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Latent indices in assortative matching models

William Diamond
The Wharton School, University of Pennsylvania

Nikhil Agarwal
Department of Economics, Massachusetts Institute of Technology and NBER

A large class of two-sided matching models that include both transferable and
non-transferable utility result in positive assortative matching along a latent in-
dex. Data from matching markets, however, may not exhibit perfect assortativity
due to the presence of unobserved characteristics. This paper studies the iden-
tification and estimation of such models. We show that the distribution of the
latent index is not identified when data from one-to-one matches are observed.
Remarkably, the model is nonparametrically identified using data in a single large
market when each agent on one side has at least two matched partners. The addi-
tional empirical content in many-to-one matches is demonstrated using simula-
tions and stylized examples. We then derive asymptotic properties of a minimum
distance estimator as the size of the market increases, allowing estimation using
dependent data from a single large matching market. The nature of the depen-
dence requires modification of existing empirical process techniques to obtain a
limit theorem.
Keywords. Matching, identification, estimation.

JEL classification. C51, C78.

1. Introduction

Assortative matching along a variety of dimensions has been well documented in many
matching markets. There has been growing interest in estimating the underlying prefer-
ences that generate these patterns.1 This is an important step for quantitatively evaluat-
ing economic questions involving equilibrium effects of policy interventions or changes
in market structure. However, a researcher often has access only to data on matches in-
stead of direct information on preferences and only on a limited set of characteristics.
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Unobserved characteristics result in deviations from the central assortative tendency
observed in the data, and they can be important in understanding the distribution of
preferences.

We study the identification and estimation of preferences in a large matching mar-
ket in which the attractiveness of agents to the other side of the market can be summa-
rized using a single-dimensional index that aggregates an unobserved characteristic and
multidimensional observed characteristics. We assume that the matching is positive as-
sortative along this latent index. The positive assortative match is the unique pairwise
stable match if utility is nontransferable, but also if utility is transferable and the total
surplus is supermodular. While the single-index model is canonical in the theoretical
literature (see Becker (1973)), it is clearly restrictive as it rules out heterogeneity in pref-
erences. At the cost of this restriction, compared to the large body of empirical work
following Choo and Siow (2006), we present a nonparametric approach to identification
that not only allows for unobserved agent characteristics that are valued by the other
side,2 but that is also agnostic about whether utility is transferable. This single-index as-
sumption has been useful in empirical analyses of the marriage market (see Chiappori,
Iyigun, and Weiss (2009), Chiappori, Oreffice, and Quintana-Domeque (2012), for ex-
ample). The model may also provide an approximation in labor or education markets
in which workers or students are primarily differentiated by skill and firms or colleges
are primarily differentiated by quality. Further, the insights and results from our analysis
have proven useful to empirical approaches in related models (see Agarwal (2015, 2017),
Vissing (2017), Jiang (2016)).

Estimates of the distribution of the latent index as a function of observables are use-
ful for the analysis of many economic questions. For instance, quantitatively evaluating
the trade-off for firms between workers’ experience or education and unobserved pro-
ductivity, or the trade-off for workers between wages and the value of amenities such as
on-the-job training may require estimates that account for unobserved characteristics.
Similarly, evaluating the consequences of a market reform (such as policies that place
limits on college tuition) can require estimating the distribution of latent indices on
both sides of the market. Identifying and estimating preferences of agents on both sides
of the market may be a challenging exercise because equilibrium matches are jointly
determined by both sets of preferences: when we see a student enrolling at a particular
college, it need not be the case that the college is her most preferred option because she
may have not been accepted at a more preferred institution.

We study these problems assuming that the available data are from a large market.
This approach is motivated by the fact that data from several matching markets with
the same underlying structure are rare compared to data from a few markets with many
agents. For example, public high school markets, colleges, the medical residency market,
and marriage markets have at least several thousand participating agents. For similar
reasons, recent papers in the theoretical matching literature have utilized large market

2Choo and Siow (2006) assume that the (pretransfer) utility of agent i for partner j is given by uij =
φ(xi� zj)+ εi(zj), where xi and zj are observed. Therefore, characteristics of agent j that are not observed
in the data do not directly affect the utility of agent i.
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approximations for analyzing strategic behavior and the structure of equilibria.3 In our
analysis, large market approximations highlight and account for important interdepen-
dence between matches within a market in the asymptotic analysis of our estimator.

Even with the stark restriction that preferences are homogeneous, our first result on
identification is negative. We show that the distribution of the latent index is not iden-
tified from data from a single large market with one-to-one matches. Indeed, we con-
struct an example with a parametric family of models of one-to-one matching that are
observationally equivalent. This example shows that our nonidentification result is not
pathological. Intuitively, nonidentification is due to the fact that the observed joint dis-
tribution of agents and their match partners, which we refer to as sorting patterns, does
not allow us to condition on unobservables. Therefore, unobservable characteristics of
either side of the market could be driving these sorting patterns. These results imply
limitations on what can be learned from data on one-to-one matches and guide the use
of empirical techniques. For instance, they weigh against estimating the distribution of
the latent index in marriage markets using data from a single market. Nonetheless, data
from one-to-one matches may still be useful for certain questions. We show that the rel-
ative values of various observed characteristics are identified with one-to-one matches.
However, this limits the scope of questions that may be answered with such data.

In contrast to the nonidentification result with one-to-one matches, we show that
the distribution of latent indices on each side of the market is nonparametrically iden-
tified from data on many-to-one matches. The key insight is that the same value of the
unobservable characteristic of an agent determines multiple matches for that agent. The
formal result requires that each agent on one side of the market is matched to at least two
agents on the other side, a requirement that is likely satisfied in many education and la-
bor markets. To the best of our knowledge, this difference between the empirical content
of one-to-one matching and many-to-one matching has not been previously exploited
to obtain nonparametric identification results of a model with unobserved characteris-
tics. Our proof is based on interpreting the matching model with two-to-one matches
in terms of a measurement error model (Hu and Schennach (2008)). This reinterpreta-
tion makes the additional empirical content of many-to-one matches ex post intuitive:
the observable components of a worker’s quality provide a noisy measure of the overall
quality of her colleagues. As in measurement error models, we use the repeated mea-
surements made available when many workers match with the same firm to identify the
model.

We also use simulations from a parametrized family of models to illustrate the addi-
tional identifying information available in many-to-one matches. Our simulations sug-
gest that moments that only use information available in sorting patterns are not able
to distinguish between a large set of parameter values. In the context of one-to-one
matching, this is the only information observed in a data set from a single large mar-
ket. In contrast, our simulations also suggest that additional moments constructed from
many-to-one matching can be used to distinguish parameter values that yield indis-
tinguishable sorting patterns. An objective function constructed from both sets of mo-
ments has a global minimum near the true parameter. These simulations suggest that

3See Immorlica and Mahdian (2005), Kojima and Pathak (2009), Azevedo and Budish (2017), for example.
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using such information is important in empirical applications. For example, they sug-
gest that moments such as the within-firm variance in worker observables contain in-
formation about primitives beyond what can be learned from the covariance between
worker and firm observables. We therefore recommend empirical strategies that use in-
formation from many-to-one matching, when available.4

We then study the asymptotic properties of a minimum distance estimator for a
parametric model based on a criterion function that uses moments from many-to-one
matching as well as sorting patterns. As in the identification analysis, we develop an
asymptotic theory based on data from a single market with the number of agents grow-
ing large. This approach requires us to deal with technical challenges that arise from the
dependence of each match on the characteristics of all agents in the market. We prove
both consistency and

√
N-asymptotic normality of the estimator. For simplicity, we re-

strict attention to the case with two-to-one matching. To our knowledge, ours is the first
result on asymptotic theory for an estimator in a single large matching market.

Our asymptotic theory requires us to confront the fact that the observed matches,
as well as the model predictions, are a nonlinear function of the observables and unob-
servables in the entire market. We separately analyze the sampling distribution of the
moments in the data and the map from the structural parameters to these moments. To
prove a limit theorem for the sampling distribution of the moments in the data, we use
the fact that the distribution of the observed characteristics of matched pairs depends
only on the latent index. Hence, the conditional distribution of the observables given
the latent indices are independent of all other information on either side of the market.
This insight allows us to derive the asymptotic distribution of the moments of the data.

Then we study the model’s prediction for the moments as a function of the struc-
tural parameters and the observables in the data. Analyzing this map is challenging be-
cause the matches depend on the characteristics of all agents in the market. This gener-
ates dependency that cannot be analyzed using standard empirical process techniques
for independent and identically distributed (i.i.d.) data (e.g., van der Vaart and Wellner
(2000)). In particular, deriving the sensitivity of the matches between extremely desir-
able or extremely undesirable agents to the parameter requires controlling the tail be-
havior of the latent index. We make progress by first showing that this map, ignoring the
tails of the latent utilities, is smooth—specifically, Hadamard differentiable—in the sam-
pled observed characteristics. This allows us to use continuous mapping theorems and
the functional delta method to show convergence properties, except at the tails. When
the tails are negligible, the limit as the size of the tails we ignore goes to zero yields large
sample properties of the moment function.

The dependence inherent in the model also complicates the analysis of these tails.
We show that the tails are negligible by adapting a chaining argument from the empirical
process literature (Pollard (2002)), replacing a tail bound for i.i.d. data used in the exist-
ing proof with a concentration of measure inequality (Boucheron, Lugosi, and Massart

4It may be possible to use variation in market composition to identify the distribution of latent indices
when data from many-to-one matches are not available. We are not aware of any formal results that show
that such variation is sufficient for identification. Such an approach may require assuming that the param-
eters governing the primitives are constant across the markets.
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(2003)) suitable to the dependent data in our problem. This method allows us to prove
the equicontinuity results necessary for the limit theorem. For simplicity of exposition
in the main text, the technical regularity conditions on the primitives that justify this
approximation are detailed in Appendices C–F, available in a supplementary file on the
journal website, http://qeconomics.org/supp/736/code_and_data.zip. Finally, we use
Monte Carlo simulations to study the property of a simulated minimum distance es-
timator.

The paper starts with a brief discussion of the related literature, after which we
present the model (Section 2). Section 3 discusses identification with one-to-one and
many-to-one matching, Section 4 presents our asymptotic analysis of the estimator, and
Section 5 presents Monte Carlo results. All proofs are provided in the Appendix.

Related literature

Most of the recent literature on identification and estimation of matching games studies
the transferable utility (TU) model, in which the equilibrium governs the matches as well
as the surplus split between the agents with quasilinear preferences for money (Choo
and Siow (2006), Sorensen (2007), Fox (2010a), Gordon and Knight (2009), Galichon and
Salanie (2012), Chiappori, Salanié, and Weiss (2017), among others). The equilibrium
transfers are such that no two unmatched agents can find a profitable transfer in which
they would like to match with each other. The typical goal in these studies is to re-
cover a single aggregate surplus that determines the equilibrium matches. A branch of
this literature, following the work of Choo and Siow (2006), proposes identification and
estimation of a transferable utility model based on the assumption that each agent’s
utility depends only on observed characteristics and an unobserved taste shock drawn
from a specified distribution. Using this assumption, the papers propose estimation and
identification of group-specific surplus functions (Choo and Siow (2006), Galichon and
Salanie (2012), Chiappori, Salanié, and Weiss (2017)). A different approach to identifi-
cation in transferable utility models, due to Fox (2010a), is based on assuming that the
structural unobservables are such that the probability of observing a particular match
is higher if the total systematic, observable component of utility is larger than an alter-
native match. Compared to these approaches, our study is restricted to a single index
model but incorporates both TU and nontransferable utility (NTU) matching in a non-
parametric framework. We also allow for unobserved characteristics of the partner to
affect agent preferences and are interested in identifying the distribution of unobserv-
able characteristics, aspects that are not considered in the maximum score approach by
Fox (2010a).

In many applications, inflexible monetary transfers or counterfactual analyses that
require estimates of preferences for agents on both sides of the market motivate the use
of a nontransferable utility model (see Roth and Sotomayor (1992)). Previous analyses of
NTU models have resulted in only partial identification. Hsieh (2011) follows Choo and
Siow (2006) in assuming that agents belong to finitely many observed groups and that
agents have idiosyncratic tastes for these groups. The main identification result in Hsieh
(2011) shows that the model can rationalize any distribution of matchings in this setting,

http://qeconomics.org/supp/736/code_and_data.zip
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implying that the identified set is nonempty. Menzel (2015) studies identification and
estimation in a nontransferable utility model in a large market where agent preferences
are heterogeneous due to idiosyncratic match-specific tastes with a distribution in the
domain of attraction of the generalized extreme value (GEV) family and in which ob-
servable characteristics have bounded support. Menzel (2015) finds that only the sum
of the surplus of both sides obtained from matching is identified from data on one-
to-one matching. The result that identification is incomplete with one-to-one match-
ing is similar in spirit to our negative result on identification. While these papers focus
on the one-to-one matching case, our results exploit data on many-to-one matches to
nonparametrically identify preferences of both sides of the market, although our results
come at the cost of assuming homogeneous preferences.

With the exception of Chiappori, Oreffice, and Quintana-Domeque (2012) and
Galichon, Kominers, and Weber (2014), previous models are typically restricted to either
nontransferable or transferable utility. The objective in Galichon, Kominers, and We-
ber (2014) is to generalize the Choo and Siow (2006) framework to models of imperfectly
transferable utility. Our framework is closer to that of Chiappori, Oreffice, and Quintana-
Domeque (2012), who study a marriage market with positive assortative matching. They
also assume a single-index model and allow for both transferable and nontransferable
utility matching. They show that the marginal rates of substitution between two ob-
servable characteristics is identified using data on one-to-one matching. Our identifi-
cation results with data on one-to-one matching are consistent with their results, but
may also explain why Chiappori, Oreffice, and Quintana-Domeque (2012) may not have
estimated the distribution of the latent index with their data. Specifically, we show that
a many-to-one matching market is needed for such identification. Agarwal (2015) and
Vissing (2017) use our insight on the information in many-to-one matching to, respec-
tively, estimate preferences in the market for medical residents and the market for oil
drilling contracts using simulated minimum distance estimators. This approach is dif-
ferent from work by Logan, Hoff, and Newton (2008) and Boyd, Lankford, Loeb, and
Wyckoff (2013), who propose techniques that use only the sorting of observed charac-
teristics of agents as given by the matches (sorting patterns) to recover primitives. Our
result on nonidentification of a single-index model with data only on sorting patterns
implies that a more general model with heterogenous preferences will also not be identi-
fied. Therefore, our results suggest that point estimates obtained using only information
in sorting patterns may be sensitive to parametric assumptions.

A few empirical papers estimate sets of preference parameters that are consistent
with pairwise stability (Menzel (2011), Uetake and Watanabe (2017)). The concern that
preferences need not be point identified with one-to-one matches does not necessar-
ily apply to these approaches. For example, Menzel (2011) uses two-sided matching to
illustrate a Bayesian approach for estimating a set of parameters consistent with an in-
complete structural model. Our results on nonidentification and subsequent simula-
tions that use information on sorting patterns suggest that a rather large set of parame-
ters are observationally equivalent. While these results imply that the identified set may
be large, these approaches may still be informative for certain questions of interest.
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Our finding that data from many-to-one matching are important in identification
is related to work by Fox (2010a, 2010b) on many-to-many matching. In these papers,
many-to-many matching games allow identification of certain features of the observ-
able component of the surplus function when agents share some but not all partners.
This allows differencing the surplus generated from common match partners to learn
how much each agent values certain attributes in its partners. In our setting, many-
to-one matching plays a different role in that it allows us to learn the extent to which
unobservable characteristics of each side of the market drive the observed patterns.

The results on identification with many-to-one matching are based on techniques
for identifying nonlinear measurement error models developed in Hu and Schennach
(2008). These techniques have been applied to identify auction models with unobserved
heterogeneity (Hu, McAdams, and Shum (2013)) and dynamic models with unobserved
states (Hu and Shum (2012)). To our knowledge, these techniques have not been previ-
ously used to identify matching models.

Finally, we use a novel approach for dependent data to prove our limit theorems
because standard empirical process theories for i.i.d. data are not applicable in our con-
text. This feature of our model may be shared with other contexts, such as network for-
mation models (Graham (2017), Boucher and Mourifie (2012), Chandrasekhar and Jack-
son (2016), Leung (2015)). A common technique in the asymptotic analysis of network
models is based on assuming that dependence across links decays with a notion of dis-
tance between two nodes. Our application of concentration of measure inequalities re-
moves the need for an analogous assumption in our model.

2. Model

We consider a two-sided matching market with one side labelled as workers and the
other labelled firms. Although these labels are suggestive of a labor market, the model
may be applied to other two-sided matching markets, including matching of students
to schools, and the marriage market. Our model does not presume a monetary transfer
between the two sides of the market and will include both nontransferable and trans-
ferable utility cases. We first describe the latent indices that will be the object of interest
in our identification and estimation analysis before discussing their interpretation in
transferable and nontransferable utility models. Finally, we discuss questions of interest
that may be answered in this framework.

2.1 Latent indices

Most data sets have information on a limited number of characteristics on each side
of the market. Let the observable characteristics of worker i be xi and let the observ-
able characteristics of firm j be zj . Given our focus on positive assortative matching, we
posit two latent quality indices, vi and uj , one for each side of the market. These indices
simply order workers and firms by quality and do not impose cardinal restrictions. For
instance, firms may have heterogeneous production functions that take human capital
(vi) as an input. The latent indices can depend on observable characteristics as well as
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unobserved characteristics. Specifically, we assume that worker i’s human capital index
is given by the additively separable form

vi = h(xi)+ εi� (1)

where we set the location normalizations h(x̄)= 0 for some x̄, assume that ε is median
zero, and set the scale normalization |∇h(x̄)| = 1. Because an additively separable rep-
resentation of preferences is unique up to a positive affine transformation, the scale and
location normalizations are without loss of generality. These normalizations ensure that
the latent indices in our model are well defined.

The scalar unobservable εi aggregates the effect of all relevant determinants of
worker quality that are not observed in the data set. Additive separability in εi implies
that the marginal value of observable traits does not depend on the unobservable.

As for the model for the human capital index, we assume that the quality of firm j is
given by

uj = g(zj)+ηj� (2)

where we normalize g(z̄) = 0, η to be median zero and |∇g(z̄)| = 1. The quality of the
firm may reflect productivity differences or on-the-job amenities for workers. For in-
stance, one may also include wages in this model through one of the characteristics
zj if they are not negotiated during the matching process. This approach may be used
to model medical residency markets or colleges/schools in countries with fixed tuition
fees.

We make the following assumptions on the model.

Assumption 1. (i) The random variables ε and η are independent of X and Z, respec-
tively.

(ii) The random variables ε and η have bounded, differentiable densities, fε and fη,
with full support on R, and nonvanishing characteristic functions.

(iii) The functions h(·) and g(·) are differentiable and have full support over R.

(iv) The random variables h(X) and g(Z) admit bounded continuous densities fh
and fg.

Assumption 1(i) assumes independence of the unobservables. On its own, indepen-
dence is not particularly strong, but the restriction of additive separability makes this re-
strictive. Additive separability with independence is commonly used in discrete choice
literature as it significantly eases the analysis. Assumption 1(ii) requires that ε and η
have large support and imposes technical regularity conditions on their distributions
that will be useful in our identification analysis. The support conditions in Assump-
tion 1(iii) ensure that the observables can trace out the distribution of ε andη in the tails
as well, and Assumption 1(iv) requires at least one covariate to be sufficiently smooth
while others may be discrete.
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2.2 Positive assortative matching

The composition of the market is described by a pair of probability measures, μX�ε and
μZ�η. Here, μX�ε is the joint distribution of workers’ observable traits x ∈ χ ⊆ R

kx and
unobservable traits ε ∈ R. Likewise, μZ�η is the joint distribution of firms’ observable
traits z ∈ ζ ⊆ R

kz and unobservable traits η ∈ R. This formulation allows us to consider
large but finite economies as well as a continuum limit in a unified notational frame-
work. For instance, an economy withN agents on each side can be represented with the
measures μ(X�ε)N = 1

N

∑n
i=1 δ(Xi�εi) and μ(Z�η)N = 1

N

∑n
j=1 δ(Zj�ηj), where δY is the dirac

delta measure at Y .
A one-to-one match is a probability measure μ on (χ×R)× (ζ ×R) with marginals

μX�ε andμZ�η, respectively. The measureμ could be used to represent a continuum limit
as well as a finite-economy match. The traditional definition of a finite-market match
used in Roth and Sotomayor (1992) is based on a matching function μ∗(i) �→ J ∪ {i},
where J is the set of firms. For an economy of size N , with probability 1, such a func-
tion defines a unique counting measure of the form μN = 1

N

∑N
i�j=1 δ(Xi�εi�Zj�ηj), where

δ(Xi�εi�Zj�ηj) > 0 only if i is matched to j in a finite sample. When η and ε admit a den-
sity, in a finite economy, (z�η) (respectively (x�ε)) identifies a unique firm (respectively
worker) with probability 1.5 A many-to-one match with M partners on one side is de-
fined analogously as a measure μ on (χ×R)M × (ζ ×R).

The match μ is positive assortative if there do not exist two (measurable) sets SI ⊆
χ×R and SJ ⊆ ζ ×R in the supports of μX�ε and μZ�η, respectively, such that∫

SI

(
h(X)+ ε)dμX�ε > ∫

SI

(
h(X)+ ε)dμ(·� SJ)

and ∫
SJ

(
g(Z)+η)

dμZ�η >

∫
SJ

(
g(Z)+η)

dμ(SI� ·)	

This definition considers two potential sets of agents SI and SJ . If
∫
SI
(h(X)+ ε)dμX�ε >∫

SI
(h(X)+ ε)dμ(·� SJ), then the expected values of the latent indices of agents in SI are

larger than those matched with SJ . The analogous inequality for agents in SJ yields the
second condition. Hence, there are no such sets if these inequalities are not simultane-
ously satisfied for any pair SI and SJ , and the matching is assortative.6

This formulation presents a unified definition for assortativity in continuum mar-
kets as well as markets with a finite number of agents. In the finite-market case, consider
a match in which an agent with characteristics (x�ε) (respectively (x′� ε′)) is matched

5In addition to a traditional matching function, in a finite sample our definition also allows for fractional
matchings. However, such realizations are not observed in typical data sets on matches.

6We do not consider unmatched agents for two reasons. First, different equilibrium notions matching
(TU or NTU) impose different restrictions on preferences for unmatched agents. Using the implications
of positive assortative matching alone allows us to be agnostic about the nature of transfers. Second, many
data sets do not have information on unmatched agents. For example, typical employer–employee matched
data sets do not contain the number of job openings, and Agarwal (2015) does not have information on
medical residents who were not placed in residency programs.



694 Diamond and Agarwal Quantitative Economics 8 (2017)

with an agent with characteristics (z�η) (respectively (z′�η′)). Now consider singleton
sets SI = {(x�ε)} and SJ = {(z′�η′)}. The inequalities above imply that either h(x)+ ε ≤
h(x′)+ ε′ or g(z′)+ η′ ≤ g(z)+ η. Therefore, there are no such pairs of sets in the finite
markets if the conditions of our definition are satisfied. In what follows, we simply as-
sume that the market is characterized by positive assortative matching. As we discuss in
the next few sections, this assumption encompasses both transferable and nontransfer-
able utility models.

Further, our model requires that the matching only depends on the latent index.
This assumption is vacuous in finite samples because ties are zero-probability events.
Shi and Shum (2014) formalize this as “random matching” in a continuum version of the
Beckerian marriage model. They note that without this assumption, the distribution of
observed characteristics of matched partners is indeterminate. Our consistency results
imply that the moments of the finite sample data naturally converge to a population
analog with this property. Therefore, the data generating process we consider has the
following property in a positive assortative match.

Remark 1. A positive assortative match μ has support on (x�ε� z�η) only if
FU(u(z�η)) = FV (v(x�ε)), where FU and FV are the cumulative distributions of u and
v, respectively. Further, under random matching, the latent index is a sufficient statistic
for the distribution of match partners.

Hence, the firm with the qth quantile position of value to the worker is matched with
the worker with the qth quantile of desirability to the firm. The dependence only on
the latent index, in the one-to-one case, implies that μX�ε|Z�η = μX�ε|Z′�η′ if g(Z)+ η=
g(Z′)+ η′ and μZ�η|X�ε = μZ�η|X ′�ε′ if h(X)+ ε = h(X ′)+ ε′. Our paper studies identi-
fication and estimation of the latent utility indices using data from a matching market
with this property. As described below, it turns out that positive assortative matching on
v and u can result from both nontransferable and transferable utility models.

2.2.1 Nontransferable utility matching Models of matching markets in which transfers
between the parties are prohibited or restricted are commonly used in the theoretical
literature (cf. Roth and Sotomayor (1992)). Motivating examples include marriage mar-
kets, public schooling, and colleges. In such a model, the latent indices vi and uj are
interpreted as representing the ordinal preference relation for their match partners. Be-
cause these indices are ordinal, the framework allows for each firm j to have a separate
production function Φj(v) as long as Φj is strictly increasing in v. In the many-to-one
matching case, a focus of this paper, we will assume that Φj is increasing in each of
its components. Specifically, Φj(v1� v2) is increasing in both v1 and v2 when a firm is
matched with two workers.

The typical equilibrium assumption is that of pairwise stability, which makes two re-
strictions. First, there is no worker–firm pair such that both agents prefer matching with
each other to their current match (where the firm can fire a currently matched worker,
if necessary). Second, no worker or firm is matched with an unacceptable partner. The
existence of a pairwise stable match follows in a finite market because preferences are
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responsive (Roth and Sotomayor (1992)) and uniqueness follows from alignment of pref-
erences as discussed in Clark (2006) and Niederle and Yariv (2009). It is easy to see that
the unique pairwise stable match is positive assortative on the latent indices vi and uj .
Given our focus on positive assortative matching, we assume that all workers and firms
are acceptable to the other side.

Although the models are referred to as nontransferable utility models, the model can
incorporate transfers that are not simultaneously determined with the matching. In this
case, one of the observables includes the salary offered by program j. Estimating the la-
tent index allows one to measure the willingness to pay for various on-the-job amenities
by assuming a functional form, say

uj = zjβ+wj +ηj	 (3)

For instance, Agarwal (2015) uses a similar model to quantify the value for various at-
tributes of medical residency programs such as size, prestige, and patient mix.

An important restriction in the latent index framework is that agents have homo-
geneous ordinal preferences over their match partners. While the theoretical literature
assumes very general preferences when studying the existence of stable matchings, for-
mal identification and estimation analysis is yet to incorporate significant heterogeneity
in preferences.

2.2.2 Transferable utility matching Our latent index framework fits well into the clas-
sical Beckerian model of the marriage market. This matching model posits men and
women differentiated by one-dimensional characteristics that split a surplus from mar-
riage given by Φ(uj� vi). A matching is pairwise stable if there are transfers tij (possibly
negative), such that no man–woman pair find it mutually beneficial to agree to a transfer
and match with each other. As is well known, the unique pairwise stable match is posi-
tive assortative on u and v if Φ(uj� vi) is supermodular. This elegant model has received
a considerable amount of attention, and patterns of positive assortative matching ob-
served along age, income, and education in various marriage markets have been well
documented.

A thrust of our paper is the consideration of many-to-one matching. In this case,
we assume separability of the surplus function across matches so as to maintain pos-
itive assortative matching on the latent indices. Specifically, we assume that the sur-
plus generated by a firm with index uj that is matched with workers vi and vk is given
by

Φ(vi� vk�uj)= Φ̃(vi�uj)+ Φ̃(vk�uj)� (4)

where Φ̃· is supermodular. The assumption rules out complementarities across matches
but retains positive assortativity in a pairwise stable match. It also assumes that the mul-
tiple matches for an agent are symmetric. For example, in the worker–firm context, the
model is best suited for a market in which firms are hiring multiple workers with the
same job description.
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2.3 Unobserved characteristics

The lack of perfect positive assortative matching on observable characteristics may be
attributable to unaccounted preference heterogeneity or unobserved characteristics.
These unobserved characteristics are important for rationalizing the data. Previous ap-
proaches have typically focussed on the identification of observable components of util-
ity, often under parametric assumptions on the distribution of unobserved characteris-
tics.7 For instance, Chiappori, Oreffice, and Quintana-Domeque (2012) study a single-
index model like ours and obtain identification of the marginal rates of substitution

∂h(x)/∂x1

∂h(x)/∂x2
and

∂g(z)/∂z1

∂g(z)/∂z2
	

These quantities can be used to determine the trade-offs between observables, such
as the trade-off between a worker’s education and experience. Some economic ques-
tions, however, may require an analysis of unobservables. For example, one may be in-
terested in knowing how much of a worker’s human capital is explained by experience
and/or education. This exercise may require decomposing the variance of human capi-
tal into observable and unobservable components. Similarly, questions about compen-
sating differentials in labor markets require valuing on-the-job amenities or training,
some components of which may not be observed.

While several objects of interest can be measured through these marginal rates
of substitution between observed characteristics, many economic questions require a
deeper understanding of how agents’ preferences respond to interventions in matching
markets. For example, one may be interested in the effect of a subsidy on college tuition
on matches that occur in equilibrium. To predict the counterfactual matches, one needs
to measure the effect of this subsidy on the relative desirability of various colleges to
students. Changes in the relative desirability of colleges depend on the monetary value
students place on unobserved college characteristics. Therefore, an important objective
in this paper is to understand when the distributions of ε and η are identified, which in
turn implies identification of the probabilities

P
(
h(x1)+ ε1 >h(x2)+ ε2|x1�x2

)
and P

(
g(z1)+η1 > g(z2)+η2|z1� z2

)
	 (5)

These choice probabilities are also fundamental in the analysis of counterfactual
changes in market structure, market composition, and other policies.

It is important to note that the latent indices we analyze, u and v, are ordinal mea-
sures of the desirability of agents in the market. Identification of the total surplus func-
tion in the transferable utility case,Φ(u�v), or a cardinal measure of utilities in the non-
transferable utility case will require additional assumptions. For example, one may sim-
ply interpret the latent index as a utility measure in the NTU case or assume a particular

7For instance, Galichon and Salanie (2012) generalize the model by Choo and Siow (2006) and show that
Φ̄xizj is identified for a separable surplus function of the form Φij = Φ̄xizj + εi(zj) + ηj(xi) with known
distributions of εi(zj) and ηj(xi). These models therefore allow for unobserved preferences for observed
characteristics, but do not allow for unobserved characteristics. Menzel (2015) studies an NTU model with
a light restriction on tail behavior of the unobservables to identify the sum of the match surpluses accruing
to each side due to observables.



Quantitative Economics 8 (2017) Latent indices in assortative matching models 697

structure for the surplus function in the TU case if this is desirable for the empirical
application being considered. We avoid these assumptions for simplicity and to retain
generality with respect to these choices. In applications where one of the observed traits
presents a natural measure of value, our indices can be interpreted in units of this metric
for value.

3. Identification

This section starts by showing that data from a single matching market are sufficient for
identifying certain features of preferences. Specifically, one can identify the indices h(x)
and g(z) up to positive monotone transformations. We then show that data from one-
to-one matches are unable to identify the distribution of the latent indices if there are
unobserved characteristics on both sides of the market. Next, we show that data from
many-to-one matching restore full identification of the distribution of preferences. Fi-
nally, we illustrate these results using simulations.

3.1 Sorting patterns, indifference curves, and a sign restriction

We now study what can be learned from the joint distribution μXZ of observed firm
and worker traits. This is the marginal of μ on the observables, and it summarizes all
information available in data from one-to-one matching. It allows the assessment of the
sorting of worker observable traits to firm observables. We therefore refer to features of
this distribution as sorting patterns. As our first result shows, these features of the data
allow us to identify the indices h(x) and g(z) up to monotonic transformations.

Lemma 1. Under Assumption 1, the level sets of the functions h(·) and g(·) are identified
from data on a one-to-one match, that is, from observing μXZ .

Proofs not included in the text are given in the Appendix.
The result states that we can determine whether or not two worker types x and x′

are equally desirable from the sorting patterns observed in a one-to-one matching mar-
ket (hence, also if many-to-one matches are observed). Intuitively, if two worker types
have equal values of h(·), then the distributions of their desirability to firms are identical.
Consequently, the distribution of firms they match with are also identical. In a positive
assortative match, under the additive structure of equations (1) and (2) and the inde-
pendence of unobserved traits, the distribution of firm observable types these workers
are matched with turns out to be identical. Conversely, if two worker types are matched
with different distributions of firm observables, they cannot be identical in observable
quality. This result is similar to those in Chiappori, Oreffice, and Quintana-Domeque
(2012) that show that differentiability of h(·) and g(·) implies identification of marginal
rates of substitution, which are pinned down by indifference curves.

While the level sets of h(·) and g(·) are known, we cannot yet determine h(·) and g(·)
even up to positive monotone transformations. In particular, we cannot tell whether
a given worker trait is desirable or not. Intuitively, assortative matching between, say,
firm size and worker age, may result from either both traits being desirable or both traits
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being undesirable. The next result shows that a sign restriction is sufficient for identifying
h(·) and g(·) up to positive monotone transformations.

Assumption 2. (i) The functions h(x) and g(z) are strictly increasing in their first argu-
ments.

(ii) Further, for each x−1 = (x2� 	 	 	 � xkx) and z−1 = (z2� 	 	 	 � zkz ), h(X1�x−1) and
g(Z1� z−1) have full support on R.

Part (i) imposes a sign restriction that requires that the latent index is strictly increas-
ing in at least one observable characteristic. It is often natural to impose this restriction
in matching markets. For example, it is reasonable to argue that the desirability of work-
ers is increasing in education, holding all else fixed. Given such an assumption, our next
result shows that h(·) and g(·) can be determined up to positive monotone transforma-
tions. Part (ii) makes a large support assumption that allows ordering all the level sets of
h(x).

Proposition 1. If Assumptions 1 and 2 are satisfied, then h(·) and g(·) are identified up
to positive monotone transformations.

Proof. Identification of h and g up to a positive monotone transformation follows im-
mediately from Lemma 1 and Assumption 2. �

The sign restriction allows us to order the level sets of h and g.

3.2 Limitations of sorting patterns

As mentioned earlier, typical data sets do not contain all relevant characteristics of
agents on both sides of the market. The dispersion around a central positive assorta-
tive trend is a manifestation of these unobservables. Remark 1 reflects the importance
of unobservables as workers with characteristic (x�ε) are matched with firms with char-
acteristics (z�η) if

h(x)= F−1
V ◦ FU

(
g(z)+η) − ε	 (6)

This expression indicates that there are two sources of unobservables that result in im-
perfect assortativity, namely η and ε. Without these unobservables, a researcher would
observe perfect positive assortativity along the estimated indices h(x) and g(z).

A question remains about whether we can learn about the distribution of both of
these unobservables with data on one-to-one matches, which only contain information
in FXZ . The following stylized example shows that the answer is negative. A wide range
of parameters could be consistent with the data, even a highly parametric case.

Example 2. Let h(x)= x and g(z)= z. Assume that X and Z are distributed as N(0�1),
and ε and η are distributed as N(0�σ2

ε) and N(0�σ2
η), respectively. The distributions
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of U and V are therefore N(0�1 + σ2
η) and N(0�1 + σ2

ε), respectively. It is straightfor-

ward to show thatX|V = v∼N( 1
1+σ2

ε
v�

σ2
ε

1+σ2
ε
), that U |Z ∼N(Z�σ2

η), and that F−1
V ◦FU =

[ 1+σ2
ε

1+σ2
η
]1/2. Therefore, the distribution ofX|Z = z is given by the distribution of

1

1 + σ2
ε

F−1
V ◦ FU(z+η)+ ε1�

where ε1 ∼N(0� σ2
ε

1+σ2
ε
) and η∼N(0�σ2

η), independently of X and Z. Hence, X|Z = z is

distributed as

N

(
z

κ1/2 �1 − 1
κ

)
� (7)

where κ= (1 + σ2
ε)(1 + σ2

η).
The distribution in equation (7) is identical for all pairs (σε�ση) with (1 + σ2

η)×
(1 + σ2

ε) = κ. Thus, the family of matching models with (1 + σ2
η)(1 + σ2

ε) = κ are ob-
servationally equivalent when only data from one-to-one matches are available.

The example above shows that data on one-to-one matches cannot be used to iden-
tify the distribution of the two latent indices in the presence of unobservables on both
sides of the market. This highlights a central limitation of data from a market with one-
to-one matching such as the marriage market.8 Section 3.4 illustrates this limitation us-
ing a simulated objective function.

The failure of identification can be understood by considering the case in which
ε≡ 0. Equation (6) reduces to

h(x)= F−1
V ◦ FU

(
g(z)+η)

	

This expression shows that when ε≡ 0, the model is mathematically identical to the well
studied transformation model (Ekeland, Heckman, and Nesheim (2004), Chiappori and
Komunjer (2008)). Appendix C.1 uses results from Chiappori and Komunjer (2008) to
formally derive conditions under which any distribution FXZ can be rationalized.

These results imply that a model with unobservables on both sides is underidenti-
fied. This nonidentification is despite imposing additional regularity conditions. Hence,
empirical strategies to estimate the distribution of latent preferences using informa-
tion in sorting patterns may be suspect. Logan, Hoff, and Newton (2008) and Boyd et al.
(2013) employ empirical strategies that only use sorting patterns to estimate preferences
for models that include preference heterogeneity. Our nonidentification result suggests
that point estimates from this approach, including for models more general than the sin-
gle index model, may be sensitive to parametric assumptions. Such nonidentification is
problematic for counterfactuals relying on the probability of choices. For instance, the
result implies that the data can be rationalized in a model in which any worker with trait
x is preferred to any worker with trait x′ if h(x) > h(x′), even if this is not the case.

8This observation suggests one reason why Chiappori, Oreffice, and Quintana-Domeque (2012) do not
estimate the distribution of the latent index in their paper on the marriage market.
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3.3 Identification from many-to-one matches

We now show that data from many-to-one matching markets can be used to identify
the model. Consider a data set in which there are a large number of firms, and each
firm hires two workers. Therefore, we may arbitrarily label the slots occupied by each
worker as slots 1 and 2, independently of the firm and worker characteristics. The data
are summarized by the joint distribution FX1�X2�Z , where X1 and X2 are the observed
characteristics of the two workers employed at a firm with observable characteristic Z.

To see why multiple matches per partner can be useful for identification, note that
the observed worker/firm characteristics present noisy measures of the true quality of
the partners matched with each other. Remark 1 implies that the two equalities when
workers with characteristics (x1� ε1) and (x2� ε2) are matched with a firm with charac-
teristics (z�η) are

h(x1) = F−1
V ◦ FU

(
g(z)+η) − ε1�

h(x2) = F−1
V ◦ FU

(
g(z)+η) − ε2	

Agarwal (2015) uses this insight and discusses it in the context of the medical residency
market. The argument is that if the medical school quality of a resident is highly pre-
dictive of human capital, then the variation within programs in human capital should
be low. If unobservables such as test scores and recommendations are important, then
residency programs should be matched with medical residents from medical schools of
varying quality. Our result below formally shows the usefulness of data from many-to-
one matching. We therefore recommend the use of this information when available.

Theorem 3. Under Assumptions 1 and 2, the functions h(·) and g(·), and the densities fη
and fε are identified when data from two-to-one matching is observed, that is, FX1�X2�Z

is observed.

The proof proceeds by interpreting our model in terms of a nonlinear measurement
error model and employing techniques in Hu and Schennach (2008) to prove identifi-
cation. To understand the analogy, note that the distribution of observables of matched
partners depends only on the latent index. Positive assortative matching implies that all
partners have the same quantile of the latent index. Therefore, to write the joint distribu-
tions of the observables given a quantile q, we need to consider the conditional densities
of the observables X1, X2, and Z given q. For expositional simplicity, assume that these
densities exist. Therefore, the joint distribution fX1�X2�Z�q can be factored as

fX1�X2�Z�q(x1�x2� z�q)= fX1|q(x1|q)fX2|q(x2|q)fZ|q(z|q)fq(q)�
where fq(q) = 1 for q ∈ [0�1] and 0 otherwise because quantiles are uniformly dis-
tributed, fX1|q(x1|q) is the conditional density at x1 given that h(x1)+ ε = F−1

V (q), and
fX2|q(x2|q) and fZ|q(z|q) are defined analogously. Integrating this quantity with respect
to q yields the observable quantity

fX1�X2�Z(x1�x2� z)=
∫ 1

0
fX1|q(x1|q)fX2|q(x2|q)fZ|q(z|q)dq	
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Intuitively, this simplification arises from the latent index assumption and positive
assortative matching on v and u. Mathematically, this equation is identical to the non-
linear measurement error model of Hu and Schennach (2008), with the latent variable
q governing the distribution of the observables.9 This formulation clarifies the intuition
that the observable characteristics of matched partners are noisy signals of the underly-
ing latent index, and it allows us to identify the distributions of X and Z conditional on
the quantile q. We then identify the model using the scale and location normalizations
on h, g, fε, and fη, and Assumption 1.

While these results are derived in the specific context of a latent index model
with no preference heterogeneity, they highlight the fact that data from many-to-one
matches has additional empirical information that cannot be obtained from one-to-
one matches. This insight has enabled and guided the empirical analyses of more flex-
ible models of the medical match (Agarwal (2015)) and the market for oil drilling rights
(Vissing (2017)). An extension of our analogy of a matching model to a measurement er-
ror model has also been used to prove identification results for and study a labor market
model with data on worker productivity (Jiang (2016)).

3.4 Importance of many-to-one match data: Simulation evidence

The identification results presented in the previous section relied on observing data
from many-to-one matching, and they show that the model is not identified using data
from one-to-one matches. In this section, we present simulation evidence from a para-
metric version of the model to elaborate on the nature of nonidentification and to illus-
trate the importance of using information from many-to-one matching in estimation. To
mimic realistic empirical applications, our simulations have firms with varying capacity
instead of the fixed number of workers per firm.

We simulate a data set using known parameters and then compare objective func-
tions of various minimum distance estimators. Specifically, we compare an objective
function that exclusively uses moments based on sorting patterns to another that also
uses information from many-to-one matching. We model the latent indices as

vi = xiα+ εi�
uj = zjβ+ηj�

where xi, zj , εi, and ηj are distributed as standard normal random variables. These
parametric assumptions are identical to those used in Example 2. We generate a sam-
ple using J = 500 firms. Each firm j has capacity qj drawn uniformly at random from
{1� 	 	 	 �10}. The number of workers in the simulation is N = ∑

cj . A pairwise stable
match μ : {1� 	 	 	 �N} → {1� 	 	 	 � J} is computed for α= 1 and β= 1. Using the same data
set of observables and firm capacities, the variables εi and ηj are simulated S = 1000

9A technical difference with Hu and Schennach (2008) is that we replace Assumptions 1 and 5 in their
paper with implications of Assumptions 1. See the Appendix for details.
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times, and a pairwise stable match μθs can be computed for each s ∈ {1� 	 	 	 � S} as a func-
tion of θ= (α�β). We then compute two sets of moments

ψ̂ov = 1
N

∑
i

xizμ(i)� (8)

ψ̂Sov(θ) = 1
S

∑
s

1
N

∑
i

xizμθs (i) (9)

and

ψ̂w = 1
N

∑
i

(
xi − 1∣∣μ−1(μ(i))∣∣

∑
i′∈μ−1(μ(i))

xi′
)2
� (10)

ψ̂Sw(θ) = 1
S

∑
s

1
N

∑
i

(
xi − 1∣∣(μθs )−1(

μθs (i)
)∣∣

∑
i′∈(μθs )−1(μθs (i))

xi′
)2
	 (11)

The first set, ψ̂ov and ψ̂Sov(θ), captures the degree of assortativity between the character-
istics x and z in the pairwise stable matches in the generated data and as a function of θ.
For a given α> 0 (likewise β> 0), this covariance should be increasing in β (likewise α).
The second set, ψ̂w and ψ̂Sw(θ), captures the within-firm variation in the characteristic x.
If the value of α is large, we can expect that workers with very different values of x are
unlikely to be of the same quantile. Hence, the within-firm variation in x will be small.
Using both sets of moments, we construct an objective function Q̂S(θ)= ‖ψ̂− ψ̂S(θ)‖W ,
where ψ̂= (ψ̂ov� ψ̂w)′, ψ̂S(θ)= (ψ̂Sov(θ)� ψ̂Sw(θ))′, andW indexes the norm.

Figure 1(a) presents a contour plot of an objective function that only penalizes de-
viations of ψ̂ov from ψ̂Sov(θ). This objective function only uses information on the sort-
ing between x and z to differentiate values of θ. We see that pairs of parameters, α and
β, with large values of α and small values of β yield identical values of the objective
function. These contour sets result from identical values of ψ̂Sov(θ), illustrating that this
moment cannot distinguish between values along this set. In particular, the figure shows
that the objective function has a trough containing the true parameter vector with many
values of θ yielding similar values of the objective function.

In Figure 1(b), we consider an objective function that only penalizes deviations of ψ̂w
from ψ̂Sw(θ). The vertical contours indicate that the moment is able to clearly distinguish
values of α because the moment ψ̂Sw(θ) is strictly decreasing in α. However, the shape of
the objective function indicates that this moment cannot distinguish different values
of β.

Finally, the plot of an objective function that penalizes deviations from both ψ̂w and
ψ̂ov (Figure 1(c)) shows that we can combine information from both sets of moments to
identify the true parameter. Unlike the other two figures, this objective function displays
a unique minimum close to the true parameter. Together, Figure 1(a)–(c) illustrate the
importance of using both these types of moments in estimating our model.
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Figure 1. Importance of many-to-one matches: Objective function contours.
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4. Estimation

This section develops an estimator for the latent index model considered above. We then
study the limit properties of this estimator and derive conditions under which the esti-
mator is consistent and asymptotically normal. As in the identification analysis, we con-
sider a data set from a single large matching market. This choice is motivated by the fact
that researchers typically have data on a single (or few) matching markets with many
participants.10 This includes applications in labor markets, marriage markets, and edu-
cation markets. The analysis of asymptotic properties in a single large market is techni-
cally challenging because the characteristics of any individual’s match partner depend
on the composition of the entire market. To our knowledge, consistency or asymptotic
theory has not been previously established for parametric models, even with a single
latent index.11

There are several technical insights that allow us to solve this problem. First, we use
the property that we observe a positive assortative match along a single latent index.
This allows us to rewrite the dependence of the matches in terms of the latent indices.
While restrictive on the nature of primitives, our model allows for a large parametric
class of models and both transferable and nontransferable utility. Second, the problem
can be decomposed into separately analyzing two distinct pieces. The first problem is
to show limit theorems for the observed moments of the data as the market size in-
creases. Separately, we must show a uniform limit theorem for the map from structural
parameters to these moments. Third, we find that analyzing this map by first ignoring
the behavior in the tails of the latent indices and then showing that the tails are negligi-
ble is the most tractable approach. Finally, to ensure that tails are negligible, we adapt a
chaining argument from the empirical process literature, using a concentration of mea-
sure inequality to replace tail bounds for i.i.d. data that do not apply in our setting.

In this section, we assume that the latent indices of workers for firms and vice versa
are known up to a finite-dimensional parameter θ ∈Θ⊆R

Kθ . The latent indices are gen-
erated by

u(z�η;θ) = g(z;θ)+η�
v(x�ε;θ) = h(x;θ)+ ε�

where g : ζ ×Θ→ R and h : χ×Θ→ R are known functions that are Lipschitz contin-
uous in θ for each x and z with constants gLC(z) and hLC(x), respectively. We assume
that the densities fε and fη are known, and that ε and η are independent of x and z,
respectively.

We adopt a parametric approach for several reasons. First, our identification argu-
ment does not directly suggest a nonparametric estimator. Second, our focus is on solv-

10In cases where many matching markets are observed, it may not always be appropriate to assume that
the underlying preference parameters are the same across all markets.

11Even proving consistency is nontrivial. For example, Dupuy and Galichon (2015) show that the canon-
ical correlation estimator suggested by Becker (1973) is inconsistent. A previously circulated version of this
paper (Agarwal and Diamond (2014)) shows consistency of the estimator studied here under weaker con-
ditions on the primitives.
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ing issues that arise from the dependent data nature of the problem. Relaxing the para-
metric assumption would further complicate the analysis. Finally, computational bur-
den in empirical applications has often prevented extremely flexible functional forms
from being implemented. Similar parametric assumptions are common in the discrete
choice literature where one typically assumes a normal or an extreme value type I distri-
bution for the unobservable ε.

We assume that the data contain a sample of J firms, each with c̄ slots, and consider
the properties of an estimator as J → ∞. The number of workers is N = c̄J. The charac-
teristics of each worker are sampled i.i.d. from the measure μX�ε and the characteristics
of the firm are sampled i.i.d. from μZ�η. For simplicity of analysis and notation, we set
c̄ = 2.

4.1 A minimum distance estimator

We propose an estimator based on a minimum distance criterion function. Specifically,
letΨ(x1�x2� z) ∈R

KΨ be a bounded vector-valued moment function, that is, ‖Ψ‖∞ <∞,
where x1 and x2 are the observed characteristics of two workers and z is the observed
characteristics of the firm. We assume thatΨ is symmetric in x1 and x2 because the data
do not make a distinction between two workers hired at the same firm (for the same
position). The data consist of matches between N = 2J workers and J firms. Therefore,
we observe N/2 triples {(x2j−1�x2j� zj)}N/2j=1 , which can be used to construct empirical
moments of the form

ψN = 1
N/2

N/2∑
j=1

Ψ(x2j−1�x2j� zj)	 (12)

The moments discussed in equations (8) and (10) are given by particular choices for Ψ .
We now describe the value of the moment as a function of θ. Instead of writing the

sampling process as drawing pairs of (xi� εi) and (zj�ηj), it will be convenient to rewrite
the sampling distribution via Bayes’ rule as sampling N and J draws from the popu-
lation distributions of vi and ui, respectively, and then sampling xi|vi and zj|uj from
their respective conditional distributions. This sampling process has an identical dis-
tribution for (xi� εi) and (zj�ηj) as sampling directly from their respective distributions.
This rewriting uses the feature that the final matches depend on the latent indices rather
than directly on observable and unobservable traits. Further, conditional on the latent
indices, the observable traits of two workers matched to the same firm or different firms
are independent. Therefore, given the utilities v1, v2, and u, at parameter vector θ and
any two measuresmX andmZ for the observable traits, the value of the moment is

ψ̃[mX�mZ](v1� v2�u;θ)=
∫
Ψ(X1�X2�Z)fX|v1;θ(X1)fX|v2;θ(X2)fZ|u;θ(Z)dX1 dX2 dZ�

where fX|v1;θ(X) and fZ|u;θ(Z) are the conditional densities (with respect to mX and
mZ , respectively) of the observable traits at θ given latent indices v and u, and mX and
mZ . These distributions govern the observed traits of the workers and firms at any given
quality.
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In the limiting large market match, firms with the qth quantile of firm quality are
matched with workers on the qth quantile of the worker quality distribution. Hence, the
expected value of the moment of the qth quantile match is given by ψ̃ evaluated at

(v1� v2�u)= (
F−1
V ;θ�mX (q)�F

−1
V ;θ�mX (q)�F

−1
U;θ�mZ(q)

)
�

where FV ;θ�mX (v) and FU;θ�mZ(u) are, respectively, the cumulative distributions of the
worker and firm qualities (given θ, mX , and mZ). This quantity must be integrated to
obtain the moment as a function of the parameter θ,

ψ[mX�mZ](θ)=
∫ 1

0
ψ̃[mX�mZ](F−1

V ;θ�mX (q)�F
−1
V ;θ�mX (q)�F

−1
U;θ�mZ(q);θ

)
dq� (13)

where

FV ;θ�mX (v)=
∫ v

−∞
Fε

(
v− h(X;θ))dmX

and

FU;θ�mZ(u)=
∫ u

−∞
Fη

(
u− g(Z;θ))dmZ	

This expression can be evaluated at any pair of measuresmX andmZ governing the dis-
tribution of observed traits. Of particular interest are the quantities ψ[μX�μZ](θ) and
ψ[μXN �μZN ](θ), which correspond to the values at the population and empirical mea-
sures of observables traits, respectively. In this notation, the population analog of ψN in
equation (12) is thereforeψ[μX�μZ](θ) evaluated at θ0. For simplicity of notation, when
referencing the moment function at populations measures μX and μZ , we will write
ψ(θ) = ψ[μX�μZ](θ). Similarly, when referencing their empirical analog μXN and μZN ,
we will write ψN(θ)=ψ[μXN �μZN ](θ).12

We now define our minimum distance estimator,

θ̂N = arg min
θ∈Θ

∥∥ψN −ψN(θ)
∥∥
W
� (14)

where ψN are the moments computed from the sample as given in equation (12),
ψN(θ) are computed from the observed sample of firms and workers as a function of
θ, ‖ψN − ψN(θ)‖W = [(ψN − ψN(θ))

′W (ψN − ψN(θ))]1/2, and W is a positive definite
symmetric weight matrix. This minimum distance estimator finds the value of θ that
best predicts the features of the data summarized by the moment function. For exam-
ple, one can specify Ψ to summarize the overall sorting patterns and the many-to-one
match moments used previously to illustrate the importance of using this information.

The next section presents conditions under which the estimator above is consistent
and asymptotically normal.

12The term ψN(θ) can be approximated by first drawing ε and η to simulate FN�V ;θ = FV ;θ�mXN and
FN�U;θ = FU;θ�mZN , and then using the expression in equation (13). One can also create a simulation analog
of ψN(θ) that uses a second simulation step to approximate the integral. More specifically, we may inde-
pendently sample from the conditional distributions of X and Z given the measures μXN and μZN and
simulated values of vi and uj .
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4.2 Limit properties

In this section, we outline a fairly standard set of convergence conditions onψN −ψN(θ)
and show that they imply limit properties for the estimator in equation (14). We will
verify these conditions under large market asymptotics. These results are presented in
the subsequent sections. We follow this organization to highlight the main ideas in the
proof and clarify the contribution. We separate the conditions needed for consistency,
which are weaker than those necessary for asymptotic normality of our estimator.

We require the following properties for the moment function at the population dis-
tribution of observable and unobservable traits.

Assumption 3. (i) For any ε > 0, there exists a δ > 0 such that ‖ψ(θ)−ψ(θ0)‖W < δ⇒
‖θ− θ0‖< ε.

(ii) The function ψ(θ) is continuously differentiable at θ0 with an invertible Jacobian,
ψ′(θ0).

Part (i) assumes that the distance in the population ‖ψ(θ) − ψ(θ0)‖W is zero only
if θ = θ0. It implies that ψ(θ) identifies the parameter θ0. Further, it requires that pa-
rameter values outside a neighborhood of the true value cannot yield a distance arbi-
trarily close to 0.13 This assumption, along with the convergence condition below, will
guarantee consistency of our estimator. Part (ii) is used to prove that the estimator is
asymptotically normal. The commonly made assumption that the Jacobian at the limit
is invertible allows us to use Taylor approximations.

We will derive limiting properties of the estimator by showing conditions under
which the following properties are satisfied.

Condition 1. (i) The stochastic process (ψN −ψ(θ0))− (ψN(θ)−ψ(θ)) converges in
probability to 0, uniformly in θ.

(ii) (a) The random variable
√
N(ψN −ψN(θ0)) converges in distribution toN(0�Σ).

(b) For every sequence {bN } of positive numbers that converges to 0,
√
N sup

‖θ−θ0‖≤bN

∥∥(
ψN(θ)−ψ(θ)) − (

ψN(θ0)−ψ(θ0)
)∥∥∞ = op(1)	

The first condition would follow from a uniform law of large numbers. The sec-
ond condition would follow from a central limit theorem and stochastic equicontinuity.
These results are not obvious a priori because the matches depend on the composi-
tion of the entire market. The following sections prove these results under large market
asymptotics. Along with Assumption 3, these conditions imply consistency and asymp-
totic normality of our estimator.

Theorem 4. Suppose that the parameter space Θ is compact and θ0 lies in the interior
ofΘ.

13A sufficient condition for this requirement is that Θ is compact, ψ(θ) is continuous, and ψ(θ) =
ψ(θ0)⇒ θ= θ0.
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(i) If Assumption 3(i) and Condition 1(i) are satisfied, then θ̂N converges in probability
to θ0.

(ii) If Assumption 3 and Condition 1 are satisfied, then
√
N(θ̂N − θ0)→N(0�Ω)�

Ω= (
ψ′(θ0)

′C ′Cψ′(θ0)
)−1
ψ′(θ0)CΣC

′ψ′(θ0)
′(ψ′(θ0)

′C ′Cψ′(θ0)
)−1
�

and C results from the Cholesky decomposition ofW = C ′C.

Proof. Part (i) follows from the arguments in Newey and McFadden (1994, Theo-
rem 2.1). We use Theorem 3.3 in Pakes and Pollard (1989) to show part (ii). LetGN(θ) (in
the notation of Pakes and Pollard (1989)) be given by (ψN −ψN(θ))′C ′. Assumption 3(ii)
and the definition of the estimator imply requirements (i), (ii), and (v) of Theorem 3.3 in
Pakes and Pollard (1989). Requirement (iii) of Theorem 3.3 in Pakes and Pollard (1989)
follows from Condition 1(ii)(b). Requirements (iv) in Theorem 3.3 of Pakes and Pollard
(1989) follow from Condition 1(ii)(a). �

This theorem shows that Assumption 3 and Condition 1 imply consistency and
asymptotic normality in our setting. Therefore, the main difficulty in obtaining limit
properties of our estimator is verifying Condition 1. This is not straightforward for two
reasons. First, the triples (x2j−1�x2j� zj) in the expression for our sample moments ψN
in equation (12) are not sampled independently. This dependence occurs because their
distribution is determined by the observed and unobserved characteristics of the entire
sample. Second, equation (13) shows that ψN(θ)= ψ[μXN �μZN ](θ) is also a function of
the entire sample of observed characteristics.

To prove the required properties, we split the argument into two conceptually sep-
arate pieces. The first piece studies the distribution of sample moments ψN , and the
second studies properties of the sample moment functionψN(θ). There are two reasons
why this distinction helps analyze their limit distributions. First, the observed moments,
ψN , are a function of both the sampled observed and unobserved characteristics be-
cause the realized assortative match depends on the latent indices of all agents in the
market. On the other hand, ψN(θ), is a function only of observed traits because equa-
tion (13) shows that it is an integral with respect to the (known) distribution of unob-
servables. Second, ψN depends only on θ0, while ψN(·) is a stochastic process that must
be studied uniformly in θ. The first reason complicates the analysis of the distribution
of ψN , while the second reason complicates the analysis of ψN(θ).14

Before proceeding, we formally show that is it sufficient to treat ψN and
ψ[mX�mZ](θ) as scalars.

Proposition 2. (i) Suppose that for each k ∈ {1� 	 	 	 �KΨ }, the kth component of
(ψN − ψ(θ0)) − (ψN(θ) − ψ(θ)) converges in probability to 0, uniformly in θ. Then
(ψN −ψ(θ0))− (ψN(θ)−ψ(θ)) converges in probability to 0, uniformly in θ.

14An additional complication for analyzing the limit distribution of
√
N(ψN −ψN(θ)) is that our conver-

gence results must be joint with the empirical processes onX and Z.
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(ii) Suppose that for any a ∈ R
KΨ ,

√
N(ψN − ψN(θ0)) · a converges in distribution to

N(0� a′Σa), and for every sequence {bN} of positive numbers that converges to 0,

√
N sup

‖θ−θ0‖≤bN

∣∣[(ψN(θ)−ψ(θ)) − (
ψN(θ0)−ψ(θ0)

)] · a∣∣ = op(1)	

Then Condition 1(ii) is satisfied.

Proof. Part (i) follows from the definition of convergence in probability. To verify
part (ii), note that Condition 1(ii)(a) follows from the Cramer–Wold theorem. Condi-
tion 1(ii)(b) follows from the fact that

√
N sup

‖θ−θ0‖≤bN

∥∥(
ψN(θ)−ψ(θ)) − (

ψN(θ0)−ψ(θ0)
)∥∥∞

= max
a∈{e1�			�eKΨ }

√
N sup

‖θ−θ0‖≤bN

∣∣[(ψN(θ)−ψ(θ)) − (
ψN(θ0)−ψ(θ0)

)] · a∣∣�
where {e1� 	 	 	 � eKΨ } are the standard basis vectors of RKΨ . �

The following subsections derive regularity properties under which condition Con-
dition 1 is satisfied, assuming that Ψ is a scalar-valued function. We first analyze the
limiting properties of ψN , and then we analyze the properties of the function ψN(θ).

4.3 Convergence of the data generating process

The first challenge is to study the large sample properties of the sample moments, ψN
in equation (12). The primary technical difficulty arises from the dependence of the ob-
served matches (X1�X2�Z) on the observable (and unobservable) characteristics of all
agents in the market. We make progress by rewriting the sampling process as one in
which the utilities u and v are drawn first. This allows us to condition on the matches
on latent indices in the data. The observed characteristics of the matched agents are
then sampled conditional on these draws of the latent indices. This sampling process,
although identical to drawing the characteristics directly from μX�ε and μZ�η, allows for
a more tractable approach to proving limit properties of the moments. The proof tech-
nique is based on using the triangular array structure implied by this process: the indi-
vidual components of the triple (X1�X2�Z) are independent conditional on the indices
drawn.

Specifically, our approach for obtaining large sample properties of ψN is based
on the following observations. The observed characteristics X1, X2, and Z are a
sample from μX|v1 , μX|v2 , and μZ|u, where v1, v2, and u are the latent indices for
these agents. The expected value of Ψ(X1�X2�Z) given the latent indices is there-
fore ψ̃[μX�μZ](v1� v2�u;θ0). Equation (13) shows that ψ[μX�μZ](θ0) is the integral of
ψ̃[μX�μZ](v1� v2�u;θ0) over the population values of matched latent indices. This al-
lows us to show that, ψN , which is the sample average of Ψ(X1�X2�Z) over the matches
in the data, approaches the population quantity ψ[μX�μZ](θ0).

Below, we present assumptions under which we will prove our result.
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Assumption 4. (i) (a) The function ψ̃[μX�μZ](v1� v2�u;θ0) is Lipschitz continuous in
v1, v2, and u.

(b) The random variables ε and η have continuous density with full support on R.

(ii) (a) The derivative of ψ̃[μX�μZ](F−1
V ;θ(q1)�F

−1
V ;θ(q2)�F

−1
U;θ(q3);θ) with respect to q=

(q1� q2� q3) is bounded uniformly in q, θ.
(b) Assumption 4(i)(b) holds.
(c) The conditional distributions of X (respectively Z) given any v (respectively u) are

not degenerate.

Part (i) presents conditions under which we will show that ψN converges to
ψ[μX�μZ](θ0) in probability. Part (i)(a) requires Lipschitz continuity of ψ̃[μX�μZ]. This
regularity condition implies that the conditional expectation of Ψ is smooth with re-
spect to the latent indices. A more primitive condition is presented in Appendix E.1,
where we show that the assumption follows from bounds on the densities of X , ε, and
Z, η and their first derivatives.15 This regularity condition on the expectation ofΨ given
the latent indices allows us to approximate the value of ψ̃ at the sampled latent indices
for each of the matches. Part (ii)(b) is a weak regularity condition on the distribution of
the unobservables.

Part (ii) presents stronger assumptions, which we will use to derive the asymptotic
distribution of

√
N(ψN − ψ[μX�μZ](θ0)). Part (ii)(a) is analogous to (i)(a), but places

stronger restrictions on the sensitivity of ψ̃ with respect to the quality of the match.
The stronger assumption ensures that ψ̃ is not extremely sensitive to tail behavior. Parts
(ii)(b) and (c) are weak regularity conditions.

Our first result shows that the empirical analog ψN defined in equation (12) con-
verges at the true parameter θ0 to ψ.

Proposition 3. (i) If Assumption 4(i) is satisfied, then ψN −ψ(θ0) converges in proba-
bility to 0.

(ii) If Assumption 4(ii) is satisfied, then for any μX− and μZ−Donsker classes ΓX and
ΓZ of bounded functions onX and Z, respectively,

⎡
⎢⎣

√
N

(
ψN −ψ(θ0)

)
√
N(μXN −μX)√
N/2(μZN −μZ)

⎤
⎥⎦ �

where
√
N(μXN −μX) and

√
N/2(μZN −μZ) are, respectively, empirical processes indexed

by ΓX and ΓZ , converges to a mean-zero Gaussian process (GΨ �GX�GZ)with covariance
kernel V (given in Appendix B.1).

See Appendix B.1 for the proof.
The result derives the large sample properties of ψN − ψ[μX�μZ](θ0) based on

Assumption 4. The proof is based on studying the large sample properties of

15See Assumption E.1.8 and Lemma E.1.13.
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E[ψN |v1� 	 	 	 � vN�u1� 	 	 	 � uN/2], the expectation of ψN given the sample of latent utilities
v1� 	 	 	 � vN and u1� 	 	 	 � uN/2. Because the observed characteristics are drawn indepen-
dently given these latent indices, we are able to characterize the large sample properties
ofψN−E[ψN |v1� 	 	 	 � vN�u1� 	 	 	 � uN/2]. Next, we show thatE[ψN |v1� 	 	 	 � vN�u1� 	 	 	 � uN/2]
approximates ψ(θ0) by appealing to the regularity and smoothness conditions in As-
sumption 4. We do this by relying on smoothness of ψ̃ and noting that the empirical
quantiles of the latent indices approximate the limit quantiles. Therefore, the key to the
result is that the dependence across the observed matches is only through the latent
indices and that the matching is assortative on these indices.

4.4 Differentiability of the moment function

The large sample results on ψN require evaluating the moment function only at θ0. To
study the limit properties of the estimator defined in equation (14), we need to under-
stand the properties of the sample moment function. In this section, we derive condi-
tions under which this map is smooth. This will allow us to use a continuous mapping
theorem and the functional delta method for our results.

The approach is based on separately analyzing the behavior of ψN(θ) away from
the tails of the latent index distribution and then showing that the tails are negligible.
This approach is convenient because deriving the asymptotic distribution of the tails is
technically challenging. Specifically, we will show that the functional

ψδ[μX�μZ](θ)=
∫ 1−δ

δ
ψ̃[μX�μZ](F−1

V ;θ(q)�F
−1
V ;θ(q)�F

−1
U;θ(q)

)
(θ)dq

is smooth in μX , μZ for all δ ∈ (0�1/2). The integral above, when evaluated at δ = 0, is
equal to ψ[μX�μZ](θ) in equation. We require the following weak assumption on the
distribution of unobservable traits:

Assumption 5. (i) The densities fε and fη are bounded and have continuous, bounded
first derivatives. Further, fε and fη are bounded away from zero on any compact interval
of R.

(ii) The random variables h(X;θ) and g(Z;θ) are uniformly μX− and μZ−integrable
over all θ ∈Θ.

Part (i) imposes a weak regularity condition that allows us to show that the condi-
tional distributions of X and Z given the latent indices v and u vary smoothly with θ,
except at extreme quantiles of the latent index distribution. This assumption is satis-
fied for the most commonly used parametric forms in applied analysis. Part (ii) places a
weak restriction on the tail behavior of h(X;θ) and g(Z;θ) by assuming that, uniformly
across θ, with high probability, these random variables belong to a compact set.

To formally state our result on smoothness ofψδ, we need to define a metric in which
to measure distances in the domain and range ofψδ. We use the Banach space of vector-
valued functions of θ ∈Θ endowed with the sup-norm, denoted by LΘ∞, as the range. We
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useLΓ∞ for the domain, which is the space of measures (mX�mZ) endowed with the sup-
norm over the class of functions Γ . We let Γ = ΓX ∪ ΓZ , where ΓX is a class of functions
that includes

(i) Ψ(x1�x2� z)fε(F
−1
V ;θ(q)− h(x1;θ))fε(F−1

V ;θ(q)− h(x2;θ))fη(F−1
U;θ(q)− g(z;θ)) and

Ψ(x1�x2� z)f
′
ε(F

−1
V ;θ(q)− h(x1;θ))fε(F−1

V ;θ(q)− h(x2;θ))fη(F−1
U;θ(q)− g(z;θ)) indexed by

(x1� z�q�θ),16

(ii) Fε(v− h(x;θ)), fε(v− h(x;θ)) and f ′
ε(v− h(x;θ)) indexed by (v�θ),

(iii) 1{c1 ≤ x≤ c2} indexed by c1 and c2,17

and ΓZ is a class of functions that includes

(i) Ψ(x1�x2� z)fε(F
−1
V ;θ(q)− h(x1;θ))fε(F−1

V ;θ(q)− h(x2;θ))fη(F−1
U;θ(q)− g(z;θ)) and

Ψ(x1�x2� z)fε(F
−1
V ;θ(q)− h(x1;θ))fε(F−1

V ;θ(q)− h(x2;θ))f ′
η(F

−1
U;θ(q)− g(z;θ)) indexed by

(x1�x2� q�θ),

(ii) Fη(u− g(z;θ)), fη(u− g(z;θ)), and f ′
η(u− g(z;θ)) indexed by (u�θ),

(iii) 1{c1 ≤ z ≤ c2} indexed by c1 and c2.

Therefore, we will consider smoothness of the map ψδ : LΓ∞ → LΘ∞. The class Γ de-
fines a norm in which we measure distances between two pairs (mX�mZ) and (m′

X�m
′
Z).

The first two groups of functions in ΓX and ΓZ arise from Taylor expansions of terms in
the expression for ψδ. The last two functions are indicator functions for intersections of
half-spaces. To use the continuous mapping theorem and the functional delta method,
we will need to ensure that the empirical measures μXN and μZN converge to the pop-
ulation measures with distance measured in this norm. The required properties on the
primitives to ensure that ΓX and ΓZ are, respectively, μX− and μZ−Donsker classes are
stated formally in Appendix E (Proposition E.3.7).

We are now ready to state the main results in this section.

Proposition 4. If Assumption 5 is satisfied, then for each δ ∈ (0� 1
2), ψ

δ : LΓ∞ → LΘ∞
is Hadamard differentiable tangentially to the space of bounded uniformly continuous
functions at (μX�μZ). The Hadamard derivative at (μX�μZ) in the direction (GX�GZ)
is ∇(GX�GZ)ψδ[μX�μZ] (given in Appendix D.2).

See Appendix B.2 for a sketch of the proof and Appendix D.2 for details.
This result formalizes the idea that the small perturbations of the measures μX and

μZ result in small deviations in the value of the moments (outside the tails) as a function
of θ. This is useful because we expect the empirical distributions ofX and Z to be close
to μX and μZ in a large sample. Assuming that tails are negligible, the result implies that
the moment function in a large sample approximates the population moment function.
The next section uses this result and Proposition 3 to verify Condition 1.

16Since the functions considered are symmetric in x1 and x2, we have implicitly also included the anal-
ogous class of functions, indexed by (x2� z�q�θ).

17If a and b are vectors, we say that a≤ b if each element of a is weakly less than each element of b.
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4.5 Verifying Condition 1

We now put together the results in the previous sections to show that Condition 1 is sat-
isfied. First we show part (i), which implies consistency of the estimator by Theorem 4(i).
We will use a continuous mapping theorem and the following assumption for this result.

Assumption 6. (i) The classes ΓX and ΓZ are, respectively, μX− and μZ−Glivenko–
Cantelli.

This assumption implies that the expectations of functions in ΓX and ΓZ evaluated
at the empirical measures μXN and μZN , respectively, converge (in probability) to the
population values. Further, the Glivenko–Cantelli theorem implies that the convergence
is uniform over all functions in these classes. The assumption is satisfied under weak
conditions on the elements of ΓX and ΓZ .18 We now formally state that Condition 1(i) is
satisfied for our model and sketch the proof.

Proposition 5. (i) If Assumptions 4(i), 5, and 6(i) are satisfied, then ψN − ψN(θ) con-
verges in probability to ψ−ψ(θ), uniformly in θ.

See Appendix D.3, part (i) for the proof.
The result shows that the difference between the empirical distance function ψN −

ψN(θ) and the population analog ψ − ψ(θ) converges to zero (in probability) as the
sample increases in size. The proof proceeds by using the triangle inequality to ob-
serve that this difference is at most |ψN − ψ| + |ψN(θ) − ψ(θ)|. Proposition 3 implies
that the first term, which measures the distance between the empirical and population
values of the moments, converges in probability to zero. The second term, which mea-
sures the distance of the sample moment function to the population function at θ, is
ψ0[μXN �μZN ](θ)−ψ0[μX�μZ](θ) by definition. To show that this term also converges in
probability to zero (uniformly in θ), we approximate ψ0 with ψδ. Specifically, ψN(θ) and
ψ(θ) can be approximated by ψδ[μXN �μZN ](θ) and ψδ[μX�μZ](θ) respectively, where
the error is on the order of δ becauseΨ is bounded. Proposition 4 and Assumption 6 im-
ply, by the continuous mapping theorem, thatψδ[μXN �μZN ](θ) converges in probability
to ψδ[μX�μZ](θ) uniformly in θ. Together, these observations imply the result.

The approach to a limit theorem that verifies Condition 1(ii) is similar in spirit, but
technically more demanding. Proposition 3 provides a result for the term

√
N(ψN −ψ).

Our next challenge is to prove a limit theorem for
√
N(ψN(θ̂)−ψ(θ̂)), where θ̂ is our es-

timator. We do this by approximating
√
N(ψN(θ̂) − ψ(θ̂)) with

√
N(ψδN(θ0) − ψδ(θ0)).

The functional delta method and Proposition 4 imply that asymptotic distribution
of

√
N(ψδ(θ0) − ψδN(θ0)) is given by ∇Gψδ(θ0) = (∇ψδ ◦ G)(θ0), where G is a mean-

zero Gaussian process on LΓ∞. The remaining term is the approximation error
(∇Gψδ − ∇Gψ0)(θ0). Therefore, we need to ensure that the errors in approximating
∇Gψ0(θ0) with ∇Gψδ(θ0) and approximating

√
N(ψN(θ)− ψ(θ)) in a neighborhood of

θ0 with
√
N(ψδN(θ0) − ψδ(θ0)) are negligible. Ensuring that these errors do not affect

18Proposition E.3.7 formally states conditions on primitives under which ΓX and ΓZ are Donsker classes.
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the limit distribution of
√
N((ψN −ψ)− (ψN(θ)−ψ(θ))) requires tighter controls of the

tails than our consistency result. Specifically, the limit theorem requires us to replace
Assumption 6(i) with the following stronger requirement.

Assumption 6. (ii)(a) The classes ΓX and ΓZ are, respectively, μX− and μZ−Donsker.
(b) For every sequence {bN } of positive numbers that converges to 0,

√
NE sup

‖θ−θ0‖≤bN

∣∣(ψN(θ)−ψ(θ)) − (
ψδN(θ)−ψδ(θ))∣∣

converges to zero as δ→ 0 andN → ∞.
(c) For fixed δ ∈ (0� 1

2) and every sequence {bN} of positive numbers that converges to 0,

sup
‖θ−θ0‖≤bN

∣∣∇Gψδ(θ)− ∇Gψδ(θ0)
∣∣

converges in probability to zero asN → ∞.
(d) The term (∇Gψδ − ∇Gψ0)(θ0) converges in probability to zero as δ→ 0.

Part (a) strengthens Assumption 6(i) to allow a functional central limit theorem over
the classes ΓX and ΓZ . Parts (b) and (d) are technical assumptions that ensure that tails
are negligible. Part (b) controls the rate at which the dependence of the moment func-
tion on the tails vanishes with the sample size. Part (d) assumes that tails have a negli-
gible contribution to the dependence of the moment function on perturbations of the
data. Part (c) assumes that the process ∇Gψδ(θ) is well behaved in a neighborhood of θ0.
For completeness, Appendix E derives primitive conditions under which each of these
requirements is satisfied. Specifically, Theorem E.2.5 shows that smoothness conditions
and bounds on the tail behavior of the primitives imply these requirements. Assump-
tion (c) is relatively straightforward to verify and is based on showing that ∇Gψδ(θ) has
sample paths continuous in θ by bounding theL2 covering numbers of the related Gaus-
sian process. Assumption (d) follows from showing that an upper bound on the variance
of (∇Gψδ − ∇Gψ0)(θ0) converges to 0 as δ→ 0. Verifying assumption (b) is the most dif-
ficult technical aspect of proving our limit theorem and requires relatively novel proof
techniques.

The difficulty in verifying assumption (b) follows from the fact that√
N(ψN(θ)−ψ(θ)) is a nonlinear function of the empirical measures (μXN �μZN ). While

the functional delta method is a conceptually straightforward approach to proving a
limit theorem for

√
N(ψδN(θ) − ψδ(θ)) with δ ∈ (0�1), showing that the tails are neg-

ligible requires a proof by first principles. Although direct computations play a large
part in this proof, the conceptual core is a modification of the method of chaining with
adaptive truncation exposited by Pollard (2002), where it is used to prove Ossiander’s
bracketing limit theorem for empirical processes. Our proof technique follows a simi-
lar approach as Pollard (2002) by similarly approximating Θ using finite subsets of in-
creasing size and similar truncation techniques. After a suitable truncation, the mo-
ment generating function of the increments of an empirical process can be bounded
using techniques that apply to sums of independent random variables. Because the
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increments of (ψN(θ)− ψ(θ)) have no simple expression, we use the concentration of
measure inequality of Boucheron, Lugosi, and Massart (2003) in order to get the needed
bound on the moment generating function. This application of an abstract concentra-
tion of measure inequality within the broader context of a chaining argument may be
a more generally useful technique for proving functional limit theorems. This approach
is necessary due to the dependent data nature of our problem, which makes standard
empirical process techniques for i.i.d. data inapplicable. This feature of our model may
be shared with other contexts such as network formation models.

The control of tail behavior implied by these results allow us to verify Condition 1(ii).
Formally, we have the following statement.

Proposition 5. (ii) If Assumptions 4(ii), 5, and 6(ii) are satisfied, then Condition 1(ii) is
satisfied.

See Appendix D.3, part (ii) for the proof.
As discussed earlier, the basic ideas are similar to the consistency result proved ear-

lier, with a more technically demanding method for handling the approximation in the
tails. Proposition 5 shows Condition 1 for our model. Therefore, we can use Theorem 4
to assure consistency and asymptotic normality of the minimum distance estimator.

5. Monte Carlo evidence

This section presents Monte Carlo experiments to assess the properties of a method of
simulated moments estimator. The results are presented for a simulation-based estima-
tor of the form

θ̂N = arg min
θ∈Θ

∥∥ψN −ψN�S(θ)
∥∥
W

(15)

= arg min
θ∈Θ

[(
ψN −ψN�S(θ)

)′
W

(
ψN −ψN�S(θ)

)]1/2
� (16)

where ψN is as defined in equation (12) and ψN�S(θ) is computed by averaging over
S = 100 simulations as follows. For each simulation s, we sample the unobservables εi
and ηj , compute the unique pairwise stable match and compute ψN�s(θ) for the sim-
ulated matches, and set ψN�S(θ) = 1

S

∑
s ψN�s(θ). The moments used are as defined in

equations (8) and (10). We include an “overall moment” of the form in equation (8) for
each component of x interacted with each component of z. A “within moment” of the
form in equation (10) is included for each observed component of x.

Our Monte Carlo experiments vary the number of firms, J ∈ {100�500}, and the max-
imum number of workers matched with each firm c̄ ∈ {5�10}. For each program j, the
capacity cj is chosen uniformly at random from {1� 	 	 	 � c̄}. The number of workers is a
random variable set at N = ∑

cj . We will use up to two characteristics for workers and
up to four characteristics for firms. The characteristics zj of firm j are distributed as

zj = (zj1� zj2)∼N(a� I2)�
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where a= (1�2) and I2 is a 2×2 identity matrix. Similarly, the characteristics of the work-
ers, xi, are distributed as

xi = (xi1�xi2)∼N(a� I2)	

For each model specification, we generate 500 samples indexed by b and parameter
estimates θ̂b.19 The confidence intervals are generated by using a parametric bootstrap
described in Appendix F.

The preferences are of the form

vi = xiα+ εi� (17)

uj = zjβ+ηj� (18)

where εi ∼ N(0�1) and ηj ∼ N(0�1). Table 1 presents results from two specifications.
The specification in column (1) has a single observable characteristic on each side of
the market and column (2) has two observable characteristics. With few exceptions, the

19The bth (pseudo-random) sample is generated from a Mersenne twister algorithm with the seed b.

Table 1. Monte Carlo evidence: Double-vertical model.

One Characteristic Two Characteristics
(1) (2)

α1(x1) β1(z1) α1(x1) α2(x2) β1(z1) β2(z2)

J = 100, c̄ = 5
True par. 1 1 1 2 −1 2
Bias 0	005 0	053 0	033 0	042 −0	593 1	134
RMSE 0	093 0	239 0	270 0	412 1	063 1	938
SE 0	131 0	403 0	151 0	225 0	419 0	803
Coverage 0	954 0	970 0	868 0	850 0	760 0	750

J = 100, c̄ = 10
True par. 1 1 1 2 −1 2
Bias 0	002 0	046 −0	028 −0	036 −0	478 0	970
RMSE 0	063 0	196 0	143 0	211 0	932 1	703
SE 0	073 0	341 0	119 0	166 0	392 0	768
Coverage 0	972 0	978 0	894 0	914 0	800 0	820

J = 500, c̄ = 5
True par. 1 1 1 2 −1 2
Bias 0	000 0	002 −0	018 −0	022 −0	066 0	134
RMSE 0	042 0	086 0	052 0	069 0	207 0	383
SE 0	057 0	153 0	062 0	093 0	093 0	172
Coverage 0	934 0	978 0	950 0	954 0	808 0	848

J = 500, c̄ = 10
True par. 1 1 1 2 −1 2
Bias 0	000 0	004 −0	012 −0	017 −0	043 0	088
RMSE 0	027 0	080 0	037 0	049 0	159 0	296
SE 0	033 0	141 0	055 0	076 0	094 0	177
Coverage 0	968 0	992 0	966 0	976 0	888 0	894
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bias, the root mean squared error (RMSE), and the standard error fall with J and c̄ for
both specifications. The coverage ratios of 95% confidence intervals constructed from
the proposed bootstrap approximation are mostly between 90% and 98%, particularly
for simulations with a larger sample sizes. Also notice that estimates for α are more pre-
cise than estimates of β in both specifications and all sample size.

6. Conclusion

This paper provides results on the identification and estimation of preferences from data
from a matching market with positive assortative matching on a latent index when data
only on matches are observed. Our results apply to both transferable and nontransfer-
able utility models of matching. We show that using information available in many-to-
one matching is necessary and sufficient for nonparametric identification if data on a
single large market are observed. These identification results use insights from the anal-
ysis of nonlinear measurement error models. Intuitively, the observable characteristics
of the multiple agents with the same match partner can be seen as noisy measures of
the quality of the agents in the match.

We then prove consistency and
√
N-asymptotic normality of an estimator for a para-

metric class of models. Our limit theorems are based on several insights in this model.
First, we use the fact that the matches are determined by the latent indices and that the
observables are conditionally independent given these indices. Second, we show that
the moment function is smooth in the distribution of observables, except at the extreme
quantiles of the latent index. Third, we show that approximating this function by ignor-
ing the tails has a negligible effect on the asymptotic distribution of the estimator using
a general concentration of measure inequality for dependent data. Finally, we present
Monte Carlo evidence on a simulation-based estimator.

There are several avenues for future research on both identification and estimation
for similar models. While we show that it is necessary to use information from many-
to-one matching for identification with data on a single large market, it may also be
possible to use variation in the characteristics of participants across markets for identi-
fication. This can be particularly important for the empirical study of marriage markets.
Our results are also restricted to a single latent index model on each side of the market.
Extending this domain of preferences is particularly important. A treatment of hetero-
geneous preferences on both sides of the market may be of particular interest, but it is
likely technically challenging. It may be particularly difficult to analyze both transfer-
able and nontransferable utility models in a single framework. Finally, we have also left
the exploration of computationally more tractable estimators for future research.

Appendix A: Proofs: Identification20

A.1 Proof of Lemma 1

We present the argument for the identification of the level sets of h(·) since the proof for
g(·) is identical. The cumulative distribution function (c.d.f.) of v conditional on h(x) is

20Refer to the Supplement for Appendices C–F.
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given by FV |h(x)(v) = Fε(v − h(x)). Note that FV |h(x)(v) is increasing in v and decreas-
ing in h(x). Let Fq|h(x)(q|h(x))= FV |h(x)(F−1

V (q)− h(x)) be the c.d.f. of the quantile of v
given h(x). Since F−1

V is an increasing function of q, Fq|h(x)(q|h(x)) is increasing in q and
decreasing in h(x). As noted in Remark 1, the qth quantile of each side matches with
the qth quantile of the other. Therefore, the density of g(Z) that h(x) is matched with is
given by

fg(Z)|h(x)(g|h) =
∫ 1

0
fg(Z)|q(g|q)fq|h(x)(q|h)dq

=
∫ 1

0
fq|g(q|g)fg(g)fq|h(x)(q|h)dq

=
∫
fη(u− g)fg(g)fq|h(x)

(
FU(u)|h

)
du�

where fg(·) is the density of g(Z). The second equality uses Bayes’ rule. The last equal-
ity follows from a change of variables q = FU(u) and the fact that fq|g(FU(u)|g) =
fη(u−g)fg(g)

fU(u)
. Since fg(g) > 0 for all g and fη has a nonvanishing characteristic function,

fg(Z)|h(x)(·|h) is injective in h. Since Fq|h(x)(q|h) is decreasing in h, if h(x′) > h(x), then
fq|h(x)(q|h(x′)) �= fq|h(x)(q|h(x)) for some q. Hence, we have that fg(Z)|h(x)(g|h(x′)) �=
fg(Z)|h(x)(g|h(x)) if h(x′) �= h(x). If Z|x∼Z|x′, then g(Z)|x∼ g(Z)|x′. Therefore, it must
be that the distribution ofZ given x differs from the distribution ofZ given x′. Therefore,
the level sets of h(·) are identified.

A.2 Proof of Theorem 3

In what follows we treat x and z as single-dimensional variables that are uniformly dis-
tributed on [0�1], and h(·) and g(·) are increasing. This simplification is without loss of
generality given identification of g(x) and h(z) up to a positive monotone transforma-
tion by Proposition 1.

The proof follows from recasting the matching model in terms of the nonclassical
measurement error model similar to Hu and Schennach (2008) (henceforth HS) to iden-
tify fx|q(x|q) and fz|q(z|q), which are the conditional densities of x and z, respectively,
given h(x)+ ε= F−1

U (q) and g(z)+ η= F−1
V (q), where q is the quantile of the latent in-

dex.21 Lemma C.2.2 implies that the primitives h(·), g(·), fη, and fε, are identified from
f (x|q) and f (z|q).

We begin by verifying Assumptions HS.2–HS.4. Assumption HS.2 requires
fz|x1�x2�q(z|x1�x2� q) = fz|q(z|q) and fx1|z�x2�q(x1|z�x2� q) = fx1|q(x1|q). This is satisfied
since the quantile of the latent index q is a sufficient statistic for the distribution of ob-
servable characteristics in any match.

Assumption HS.3 requires that Lx|q and Lx1|x2 are injective, where Lx|q(m) =∫ 1
0 fx|q(x|q)m(q)dq and Lx1|x2(m) = ∫ 1

0 fx1|x2(x1|x2)m(x2)dx2. Lemmas C.2.4 and C.2.5
imply that under Assumption 1, Lx|q and Lx1|x2 are injective.

21The latent variable x∗ in HS will be labelled q, the outcome y in HS is instead z, x in HS is x1, and z in
HS is x2.
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Assumption HS.4 requires that for all q1 and q2 in [0�1], the set {z : fz|q(z|q1) �=
fz|q(z|q2)} has positive probability (under the marginal distribution of z) if q1 �= q2. This
assumption is satisfied since

fz|q(z|q) = fq|z(q|z)fz(z)
fq(q)

= fq|z(q|z)

= 1

fU
(
F−1
U (q)

)fη(
F−1
U (q)− g(z))

is complete (Lemma C.2.3). The first equality follows from Bayes’ rule, the second equal-
ity uses the fact that z and q are uniformly distributed, and the third equality transforms
u= F−1

U (q), using the fact that fu|z(u|z)= fη(u− g(z)).
For a function m(·), and any z and q, define the operator �z;qm(q) = fz|q(z|q)m(q)

as in HS. Since f (z�x1|x2) is observed, for any real-valued function m and z, we can
compute

Lz;x1|x2(m)=
∫ 1

0
f (z�x1|x2)m(x2)dx2 =Lx1|q ◦�z;q ◦Lq|x2(m)

as shown in HS. They then use Assumption HS.1 to show that (i) L−1
x1|x2

exists and is

densely defined, and (ii) T = Lz�x1|x2L
−1
x1|x2

has a unique spectral decomposition. Lem-
mas C.2.5 and C.2.6, respectively, show that these results follow under our assumptions
(the conditions needed for Lemma C.2.6 are verified in Lemmas C.2.5 and C.2.4). Hence,
the conditional densities fz|q(z|q) and fx|q(x|q) are identified up to a reindexing via a
bijectionQ(·), where q̃=Q(q). That is, for every pair f̃x|q and f̃z|q satisfying our regular-
ity conditions that can rationalize f (z�x1|x2), the proof of Theorem 1 in HS shows that
there exist bijections Qx : [0�1] → [0�1] and Qz : [0�1] → [0�1] such that fx|Qx(q) = f̃x|q
and fz|Qz(q) = f̃z|q.

This remaining underidentification issue is referred to as the ordering/indexing am-
biguity issue in HS. They solve this ambiguity by using Assumption HS.5, which assumes
that there is a known functional M such that M[fx|q(·|q)] = q for all q. Since our model
does not deliver such a functional, we instead solve the ordering/indexing ambiguity by
using the fact that in our model, the q indexes the quantiles of the latent index, and fx|q
and fq must therefore satisfy certain known properties. Specifically, we use Lemma C.2.7
to show directly that Qx and Qz must be the identity functions under the assumptions

of our model. To apply Lemma C.2.7, we need to show that fx|q(x|q) = fε(F
−1
V (q)−h(x))
fV (F

−1
V (q))

and fz|q(z|q)= fη(F
−1
U (q)−g(z))

fU(F
−1
U (q))

, where q are quantiles, satisfies Condition C.2.2. Since the

proof is symmetric, we show this only for fx|q(x|q). Condition C.2.2(i) is satisfied since
fx|q(x|q) is complete (Lemma C.2.3).

To verify Condition C.2.2(ii), we compute
∂fx|q(x|q)

∂q . Note that

fx|q(x|q)= fq|x(q|x)fx(x)/fq(q)= fq|x(q|x)
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by Bayes’ rule and the (normalized) marginal distributions of x and q. Therefore,

∂fx|q(x|q)
∂q

= ∂fq|x(q|x)
∂q

= ∂

∂q

fε
(
F−1
V (q)− h(x))
fV

(
F−1
V (q)

)
= fV

(
F−1
V (q)

)
f ′
ε

(
F−1
V (q)− h(x)) − fε

(
F−1
V (q)− h(x))f ′

V

(
F−1
V (q)

)
fV

(
F−1
V (q)

)3 	

Therefore, Condition C.2.2(ii) follows from Assumption 1 since each of the terms is finite,
and fV (v) > 0 since ε and h(X) have full support on R.

We can verify Condition C.2.2(iii) by showing that for each q ∈ (0�1), there exists
x such that d

dqfq|x(q|x) �= 0. Toward a contradiction, for a given q ∈ (0�1), assume that
d
dqfq|x(q|x)= 0 for all x. As shown above, d

dqfq|x(q|x)= d
dq

fε(F
−1
V (q)−h(x))
fV (F

−1
V (q))

. Since fV (v) > 0,
d
dqfq|x(q|x)= 0 for all x if and only if d

dv
fε(v−h(x))
fV (v)

evaluated at v= F−1
V (q) is zero for all x,

it must therefore be that

d

dv

fε
(
v− h(x))
fV (v)

= fV (v)f
′
ε

(
v− h(x)) − fε

(
v− h(x))f ′

V (v)

fV (v)
2

is zero for all x for each v ∈ (−∞�∞). Since fV (v) > 0, it must be that fV (v)f ′
ε(v −

h(x)) = fε(v − h(x))f ′
V (v) for all x. Since h(x) has full support on R, this implies that

f ′
ε(ε)=K1fε(ε) for all ε ∈ (∞�∞). Hence, fε(ε)=K2 exp(K1ε) for constants K1 and K2.

Note that fε is a density with full support, which is a contradiction with this functional
form.

Condition C.2.2(iv) is definitional for the particular model considered since q in-
dexes quantiles. Condition C.2.2(v) follows from Lemma C.2.4 under Assumption 1.
Conditions C.2.2(vi) is also definitional in our case since fx|q are conditional densities
and q indexes quantiles. We have thus verified Condition C.2.2 for fx|q. An identical ar-
gument follows for fz|q. Therefore, by Lemma C.2.7,Qx andQz are the identity functions.
Hence, we have identified fx|q and fz|q.

Appendix B: Proofs: Estimation

B.1 Proof of Proposition 3

We first rewrite

ψN −ψ= (
ψN −E(ψN |μVN �μUN )

) + (
E(ψN |μVN �μUN )−ψ)

	

Proof of part (i). Lemma D.1.9(i) shows that if Assumption 4(i) is satisfied,
E(ψN |μVN �μUN ) − ψ converges in probability to 0 as N → ∞. This result is proved by
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rewriting

E(ψN |μVN �μUN )= 1
N/2

N/2∑
k=1

ψ̃

(
F−1
VN

(
2k− 1
N

)
�F−1

VN

(
2k
N

)
�F−1

UN

(
k

N/2

))

= 1
N

N∑
i=1

ψ̃

(
F−1
VN

(
i

N

)
�F−1

VN

(
i

N

)
�F−1

UN

(
i

N

))
+R�

(B.1)

where FVN and FUN are the cdfs representing the empirical measures μVN and μUN , re-
spectively, and R is a remainder term. We then show that R and

1
N

N∑
i=1

ψ̃

(
F−1
VN

(
i

N

)
�F−1

VN

(
i

N

)
�F−1

UN

(
i

N

))
−ψ

converge in probability to zero. Lemma D.1.10(i) shows that ψN −E(ψN |μVN �μUN ) con-
verges in probability to zero by bounding its variance by 1

J 4‖Ψ‖2∞. Since ψN − ψ =
(ψN −E(ψN |μVN �μUN ))+ (E(ψN |μVN �μUN )−ψ) is the sum of two terms that converge
in probability to zero, the result follows directly from Slutsky’s theorem.

Proof of part (ii). Lemma D.1.9(ii) shows if Assumption 4(ii) is satisfied, then for any
bounded μX−Donsker class ΓX and for any bounded μZ−Donsker class ΓZ ,[√

N
(
E(ψN |μVN �μUN )−ψ)

�
√
N(μXN −μX)(γX)�

√
N/2(μZN −μZ)(γZ)

]
indexed by γX ∈ ΓX and γZ ∈ ΓZ is asymptotically equivalent to⎡

⎢⎢⎢⎢⎢⎢⎢⎣

√
N

∫ 1

0
∇ψ̃q(q�q�q) ·

⎡
⎢⎢⎣
(μ(X�ε)N −μX�ε)

(
1
{
h(x;θ0)+ ε≤ F−1

V (qX)
})

(μ(X�ε)N −μX�ε)
(
1
{
h(x;θ0)+ ε≤ F−1

V (qX)
})

(μ(Z�η)N −μZ�η)
(
1
{
g(z;θ0)+η≤ F−1

U (qZ)
})

⎤
⎥⎥⎦ dq

√
N(μXN −μX)(γX)√
N/2(μZN −μZ)(γZ)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
� (B.2)

which converges weakly to a mean-zero Gaussian process with a covariance kernel V ′.
This covariance kernel is derived by using equation (B.1) to show that

√
NR converges

in probability to zero, and then analyzing

√
N

(
1
N

N∑
i=1

ψ̃

(
F−1
VN

(
i

N

)
�F−1

VN

(
i

N

)
�F−1

UN

(
i

N

))
−ψ

)

using Taylor approximations. Since ‖∇ψ̃q‖∞ < ∞, the expression in (B.2) is a sum of
μX�ε− and μZ�η−Donsker classes because we have added a finite number of sums of
i.i.d. random variables to ΓX and ΓZ . Let ΓX�ε and ΓZ�η be the index sets for this empirical
process. Lemma D.1.11 shows that if Assumption 4(ii) is satisfied, then for any bounded
μX�ε−Donsker class ΓX�ε and for any bounded μZ�η−Donsker class ΓZ�η,[√
N

(
ψN −E(ψN |μVN �μUN )

)
�
√
N(μ(X�ε)N −μX�ε)(γX�ε)�

√
N/2(μ(Z�η)N −μZ�η)(γZ�η)

]
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indexed by γX�ε ∈ ΓX�ε and γZ�η ∈ ΓZ�η converges weakly to a mean-zero Gaussian pro-
cess with a covariance kernel V ′′. To prove this result, we first compute the joint moment
generating function for particular elements, γX�ε and γZ�η, to show that it approaches
the moment generating function of a mean-zero normal random variable, and derive
the covariance V ′′(γX�ε�γZ�ε). We then verify equicontinuity of the process to show weak
convergence.

Therefore, applying this result to the process indexed by ΓX�ε and ΓZ�η, we have that
the process

⎡
⎢⎣

√
N

(
E(ψN |μVN �μUN )−ψ) + √

N
(
ψN −E(ψN |μVN �μUN )

)
√
N(μXN −μX)(γX)√
N/2(μZN −μZ)(γZ)

⎤
⎥⎦

indexed by γX ∈ ΓX and γZ ∈ ΓZ converges weakly to a mean-zero Gaussian process
with covariance kernel V .

We now compute V . Note that V (γΨ �γZ) = V ′(γΨ �γZ) + √
2V ′′(γΨ �γZ) and

V (γΨ �γX) = V ′(γΨ �γX) + 2V ′′(γΨ �γX) since covariance is bilinear; V (γΨ �γΨ ) =
V ′(γΨ �γΨ )+2V ′′(γΨ �γΨ ) since Cov(X−E[X|I]�E[X|I]−E[X])= 0 for any sigma-field
I by the law of iterated expectations. Finally, by definition, V (γX�γZ)= 0, V (γX�γ′

X)=
V ′(γX�γ′

X) and V (γZ�γ
′
Z) = V ′(γZ�γ′

Z). The remaining elements are V (γΨ �γX) =
V ′(γΨ �γX) + 2V ′′(γΨ �γX), V (γΨ �γΨ ) = V ′(γΨ �γΨ ) + 2V ′′(γΨ �γΨ ), and V (γΨ �γZ) =
V ′(γΨ �γZ)+

√
2V ′′(γΨ �γZ), where V ′ and V ′′ are as defined in Lemmas D.1.9 and D.1.10,

respectively.

B.2 Proof sketch for Proposition 4

Consider a sequence of measures (μXN �μZN ) and scalars hN → 0 such that
1
hN
(μXN − μX�μZN − μZ) converges to G = (GX�GZ) uniformly in LΓ∞, where G is

bounded and uniformly continuous. The Hadamard derivative is the limit of

1
hN

[
ψ̃δ[μX�μZ](θ)− ψ̃δ[μXN �μZN ](θ)] (B.3)

= 1
hN

[∫ 1−δ

δ

∫
Ψ(x1�x2� z)φε(q�x1;θ)φε(q�x2;θ)φη(q� z;θ)dμX1 dμX2 dμZ∫

φε(q�x1;θ)φε(q�x2;θ)φη(q� z;θ)dμX1 dμX2 dμZ

dq (B.4)

−
∫ 1−δ

δ

∫
Ψ(x1�x2� z)φε�N(q�x1;θ)φε�N(q�x2;θ)φη�N(q� z;θ)dμXN�1 dμXN�2 dμZN∫

φε�N(q�x1;θ)φε�N(q�x2;θ)φη�N(q� z;θ)dμXN�1 dμXN�2 dμZN
dq

]
�

where

φη(q�z;θ) = fη
(
F−1
u;θ�μZ (q)− g(z;θ))�

φε(q�x;θ) = fε
(
F−1
v;θ�μX (q)− h(x;θ))�
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φη�N(q� z;θ) = fη
(
F−1
N�U;θ�μZN (q)− g(z;θ))�

φε�N(q�x;θ) = fε
(
F−1
N�V ;θ�μXN (q)− h(x;θ))

in terms of GX and GZ . The detailed calculations are presented in Appendix D.2. Here,
we illustrate the basic ideas of the argument and the components of the derivative by
computing the limit of the simplified expression

1
hN

[∫ 1−δ

δ

∫
Ψ(x)φε(q�x;θ)dμX∫
φε(q�x;θ)dμX

dq−
∫ 1−δ

δ

∫
Ψ(x)φε�N(q�x;θ)dμXN∫
φε�N(q�x;θ)dμXN

dq

]
	

We first rewrite the difference

∫ 1−δ

δ

∫
Ψ(x)φε(q�x;θ)dμX∫
φε(q�x;θ)dμX

dq−
∫ 1−δ

δ

∫
Ψ(x)φε�N(q�x;θ)dμXN∫
φε�N(q�x;θ)dμXN

dq

=
∫ 1−δ

δ

∫
Ψ(x)φε(q�x;θ)(dμX − dμXN )∫

φε(q�x;θ)dμX
dq

+
∫ 1−δ

δ

∫
Ψ(x)φε(q�x;θ)dμXN∫
φε(q�x;θ)dμX

dq

−
∫ 1−δ

δ

∫
Ψ(x)φε�N(q�x;θ)dμXN∫

φε(q�x;θ)dμX

∫
φε(q�x;θ)dμX∫
φε�N(q�x;θ)dμXN

dq

=
∫ 1−δ

δ

∫
Ψ(x)φε(q�x;θ)(dμX − dμXN )∫

φε(q�x;θ)dμX
dq

+
∫ 1−δ

δ

∫
Ψ(x)

(
φε(q�x;θ)−φε�N(q�x;θ)

)
dμXN∫

φε(q�x;θ)dμX
dq

+
∫ 1−δ

δ

∫
Ψ(x)φε�N(q�x;θ)dμXN∫

φε(q�x;θ)dμX
×

⎛
⎜⎜⎝1 −

∫
φε(q�x;θ)dμX∫
φε�N(q�x;θ)dμXN

⎞
⎟⎟⎠ dq

=
∫ 1−δ

δ
T1(q)+ T2(q)+ T3(q)dq	
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To obtain the limit of 1
hN

∫ 1−δ
δ T1(q)dq, note that 1

hN
(μXN −μX) converges uniformly to

GX ∈LΓX∞ . Therefore,

1
hN

∫ 1−δ

δ
T1(q)dq = 1

hN

∫ 1−δ

δ

∫
Ψ(x)φε(q�x;θ)(dμX − dμXN )∫

φε(q�x;θ)dμX
dq

→
∫ 1−δ

δ

∫
Ψ(x)φε(q�x;θ)dGX∫
φε(q�x;θ)dμX

dq	

To obtain the limit of 1
hN
T2(q), note that

1
hN
T2(q) =

∫
Ψ(x)

1
hN

(
φε(q�x;θ)−φε�N(q�x;θ)

)
dμXN∫

φε(q�x;θ)dμX

= 1
hN

(
F−1
V ;θ(q)− F−1

N�V ;θ(q)
)
∫
Ψ(x)f ′

ε

(
F−1
V ;θ(q)− h(x;θ))dμXN∫
φε(q�x;θ)dμX

+ o(1)

= 1
hN

(
F−1
V ;θ(q)− F−1

N�V ;θ(q)
)
∫
Ψ(x)f ′

ε

(
F−1
V ;θ(q)− h(x;θ))dμX∫

φε(q�x;θ)dμX
+ o(1)�

where the second equality follows from a Taylor expansion and the dominated conver-

gence theorem (since f ′
ε is bounded), and the last equality follows from the fact that

dμXN − dμX → 0 and uniform bounds over q ∈ (δ�1 − δ) on the remaining terms. We

then show that

1
hN

(
F−1
V ;θ(q)− F−1

N�V ;θ(q)
) → 1

fV ;θ
(
F−1
V ;θ(q)

) ∫
GX

(
1
{
h(x;θ)+ ε≤ F−1

V ;θ(q)
})
dFε

= G
q
V (θ)

uniformly in q ∈ (δ�1 − δ) to obtain the limit

1
hN

∫ 1−δ

δ
T2(q)dq→

∫ 1−δ

δ
G
q
V (θ)

∫
Ψ(x)f ′

ε

(
F−1
V ;θ(q)− h(x;θ))dμX∫

φε(q�x;θ)dμX
dq	
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Finally, we rewrite

T3(q) =

∫
Ψ(x)φε�N(q�x;θ)dμXN∫

φε(q�x;θ)dμX
×

⎛
⎜⎜⎝1 −

∫
φε(q�x;θ)dμX∫
φε�N(q�x;θ)dμXN

⎞
⎟⎟⎠

=

∫
Ψ(x)φε�N(q�x;θ)dμXN∫
φε�N(q�x;θ)dμX

×

⎛
⎜⎜⎝

∫
φε�N(q�x;θ)dμX −

∫
φε(q�x;θ)dμX∫

φε(q�x;θ)dμXN

⎞
⎟⎟⎠

=

∫
Ψ(x)φε�N(q�x;θ)dμXN∫
φε�N(q�x;θ)dμX

× (−T̃1(q)− T̃2(q)
)

=

∫
Ψ(x)φε(q�x;θ)dμX∫
φε(q�x;θ)dμX

× (−T̃1(q)− T̃2(q)
)

+

⎛
⎜⎜⎝

∫
Ψ(x)φε�N(q�x;θ)dμXN∫
φε�N(q�x;θ)dμX

−

∫
Ψ(x)φε(q�x;θ)dμX∫
φε(q�x;θ)dμX

⎞
⎟⎟⎠ × (−T̃1(q)− T̃2(q)

)
�

where T̃1(q)= T1(q) and T̃2(q)= T2(q) evaluated at Ψ(x)= 1. Since 1
hN
(−T̃1(q)− T̃2(q))

is finite, the second term is negligible. Hence,

1
hN
T3(q)→ −

∫
Ψ(x)φε(q�x;θ)dμX∫
φε(q�x;θ)dμX

×

⎛
⎜⎜⎝

∫
φε(q�x;θ)dGX∫
φε(q�x;θ)dμX

+GqV (θ)

∫
f ′
ε

(
F−1
V ;θ(q)− h(x;θ))dμX∫
φε(q�x;θ)dμX

⎞
⎟⎟⎠ 	

The limit of 1
hN

∫ 1−δ
δ T1(q)+ T2(q)+ T3(q)dq given by the expressions above yields the

Hadamard derivative of interest. Appendix D.2 uses a dominated convergence argument
to ensure that T1(q)+ T2(q)+ T3(q) converges uniformly in q.
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