are normalized to be between 0 and 1.

We consider the specification with both individual and time fixed effects,

yit = β1iXi�t−1 +β2iyi�t−1 +μi + γt + uit�

and assume that (β1i�β2i) has a group structure to account for possible heterogeneity.
In a closely related paper, BM consider a group structure in the interactive fixed effects
and assume (β1i�β2i) is constant for all is.8

We use a balanced panel data set similar to that in BM. The number of countries
(N) is 74. The time index is t = 1� � � � �8, where each period corresponds to a 5-year in-
terval over the period 1961–2000. For example, t = 1 refers to years 1961–1965. Because
the lagged yit is used as a regressor, the number of time periods (T ) is seven, that is,
t = 2� � � � �8. The choice of countries is determined by data availability. In addition, we
exclude the countries whose measures of democracy remain constant over the seven
periods (t = 2� � � � �8). A list of the 74 countries can be found in Table 8. Table 4 presents
the summary statistics. The implementation details of our method are the same as in
the simulations.

6.2 Testing and estimation results

We first test the hypothesis H0(1), that is, we test whether (β1i�β2i) is constant for all i.
We soundly reject this hypothesis with a p value being less than 0�001. This provides

7All the data are directly from AJRY: http://economics.mit.edu/faculty/acemoglu/data/ajry2008.
8In BM’s Supplementary Material, they also consider the slope heterogeneity. Specifically, they consider

the two specifications (using our notation)

yit = β′
gi
Xit + αgit + uit �

yit = β′
gi
Xit + αgit +μi + uit �

where βgi is the group-specific slope coefficient, αgit is the group-specific (time-varying) fixed effect, and μi

is the country-specific (time-invariant) fixed effect. Their model specification is more general than ours, as
they allow time-varying group-specific fixed effects αgi�t . They report the results for the number of groups
being four. For their first specification, they find that income effect is statistically significant, while for their
second specification, they find that income effect is not statistically significant. Our empirical results are
somehow different from theirs due to the different model specifications adopted.

http://economics.mit.edu/faculty/acemoglu/data/ajry2008
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Table 4. Summary statistics (N = 74).

Xit : Logarithm of Real GDP
Yit : Democracy per Capita

Time
Period t Years Mean Median s.d. Mean Median s.d.

1 1961–1965 0�56 0�54 0�26 7�69 7�66 0�81
2 1966–1970 0�37 0�33 0�33 7�83 7�76 0�85
3 1971–1975 0�34 0�33 0�31 7�93 7�96 0�89
4 1976–1980 0�42 0�33 0�32 8�03 8�02 0�93
5 1981–1985 0�46 0�33 0�35 8�06 8�07 0�94
6 1986–1990 0�51 0�50 0�34 8�10 8�16 1�01
7 1991–1995 0�54 0�50 0�33 8�14 8�23 1�10
8 1996–2000 0�60 0�67 0�33 — — —

strong evidence that the slope coefficients are not homogeneous. We then test the hy-
pothesis H0(2) for three values of the tuning parameter λ = c · s2

Y · T−1/3 (c = 0�25, 0�5,
and 0�75). We reject this hypothesis at the 5% level with p values being 0�03, 0�03, and
0�02 for c = 0�25, 0�5, and 0�75, respectively. We continue to test H0(3) and find that the
p values are 0�42, 0�20, and 0�14 for c = 0�25, 0�5, and 0�75, respectively. Considering that
the p values are above or close to the recommended nominal level 1/T (0�14), we stop
the testing procedure and conclude that the number of groups is three. Table 5 presents
all the testing results and Table 8 shows the country membership of the three groups. To
take into account the issue of multiple testing, we also report Holm’s (1979) adjusted p

values in the last row in Table 5,9 which also lend strong support to the conclusion of
three groups in the data.

We also consider SSP’s IC (see equation (5.1) above) to determine the number of
groups. Again, we try three choices of λ as above with c = 0�25, 0�5, and 0�75. When c =
0�25 and 0�5, the IC determines three groups, as shown in Figure 1. When c = 0�75, the IC

Table 5. Test statistics.

c = 0�25 c = 0�5 c = 0�75

Null Hypothesis K = 1 K = 2 K = 3 K = 1 K = 2 K = 3 K = 1 K = 2 K = 3

Statistics 3�57 1�93 0�20 3�57 1�93 0�83 3�57 2�06 1�07
p values 0�0002 0�03 0�42 0�0002 0�03 0�20 0�0002 0�02 0�14
Holm adjusted p values 0�0006 0�05 0�42 0�0006 0�05 0�20 0�0006 0�04 0�14

Note: Numbers in the main entries are the test statistics, p values, and Holm adjusted p values for three values of the
constant c in the tuning parameter λ: 0�25, 0�5, and 0�75.

9Suppose that we have tested K∗ individual hypotheses, and we order the individual p values from the
smallest to the largest as p(1) ≤ p(2) ≤ · · · ≤ p(K∗) with their corresponding null hypotheses labeled accord-
ingly as H0(1)�H0(2)� � � � �H0(K∗). We calculate the step-down Holm adjusted p values for testing H0(k) as

adjusted p(k) = min
((
K∗ − k+ 1

)
p(k)�1

)
�
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Figure 1. Information criteria. Values in the figure are the information criteria for different
number of groups for three values of the constant c in the tuning parameter λ: 0�25, 0�5, and
0�75.

determines two groups.10 Given that the majority of our results determine three groups,
we conclude that K = 3.

Table 6 presents the estimation results. We report both C-Lasso estimates and post
C-Lasso estimates. C-Lasso estimates are defined in Section 4.1. The post C-Lasso is im-
plemented as in (4.5). Both estimates are bias-corrected and the standard errors are ob-
tained using the asymptotic theory developed in SSP. The C-Lasso and post-C-Lasso es-
timation results are similar for different values of c = 0�25, 0�5, and 0�75. In the following
discussion, we focus on the post-C-Lasso estimates with c = 0�5. It is clear that the esti-
mated slope coefficients exhibit substantial heterogeneity. For β1i, the estimates for the
three groups are 0�26, −0�16, and −0�24. All of them are significant at the 1% level. It is
interesting to note that not only the magnitudes, but also the signs of estimates, are dif-
ferent among the three groups. For Group 1, income has a positive effect on democracy,
while for Groups 2 and 3, the effects are negative with different magnitudes. For β2i, the
three group estimates are 0�10, −0�24, and 0�41. The first estimate is not significant, while
the second and third estimates are significant at the 1% level. We also present the point
estimates of the cumulative income effect (CIE), which is defined as β1i/(1 − β2i). The
estimates of CIE for the three groups are 0�28, −0�13, and −0�40, which imply that a 10%
increase in income per capita is associated with increases of 0�028, −0�013, and −0�040
in the measures of democracy, respectively.

Note that if we assume that β1i and β2i are homogeneous across i, then the common
estimates of β1i and β2i are −0�02 and 0�27 with t statistics being −0�45 and 5�95, respec-
tively. This suggests that the effect of income on democracy is not statistically signifi-
cant. This finding is consistent with that in AJRY. Nevertheless, the insignificance could
be due to the model misspecification, which ignores slope heterogeneity. Note that the

10The values of IC for two groups and three groups are −3�4078 and −3�4031, respectively, which are
actually quite close.
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Table 6. Estimation results.

β1i β2i
CIE

Estimates s.e. t Stat Estimates s.e. t Stat Estimates

Common Estimation −0�02 0�038 −0�45 0�27 0�046 5�95 −0�02

c = 0�25 C-Lasso Group 1 0�23 0�050 4�62 0�11 0�058 1�99 0�26
Group 2 −0�21 0�032 −6�65 −0�31 0�055 −5�67 −0�16
Group 3 −0�24 0�102 −2�36 0�53 0�052 10�28 −0�52

Post- Group 1 0�25 0�046 5�38 0�09 0�058 1�59 0�27
C-Lasso Group 2 −0�19 0�033 −5�67 −0�24 0�041 −5�90 −0�15

Group 3 −0�28 0�095 −2�97 0�49 0�049 9�99 −0�55

c = 0�5 C-Lasso Group 1 0�27 0�042 6�38 0�11 0�065 1�71 0�30
Group 2 −0�19 0�031 −5�98 −0�33 0�067 −4�91 −0�14
Group 3 −0�21 0�084 −2�56 0�47 0�064 7�40 −0�40

Post- Group 1 0�26 0�045 5�66 0�10 0�064 1�51 0�28
C-Lasso Group 2 −0�16 0�033 −4�80 −0�24 0�047 −5�05 −0�13

Group 3 −0�24 0�078 −3�02 0�41 0�061 6�78 −0�40

c = 0�75 C-Lasso Group 1 0�29 0�043 6�84 0�03 0�067 0�44 0�30
Group 2 −0�19 0�032 −5�90 −0�29 0�056 −5�21 −0�14
Group 3 −0�17 0�076 −2�25 0�49 0�058 8�52 −0�34

Post- Group 1 0�27 0�047 5�71 0�04 0�067 0�55 0�28
C-Lasso Group 2 −0�16 0�033 −4�76 −0�24 0�047 −5�00 −0�13

Group 3 −0�19 0�070 −2�72 0�43 0�054 8�06 −0�34

Note: Common estimation assumes one group. C-Lasso and post-C-Lasso estimates are based on three groups. We consider
three values of the constant c in the tuning parameter λ: 0�25, 0�5 and 0�75. CIE stands for cumulative income effect, which is
defined as (β1i/(1 −β2i)).

common estimate falls in the middle of the group estimates. Here all group estimates
are significant, but with different signs. Therefore, the common estimate, which can be
thought of as a certain weighted average of the group estimates, could be close to zero
and statistically insignificant.

To understand the heterogeneity in the data intuitively, we select three countries
(Malaysia, Indonesia, and Nepal) and show their time-series data in Table 7. We simply
calculate the correlations between the dependent variable Yit and the key explanatory
variable Xi�t−1. Even the simple correlations exhibit substantial heterogeneity with the
values being −0�86, 0�07, and 0�66. This suggests that it is implausible for the slope co-
efficients to be the same for all countries, even without performing any sophisticated
analysis.

This application shows that ignoring the heterogeneity in the slope coefficients can
mask the true underlying relationship among economic variables.

6.3 Explaining the group pattern

As discussed above, the group estimates of β1i and β2i show substantial heterogeneity,
though most of them are statistically significant at the 5% level. So far, our classification
of the groups is completely statistical and does not use any a priori information. One
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Table 7. Correlation between Yit and Xi�t−1 for selected countries.

Malaysia Indonesia Nepal

Time Period t Yit Xit Yit Xit Yit Xit

1 0�80 7�82 0�10 6�80 0�29 6�65
2 0�83 7�97 0�33 6�99 0�17 6�70
3 0�67 8�19 0�33 7�26 0�17 6�79
4 0�67 8�49 0�33 7�55 0�67 6�76
5 0�67 8�60 0�33 7�73 0�67 6�91
6 0�33 8�78 0�17 7�96 0�50 6�99
7 0�50 9�07 0 8�20 0�67 7�13
8 0�33 9�20 0�67 8�20 0�67 7�29

Correlation between Yit and Xi�t−1 −0�86 0�07 0�66

natural question is how to explain the group membership. Apparently, the group mem-
bership shown in Table 8 does not match the countries’ geographic locations. We further
investigate the group pattern using a cross-sectional multinomial logit model.

We let the dependent variable be group membership, which takes one of three val-
ues: 1, 2, or 3.11 The explanatory variables include (i) a measure of constraints on the ex-

Table 8. Classification of countries.

Group 1 (Positive β1 and Insignificant β2) (N1 = 21)

Brazil Cyprus Algeria Ecuador Spain
Ghana Greece Jordan Korea Rep. Malawi
Nepal Panama Philippines Portugal Rwanda
Thailand Taiwan Uruguay Venezuela RB Congo Dem. Rep
Zambia

Group 2 (Negative β1 and Negative β2) (N2 = 16)

Argentina Congo Rep. Dominican Republic Finland Gabon
Indonesia Japan Luxembourg Mexico Nigeria
Singapore El Salvador Togo Tunisia Turkey
Uganda

Group 3 (Negative β1 and Positive β2) (N3 = 37)

Burundi Benin Burkina Faso Bolivia Central African Republic
Chile China Cameroon Colombia Egypt Arab Rep
Guinea Guatemala Guyana Honduras India
Iran Israel Jamaica Kenya Sri Lanka
Morocco Madagascar Mali Mauritania Malaysia
Niger Nicaragua Peru Paraguay Romania
Sierra Leone Sweden Syrian Arab Republic Chad Trinidad and Tobago
Tanzania South Africa

11We only report the results for c = 0�5. The results for c = 0�25 and 0�75 are similar and available upon
request.
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Table 9. Summary statistics by group.

Group 1 Group 2 Group 3

Variables Variable Description Mean s.d. Mean s.d. Mean s.d.

Constraint Constraints on the executive
at independence

0�15 0�24 0�33 0�30 0�39 0�36

Growth 500-year income per capita
change

2�00 1�18 2�26 1�09 1�50 0�95

democ 500-year democracy change 0�80 0�23 0�66 0�30 0�65 0�29
indcent Year of independence/100 18�91 0�73 18�95 0�71 19�10 0�67
edu65 Education level in 1965 2�78 1�52 2�81 2�17 2�62 1�93
inc65 Logarithm of real GDP per

capita in 1965
7�72 0�82 7�93 0�97 7�58 0�73

dem65 Measure of democracy in 1965 0�51 0�27 0�63 0�25 0�55 0�26

ecutive at independence, (ii) the 500-year change in income per capita over 1500–2000,
(iii) the 500-year change in democracy over 1500–2000, (iv) independence year/100,
(v) initial education level in 1965, (vi) initial income level in 1965, and (vii) initial democ-
racy level in 1965. Acemoglu, Johnson, and Robinson (2005) argue that (i) is an impor-
tant determinant of democracy. The variables (ii) and (iii) present long-run changes in
income and democracy levels, respectively. The variable (iv) measures how recently a
country became independent. Variables (v), (vi), and (vii) are the initial key economic
variables. All the data are taken directly from AJRY.

Table 9 provides summary statistics for each of the three groups. The sample aver-
ages of (i) (the constraints on the executive at independence) are clearly substantially
different among the three groups. For this variable, the average value of Group 1 is only
about half that of Group 3. The variable of (ii) (the 500-year change in income per capita)
differs noticeably among the three groups. Group 2 has the largest sample average of
2�26, while Group 3 has the smallest value of 1�50.

Table 10 presents the multinomial logit regression results for various model specifi-
cations. We choose Group 3 as the base group. Compared with Group 3, at the 5% level
(a higher value of (i)), the constraints on the executive at independence lead to a reduced
likelihood of being in Group 1. On the other hand, a higher value of (ii) (the 500-year
change in income per capita) leads to a higher likelihood of being in Group 2. For the
case c = 0�5 reported here, the variable (iv) (independence year/100) is also significant
at the 5% level. However, this result is not robust to other choices of c. In summary, we
find that the constraints on the executive at independence and the long-run economic
growth are important determinants of our group pattern.

7. Conclusion

We develop a data-driven testing procedure to determine the number of groups in a
latent group panel structure proposed in SSP. The procedure is based on conducting
hypothesis testing on the model specifications. The test is a residual-based LM-type test
and is asymptotically normally distributed under the null. We apply our new method
to study the relationship between income and democracy, and find strong evidence that
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Table 10. Determinants of the group pattern.

Group 1

Constraints −3�01∗∗ −3�26∗∗∗ −3�04∗∗∗ −5�20∗∗∗ −5�55∗∗∗ −5�92∗∗∗ −5�99∗∗∗
(1�20) (1�18) (1�13) (1�53) (1�68) (1�81) (1�89)

Growth 0�60∗∗ 0�58∗ 0�96∗∗ 1�16∗ 1�67∗∗ 1�69∗∗
(0�29) (0�35) (0�41) (0�61) (0�72) (0�74)

demco 1�65 3�94∗∗ 4�95∗ 4�69∗ 4�48∗
(1�40) (1�85) (2�66) (2�70) (2�66)

indcent 1�77∗∗ 2�12∗∗ 1�92∗∗ 1�97∗∗
(0�77) (0�89) (0�94) (0�96)

edu65 −0�34 −0�14 −0�08
(0�34) (0�37) (0�41)

inc65 −1�41 −1�36
(0�93) (0�96)

dem65 −0�53
(2�02)

Group 2

Constraints −0�50 −1�03 −0�99 −1�39 −1�58 −1�99 −2�44
(0�91) (0�95) (0�98) (1�29) (1�62) (1�74) (1�83)

Growth 0�72∗∗ 0�89∗∗ 1�02∗∗ 1�19∗∗ 1�76∗∗ 1�92∗∗
(0�32) (0�37) (0�41) (0�60) (0�77) (0�80)

demco −0�98 −0�71 −0�67 −0�73 −0�56
(1�22) (1�42) (2�27) (2�39) (2�32)

indcent 0�35 0�24 0�06 0�10
(0�70) (0�92) (0�99) (1�00)

edu65 −0�29 −0�09 −0�25
(0�35) (0�38) (0�42)

inc65 −1�40 −1�62
(0�99) (1�05)

dem65 1�97
(2�17)

The symbols ∗ , ∗∗ , and ∗∗∗ denote significance at the 10%, 5%, and 1% levels, respectively. The results are based on a multi-
nomial logit regression where Group 3 is taken as the reference group. The dependent variable is the group membership. The
standard errors are calculated without taking into account the fact that the dependent variables are estimated.

the slope coefficients are heterogeneous and form three distinct groups. Further, we find
that the constraints on the executive at independence and long-run economic growth
are important determinants of the group pattern.

There are several interesting topics for further research. Here we apply our testing
procedure to determine the number of groups for slope coefficients. The same idea can
be applied to other group structures, such as those considered in BM, where fixed ef-
fects have a grouped pattern. We may also extend our methods to nonlinear panel data
models such as discrete choice models.
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