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Solving the Diamond–Mortensen–Pissarides model accurately

Nicolas Petrosky-Nadeau
Economic Research, Federal Reserve Bank of San Francisco

Lu Zhang
Fisher College of Business, The Ohio State University and NBER

An accurate global projection algorithm is critical for quantifying the basic mo-
ments of the Diamond–Mortensen–Pissarides model. Log linearization under-
states the mean and volatility of unemployment, but overstates the volatility of
labor market tightness and the magnitude of the unemployment–vacancy correla-
tion. Log linearization also understates the impulse responses in unemployment
in recessions, but overstates the responses in the market tightness in booms. Fi-
nally, the second-order perturbation in logs can induce severe Euler equation er-
rors, which are often much larger than those from log linearization.

Keywords. Search frictions, unemployment, projection, perturbation, nonlinear
dynamics, parameterized expectations, finite elements.

JEL classification. E24, E32, J63, J64.

1. Introduction

The Diamond (1982), Mortensen (1982), and Pissarides (1985) (DMP) search model of
equilibrium unemployment is the dominant framework of the labor market. A large liter-
ature has developed to address whether the model can quantitatively explain labor mar-
ket volatilities.1 More generally, the DMP model has been adopted throughout macroe-
conomics, including Merz (1995) and Andolfatto (1996) on business cycles, Gertler and
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Trigari (2009) on the New Keynesian model, Blanchard and Gali (2010) on monetary pol-
icy, and Petrosky-Nadeau, Zhang, and Kuehn (2015) on endogenous disasters.

Our key insight is that a globally algorithm, not a local perturbation solution, is cru-
cial for quantifying the equilibrium properties of the DMP model. We first show the
impact of nonlinear dynamics on labor market moments in Hagedorn and Manovskii
(2008), who argue that the DMP model produces realistic labor market volatilities under
their calibration. The (quarterly) unemployment volatility is 0�145, which is close to 0�125
in the data. However, when the model is solved accurately, the unemployment volatility
is 0�258, which is about twice as large as that in the data. The unemployment–vacancy
correlation is also lower in magnitude, −0�567, versus −0�724 from log linearization. Fi-
nally, the stochastic mean of the unemployment rate, 6�17%, is almost one percentage
point higher than its deterministic steady state, 5�28%, from log linearization. These re-
sults cast doubt on the validity of calibration that relies exclusively on steady state rela-
tions, as well as log linearization as a solution method for the DMP model.

We also demonstrate our key insight in the model of Petrosky-Nadeau, Zhang, and
Kuehn (2015), who show that a real business cycle model embedded with the DMP struc-
ture, once solved accurately, gives rise to endogenous disasters. Following the common
practice in the existing literature, however, we recalibrate their model by matching its
moments from log linearization to the postwar data. We then compare the moments
from log linearization with those from a projection algorithm. Log linearization again
understates the mean unemployment rate, 5�87% versus 10�75%, and the unemploy-
ment volatility, 0�133 versus 0�158. Log linearization also overstates the volatility of labor
market tightness, 0�355 versus 0�254, as well as the magnitude of the unemployment–
vacancy correlation, −0�536 versus −0�359. Finally, log linearization understates busi-
ness cycle volatilities, 1�72% versus 3�26% per annum for output growth, 2�41% versus
2�60% for consumption growth, and 3�26% versus 4�45% for investment growth.

The two algorithms also differ in impulse responses. First, the unemployment re-
sponses from projection are substantially stronger in recessions than in booms. In re-
sponse to a negative 1 standard deviation shock to the log productivity, the unemploy-
ment rate rises by 1�35% in the bad economy (the 5th percentile of the model’s trivariate
distribution of employment, capital, and log productivity), but only by 0�035% in the
good economy (the 95th percentile of the trivariate distribution). This strong nonlinear-
ity is missed by log linearization, which implies a response of only 0�327% in the bad
economy. Second, the log linearization responses in the market tightness are substan-
tially stronger in booms than in recessions. In response to a positive impulse, the market
tightness jumps up by 2�38 in the good economy, but only by 0�134 in the bad economy.
In contrast, the projection response is only 0�168 in the good economy.

The model’s nonlinear dynamics are responsible for the differences across algo-
rithms. Intuitively, matching frictions induce congestion externality. In recessions many
unemployed workers compete for a small pool of vacancies, causing the vacancy fill-
ing rate to approach its upper limit of unity, and fail to increase further. As such, the

Hall and Milgrom (2008) replace the Nash bargaining wage with a credible bargaining wage. Finally,
Petrosky-Nadeau and Wasmer (2013) use financial frictions to increase labor market volatilities.



Quantitative Economics 8 (2017) Solving the DMP model 613

marginal costs of hiring (inversely related to the vacancy filling rate) hardly decline, ex-
acerbating the impact of falling profits to stifle job creation. Consequently, unemploy-
ment spikes up in recessions. In contrast, in booms many vacancies compete for a small
pool of unemployed workers. The vacancy fill rate is sensitive to an extra vacancy, caus-
ing the marginal costs of hiring to rise rapidly to slow down job creation. As such, the
economy expands, unemployment falls, and the market tightness rises only gradually
in booms (Petrosky-Nadeau, Zhang, and Kuehn (2015)). These nonlinear dynamics are
fully captured by the projection algorithm, but are largely missed by log linearization.

In the Hagedorn–Manovskii (2008) model with risk neutrality, linear production, and
labor productivity as the only state, the second-order perturbation in logs improves
on log linearization, but still fails to deliver accurate moments. The unemployment
volatility is 0�164, which, although higher than 0�133 from log linearization, is still lower
than 0�251 from projection. Similarly, the unemployment–vacancy correlation is −0�791,
which is still far from −0�564 from projection. More important, in the richer model of
Petrosky-Nadeau, Zhang, and Kuehn (2015) with risk aversion, nonlinear production
with capital, and multiple state variables, the second-order perturbation delivers wildly
inaccurate results. Because the economy often wanders far away from the deterministic
steady state, the second-order coefficients calculated locally induce very large errors.

Our work suggests that many results in the prior quantitative search literature need
to be reexamined with a global solution. Even for studies that use nonlinear algorithms
on stylized models with risk neutrality and linear production, we show that the quality of
Markov-chain approximation to the continuous productivity process matters. Because
the productivity process is often calibrated to be highly persistent, the Rouwenhorst
(1995) discretization delivers more accurate results than the more popular Tauchen
(1986) method. More important, richer business cycle models embedded with the DMP
structure have been almost exclusively solved with the low-order perturbation method
in the existing literature. We show that the strong nonlinear dynamics render the pertur-
bation method largely ineffective, if not misleading, in this class of models.

Our work also contributes to the computational economics literature. Our nonlin-
ear algorithm is built on Judd (1992), who pioneers the projection method for solv-
ing dynamic equilibrium models. Our algorithm is also built on Christiano and Fisher
(2000), who show how to incorporate occasionally binding constraints into a projec-
tion algorithm. Most prior studies compare different solution methods for the stochas-
tic growth model and its extensions. Prominent examples include Aruoba, Fernández-
Villaverde, and Rubio-Ramírez (2006), Caldara, Fernández-Villaverde, Rubio-Ramírez,
and Yao (2012), and Fernández-Villaverde and Levintal (2016) for the baseline stochas-
tic growth model, Algan, Allais, and Den Haan (2010), Den Haan and Rendahl (2010),
and Maliar, Maliar, and Valli (2011) for the incomplete markets model with heteroge-
nous agents and aggregate uncertainty, as well as Kollmann, Maliar, Malin, and Pichler
(2011), Maliar, Maliar, and Judd (2011), Malin, Krueger, and Kubler (2011), and Pichler
(2011) for the multicountry real business cycle model. We are not aware of any prior
studies that compare solution methods for the DMP model. Most important, while prior
studies find that the perturbation method is competitive in terms of accuracy with the
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projection method for solving the stochastic growth model, we find the perturbation
method to be inadequate for the DMP model.

Section 2 compares solution methods for solving the Hagedorn–Manovskii (2008)
(HM) model. Section 3 compares the methods for solving the Petrosky-Nadeau–Zhang–
Kuehn (2015) (PZK) model. Finally, Section 4 concludes.

2. The Hagedorn–Manovskii model

2.1 Environment

There exist a representative household and a representative firm with labor as the pro-
ductive input. Following Merz (1995), we use the representative family construct, which
implies perfect consumption insurance. The household has a continuum with a unit
mass of members who are either employed or unemployed. The fractions of employed
and unemployed workers are representative of the population at large. The household
pools the income of all the members together before choosing per capita consumption
and asset holdings. The household is risk neutral with a time discount factor β.

The representative firm posts a number of job vacancies, Vt , to attract unemployed
workers, Ut . Vacancies are filled via a constant returns to scale matching function,

G(Ut�Vt) = UtVt(
Uι
t + V ι

t

)1/ι � (1)

in which ι > 0 is a constant parameter. This matching function, from Den Haan, Ramey,
and Watson (2000), implies that matching probabilities fall between 0 and 1.

Define θt ≡ Vt/Ut as the vacancy–unemployment (V /U) ratio. The probability for an
unemployed worker to find a job per unit of time (the job finding rate) is

ft = f (θt) = G(Ut�Vt)

Ut
= 1(

1 + θ−ι
t

)1/ι � (2)

The probability for a vacancy to be filled per unit of time (the vacancy filling rate) is

qt = q(θt) = G(Ut�Vt)

Vt
= 1(

1 + θιt
)1/ι � (3)

An increase in vacancies relative to unemployed workers makes it harder to fill a vacancy,
q′(θt) < 0. As such, θt is labor market tightness from the firm’s perspective.

The firm takes aggregate labor productivity, Xt , as given. We specify xt ≡ log(Xt) as

xt+1 = ρxt + σεt+1� (4)

in which ρ ∈ (0�1) is the persistence, σ > 0 is the conditional volatility, and εt+1 is an
independently and identically distributed (i.i.d.) standard normal shock. The firm uses
labor to produce output, Yt , with a constant returns to scale production technology,

Yt = XtNt� (5)
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The representative firm incurs costs in posting vacancies with the unit cost,

κt = κKXt + κW X
ξ
t � (6)

in which κK , κW , and ξ are positive parameters. Once matched, jobs are destroyed at a
constant rate of s per period. Employment evolves as

Nt+1 = (1 − s)Nt + q(θt)Vt� (7)

in which q(θt)Vt is the number of new hires. Because the population has a unit mass,
Ut = 1 −Nt , Nt and Ut are also the employment and unemployment rates, respectively.

The dividends to the firm’s shareholders are given by Dt = XtNt − WtNt − κtVt , in
which Wt is the wage rate. Taking q(θt) and Wt as given, the firm posts an optimal num-
ber of job vacancies to maximize the cum-dividend market value of equity, St , defined as
max{Vt+τ�Nt+τ+1}∞τ=0

Et[∑∞
τ=0 β

τ[Xt+τNt+τ −Wt+τNt+τ − κt+τVt+τ]], subject to equation (7)
and a nonnegativity constraint on vacancies

Vt ≥ 0� (8)

Because q(θt) > 0, this constraint is equivalent to q(θt)Vt ≥ 0. As such, the only source of
job destruction is the exogenous separation of employed workers from the firm.

Let λt denote the multiplier on the constraint q(θt)Vt ≥ 0. From the first-order con-
ditions with respect to Vt and Nt+1, we obtain the intertemporal job creation condition

κt

q(θt)
− λt =Et

[
β

(
Xt+1 −Wt+1 + (1 − s)

(
κt+1

q(θt+1)
− λt+1

))]
� (9)

Intuitively, the marginal costs of hiring at time t (with the V ≥ 0 constraint accounted
for) equal the marginal value of a worker to the firm, which equals the marginal benefits
of hiring at period t+1, discounted to t with the discount factor,β. The marginal benefits
at t + 1 include the marginal product of labor, Xt+1, net of the wage rate, Wt+1, plus the
marginal value of a worker, which equals the marginal costs of hiring at t + 1, net of
separation. Finally, the optimal policy also satisfies the Kuhn–Tucker conditions

q(θt)Vt ≥ 0� λt ≥ 0� and λtq(θt)Vt = 0� (10)

Equilibrium wages are determined endogenously from the sharing rule per the out-
come of a generalized Nash bargaining process between the employed workers and the
firm. Let η ∈ (0�1) be the workers’ relative bargaining weight and let b be the workers’
flow value of unemployment activities. The wage rate is given by

Wt = η(Xt + κtθt)+ (1 −η)b� (11)

Let Ct denote consumption. In equilibrium, the goods market clearing condition says

Ct + κtVt =XtNt� (12)
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2.2 Algorithms

To solve the model accurately, we design a projection algorithm.

Projection Because of risk neutrality and linear production, the state space of the
model consists of only log productivity, xt . Both sides of equation (9) depend only on xt ,
and not on employment, Nt . This convenient property no longer holds with either risk
aversion or a production function with decreasing marginal product of labor, or both.
Our goal is to solve for labor market tightness, θt = θ(xt), and the multiplier function,
λt = λ(xt) from equation (9). We must work with the job creation condition because the
competitive equilibrium is not Pareto optimal. In addition, θ(xt) and λ(xt) must also
satisfy the Kuhn–Tucker conditions (10).

The standard projection method would approximate θ(xt) and λ(xt) directly to solve
the job creation condition while obeying the Kuhn–Tucker conditions. However, with the
Vt ≥ 0 constraint, these kinked functions might cause problems in the approximation
with smooth basis functions. To deal with this issue, we follow Christiano and Fisher
(2000) to approximate the conditional expectation in the right-hand side of equation (9)
as Et ≡ E(xt). A mapping from Et to policy and multiplier functions then eliminates the
need to parameterize the multiplier function separately. In particular, after obtaining Et ,
we first calculate q̃(θt) ≡ κt/Et . If q̃(θt) < 1, the nonnegativity constraint is not binding,
we set λt = 0 and q(θt) = q̃(θt), and then solve θt = q−1(q̃(θt)), in which q−1(·) is the
inverse function of q(·) from equation (3). If q̃(θt) ≥ 1, the constraint is binding, and we
set θt = 0, q(θt) = 1, and λt = κt − Et .

We implement both discrete and continuous state space methods. For the former,
we approximate the persistent log productivity, xt , based on the Rouwenhorst (1995)
method. We use 17 grid points to cover the values of xt , which are precisely within 4 un-
conditional standard deviations above and below the unconditional mean of zero. The
conditional expectation in the right-hand side of equation (9) is calculated via matrix
multiplication. We do not use the more popular Tauchen (1986) method because it is
less accurate when the productivity process is highly persistent (Section 2.6). To obtain
an initial guess of the E(xt) function, we use the log-linear solution.

For the continuous state space method, we approximate the E(xt) function (within
4 unconditional standard deviations of xt from its unconditional mean of zero) with
tenth-order Chebychev polynomials. The Chebychev nodes are obtained with colloca-
tion. The Miranda–Fackler (2002) CompEcon toolbox is used for function approximation
and interpolation. The conditional expectation in the right-hand side of equation (9) is
computed with the Gauss–Hermite quadrature (Judd (1998, pp. 261–263)).

A technical issue arises with the wide range of the state space of xt . When xt is suffi-
ciently low, the conditional expectation in the right-hand side of equation (9), Et , can be
negative. A negative Et means that the firm should exit the economy, a decision that we
do not model explicitly. In practice, we deal with this technical complexity by restricting
simulated xt values to be within 3�4645 unconditional standard deviations from zero.
The smaller interval is precisely the range of the discrete state space with 13 grid points
from the Rouwenhorst procedure. The smaller range of xt guarantees that Et is always
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positive. We opt to obtain the model solution on the wider range of xt to ensure its pre-
cision over the smaller range. In any event, the results are quantitatively similar with 13
or 17 grid points of xt (Section 2.6).

Perturbation We implement log linearization and the second-order perturbation in
logs using Dynare (Adjemian, Bastani, Juillard, Mihoubi, Perendia, Ratto, and Villemot
(2011)). Because Dynare is well know, we simply report our codes in Appendix A.1. Two
comments are in order. First, we ignore the vacancy nonnegativity constraint by setting
the multiplier, λt , to be zero for all t. Doing so is consistent with the common practice
in the literature. Second, following Den Haan’s (2011) recommendation, we substitute
out as many variables as we can, and use only a minimum number of equations in the
Dynare program. We use only three equations (the employment accumulation equa-
tion, the job creation condition, and the law of motion for log productivity) with three
primitive variables (employment, log productivity, and consumption). The solutions to
all the other variables are obtained using the model’s actual nonlinear equations, which
connect all the other variables to the three variables in the perturbation system.

2.3 Labor market moments

It is customary to detrend variables in log deviations from the Hodrick–Prescott (1997,
HP) trend with a smoothing parameter of 1600. In contrast, we use the HP-filtered cycli-
cal component of proportional deviations from the mean with the same smoothing pa-
rameter. We cannot take logs because vacancies can be zero in simulations when the
Vt ≥ 0 constraint is binding. We use the same data sources and sample (from the first
quarter in 1951 to the fourth quarter in 2004) as HM (2008, Table 3) to facilitate com-
parison. The seasonally adjusted unemployment is from the Current Population Survey
at the Bureau of Labor Statistics (BLS). The seasonally adjusted help-wanted advertising
index (a proxy for job vacancies) is from the Conference Board. Both unemployment and
vacancies are quarterly averages of monthly series. The seasonally adjusted real average
output per person in the nonfarm business sector (a proxy for labor productivity) is from
the BLS. Using the HP-filtered cyclical components of proportional deviations from the
mean, we calculate the standard deviations of unemployment, vacancy, and labor mar-
ket tightness to be 0�119, 0�134, and 0�255, which are close to 0�125, 0�139, and 0�259, re-
spectively, reported in HM’s Table 3 based on log deviations. Finally, unemployment and
vacancy have a correlation of −0�913, indicating a downward-sloping Beveridge curve,
and the correlation is close to −0�919 in HM.

To solve and simulate from the model, we use exactly the same parameter values
from HM’s weekly calibration. The time discount factor, β, is 0�991/12. The persistence of
log productivity, ρ, is 0�9895, and its conditional volatility, σ , is 0�0034. The workers’ bar-
gaining weight, η, is 0�052, and their flow value of unemployment activities, b, is 0�955.
The job separation rate, s, is 0�0081. The elasticity of the matching function, ι, is 0�407.
Finally, for the vacancy cost function, the capital cost parameter, κK , is 0�474, the labor
cost parameter, κW , is 0�11, and the exponential parameter in the labor cost, ξ, is 0�449.

Figure 1 plots the conditional expectation, Et , and labor market tightness, θt , from
the discrete state space method with projection, over the range that encompasses 3�4645
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Figure 1. The conditional expectation and labor market tightness in the HM model. The figure
plots the conditional expectation, Et , and labor market tightness, θt , solved from the discrete
state space method with 17 grid points of the log productivity, xt . The plots cover the range that
encompasses 3�4645 unconditional standard deviations of xt from zero.

unconditional standard deviations of log productivity, xt , above and below zero. The
plots from the continuous state space method are virtually identical and are omitted.
The Et function is smooth in xt and θt also seems well behaved, although it shows a fair
amount of curvature when it hits zero with low values of xt .

To calculate labor market moments, we first reach the model’s ergodic distribution
by simulating the economy for 500 × 12 × 4 weekly periods from the initial condition
of zero for log productivity and 0�947 for employment (its deterministic steady state).
From the ergodic distribution, we repeatedly simulate 5000 artificial samples, each with
648 × 4 weekly periods. We take the quarterly averages of the weekly unemployment,
vacancy, and labor productivity to obtain 216 quarterly observations, matching HM’s
sample length. We then calculate the model moments for each artificial sample, and
report the cross-simulation averages.

Table 1 reports labor market moments from the HM model. Panel A is identical to
Table 4 in HM, and Panel B reports the log-linear results. Although the moments are not
identical, the results in Panel B are largely in line with those in Panel A. The unemploy-
ment volatility, 0�133, is slightly lower than 0�145 in HM, and the volatility of labor mar-
ket tightness, 0�327, is slightly higher than 0�292 in HM. However, the unemployment–
vacancy correlation is −0�848, which is somewhat higher in magnitude than −0�724 in
HM.2 Panel C reports the labor market moments from the second-order perturbation in
logs. Relative to log linearization, the unemployment volatility increases somewhat from
0�133 to 0�164. The volatility of labor market tightness drops from 0�327 to 0�263. Finally,
the unemployment–vacancy correlation falls in magnitude from −0�848 to −0�791.

2As noted, because vacancies can hit zero (albeit infrequently) in the model solved with the projection
algorithm, we cannot take logs. To facilitate comparison with the projection results, Panel B of Table 1 is
based on HP-filtered proportional deviations from the mean. In untabulated results, we have experimented
with detrending all the variables as log deviations from the HP trend as in HM (2008). (The Vt ≥ 0 constraint
is never binding with log linearization.) The unemployment volatility is 0�146, the volatility of labor mar-
ket tightness is 0�284, and the unemployment–vacancy correlation is −0�777. Comparing these results with
those in Panel B shows that the detrending method does not materially affect the log-linear results.
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Table 1. Labor market moments in the HM model.

U V θ X U V θ X

Panel A: HM (2008, Table 4) Panel B: Log Linearization

Standard deviation 0�145 0�169 0�292 0�013 0�133 0�144 0�327 0�013
Autocorrelation 0�830 0�575 0�751 0�765 0�831 0�681 0�783 0�760

Correlation matrix −0�724 −0�916 −0�892 U −0�848 −0�864 −0�927
0�940 0�904 V 0�858 0�985

0�967 θ 0�890

Panel C: Second-Order Perturbation Panel D: Projection

Standard deviation 0�164 0�178 0�263 0�013 0�257 0�174 0�267 0�013
Autocorrelation 0�831 0�704 0�788 0�760 0�823 0�586 0�759 0�760

Correlation matrix −0�791 −0�794 −0�795 U −0�567 −0�662 −0�699
0�946 0�973 V 0�890 0�909

0�993 θ 0�996

Note: Panel A is borrowed from HM (2008, Table 4). In Panels B–D, we simulate 5000 artificial samples with 648 × 4 weekly
observations in each sample. We take the quarterly averages of weekly unemployment U , vacancy, V , and labor productivity,
X , to convert to 216 quarterly observations. Labor market tightness is denoted θ = V /U . All the variables are in HP-filtered
proportional deviations from the mean with a smoothing parameter of 1600. We calculate all the moments on the artificial
samples and report the cross-simulation averages.

Panel D reports that the projection results differ from the perturbation results in
quantitatively important ways. Most important, the unemployment volatility is 0�257,
which is almost twice as large as that from log linearization, 0�133, and 60% higher than
that of the second-order perturbation in logs, 0�164. Also, the unemployment–vacancy
correlation is −0�567 from projection, and is substantially lower in magnitude than
−0�848 from log linearization and −0�791 from the second-order perturbation. However,
the market tightness volatility is 0�267, which is close to 0�263 from the second-order
perturbation. In all, the low-order perturbation methods understate the unemployment
volatility, but overstate the magnitude of the unemployment–vacancy correlation.

2.4 Nonlinear dynamics

Why does log linearization differ so much from projection? The crux is that the unem-
ployment dynamics in the DMP model are highly nonlinear Petrosky-Nadeau, Zhang,
and Kuehn (2015). In recessions, unemployment rises rapidly, whereas in booms, unem-
ployment falls only gradually. The distribution of unemployment is highly skewed with a
long right tail. With a global solution, the projection algorithm fully captures these non-
linear dynamics. In contrast, by focusing only on local dynamics around the determin-
istic steady state, log linearization ignores the large unemployment dynamics in reces-
sions altogether. By missing the high unemployment rates in recessions, log lineariza-
tion understates the unemployment mean and volatility, and by missing the gradual na-
ture of expansions, log linearization overstates the market tightness volatility as well as
the magnitude of the unemployment–vacancy correlation. The second-order perturba-
tion in logs captures the nonlinear dynamics to some extent, but not nearly enough to
be comparable to the global projection solution.
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Figure 2. An illustrative example of simulated sample paths of unemployment and labor mar-
ket tightness with identical productivity shocks, projection versus log linearization in the HM
model. This figure plots the series for unemployment, Ut , and for labor market tightness, θt , with
5000 weekly periods. The solid line is from the projection algorithm and the broken line is from
log linearization. The underlying log productivity process, xt , is fixed across the two algorithms.

An illustrative example To illustrate the intuition, we first contrast simulated sample
paths of unemployment and labor market tightness across log linearization and projec-
tion. The underlying labor productivity series is identical, and the only difference is the
algorithm. Panel A of Figure 2 shows that the two unemployment sample paths differ in
two critical ways. First, in recessions the unemployment rate from the projection algo-
rithm can spike up to more than 10% (the solid line), but no such spikes are visible from
the log linearization path (the broken line). For instance, in the 1379th weekly period,
the unemployment rate from projection spikes up to 28�64%, whereas the unemploy-
ment rate from log linearization is only 8�67%. Second, in booms the unemployment
rate from projection is often higher than that from log linearization. In particular, in the
4025th week the unemployment rate from projection reaches a low level of 3�44%. How-
ever, the unemployment rate from log linearization is even lower, 1�47%.

Panel B shows that the two market tightness series differ mostly in booms. (The two
corresponding vacancy series are largely similar and are omitted to save space.) In par-
ticular, the projection-based market tightness in the 4025th week is 1�54, which is only
40% of that from log linearization, 3�83. The market tightness from log linearization of-
ten spikes up in booms, but the spikes from projection are much less visible.

Ergodic distribution Figure 3 plots unemployment, Ut , vacancy, Vt , and the labor
market tightness, θt , against the log productivity, xt , using 1 million weekly periods
simulated from the model’s ergodic distribution. From Panel A, the projection-based
unemployment–productivity relation is highly nonlinear. When productivity is high, un-
employment falls gradually and fluctuates within a narrow range, whereas when pro-
ductivity is low, unemployment rises drastically and fluctuates within a wide range.
The unemployment rate can reach above 65% in simulations. The unemployment–
productivity correlation is −0�71. The simulated unemployment series is positively
skewed with a long right tail. The mean unemployment rate is 6�21%, the median is
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Figure 3. Unemployment, vacancy, and labor market tightness in simulations in the HM
model. From the model’s ergodic distribution based on each algorithm, we simulate 1 million
weekly periods, and present the scatter plots of unemployment, Ut , vacancy, Vt , and labor mar-
ket tightness, θt , against log labor productivity, xt .
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5�38%, the skewness is 5�19, and kurtosis is 46�84. The 2�5 percentile, 3�82%, is close to
the median, whereas the 97�5 percentile is far away, 14�16%.

In contrast, Panel D shows that the unemployment–productivity relation from log
linearization is virtually linear. Their correlation is nearly perfect, −0�96. The maxi-
mum unemployment in simulations is only 9�8%. The simulated unemployment series
is largely symmetric. The mean unemployment is 5�28%, which is close to the median of
5�29%. The skewness is almost zero, −0�05, and the kurtosis is 2�96. The 2�5 and 97�5 per-
centiles, 2�72% and 7�77%, respectively, are symmetrical around the median of 5�29%.
The projection-based stochastic mean unemployment rate, 6�21%, is almost 1 percent-
age point higher than its deterministic steady state rate, 5�28%.

From Panel G, unlike log linearization, the second-order perturbation captures
some nonlinear dynamics, but not nearly as strong as projection. The unemployment–
productivity correlation is −0�85, which is lower in magnitude than −0�96 from log lin-
earization, but higher than −0�71 from projection. The maximum unemployment is
23�33%, which, although higher than 9�8% from log linearization, is lower than 67�3%
from projection. The skewness of unemployment is 2�31 and the kurtosis is 11�73, both
of which are smaller than those from projection, 5�19 and 46�84, respectively. However,
the mean unemployment is 5�82%, which is relatively close to 6�21% from projection.

From Panels B, E, and H, the vacancy dynamics are more similar across the algo-
rithms. The main difference is that when productivity is low, the projection-based va-
cancies tend to be higher than those from the perturbation methods, depending on un-
employment. Intuitively, when unemployment is high and the market tightness is low,
the firm posts more vacancies optimally. Because unemployment is never too high from
log linearization, this effect is absent in Panel E. More important, Panels C and F show
that the market tightness from log linearization is substantially higher than that from the
projection algorithm in booms. As in Panel B of Figure 2, intuitively, log linearization un-
derestimates the congestion externality in booms, thereby understating unemployment
and overstating labor market tightness.

Nonlinear impulse responses To further illustrate the nonlinear dynamics of the model,
we report impulse responses. We consider three different initial points: bad, median,
and good economies. The bad economy is the 5th percentile of the model’s bivariate
distribution of employment and log productivity with projection, the median economy
is the 50th percentile, and the good economy is the 95th percentile. (Although the job
creation condition in equation (9) depends only on the labor productivity, other vari-
ables such as consumption, unemployment, and output also depend on the current pe-
riod employment.) The unemployment rates are 10�73%, 5�37%, and 3�97%, and the log
productivity levels are −0�0387, 0, and 0�0383, across the bad, the median, and the good
economies, respectively. We calculate the responses to a 1 standard deviation shock to
the log productivity, both positive and negative, starting from a given initial point. The
impulse responses are averaged across 5000 simulations, each with 480 weeks.

Figure 4 reports the impulse responses. Several nonlinear patterns emerge. First, the
responses from the projection algorithm are clearly stronger in recessions than those in
booms. For instance, in response to a negative impulse, the unemployment rate shoots
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Figure 4. Nonlinear impulse responses in the HM model. The solid (broken) lines are the pro-
jection responses to a positive (negative) 1 standard deviation shock to the log productivity. The
dotted lines are the corresponding responses from log linearization. The responses in unemploy-
ment, Ut , are changes in levels times 100, those in the market tightness, θt , are changes in levels,
and those in wages, Wt , are changes in levels (in percent) scaled by the pre-impulse level.

up by 0�85% in the bad economy (Panel A). In contrast, the response is only 0�08%, which
is an order of magnitude smaller, in the good economy (Panel C). The response in the
median economy is 0�19%, which is closer to that in the good economy than that in
the bad economy (Panel B). Second, and more important, although close in the median
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economy, the responses in unemployment from log linearization diverge significantly
from the projection responses in recessions and in booms. In particular, the responses
from log linearization are substantially weaker in the bad economy. The response to a
negative impulse under log linearization is 0�15%, which is less than 20% of the pro-
jection response, 0�85%. However, in the good economy, the log linearization responses
are somewhat stronger than the projection responses. The log linearization response to
a negative impulse is 0�16%, which is twice as large as the projection response, 0�08%.
Third, the responses in the market tightness are largely similar in the bad and the me-
dian economies across the two algorithms (Panels D and E). However, the projection
responses are only about one-half of those from log linearization (Panel F). Intuitively,
log linearization understates the congestion externality and the gradual nature of ex-
pansions, but the effect can be fully captured by the projection algorithm. Finally, wages
are inertial. In the bad economy, in response to a negative impulse, wages drop by
only about 0�12% relative to its pre-impulse level in the projection solution (Panel H).
This percentage drop in wages is even lower than that in the good economy, 0�18%
(Panel J). Relative to projection, log linearization understates the percentage drop in the
bad economy to be 0�08%, but overstates that in the good economy to be 0�33%.

2.5 Accuracy tests

While it is natural to expect that projection would be more accurate than log lineariza-
tion, we are not aware of any prior attempt to quantify the errors for log linearization
relative to projection in the DMP model. We fill this gap.

Following Judd (1992), we calculate Euler equation errors, defined as

et ≡Et

[
β

(
Xt+1 −Wt+1 + (1 − s)

(
κt+1

qt+1
− λt+1

))]
−

(
κt

qt
− λt

)
� (13)

Judd suggests unit-free residuals as percentage deviations from optimal consumption.
However, this calculation involves taking the inverse of the marginal utility function and
is infeasible in the HM model because of linear utility. As such, we use the regular resid-
uals. If an algorithm is accurate, et should be zero on all points in the state space.

We calculate the errors on a fine log productivity–employment grid. We put the grid
on employment, Nt , besides the log productivity, because the perturbation errors de-
pend on employment. We create an evenly spaced grid that consists of 1000 points of xt
and 1000 points of Nt . For projection, we use cubic splines to interpolate the conditional
expectation function, E(xt), for the xt values that are not on its original 17-point discrete
state space. To calculate the conditional expectation in equation (13) accurately, we use
the Gauss–Hermite quadrature with 5 nodes (the results from the 10-node quadrature
are quantitatively similar).

Panel A of Figure 5 shows that the projection algorithm offers an accurate solution
to the model. The errors are in the magnitude of 10−4. In contrast, Panel B shows that
log linearization exhibits large approximation errors that are 3–4 orders of magnitudes
larger than the projection errors. In particular, the log linearization errors vary from
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Figure 5. Euler equation errors in the state space in the HM model. This figure plots the Euler
equation errors on the log productivity–employment grid.

−11�5% to 7�13%. From Panel C, the second-order perturbation in logs can be less ac-
curate than log linearization. At the deterministic steady state, the error is close to that
from log linearization. However, the errors can be larger once the economy wanders
away from the steady state. The errors vary from −13�88% to 13�34%, and the extreme
errors are larger than those from log linearization.

We also calculate Euler equation errors from the model’s ergodic distribution from
a given algorithm. For projection, we use the policy function from the 17-point discrete
state space. We simulate from the continuous state space and use cubic splines to inter-
polate the conditional expectation function for the xt values that are not on the original
17-point grid. To calculate the conditional expectation accurately in simulations, we use
the Gauss–Hermite quadrature. Further accuracy tests based on alternative designs are
reported in Section 2.6. Figure 6 shows the histograms of the errors, et , defined in equa-
tion (13), based on 1 million weekly periods. From Panel A, the projection errors are
extremely small. The mean error is 2�22 × 10−6, the mean absolute error is 6�84 × 10−6,
and the maximum absolute error is 1�5 × 10−4. In addition, the 2�5th, 50th, and 97�5th
percentiles of the errors are 1�22 × 10−4, 4�9 × 10−6, and 4�9 × 10−6. In contrast, Panel B
shows large errors for log linearization. The mean error is −3�69%, the mean absolute er-
ror is 3�75%, and the maximum absolute error is 11�5%. Also, the 2�5th, 50th, and 97�5th
percentiles of the errors are −11�06%, −3�66%, and −8�76%. The deterministic steady
state consumption is 0�927. As such, the log linearization errors are economically large.
Finally, Panel C shows that the errors from the second-order perturbation in logs are
quantitatively similar to those from log linearization.

2.6 The quality of Markov-chain approximations

HM (2008) in fact use a global algorithm to solve their model. In this subsection, we
examine why their results differ from those from our global algorithm. The crux is that
while we use the Rouwenhorst (1995) discretization to approximate the persistent log
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Figure 6. Euler equation errors in simulations in the HM model. We simulate 1 million weeks
from the model’s ergodic distribution based on each algorithm and plot the histograms for the
Euler residuals. The underlying log productivity series, xt , is identical across the three panels,
which differ only in the algorithm.

productivity process, HM use the Tauchen (1986) discretization. This difference goes a
long way to reconcile our results with theirs. In particular, we show that (i) the results
from the Rouwenhorst method are very close to those from the continuous state space
method, (ii) the results from the Rouwenhorst method are robust to a sufficient number
of grid points, and (iii) the results from the Tauchen method are quite sensitive to the
grid boundaries.

Quantitative results Table 2 reports labor market moments under alternative Markov-
chain approximations. Panel A reports the results from the continuous state space
method. The unemployment volatility is 0�259, the market tightness volatility is 0�268,
and the unemployment–vacancy correlation is −0�567, all of which are very close to
0�257, 0�267, and −0�567, respectively, from the Rouwenhorst method with 17 grid points
(Panel B, same as Panel D in Table 1).3 The results from the Rouwenhorst discretization
are robust to the number of grid points. Panel C uses 13 grid points that cover a range
of the log productivity that is 3�4645 unconditional standard deviations from zero. The
unemployment volatility is 0�254, the volatility of labor market tightness is 0�268, and
the unemployment–vacancy correlation is −0�572, which are close to 0�257, 0�267, and
−0�567, respectively, with 17 grid points (Panel B).

3As noted, the Rouwenhorst grid with 17 points encompasses a wide range of 4 unconditional standard
deviations of the log productivity above and below its unconditional mean of zero. We simulate the log pro-
ductivity from the continuous state space, and restrict the simulated values to be within 3�4645 uncondi-
tional standard deviations from zero. However, simulating from the discrete state space with 17 grid points
yields quantitatively similar results. The unemployment volatility is 0�253, the market tightness volatility
is 0�267, and the unemployment–vacancy correlation is −0�570 (untabulated). In Panels C–F of Table 2, we
simulate directly from the (smaller) discrete state spaces because the conditional expectation is always pos-
itive.
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Table 2. Labor market moments under alternative approximations to the persistent productiv-
ity process.

U V θ X U V θ X

Panel A: Continuous State Space Panel B: Rouwenhorst, nx = 17

Standard deviation 0�259 0�175 0�268 0�013 0�257 0�174 0�267 0�013
Autocorrelation 0�823 0�586 0�760 0�760 0�823 0�586 0�759 0�760

Correlation matrix −0�567 −0�662 −0�698 U −0�567 −0�662 −0�699
0�890 0�909 V 0�890 0�909

0�996 θ 0�996

Panel C: Rouwenhorst, nx = 13 Panel D: Rouwenhorst, nx = 5

Standard deviation 0�254 0�175 0�268 0�013 0�219 0�172 0�267 0�013
Autocorrelation 0�827 0�583 0�759 0�760 0�830 0�581 0�760 0�760

Correlation matrix −0�572 −0�669 −0�704 U −0�608 −0�716 −0�744
0�891 0�908 V 0�901 0�914

0�997 θ 0�998

Panel E: Tauchen, m= 2 Panel F: Tauchen, m= 3�4645

Standard deviation 0�154 0�149 0�246 0�013 0�299 0�192 0�286 0�014
Autocorrelation 0�813 0�582 0�749 0�747 0�825 0�580 0�759 0�760

Correlation matrix −0�697 −0�825 −0�842 U −0�535 −0�625 −0�669
0�930 0�936 V 0�876 0�899

0�997 θ 0�995

Note: Results are averaged across 5000 samples from each approximation with the projection algorithm. The number of
grid points for the log productivity in the Rouwenhorst discretization is denoted nx . When implementing the Tauchen dis-
cretization, we use 35 grid points, but vary the boundaries of the grid in terms of the number of unconditional standard devia-
tions, denoted m, from the unconditional mean of zero. The simulation design is identical to Table 1.

Panel D reports the results from the 5-point Rouwenhorst grid that covers 2 uncondi-
tional standard deviations above and below zero. This range is comparable with the HM
implementation of the Tauchen method that also covers 2 standard deviations above
and below from zero. Even with only 5 grid points, the unemployment volatility is 0�219,
which is not far from 0�257 with 17 grid points. The market tightness volatility is 0�267,
which is identical to that from the larger grid. Finally, the unemployment–vacancy cor-
relation is −0�608 relative to −0�567 from the 17-point grid.

Panels E and F show that the results from the Tauchen discretization are quite sen-
sitive to the range of the grid chosen. Unlike the Rouwenhorst procedure, in which
the number of grid points automatically determines the range of the grid, the Tauchen
method allows a separate parameter to pin down the grid range, regardless of the num-
ber of grid points. We always use 35 grid points as in HM, but experiment with two dif-
ferent ranges that cover 2 and 3�4645 unconditional standard deviations of the log pro-
ductivity from zero. From Panel E, with the smaller range as in HM, the results from
the Tauchen method are largely in line with those reported in their Table 4 (see Panel A
of our Table 1). The unemployment volatility is 0�154, the market tightness volatility is
0�246, and the unemployment–vacancy correlation is −0�697, which are (relatively) close
to 0�145, 0�292, and −0�724, respectively, in HM.
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Panel F shows that enlarging the range of the Tauchen grid raises the unemploy-
ment volatility, but dampens the unemployment–vacancy correlation. When the range
increases from 2 to 3�4645 unconditional standard deviations from zero, the unemploy-
ment volatility rises from 0�154 to 0�299, and the unemployment–vacancy correlation
falls in magnitude from −0�697 to −0�535. The market tightness volatility also increases
somewhat from 0�246 to 0�286. The only difference between Panels E and F is the range
parameter of the Tauchen grid. As such, these results cast doubt on the Tauchen method,
but lend support to the Rouwenhorst method in approximating highly persistent autore-
gressive processes.4

Euler equation errors Figure 7 reports the Euler residuals from the model’s ergodic dis-
tribution based on a given approximation procedure of the continuous log productiv-
ity process, xt . In Panel A, we use the policy function approximated with the 10-order
Chebychev polynomials, which are in turn used to interpolate the policy rule on the
simulated xt values that are not directly on the original Chebychev nodes. The Euler
residuals are largely comparable with those from the discrete Rouwenhorst method with
17 grid points. In particular, the mean error, the mean absolute error, and the maxi-
mum absolute error are −7�76 × 10−7, 2�02 × 10−5, and 1�51 × 10−4, which are close to
2�22 × 10−6, 6�84 × 10−6, and 1�5 × 10−4, respectively, from our benchmark discrete state
space method. Panels B–E report the Euler residuals from alternative Markov-chain ap-
proximation to the continuous xt process. Across all the remaining panels, we simulate
from the continuous state space, and use cubic splines to interpolate the policy func-
tion solved on a given discrete state space on the simulated xt values that are not on
the grid. To calculate the conditional expectation accurately, we use the Gauss–Hermite
quadrature (same in Panel A).

Panel B shows that the Rouwenhorst procedure with 13 grid points is fairly accurate.
The mean error is 2�99 × 10−6, the mean absolute error is 9�19 × 10−6, and the maximum
absolute error is 1�73 × 10−4. However, Panel C shows that using only 5 grid points in
the Rouwenhorst procedure is very inaccurate, with a mean (absolute) error of 2�79 and
a maximum absolute error of 5�1. From Panel D, the Tauchen method with m = 2 (the
boundaries of the grid in terms of the number of unconditional standard deviations of
xt ) leaves much to be desired. Although the mean error is only −9�09 × 10−5, the mean
absolute error is 0�11% and the maximum absolute error 18�4%. Finally, Panel E shows
that the Tauchen method with m = 3�4645 improves on m = 2 greatly, with a mean ab-
solute error of 5�39 × 10−5. However, the maximum absolute error is 0�68%, which is
more than 1 order of magnitude larger than 1�5 × 10−4 from our benchmark Rouwen-
horst method with 17 grid points.

3. The Petrosky-Nadeau–Zhang–Kuehn model

In this section, we explore how projection deviates from log linearization in a real busi-
ness cycle model with both labor search frictions and capital accumulation.

4Kopecky and Suen (2010) also note that the performance of the Tauchen (1986) method is extremely
sensitive to the choice of the free parameter that determines the range of the discrete state space. Their
results are based on the stochastic growth model. We echo their conclusion in the context of the DMP
model.
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Figure 7. Further results on Euler equation errors in simulations in the HM model. We simulate
1 million weeks from the model’s ergodic distribution based on each approximation of the con-
tinuous log productivity process, and plot the histograms for the Euler residuals. The underlying
log productivity series, xt , is identical across all the panels (and is the same series as in Figure 6).
All the panels use the projection algorithm, but differ in the approximation procedure of xt .

3.1 Environment

There exists a representative household with log utility, log(Ct), and its stochastic dis-
count factor is Mt+1 = β(Ct/Ct+1), in which Ct is consumption. A representative firm
uses labor, Nt , and capital, Kt , to produce with a constant returns to scale technology

Yt =XtK
α
t N

1−α
t � (14)

in which α ∈ (0�1) is capital’s weight. The log productivity, xt = log(Xt), follows

xt+1 = (1 − ρ)x̄+ ρxt + σεt+1� (15)

in which x̄ is the unconditional mean of xt . We rescale x̄ to make the average simulated
marginal product of labor around one to ease interpretation of parameter values.
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The firm posts vacancies, Vt , to attract unemployed workers, Ut . The matching func-
tion is given by equation (1). We continue to impose the nonnegativity constraint on
vacancies. When posting vacancies, the firm incurs the constant unit cost of κ. The firm
also invests, and incurs adjustment costs when doing so. Capital accumulates as

Kt+1 = (1 − δ)Kt +Φ(It�Kt)� (16)

in which δ is the depreciation rate and It is investment. The installation function is

Φ(It�Kt) =
[
a1 + a2

1 − 1/ν

(
It

Kt

)1−1/ν]
Kt� (17)

in which ν > 0 is the supply elasticity of capital. We set a1 = δ/(1 − ν) and a2 = δ1/ν to
ensure no adjustment costs in the deterministic steady state (Jermann (1998)).

The equilibrium wage, Wt , follows

Wt = η

[
(1 − α)

Yt

Nt
+ κθt

]
+ (1 −η)b� (18)

in which the marginal product of labor is given by (1 − α)Yt/Nt . The dividends to the
firm’s shareholders are given by Dt ≡ Yt −WtNt − κVt − It . Taking q(θt) and Wt as given,
the firm chooses an optimal number of vacancies and optimal investment to maximize
the present value of all future dividends, subject to equations (7) and (16), as well as the
vacancy nonnegativity constraint. In equilibrium, the market clearing condition says

Ct + It + κVt = Yt� (19)

Optimality conditions include the intertemporal job creation condition

κ

q(θt)
− λt =Et

[
Mt+1

(
(1 − α)

Yt+1

Nt+1
−Wt+1 + (1 − s)

(
κ

q(θt+1)
− λt+1

))]
(20)

and the investment Euler equation

1
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)1/ν
=Et
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+ 1
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(1 − δ+ a1)+ 1

ν − 1
It+1

Kt+1

)]
� (21)

as well as the Kuhn–Tucker conditions in equation (10).5

3.2 Algorithms

Because of its disaster dynamics (PZK (2015)), the projection algorithm for the PZK
model is challenging. Also, risk aversion and nonlinear production function imply
that the model has three separate state variables: employment, Nt , capital, Kt , and

5Under our benchmark calibration (Section 3.3), the vacancy nonnegativity constraint is never binding.
Intuitively, capital provides a buffer to negative shocks so that vacancy does not fall to zero. As such, zero
vacancies are specific to the Hagedorn–Manovskii (2008) model with linear utility and no capital in produc-
tion.
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log productivity, xt . We solve for the optimal vacancy function, V (Nt�Kt�xt), the
multiplier function, λ(Nt�Kt�xt), and the optimal investment function, I(Nt�Kt�xt),
from the intertemporal job creation condition in equation (20) and the investment
Euler equation (21). The policy functions must also satisfy the Kuhn–Tucker condi-
tions in equation (10). Because optimal investment is always positive, we approximate
I(Nt�Kt�xt) directly. The positive investment is a result of the installation function in
equation (17). In particular, when investment goes to zero, the marginal benefit of in-
vestment, ∂Φ(It�Kt)/∂It = a2(It/Kt)

−1/ν , goes to infinity. Finally, to impose the vacancy
nonnegativity constraint, we continue to parameterize the conditional expectation in
the right-hand side of equation (20), denoted Et ≡ E(Nt�Kt�xt).

Following the recommendation of Fernández-Villaverde, Rubio-Ramírez, and
Schorfheide (2016), we discretize the log productivity, xt , with the Rouwenhorst proce-
dure with 17 grid points.6 The discrete state space simplifies the computation of condi-
tional expectations to matrix multiplication, and alleviates the curse of dimensionality.

We approximate I(Nt�Kt�xt) and E(Nt�Kt�xt) on each grid point of xt . Our primary
concern is with accuracy, not running time. We use the finite element method with cubic
splines on 100 nodes on the employment space, Nt ∈ [0�225�0�975], and 100 nodes on the
capital space, Kt ∈ [10�42�5]. We take the tensor product of Nt and Kt for each grid point
of xt . We use the Miranda–Fackler CompEcon toolbox extensively for function approx-
imation and interpolation. With two functional equations on the 17-point xt grid, the
100-point Nt grid, and the 100-point Kt grid, we need to solve a system of 340,000 non-
linear equations. The traditional Newton-style methods are infeasible for such a large
system. Following the recommendation of Judd, Maliar, Maliar, and Valero (2014), we
use derivative-free fixed-point iteration with a damping parameter of 0�025. The conver-
gence criterion is set to be 10−10 for the maximum absolute value of the Euler equation
errors across the nonlinear equations.

To obtain a good initial guess, we proceed sequentially. We first use the log-linear
solution as the initial guess on a small grid with only 5 points for employment and for
capital. The initial grid only covers a small interval of employment from 0�9 to 0�975 and
a small interval of capital from 30 to 40. We always use the 17-point grid for the log pro-
ductivity. Upon convergence, we use the projection solution as the new initial guess. We
then gradually expand the employment and capital grids by adding more grid points,
reducing the lower bounds for employment and capital, and raising the upper bound
for capital. We make sure that the grid bounds are binding in simulations no more than
0�02% of the time. In practice, the Newton-style methods are efficient for solving the
system of nonlinear equations when the number of grid points is below 20 for employ-
ment and for capital, but quickly become infeasible afterward. With more grid points,
we switch to derivative-free fixed-point iteration.

With the calibrated parameter values (Section 3.3), the deterministic steady state
of employment is 0�943, and that of capital is 35�3. In simulations, the boundaries of
the employment and capital spaces are rarely binding. Figure 8 reports the conditional

6Fernández-Villaverde, Rubio-Ramírez, and Schorfheide (2016, p. 78) write that “discretization of state
variables such as the productivity shock is more often than not an excellent strategy to deal with multidi-
mensional problems: simple, transparent, and not too burdensome computationally.”
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Figure 8. The conditional expectation function on the state space in the PZK model. This fig-
ure plots the conditional expectation function, E(Nt�Kt�xt), on the employment–capital grid,
Nt–Kt , for three values of the log productivity, xt , including the lowest, median, and highest grid
points in the 17-point grid of xt .

expectation function on the Nt–Kt space for the lowest, median, and highest values of xt
on its 17-point grid. The function seems relatively smooth. In any event, we use the finite
element method with cubic splines to ensure accuracy. Finally, although the conditional
expectation can be negative in some regions of the large state space, it is always positive
in simulations. The minimum value of E(Nt�Kt�xt) in simulations is around 0�4.

We implement the log-linear solution and the second-order perturbation in logs
again using Dynare (see the Dynare codes in Appendix A.2). We again ignore the va-
cancy nonnegativity constraint, setting λt = 0 for all t, and substitute out as many vari-
ables as possible to use only a minimum number of equations. We use six primitive vari-
ables (employment, capital, log productivity, consumption, investment, and labor mar-
ket tightness, θt ) with six equations (the employment accumulation equation, the cap-
ital accumulation equation, the intertemporal job creation condition, the investment
Euler equation, the law of motion for the log productivity, and the definition of θt as the
vacancy-to-unemployment ratio).

3.3 Calibration with the log-linear solution

Mimicking the common practice in the business cycle literature, we calibrate the model
by matching its log-linear moments to the postwar U.S. data. To show the importance of
different solution algorithms, we then compare the log-linear moments with those from
the projection solution as well as those from the second-order perturbation in logs.

We obtain real output (gross domestic product), consumption (personal consump-
tion expenditures), and investment (gross private domestic investment) from Table 1.1.6
in the National Income and Product Account (NIPA). Table 3 shows that the volatility of
log output growth is 2�17% per annum from 1951 to 2014, the log consumption growth
volatility is 1�78%, and the log investment growth volatility is 8�93%. The first-order au-
tocorrelations of the output, consumption, and investment growth rates are 0�15, 0�34,
and 0�02, respectively.
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Table 3. Business cycle moments, data, and the PZK model.

σY ρY1 ρY2 ρY3 ρY4 σC ρC1 ρC2 ρC3 ρC4

Data 1�78 0�34 0�07 −0�05 0�06 2�17 0�15 0�01 −0�06 0�02
Log linearization 1�72 0�19 −0�07 −0�06 −0�06 2�41 0�18 −0�08 −0�07 −0�07
Second-order perturbation 3�08 0�23 −0�07 −0�07 −0�06 8�38 0�18 −0�12 −0�09 −0�07
Projection 3�26 0�21 −0�08 −0�06 −0�06 2�60 0�23 −0�06 −0�05 −0�05

σI ρI1 ρI2 ρI3 ρI4 E[U]

Data 8�93 0�02 −0�16 −0�19 −0�10 5�87
Log linearization 3�26 0�16 −0�11 −0�09 −0�08 5�75
Second-order perturbation 5�65 0�20 −0�10 −0�09 −0�07 16�40
Projection 4�45 0�19 −0�10 −0�08 −0�07 10�75

Note: The volatilities (in percent) of the log output, consumption, and investment growth rates are denoted σY , σC , and

σI , and ρYj , ρCj , and ρIj are their jth-order autocorrelations, respectively; E[U] is the mean unemployment rate in percent. The

annual real output, consumption, and investment data are from the NIPA Table 1.1.6, and the monthly seasonally adjusted
unemployment rates are from the BLS. The sample is from 1951 to 2014. For the model’s results, we simulate 5000 samples
from each solution of the model, time–aggregate monthly output, consumption, and investment to annual series, and we
report cross-simulation averages as the model moments.

For labor market moments, we follow the sample construction in Petrosky-Nadeau
and Zhang (2013). The sample is from 1951 to 2014. The monthly seasonally adjusted
civilian unemployment rate series is from the BLS. We construct the vacancy rate series
by drawing from four different sources of U.S. job openings: (i) the Metropolitan Life
Insurance company help-wanted advertising index in newspapers from January 1951 to
December 1959 from the National Bureau of Economic Research (NBER) macrohistory
files; (ii) the Conference Board help-wanted index from January 1960 to December 1994;
(iii) the Barnichon (2010) composite print and online help-wanted index from January
1995 to November 2000; and (iv) the seasonally adjusted job openings from December
2000 to December 2014 from the Job Openings and Labor Turnover Survey released by
the BLS. To convert the help-wanted index to a vacancy rate series, we use the monthly
civilian labor force over 16 years of age from the Current Employment Statistics released
by the BLS. Table 3 shows that the mean unemployment rate is 5�87%. Table 4 shows
that the unemployment volatility is 0�132 and the volatility of labor market tightness is
0�263. The unemployment–vacancy correlation is −0�887 and the correlation between
unemployment and labor productivity is only −0�158.

As noted, we calibrate the log-linear model to the postwar U.S. data. The calibra-
tion is in monthly frequency. We use conventional values for the time discount factor,
β = 0�991/3, the persistence of log productivity, ρx = 0�951/3, the capital’s weight, α = 1/3,
the depreciation rate, δ = 0�01, and the separation rate, s = 0�035. The elasticity of the
matching function, ι, is 1�25, which is close to that in Den Haan, Ramey, and Watson
(2000). Following Gertler and Trigari (2009), we choose the conditional volatility of the
log productivity, σ , to match the output growth volatility in the data. This procedure
yields σ = 0�0065, which implies an output volatility of 2�41% per annum in the model,
relative to 2�17% in the data. Following PZK (2015), we choose the elasticity in the in-
stallation function, ν = 2, such that the consumption growth volatility in the model is
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Table 4. Labor market moments, data, and the PZK model.

U V θ Y/N U V θ Y/N

Panel A: Data Panel B: Log Linearization

Standard deviation 0�132 0�134 0�263 0�012 0�133 0�167 0�355 0�011
Autocorrelation 0�901 0�909 0�881 0�773 0�815 0�537 0�759 0�746

Correlation matrix −0�887 −0�830 −0�158 U −0�536 −0�696 −0�881
0�930 0�350 V 0�566 0�782

0�240 θ 0�821

Panel C: Second-Order Perturbation Panel D: Projection

Standard deviation 0�238 1�222 0�770 0�031 0�158 0�158 0�254 0�010
Autocorrelation 0�852 0�611 0�720 0�779 0�844 0�588 0�763 0�657

Correlation matrix 0�061 −0�153 0�346 U −0�359 −0�473 −0�337
0�859 0�795 V 0�899 0�983

0�692 θ 0�930

Note: Panel A is based on postwar U.S. data from 1951 to 2014. In Panels B–D, we simulate 5000 artificial samples with
768 months in each sample. We take the quarterly averages of monthly unemployment U , vacancy, V , and labor productivity,
Y/N , to convert to 256 quarters. Labor market tightness is denoted θ = V /U . All the variables are in HP-filtered proportional
deviations from the mean with a smoothing parameter of 1600. The model moments are cross-simulation averages.

1�72%, which is close to 1�78% in the data. However, the investment growth volatility is
only 3�26%, in contrast to 8�93% in the data.

We calibrate the remaining labor market parameters in the spirit of HM (2008).
The workers’ bargaining weight, η, is 0�04, the flow value of unemployment activities,
b, is 0�95, and the cost of vacancy posting, κ, is 0�45. These values imply an average
unemployment rate of 5�75% in the model, which is close to 5�87% in the data, and
an unemployment volatility of 0�133, which is close to 0�132 in the data. However, the
market tightness volatility is 0�355, which is higher than 0�263 in the data. In addition,
the unemployment–vacancy correlation is −0�536, which is smaller in magnitude than
−0�887 in the data, and the unemployment–labor productivity correlation is −0�881,
which is substantially higher than −0�158 in the data. The weakness of the DMP model
in matching correlations in the data is also present in HM.

3.4 Accuracy tests

Before discussing how the projection moments differ from the perturbation moments,
we present accuracy tests to show that the projection algorithm is accurate, log lineariza-
tion is inaccurate, and the second-order perturbation is wildly incorrect.

Following Judd (1992), we use unit-free residuals in the unit of optimal consump-
tion. Combining the stochastic discount factor with log utility, Mt+1 = β(Ct/Ct+1), with
equations (20) and (21) yields the unit-free job creation equation errors, denoted eVt , as

eVt ≡
[(

κ

q(θt)
− λt

)/(
Et

[
β

Ct+1

(
(1 − α)

Yt+1

Nt+1

−Wt+1 + (1 − s)

(
κ

q(θt+1)
− λt+1

))])
−Ct

]/
Ct�

(22)
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as well as the unit-free investment Euler equation errors, denoted eIt , as

eIt ≡
[(

1
a2

(
It

Kt

)1/ν)/(
Et

[
β

Ct+1

(
α
Yt+1

Kt+1

+ 1
a2

(
It+1

Kt+1

)1/ν
(1 − δ+ a1)+ 1

ν − 1
It+1

Kt+1

)])
−Ct

]/
Ct�

(23)

Because of our large, three-dimensional state space, Nt–Kt–xt , a significant portion
of the state space is never visited in simulations even with our projection algorithm. As
such, we focus on the Euler residuals in simulations because only these errors are rele-
vant to our quantitative results. Figure 9 reports the histograms of the errors based on 1
million monthly periods simulated from each algorithm. Panels A and D show that the
projection algorithm is (relatively) accurate. The mean job creation equation error, eVt ,
is 2�79 × 10−7, its mean absolute error is 3�33 × 10−6, and its maximum absolute error is
1�5%. Also, the 2�5th, 50th, and 97�5th percentiles of eVt are −2�32 × 10−6, −2�26 × 10−10,
and 2�23 × 10−6. For the investment Euler equation error, eIt , its mean is 3�03 × 10−8, its
mean absolute value is 9�23 × 10−7, and its maximum absolute value is 0�39%. In ad-
dition, the 2�5th, 50th, and 97�5th percentiles of eIt are 1�14 × 10−6, 4�69 × 10−11, and
1�18 × 10−6. These errors seem mostly acceptable. Ideally, we would like the maximum
absolute value of eVt to be an order of magnitude smaller than the current level of 1�5%
(by further increasing the number of grid points of employment and capital). However,
as noted, with the current grid, we need to solve a system of 340,000 nonlinear equa-
tions. Even with a reasonable initial guess, the projection algorithm takes a bit more
than 6 days to converge on a Dell workstation with 32 3�1-GHz central processing units
(CPUs) and 384 GB of physical memory.

From Panels B and E in Figure 9, log linearization is inaccurate. The mean job cre-
ation equation error is 1�59%, its mean absolute error is 1�8%, its maximum absolute
error is 27�16%, and its 2�5th, 50th, and 97�5th percentiles are −0�5%, 0�63%, and 8�76%,
respectively. The mean investment Euler equation error is −4�82 × 10−6, the mean abso-
lute error is 7�95 × 10−6, and the maximum absolute error is 1�29 × 10−4. It is curious that
the maximum absolute investment error is even smaller than that from projection. The
small error is an illusion, however. The model economy from projection often wanders
far from the steady state, but the log-linear economy stays within a small neighborhood
surrounding the deterministic steady state.

Figure 10 reports the scatter plots of employment against capital from the model’s
ergodic distribution based on each algorithm. The deterministic steady state is 0�943 for
employment and is 35�29 for capital. Panel A shows that simulations based on the projec-
tion solution cover a wide range from 0�225 to 0�963 for employment and from 10 to 40�45
for capital. The lower bounds of the grids rarely bind, with the binding frequency being
0�00039% for employment and 0�01% for capital. In any event, our quantitative results
are robust to the grid parameters (Section 3.6). As a testimony for the strong nonlinear-
ity of the PZK model, the maximum employment in simulations, 0�963, is close to the
steady state of 0�943, but the minimum employment, 0�225, is substantially far away.
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Figure 9. Euler equation errors in simulations in the PZK model. We simulate 1 million monthly
periods from the model’s ergodic distribution based on each algorithm, and plot the histograms
for the job creation equation errors, eVt , defined in equation (22), and the investment Euler equa-
tion errors, eIt , defined in equation (23). The underlying log productivity series, xt , is identical
across all the panels.

In contrast, Panel B shows that the log-linear economy covers only a small area from
0�839 to 0�99 for employment and from 28�9 to 41�5 for capital in simulations. Although
the minimum employment is further from the steady state than the maximum employ-
ment, the extent of the nonlinearity is negligible relative to that from the projection al-
gorithm. Also, the distribution of capital in simulations is largely symmetric, as the dis-
tance between the lowest capital and the steady state is close to that between the highest
capital and the steady state. The small capital range of the log-linear economy likely ex-
plains why its maximum absolute investment Euler equation error is smaller than that
from the projection algorithm.

Turning our attention to the second-order perturbation in logs, Panels C and F of
Figure 9 show that this algorithm can be dramatically inaccurate, particularly for the job
creation equation. For the errors from this equation, eVt , the mean is −4�06%, the mean
absolute value is 4�51%, and the maximum absolute value is 654�6%. The 2�5th, 50th, and
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Figure 10. The scatter plots of employment versus capital in the PZK model. We simulate 1
million monthly periods from the model’s ergodic distribution based on each algorithm, and
present the scatter plots of employment against capital.

97�5th percentiles are −32�23%, −0�23%, and 0�26%, respectively. The investment Euler
equation errors, eIt , are more sensible. The mean is 7�56 × 10−4, the mean absolute value
is 7�72 × 10−4, and the maximum absolute value is 3�02%. The 2�5th, 50th, and 97�5th
percentiles are −6�51 × 10−5, 2�25 × 10−6, and 0�82%, respectively. Also, the correlations
of the simulated log productivity, xt , are −0�4 with |eVt | and −0�45 with |eIt |. As such, the
algorithm does particularly poorly in bad times.

The employment–capital scatter plot in Panel C of Figure 10 sheds further light on
why the second-order perturbation performs particularly poorly in approximating the
job creation equation. The simulated economy covers a wide range of employment from
0�03 to 0�954, and the minimum employment is substantially lower than 0�225 from the
projection algorithm. Intuitively, the second-order coefficients calculated locally around
the deterministic steady state induce very large errors when the economy wanders far
away from the steady state.

Because of the large Euler residuals from the second-order perturbation, we do not
focus on the moments from this algorithm. Tables 3 and 4 show that the volatilities from
the second-order perturbation are substantially higher than those from projection and
log linearization. The unemployment–vacancy correlation is even positive, 0�061, as op-
posed to negative in both log linearization and projection. Because these moments are
likely contaminated by large errors, we discard them from further discussion.

3.5 How does projection deviate from log linearization?

Table 3 shows that the volatilities from the projection algorithm are higher than those
from log linearization. The output, consumption, and investment growth volatilities
are 3�26%, 2�60%, and 4�45% per annum with projection, which are higher than 1�72%,
2�41%, and 3�26% with log linearization, respectively. In contrast, the autocorrelations
of the three growth rates are largely comparable across the two algorithms.
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The labor market moments differ even more between projection and log lineariza-
tion. The mean unemployment rate is 5�75% with log linearization, which is only about
one-half of that with projection, 10�75% (Table 3). In addition, Table 4 shows that log
linearization understates the unemployment volatility, but overstates the market tight-
ness volatility and the magnitude of the unemployment–vacancy correlation. Quantita-
tively, the unemployment volatility is 0�133 with log linearization, which is lower than
0�158 with projection. More drastically, the market tightness volatility is 0�355 with log
linearization, which is higher than 0�254 with projection. Finally, the unemployment–
vacancy correlation is −0�536 with log linearization, which is higher in magnitude than
−0�359 with projection.

To shed light on the intuition behind these results, Figure 11 shows the scatter plots
of unemployment, vacancy, and the market tightness against the log productivity in
simulations from both projection and log linearization. Similar to the HM model, com-
paring the plots from projection with those from log linearization clearly shows strong

Figure 11. Unemployment, vacancy, and labor market tightness in simulations in the PZK
model. We simulate 1 million months from the model’s ergodic distribution, and present the
scatter plots of employment, Ut , vacancy, Vt , and labor market tightness, θt , against the log pro-
ductivity, xt .
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nonlinearity at work. As noted, in recessions, congestion externality and wage inertia
combine to cause the unemployment rates to spike up. The projection algorithm fully
captures this nonlinear effect (Panel A), but log linearization misses it (almost) entirely
(Panel D). In contrast, in booms, vacancies rise and unemployment falls only gradually.
The projection algorithm again fully captures this nonlinear effect. In contrast, log lin-
earization understates the congestion externality, giving rise to excessively low unem-
ployment (Panel D), excessively high vacancy rates (Panel E), and excessively high labor
market tightness in booms (Panel F).

To further illustrate the differences between projection and log linearization, we re-
port impulse responses. We consider three different initial points: bad, median, and
good economies. The bad economy is the 5th percentile of the model’s projection-based
trivariate distribution of employment, capital, and log productivity, the median econ-
omy is the 50th percentile, and the good economy is the 95th percentile. In particular,
the unemployment rates are 32�21%, 6�36%, and 4�14%, the capital stocks are 25�13, 34�7,
and 37�51, and the log productivity levels are −0�860, −0�802, and −0�744, respectively.
We compute the responses to a 1 standard deviation shock to the log productivity, both
positive and negative, starting from a given initial point. The impulse responses are av-
eraged across 5000 simulations, each with 60 months.

Figure 12 shows several important nonlinear patterns. First, the projection-based
responses in unemployment are substantially stronger in the bad economy than in the
good economy. In particular, in response to a negative impulse, the unemployment rate
jumps up by 1�35% in the bad economy (Panel A), but only by 0�035% in the good econ-
omy (Panel C). The maximum response in the median economy is 0�215%, which is
much closer to the good economy than to the bad economy. The large response in the
bad economy is largely missed by log linearization, which implies a maximum response
of only 0�327%, less than 25% of the projection-based response, 1�35%.

Second, the log linearization-based responses in the market tightness, θt , are sub-
stantially larger in the good economy than in the bad economy. In particular, in re-
sponse to a positive impulse, θt jumps up by 2�38 in the good economy (Panel F), but
only by 0�134 in the bad economy (Panel D). In contrast, the projection algorithm accu-
rately captures the gradual nature of economic expansions. The maximum response in
the market tightness is 0�168 in the good economy, which is not far from the response
of 0�109 in the bad economy. Finally, wages are again inertial in the projection solution.
Relative to projection, log linearization vastly overstates the elasticity of wages in the
good economy (Panel I).

Figure 13 shows that the projection-based responses in output, consumption, and
investment are all stronger in the bad economy than in the good economy. In particu-
lar, in response to a positive impulse, the output, consumption, and investment rise by
2�23%, 1�72%, and 3�34% in the bad economy, in contrast to 0�68%, 0�42%, and 0�89%,
respectively, in the good economy. Although close to the projection-based responses
in the good economy, log linearization understates the responses in output, consump-
tion, and investment in the bad economy to be 1�17%, 0�76%, and 1�76%, which are only
52�47%, 44�19%, and 52�69% of the projection-based responses, respectively.
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Figure 12. Nonlinear impulse responses of unemployment, Ut , labor market tightness, θt , and
wages, Wt , in the PZK model. The solid (broken) lines are the projection responses to a posi-
tive (negative) 1 standard deviation shock to the log productivity. The dotted lines are the corre-
sponding responses from log linearization. The Ut responses are changes in levels (in percent),
the θt responses are changes in levels, and the Wt responses are changes in levels (in percent)
scaled by the respective pre-impulse level.
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Figure 13. Nonlinear impulse responses of output, Yt , consumption, Ct , and investment, It ,
in the PZK model. The solid (broken) lines are the projection responses to a positive (negative)
1 standard deviation shock to the log productivity. The dotted lines are the corresponding re-
sponses from log linearization. All the responses are changes in levels (in percent) scaled by the
respective pre-impulse level.
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Table 5. Robustness of business cycle moments from the projection algorithm for the PZK
model.

σY ρY1 ρY2 ρY3 ρY4 σC ρC1 ρC2 ρC3 ρC4

nN = nK = 100, splines, N = 0�225, K = 10 3�26 0�21 −0�08 −0�06 −0�06 2�60 0�23 −0�06 −0�05 −0�05
nN = 150, nK = 50, splines, N = 0�225, K = 10 3�25 0�21 −0�08 −0�06 −0�06 2�60 0�23 −0�06 −0�05 −0�05
nN = 100, nK = 50, splines, N = 0�225, K = 10 3�25 0�21 −0�07 −0�06 −0�06 2�60 0�23 −0�06 −0�05 −0�05
nN = nK = 50, splines, N = 0�225, K = 10 3�25 0�21 −0�07 −0�06 −0�06 2�60 0�23 −0�06 −0�05 −0�05
nN = nK = 30, splines, N = 0�25, K = 10 3�25 0�21 −0�08 −0�06 −0�06 2�60 0�23 −0�06 −0�05 −0�05
nN = nK = 20, Chebychev, N = 0�325, K = 12�5 3�23 0�21 −0�08 −0�06 −0�06 2�60 0�23 −0�06 −0�05 −0�05

σI ρI1 ρI2 ρI3 ρI4 E[U] |eVt | |eIt |

nN = nK = 100, splines, N = 0�225, K = 10 4�45 0�19 −0�10 −0�08 −0�07 10�75 1�50 0�39
nN = 150, nK = 50, splines, N = 0�225, K = 10 4�45 0�19 −0�10 −0�08 −0�07 10�70 2�94 0�52
nN = 100, nK = 50, splines, N = 0�225, K = 10 4�44 0�19 −0�10 −0�08 −0�07 10�72 2�69 0�57
nN = nK = 50, splines, N = 0�225, K = 10 4�45 0�19 −0�10 −0�08 −0�07 10�71 2�81 0�69
nN = nK = 30, splines, N = 0�25, K = 10 4�45 0�19 −0�10 −0�08 −0�07 10�70 7�08 0�94
nN = nK = 20, Chebychev, N = 0�325, K = 12�5 4�37 0�19 −0�10 −0�08 −0�07 10�31 6�58 0�84

Note: The number of grid points for employment is denoted nN and that for capital is nK ; N is the lower bound for the
employment grid (the upper bound is 0�975) and K is the lower bound for the capital grid (the upper bound is 42�5); σY , σC ,
and σI are the volatilities (in percent), and ρYj , ρCj , and ρIj are the jth-order autocorrelations of the log output, consumption,

and investment growth rates, respectively; E[U] is the mean unemployment rate in percent. We simulate 5000 samples from
each variation of the projection algorithm, time–aggregate monthly output, consumption, and investment to annual series,

and report cross-simulation averaged results. The maximum job creation equation error, |eVt |, and the maximum investment

Euler equation error, |eIt |, both of which are in percent, are calculated from simulations of 1 million monthly periods based
on each variation of the algorithm. We experiment with both the finite element method with cubic splines (splines) and the
spectral method with Chebychev polynomials (Chebychev).

3.6 Robustness

Our results are robust to choices in the grid parameters as well as the basis and degree of
function approximation. Tables 5 and 6 report business cycle moments and labor mar-
ket moments, respectively, from each variation of the projection algorithm. We vary the
number of grid points for employment and capital from 20 to 150, and vary the lower
bound of the employment grid from 0�225 to 0�325. In each variation, we make sure that
the lower bounds for both employment and capital bind no more frequently than 0�02%
in simulations. (The more grid points that we use, the more frequently the lower bounds
tend to bind in simulations.) We also experiment with the finite element method with
cubic splines and the spectral method with Chebychev polynomials.

Table 5 shows that business cycle moments are robust. The consumption growth
moments are identical up to two digits after the decimal, and the output growth mo-
ments differ only in the second digit after the decimal. The investment growth moments
also differ only in the second digit, except for the Chebychev approximation, which gives
rise to an investment growth volatility of 4�37%, in contrast to 4�45% in our benchmark
implementation with cubic splines. The Chebychev approximation also implies a mean
unemployment rate of 10�31%, whereas the mean unemployment rates from splines
vary from 10�7% to 10�75%. In addition, Table 6 shows quantitatively similar results for
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Table 6. Robustness of labor market moments from the projection algorithm for the PZK
model.

U V θ Y/N U V θ Y/N

nN = nK = 100, Splines, nN = 150, nK = 50, Splines,
N = 0�225, K = 10 N = 0�225, K = 10

Standard deviation 0�158 0�158 0�254 0�010 0�158 0�158 0�254 0�010
Autocorrelation 0�844 0�588 0�763 0�657 0�844 0�589 0�764 0�658

Correlation matrix −0�359 −0�473 −0�337 U −0�359 −0�473 −0�338
0�899 0�983 V 0�899 0�983

0�930 θ 0�930

nN = 100, nK = 50, Splines, nN = nK = 50, Splines,
N = 0�225, K = 10 N = 0�225, K = 10

Standard deviation 0�158 0�158 0�254 0�010 0�159 0�158 0�254 0�010
Autocorrelation 0�844 0�589 0�764 0�658 0�844 0�589 0�764 0�658

Correlation matrix −0�359 −0�473 −0�338 U −0�358 −0�472 −0�338
0�899 0�983 V 0�899 0�983

0�930 θ 0�930

nN = nK = 30, Splines, nN = nK = 20, Chebychev,
N = 0�25, K = 10 N = 0�325, K = 12�5

Standard deviation 0�159 0�158 0�254 0�010 0�160 0�157 0�254 0�010
Autocorrelation 0�844 0�589 0�764 0�659 0�845 0�593 0�767 0�665

Correlation matrix −0�358 −0�472 −0�337 U −0�361 −0�474 −0�341
0�898 0�982 V 0�899 0�981

0�929 θ 0�929

Note: The number of grid points for employment is denoted nN and that for capital is nK ; N is the lower bound for the
employment grid (the upper bound is 0�975) and K is the lower bound for the capital grid (the upper bound is 42�5). We simulate
5000 artificial samples with 768 months in each sample from each variation of the projection algorithm. We take the quarterly
averages of monthly unemployment, U , vacancy, V , and labor productivity, Y/N , to convert to 256 quarters. Labor market
tightness is denoted θ = V /U . All the variables are in HP-filtered proportional deviations from the mean with a smoothing
parameter of 1600. All the model moments are cross-simulation averages. We experiment with both the finite element method
with cubic splines (splines) and the spectral method with Chebychev polynomials (Chebychev).

labor market moments. These moments mostly differ only in the third digit after the

decimal across alternative variations of the algorithm.

The alternative variations of the projection algorithm differ only in the maximum

absolute Euler equation errors. From Table 5, the benchmark implementation with 100
grid points for both employment and capital gives rise to a maximum absolute job cre-

ation equation error of 1�5% and a maximum absolute investment Euler equation error

of 0�39% in simulations of 1 million monthly periods. In contrast, the three versions with

50 grid points for capital imply maximum absolute job creation errors that vary from

2�69% to 2�94% and maximum investment Euler equation errors that vary from 0�52% to

0�69%. The smaller grid with 30 points for both employment and capital are sufficient to

obtain accurate model moments quantitatively. However, this implementation yields a

maximum absolute job creation error of 7�08%.
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4. Conclusion

An accurate global algorithm is critical for quantifying the basic moments of the
Diamond–Mortensen–Pissarides model. Log linearization understates the mean and
volatility of unemployment, but overstates the volatility of labor market tightness as
well as the magnitude of the unemployment–vacancy correlation. Also, log lineariza-
tion understates the impulse responses in unemployment in recessions, but overstates
the responses in the market tightness in booms. Finally, as the economy wanders far
away from the deterministic steady state, the second-order perturbation in logs induces
severe Euler equation errors, which are often much larger than those from log lineariza-
tion. Our work highlights the extreme importance of accurately accounting for nonlinear
dynamics in quantitative macroeconomic studies.

Two remarks are in order. First, we use the Hagedorn–Manovskii (2008) small-
surplus calibration as an illustration because of their prominence in the macro labor
literature. However, any DMP models with realistic unemployment volatilities are likely
to contain strong nonlinear dynamics. In particular, Ljungqvist and Sargent (2016) show
that all the proposed DMP models in the literature induce strong responses of unem-
ployment to productivity shocks by diminishing the fundamental surplus, which is de-
fined as the amount of output allocated to vacancy creation. The list of models in-
cludes Hagedorn and Manovskii as well as the Hall (2005) sticky-wage model, the Hall–
Milgrom (2008) alternating bargaining model, and the Pissarides (2009) fixed match-
ing costs model. As such, our insight on accurately accounting for nonlinearities is
general, not specific to Hagedorn and Manovskii. Second, we focus on log lineariza-
tion and second-order perturbation because these methods are used extensively in
the empirical macroeconomics literature Christiano, Eichenbaum, and Evans (2005),
Smets and Wouters (2007). We emphasize that our work is silent about the performance
of high-order perturbations. Evaluating the performance of state-of-the-art high-order
perturbation methods against our accurate global algorithm in the context of the DMP
model seems to be an important direction for future research.

Appendix: Dynare programs

A.1 The HM model

// HM_loglinear.mod

var N, x, C;

predetermined_variables N;

varexo e;

parameters bet, rhox, stdx, eta, b, s, iota, kappa_K, kappa_W, xi;

bet = 0.99^(1/12);

rhox = 0.9895;

stdx = 0.0034;

eta = 0.052;

b = 0.955;



Quantitative Economics 8 (2017) Solving the DMP model 645

s = 0.0081;

iota = 0.407;

kappa_K = 0.474;

kappa_W = 0.11;

xi = 0.449;

model;

# kappa_t = kappa_K*exp(x) + kappa_W*(exp(x)^xi);

# V = (exp(x)*exp(N) - exp(C))/kappa_t;

# theta = V/(1 - exp(N));

# q = (1 + theta^iota)^(-1/iota);

# kappa_p = kappa_K*exp(x(+1)) + kappa_W*(exp(x(+1))^xi);

# V_p = ( exp(x(+1))*exp(N(+1)) - exp(C(+1)) )/kappa_p;

# theta_p = V_p/(1 - exp(N(+1)));

# q_p = (1 + theta_p^iota)^(-1/iota);

# W_p = eta*(exp(x(+1)) + kappa_p*theta_p) + (1 - eta)*b;

exp(N(+1)) = (1 - s)*exp(N) + q*V;

kappa_t/q = bet*( exp(x(+1)) - W_p + (1 - s)*kappa_p/q_p );

x = rhox*x(-1) + e;

end;

initval;

N = log(1 - 0.1);

x = 0;

e = 0;

end;

steady;

check;

shocks;

var e = stdx^2;

end;

stoch_simul (order = 1, nocorr, nomoments, IRF = 0);

For the second-order perturbation solution in logs, we change the last command to
stoch_simul (order = 2, nocorr, nomoments, IRF = 0);

A.2 The PZK model

// PZK_loglinear.mod

var N, K, x, C, I, theta;

predetermined_variables N, K;

varexo e;
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parameters beta, xbar, rhox, stdx, alpha, delta, nu, eta, s, iota, b, kappa;

beta = 0.99^(1/3);

xbar = -0.802;

rhox = 0.983047572491559;

stdx = 0.0065;

alpha = 1/3;

delta = 0.01;

nu = 2;

eta = 0.04;

s = 0.035;

iota = 1.25;

b = 0.95;

kappa = 0.45;

model;

# a1 = delta/(1 - nu);

# a2 = delta^(1/nu);

# Phi = (a1 + (a2/(1-1/nu))*((exp(I)/exp(K))^(1-1/nu)))*exp(K);

# q = (1 + exp(theta)^iota)^(-1/iota);

# qp = (1 + exp(theta(+1))^iota)^(-1/iota);

# Y = exp(x)*(exp(K)^alpha)*(exp(N)^(1 - alpha));

# V = (Y - exp(C) - exp(I))/kappa;

# M = beta*( exp(C)/exp(C(+1)) );

# Yp = exp(x(+1))*(exp(K(+1))^alpha)*(exp(N(+1))^(1 - alpha));

# Wp = eta*((1 - alpha)*Yp/exp(N(+1)) + kappa*exp(theta(+1))) + (1 - eta)*b;

exp(theta) = V/(1 - exp(N));

exp(N(+1)) = (1 - s)*exp(N) + q*V;

kappa/q = M*( (1 - alpha)*Yp/exp(N(+1)) - Wp + (1 - s)*kappa/qp );

exp(K(+1)) = (1 - delta)*exp(K) + Phi;

(1/a2)*((exp(I)/exp(K))^(1/nu)) = M*(alpha*Yp/exp(K(+1))

+ (1/a2)*((exp(I(+1))/exp(K(+1)))^(1/nu))*(1 - delta + a1)

+ (1/(nu-1))*exp(I(+1))/exp(K(+1)));

x = xbar*(1 - rhox) + rhox*x(-1) + e;

end;

initval;

N = log(1 - 0.048828933192708);

K = log(35.613860128463763);

x = xbar;

C = log(0.997225855318108);

I = log(0.356138601284638);

theta = log(2.234716290234390);

e = 0;

end;

steady;

check;

shocks;
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var e = stdx^2;

end;

stoch_simul (order = 1, nocorr, nomoments, IRF = 0);

For the second-order perturbation solution in logs, we change the last command to
stoch_simul (order = 2, nocorr, nomoments, IRF = 0);
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