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Because of discrete bid increments, bidders at electronic auctions engage in shad-
ing instead of revealing their valuations, which would occur under the commonly
assumed second-price rule. We demonstrate that misspecifying the pricing rule
can lead to biased estimates of the latent valuation distribution, and then explore
identification and estimation of a model with a correctly specified pricing rule.
A further challenge to econometricians is that only a lower bound on the number
of participants at each auction is observed. From this bound, however, we estab-
lish nonparametric identification of the arrival process of bidders—the process
that matches potential buyers to auction listings—which then allows us to identify
the latent valuation distribution without imposing functional-form assumptions.
We propose a computationally tractable, sieve-type estimator of the latent valua-
tion distribution based on B-splines, and then compare two parametric models of
bidder participation, finding that a generalized Poisson model cannot be rejected
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by the empirical distribution of observables. Our structural estimates enable us to
explore information rents and optimal reserve prices on eBay.

Keywords. eBay, electronic auctions, bid increments, pricing rule.

JEL classification. D44, C72.

1. Introduction

During the past two decades, electronic auctions (EAs) have become important market
mechanisms in the world economy, reducing frictions by bringing together large num-
bers of buyers and sellers of an incredibly diverse range of goods. Between the first quar-
ter of 2011 and the fourth quarter of 2013, the leading host of EAs, eBay, averaged $4�95
billion in sales per quarter from auctions alone.1 EAs are of interest to economists not
just because of these sales volumes, but also because the sites are data-rich environ-
ments within which fundamental economic phenomena can be studied, for example,
market design, market frictions, private information rents, and price discovery. Typically
modeled along the lines of traditional auction formats, EAs also display other features
that derive from their online implementations and present unique challenges for em-
pirical researchers. An especially important feature is eBay’s proxy bidding procedure:
a bidder reports a number to the server—kept private until the bidder is outbid—that
represents the maximal amount she authorizes the server to bid, and, in turn, the server
acts on the bidder’s behalf to increase her standing offer up to her reported maximum.
For this reason, researchers have typically modeled EAs as some variant of a second-
price auction (SPA) because the winner (usually) pays a price linked to the second-
highest proxy bid for the object on sale. Important qualifications apply to this proce-
dure: when the EA software overtakes one bidder’s maximum bid on behalf of another,
it forces the new lead bidder, whenever possible, to surpass the former lead bidder by
a commonly known, discrete amount �, referred to as the bid increment.2 Because the
EA software forces the lead bidder to surpass the second-highest bid by �, a necessary
exception occurs when the top two proxy bids are within � of one another, because a
jump in the full amount � would then surpass the high bidder’s maximum authorized
bid. In this eventuality, the price is set at the value of the high bid, that is, the winner
pays her bid as in the case of a first-price auction (FPA). Thus, transacted prices on eBay
(and many other electronic bidding sites) are actually determined by a hybrid second-
price/first-price rule. In other words, a positive probability always exists that the highest
bid is the sale price; specifically, the winner pays her bid.

Because EAs constitute one of the largest applications of auctions in history, un-
derstanding the impact of this nonstandard pricing rule is an important and useful en-
deavor. In fact, several other real-world situations exist where minimum bid increments

1These data were downloaded on 25 August 2015 from http://www.statista.com/statistics/242267/
ebays-quarterly-gross-merchandise-volume-by-sales-format.

2Originally, bid increments may have been implemented as a security measure against cyber attacks.
For example, setting an increment of � = $2�50 would increase considerably the cost of automated, high-
frequency bid submission relative to the case where the price is allowed to adjust by as little as a penny.
Bid increments are fixed by online auction houses and are openly advertised to market participants prior
to bidding; in other words, they are common knowledge.

http://www.statista.com/statistics/242267/ebays-quarterly-gross-merchandise-volume-by-sales-format
http://www.statista.com/statistics/242267/ebays-quarterly-gross-merchandise-volume-by-sales-format
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have been noted, but ignored, when the pricing rule is modeled. For example, McAfee
and McMillan (1996) noted that the Federal Communications Commission (FCC) spec-
trum auctions have minimum bid increments that are typically 5–10% of the current
price of a given license. We use the simpler, single-unit EA as an opportunity to account
formally for the complications minimum bid increments introduce and to highlight the
consequences of ignoring this feature of the pricing rule.

Hickman (2010) derived the theoretical implications of the EA pricing rule and found
that dominant strategies cease to exist in private-valued auction games, unlike at SPAs.
In equilibrium, participants engage in bid shading, similar to that at FPAs, because with
positive probability the winner’s bid determines the transaction price. Hickman also
presented empirical evidence that even seemingly small bid increments can play a non-
trivial role in affecting bidder behavior. Using data from a sample of laptop auctions
held on eBay, where the average sale price was roughly $300 and � was $5, Hickman
found that the final sale price was determined by the winner’s bid nearly one-quarter of
the time.

Because the structural econometric analysis of data from auctions hinges critically
on the form of the theoretical equilibrium, bid shading at EAs implies that the traditional
SPA approach leads to an incorrectly specified bidding model, which can induce signifi-
cant bias in the estimated latent valuation distribution, which in turn can bias inference
concerning various other questions relating to bidders’ private values, including infor-
mation rents, optimal reservation price, or predicted revenue changes from additional
bidders at an auction.3

In this paper, based on the theory developed by Hickman (2010), we develop a com-
plete structural model of EA bidding with a correctly specified pricing rule. The first
contribution of our paper is to demonstrate the empirical relevance of the pricing-rule
misspecification using a simple Monte Carlo exercise calibrated to resemble a host of
realistic scenarios at EAs.

Our second contribution is to develop a fully structural econometric model designed
to be implemented using actual eBay data with possible bid shading as part of the equi-
librium. We demonstrate that the model is nonparametrically identified by commonly
available observables at EAs. Along the way, we also overcome another, independent
challenge inherent in data from EAs: in many real-world settings, it is notoriously diffi-
cult to measure precisely participation at an auction, that is, to get an accurate measure
of how many bidders competed for the object on sale; eBay auctions (and EAs in general)
are no different. Within the structural econometrics of auctions literature, considerable

3One might also wonder about the possible revenue implications of the bid increment � itself. If, how-
ever, bidder valuations are independent and identically distributed, bidders are risk neutral, and the ex-
pected payment to a bidder with a value of zero is zero, then in a symmetric, increasing equilibrium of an
auction game under a variety of auction formats and pricing rules, the seller will earn the same expected
revenue—the well known revenue equivalence proposition, first demonstrated by Vickrey (1961) for uni-
formly distributed valuations and later proven in general by Myerson (1981) as well as Riley and Samuelson
(1981). Thus, even though the EA pricing rule changes bidder behavior, it will not change expected rev-
enue when the above assumptions hold. Whether these assumptions are empirically relevant is beyond the
scope of this paper. Instead, we focus on developing and implementing an empirical bidding model that
takes into account the pressure to shade bids induced by positive increments at EAs.
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research exists addressing this problem, but we take a novel approach to identification
by modeling explicitly the process through which some bidder identities are revealed to
the econometrician and others are not.4 Our model also takes into account the fact that
on electronic platforms, bidders and econometricians share the same informational dis-
advantage: neither observes the total number of potential bidders watching at home an
object for sale with intent to bid on it.

In short, we model the number of competitors N as a random variable from the bid-
ders’ perspectives and demonstrate that its distribution is nonparametrically identified
by the observable lower bounds at each auction. Even if the EA pricing rule were sim-
ply the second-price rule, this problem of imperfectly observed participation would still
represent a significant roadblock to empirical work. Previous researchers, such as Song
(2004a, 2004b), developed methods to sidestep the need to observe N when identifying
the latent valuation distribution. However, without knowing N (or at least its distribu-
tion), many counterfactual simulations based on private-values estimates remain im-
possible. Ours is the first paper to solve this problem: we establish nonparametric iden-
tification of a bidding model with stochastic N under the available observables, which
in principle makes counterfactual simulations possible. For tractability, our estimator
relies on a parametric, generalized Poisson model of the bidder arrival process. We find
in our eBay data strong evidence that there is little additional gain from a fully nonpara-
metric estimator.

Our third contribution is to propose a novel sieve-type estimator of the latent val-
uation distribution, which incorporates B-splines for flexibility and Galerkin methods
for tractability. Our choice of B-splines permits us to match a crucial prediction of the
theory: at points where bid increments change discretely from one value to another,
the equilibrium bid function contains an abrupt jog. Other popular estimation meth-
ods, such as kernel smoothing or orthogonal polynomials, either cannot accommodate
the needs of the identification strategy or require an inordinate amount of numerical
complexity to do so. B-splines provide a remarkable degree of functional flexibility and
numerical stability, which we demonstrate below.

Our estimator also incorporates Galerkin methods—commonly used in physical sci-
ences applications—to solve the differential equation defined by a representative bid-
der’s first-order condition. In ours and many other contexts, structural estimation in-
volves reverse-engineering the distribution of a latent random variable (e.g., private
values) from an observable distribution (e.g., bids), with an equilibrium mapping link-
ing the two together (e.g., Bayes–Nash bidding strategies). This situation often neces-
sitates a nested fixed-point approach to estimation, where the equilibrium equations
are reevaluated each time model parameters are updated by the solver, that optimizes
the empirical criterion function. Our use of Galerkin methods reduces substantially the
computational costs of implementing the estimator in a way that is similar in spirit
to the mathematical programming with equilibrium constraints (MPEC) approach pi-

4See Hickman, Hubbard, and Sağlam (2015) for a complete survey of previous methods for coping with
an imperfectly observed number of bidders.
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oneered by Su and Judd (2012). Rather than sequentially solving a new differential equa-
tion every time the empirical objective function is evaluated—which may occur thou-
sands of times—our proposed method essentially requires solving a bidder’s first-order
conditions only once by simultaneously optimizing the parameters of both the equilib-
rium mapping and the underlying structural primitives. Although we tailor our estima-
tor to the particular differential equations governing equilibrium conditions for bidding
in electronic auctions, our general method combining B-splines and Galerkin methods
may be applicable in broader structural contexts outside of auctions as well.

We use our structural estimates to explore counterfactual simulations of the model
that inform us about two aspects of online market design: we quantify the distribution of
information rents to winners and explore optimal reserve prices for sellers on eBay. First,
we find that despite the large numbers of buyers participating in the market, winners on
eBay garner significant information rents. Second, we resolve the puzzle of why the ma-
jority of sellers on eBay set reserve prices at zero: although the expected revenue curve
(as a function of reserve price) has an interior global optimum, the difference between
expected revenue at a reserve price of zero and the optimal expected revenue involves
mere pennies.

The remainder of the paper has the following structure: so as to place our research
in context, in the following subsection we briefly review the related literature, while in
Section 2, we present the basic theory of bidding, identification, and estimation for a
simplified version of the model—one with a fixed, known N . This simplification per-
mits a parsimonious Monte Carlo exercise to explore the impact of pricing-rule mis-
specification. The results of this misspecification analysis are presented in Section 3,
while in Section 4, we extend the basic bidding model, identification results, and es-
timation method to handle more realistic aspects of real-world EAs, such as random-
ness in N , limited data availability, and nonconstant �. In Section 5, we implement
our estimator using a sample of data from eBay laptop auctions and discuss our em-
pirical results, while in Section 6, we present a summary of and the conclusion from
our research. In the Supplemental Appendix, available in a file on the journal website,
http://qeconomics.org/supp/233/supplement.pdf, we provide Monte Carlo results, ad-
ditional figures, results from robustness checks, and a brief primer on B-splines. We also
provide our data and code at http://qeconomics.org/supp/233/code_and_data.zip.

1.1 Related literature

Lucking-Reiley (2000) provided a guide to EAs for economists. In surveying Internet auc-
tions in 1998, he found that 121 of 142 sites used the ascending-price format. Lucking-
Reiley recognized the use of proxy bidding, but did not distinguish between SPAs and
EAs. Similarly, Bajari and Hortaçsu (2004) discussed the prevalence of the ascending-
price format at online auctions. Although they noted that bid increments existed and
discussed the eBay case explicitly, Bajari and Hortaçsu implicitly assumed that EAs were
SPAs. Other empirical researchers (such as Roth and Ockenfels (2002) and Adams (2007)
as well as Zeithammer and Adams (2010)) recognized that bid increments exist, but nev-
ertheless assumed that EAs are SPAs. Given that the ascending-price format is predomi-

http://qeconomics.org/supp/233/supplement.pdf
http://qeconomics.org/supp/233/code_and_data.zip
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nant at EAs, a natural first step in analyzing these auctions is to examine how such auc-
tions are typically modeled.

Haile and Tamer (2003) presented what remains to be the most flexible open-auction
format method available. Two important points should be kept in mind when compar-
ing their research to ours: First, in our case, the EA rules are clear enough that we can
use the structure to identify the model fully; Haile and Tamer focused on partial iden-
tification, in part because their assumptions are quite flexible and tailored to fitting a
host of settings that may deviate from the canonical “clock” model of an ascending-price
auction. Second, Haile and Tamer considered an environment within which bidders are
only permitted to tender bids from a discrete grid, for example, when the auctioneer
raises the price in discrete jumps and asks for audience volunteers to pay the proposed
price, or when bidders cry out discrete bid jumps. At EAs, however, bidders may choose
their own bids from a continuum (or at least a very fine grid), and the fixed increment
instead governs the probability that they will pay their own bid on winning.

We investigate the economic and statistical importance of misspecifying the EA pric-
ing rule as a second-price rule. In the next section, we present a simple game-theoretic
model of bidding at EAs where the number of competitors is known and constant across
different auctions. We begin with the most austere model possible so as to focus atten-
tion on the effects of neglecting a minimum bid increment when considering the pricing
rule at EAs. Hortaçsu and Nielsen (2010) emphasized how crucial using the correct map-
ping between valuations and bids is to identification. We demonstrate that within the EA
model this mapping is nonparametrically identified, and we present a sensitivity analy-
sis, describing the effects of misspecification. We find that it can lead to significantly bi-
ased point estimates and policy prescriptions, for example, concerning optimal auction
design. We then consider model identification and estimation under more empirically
realistic assumptions when the true number of competitors is random and unknown to
the econometrician.

2. Baseline model: Fixed participation

Consider a seller who seeks to divest a single object at the highest price. There are N po-
tential buyers, each of whom has a privately known value for the object for sale. Each po-
tential buyer views the private value of each of her competitors as a random variable V ,
which represents an independent draw from the cumulative distribution function (CDF)
FV (v) that is twice continuously differentiable and has a strictly positive probability den-
sity function (PDF) fV (v) on a compact support [v� v], where v weakly exceeds zero.5 This
information is common knowledge to all bidders. For now, we also assume that the num-
ber of potential buyers N is fixed and known. In Section 4, we present a more realistic
model of N when we establish identification and estimation using actual eBay data. For
the current purposes, however, it will help to isolate the specific implications of pricing-
rule misspecification if we begin with this simple model of auction participation. This

5We use uppercase Italic letters to denote random variables and lowercase Italic letters to denote real-
izations of these random variables.
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environment is often referred to as the symmetric independent private-values paradigm
(IPVP).

To reduce clutter, it will be useful later to let Z denote V(1:N−1), the highest valuation
of (N −1) draws from the urn FV (v); in symbols, Z = max{V1� V2� � � � � VN−1}. The random
variable Z represents the highest private value of a bidder’s (N − 1) opponents at the
auction. Given that valuations are distributed independently and identically, the CDF
and PDF of Z are FZ(z) = FV (z)

N−1 and fZ(z) = (N − 1)FV (z)
N−2fV (z), respectively.

The highest bidder is declared winner, but the price is determined by a special hybrid
pricing rule, where the winner pays the smaller of either her bid or the second-highest
bid plus a commonly known bid increment �. Below, we characterize the symmetric
equilibrium bid function and investigate the importance of the error that obtains from
assuming the EA is a SPA.

2.1 Deriving the EA equilibrium bid function

Hickman (2010) showed that a unique, monotone, pure-strategy, Bayes–Nash equilib-
rium exists within the IPVP. Denote by β(v) the symmetric bid function at an EA with
bid increment �. At an EA two scenarios can determine the sale price: in the first, the
highest losing bid is within � of the winner’s bid and she therefore pays her own sub-
mitted bid (the first-price rule is used); in the second, the two top bids are further apart
and the winner pays the highest losing bid plus � (a second-price rule is used). Note
that the actual bid increment only enters the pricing equation directly in the event that
a second-price rule is triggered, in which case a bidder’s own bid does not affect the sale
price. Therefore, when optimizing bids on the margin, players only consider how the
bid increment controls the threshold (below their own bid) at which a first-price rule
is triggered, where their own bid determines sale price. With this in mind, we define a
threshold function, τ(b), as

τ(b)=
{
v� b ≤ v +��

b−�� v +� ≤ b�
(1)

Suppose that a bid of b is the highest and, therefore, the winner. Intuitively, whenever
b is less than v + � the first-price rule is triggered with certainty; otherwise, this only
occurs when the maximum competing bid is within � of b.

To derive the optimal bidding strategy, let B = (B1�B2� � � � �BN) denote the vector of
all bids, and let Bmax−n denote the maximum bid among player n’s opponents. Bidder n’s
optimization problem can be expressed as

max
b∈R

{
(vn − b)Pr

[
τ(b) < Bmax−n ≤ b

]
(2)

+ [
vn −E

(
Bmax−n |Bmax−n ≤ τ(b)

) −�
]

Pr
[
Bmax−n ≤ τ(b)

]}
�

The first term in the sum corresponds to winning the EA under a first-price rule, that
is, when bidder n’s bid and the second-highest bid are within � of each other. The sec-
ond term corresponds to winning the EA under a second-price rule, that is, bn exceeds
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the second-highest bid by at least �, and bidder n pays � more than the second-highest
bid. We can express the probability of winning under the first-price rule given equilib-
rium bid function β(v) with inverse β−1(b) as Pr[τ(b) < Bmax−n ≤ b] = Pr[β−1[τ(b)] <Z ≤
β−1(b)] = FZ[β−1(b)] − FZ[β−1[τ(b)]], and under the second-price rule as Pr[Bmax−n ≤
τ(b)] = Pr[Z ≤ β−1[τ(b)]] = FZ[β−1[τ(b)]]. The conditional expectation in the second
term of expression (2) is

E
[
Bmax−n |Bmax−n ≤ τ(b)

] =

∫ β−1[τ(b)]

v
β(u)fZ(u)du

FZ

[
β−1[τ(b)]] �

Maximizing a bidder’s expected surplus yields a boundary value problem that defines
the function β(v):

β′(v) =
[
v −β(v)

]
fZ(v)

FZ(v)− FZ

[
β−1(τ[β(v)])] and β(v) = v� (3)

Note that for bids β(v) ≤ v+�, (3) reduces to the standard first-price equilibrium differ-
ential equation, since FZ(v) = 0. This is for good reason since anyone planning to bid be-
low that point will realize that for them the first-price rule will be triggered with certainty
in the event that they win. Note also that the derivative in (3) exists everywhere since τ(·)
is a continuous function. This formulation, which was developed by Hickman (2010), is
not particularly helpful to empirical researchers because the differential equation does
not admit a closed-form solution. Fortunately though, after applying the inverse func-
tion theorem this differential equation can be recast solely in terms of the equilibrium
inverse bid function, so equation (3) can be rewritten as

dβ−1(b)

db
= FZ

[
β−1(b)

] − FZ

[
β−1(b− v −�)

]
[
β−1(b)− b

]
fZ

[
β−1(b)

] � (4)

where we have used the fact that β(v) = b and β−1(b) = v. Thus, the EA equilibrium
is characterized by a piecewise differential equation for optimal bidding on [0� v�) and
[v��v] where v� = β−1(�).6

As an example of how equilibrium behavior at an EA differs from the standard SPA
and FPA, we depict in Figure 1 the bid functions under the three pricing rules.7 In this
figure and below, we refer to the equilibrium bid function at an EA as βEA(v), the equi-
librium bid function at a SPA as βSP(v) = v, and the equilibrium bid function at an
FPA as βFP(v) = E[Z|Z < v]. The important point to note is that the EA equilibrium
bid function lies weakly between the SPA and the FPA bid functions. In fact, Hickman
(2010, Theorem 3.6) showed that the EA model nests the SPA and FPA as special cases
in the sense that, as � → 0, we get βEA(v) → βSP(v) uniformly, and as � → E[Z], we get
βEA(v) → βFP(v) uniformly.

6Despite the piecewise definition, β(v) turns out to be continuously differentiable at the point v�, since
the derivative in equation (4) approaches the first-price derivative as v → v� from above; see Hickman
(2010).

7This example was constructed using N = 3, V ∼ Rayleigh(1), truncated to the interval [0�1], and �= 0�1.
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Figure 1. SPA, EA, and FPA equilibria.

2.2 Nonparametric identification and estimation with fixed N

The EA model is identified nonparametrically and can be estimated using a simple mod-
ification to the approach proposed by Guerre, Perrigne, and Vuong (2000, GPV) for mod-
els of first-price, sealed-bid auctions. To see why, let GB denote the cumulative distribu-
tion function of equilibrium bids, and note that GB(b) = FV (v) = FV [β−1(b)] and, there-

fore, gB(b) = fV (v)
β′(v) = fV [β−1(b)]dβ−1(b)

db is the corresponding probability density func-
tion. Substituting these terms into equation (4) yields

v = b+ GB(b)
N−1 −GB

[
τ(b)

]N−1

(N − 1)gB(b)GB(b)
N−2 � (5)

This formulation of the equilibrium shows that each bidder’s private value is point iden-
tified from a sample of bids. This is particularly useful because, when misspecifying the
pricing rule as SPA, the researcher implicitly assumes that bids are private valuations,
whereas, given an estimate of the bid distribution and density, equation (5) allows for a
simple error correction to adjust for demand shading or the difference between private
values v and bids b.

In the following section, using simulated data, we present a sensitivity analysis to
compare empirical results under the (incorrect) SPA assumption, which merely takes
bids as private values and estimates their PDF nonparametrically, and the (correct) EA
assumption. For the latter case, we construct a two-stage nonparametric estimator in
the spirit of GPV: in the first stage, we construct an empirical analog of (5) using a kernel
density estimator of gB to get a sample of private-value estimates, {v̂}; in a second stage
we then kernel-smooth the density of v̂ to obtain an estimate of fV . To avoid problems
of sample trimming, we use the boundary-corrected GPV (BCGPV) estimator proposed
by Hickman and Hubbard (2015).8 So as to provide a basis of comparison between the

8Traditional kernel density estimators are known to be inconsistent and biased at the boundary of the
support. GPV proposed a solution to this problem that involved discarding data within a neighborhood of
the sample extremes so as to preserve consistency within the interior of the support. In finite samples this
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Figure 2. Comparison of probability density function estimates.

EA and SPA estimates, we also directly estimate the density fV by kernel-smoothing the
sample of simulated private values as well. Although such a strategy would never be
available to practitioners working with real data, it provides a baseline estimate by which
to judge the closeness of the other two estimators to the true distribution, given a finite
sample of data with which to work.

As a precursor to our sensitivity analysis, in Figure 2, we plot three estimated PDFs.
We considered a simple case in which a researcher observes 1000 auctions each having
five bidders who draw valuations from a Weibull(0�5�4�0) defined on [0�1]. In panels (a),
(b), and (c) of the figure, we display representative results under a bid increment of 0�02,
0�05, and 0�1, respectively. In each panel the solid line is the kernel-smoothed nonpara-
metric estimate of fV (v) based on the random valuations we generated; this is the best
one could hope for from a nonparametric estimator; we denote it f̂ (V ). The other two
estimators take as input the equilibrium bids from an EA that correspond with the ran-
domly drawn valuations. The dash-dotted line represents f̂EA(V )—the nonparametric
estimate under the correctly specified EA model. The dashed line represents f̂SP(V )—
the nonparametric estimate under the misspecified SPA model. Note that f̂EA(V ) is not
visually distinct in the figure because it coincides almost exactly with f̂ (V ). The misspec-
ified nonparametric estimate attains a higher peak and is shifted to the left of the opti-
mal estimate (and the EA nonparametric estimate), with the effect becoming more pro-
nounced the larger is �. This occurs because, for a given valuation, the SPA model pre-
dicts a higher bid (bidders’ weakly dominant strategy is to bid their valuation) than the
EA model, which involves shading bids in the hope that the item at auction is awarded
under a first-price rule. As such, the valuation implied by a given bid is lower under a
SPA-assumed pricing rule. It is also worth noting that f̂EA is naturally handicapped rel-
ative to f̂SP because the former is a two-step nonparametric estimator and has a slower
convergence rate than the latter, a one-step nonparametric estimator. Our sensitivity
analysis will test varying sample sizes, but the figure suggests that the statistical chal-

creates several problems for inference. Hickman and Hubbard (2015) proposed an alternative approach
based on boundary-corrected kernel density estimators that are uniformly consistent on the closure of the
support. They described a number of attractive features of the boundary-corrected GPV estimation strategy,
but for this paper the most important benefit is perhaps preserving the entire sample of data, making the
one-step SPA estimator and the two-step EA estimators more comparable.
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Figure 3. Truncated probability density functions.

lenges a two-step nonparametric estimator faces can be less than the cost of pricing-rule
misspecification, something we formally pursue in the next section.

3. Misspecification analysis

In this section we adopt three alternative specifications for the private value
distribution—exponential, with CDF F(v) = 1 − exp(−v/θ), power, with CDF F(v) = vθ,
and Rayleigh, with CDF F(v) = 1 − exp(−v2/2θ2)—so as to explore the implications of
the nonstandard pricing rule based on bid increments. For each one we assumed that
[v� v] equals [0�1], and all distributions are truncated and renormalized so that the cor-
responding densities integrate to 1. For simplicity, in what follows we simply use the
names of the untruncated distributions when referring to the truncated ones. The three
PDFs are depicted in Figure 3. We chose these three in particular for our Monte Carlo
exercise so as to evaluate the effect of the PDF having a mode at v, an interior mode, and
a mode at v. Unless explicitly stated, we assumed the bid increment � is 2% of the high-
est valuation which is consistent with a major portion of eBay bid increments.9 Before
presenting our Monte Carlo experiments, we perform two exploratory analyses to probe
the realism of our three test distributions.

3.1 Error in the equilibrium bid function

To quantify the effect of misspecifying the EA pricing rule, we computed a relative mea-
sure of error in the implied bidding function. Define the relative error from modeling
and solving for the equilibrium at an EA by assuming a SPA by ε(v) ≡ βSP(v)−βEA(v)

v =
v−βEA(v)

v = 1 − βEA(v)
v , which can be interpreted as the percentage error in the predicted

bid for a given valuation as βSP(v) = v.

9Bid increments at eBay auctions are discussed at http://pages.ebay.com/help/buy/bid-increments.
html, which we accessed on 8/25/2015. Bid increments ranged from 5% for low-valued items (under $5�00)
to 1% for items that are selling for between $2500�00 and $4999�99. As an example, items with prices between
$5�00 and $24�99 have a bid increment of $0�50, which is 10% of $5 and 2% of $25.

http://pages.ebay.com/help/buy/bid-increments.html
http://pages.ebay.com/help/buy/bid-increments.html
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Table 1. Expected relative error in bid function under SPA assumption.

Distribution N = 3 N = 5 N = 10

Exponential(2�0) 0�11584 0�08945 0�06245
Rayleigh(0�3) 0�06685 0�05607 0�04162
Power(1�5) 0�04540 0�03950 0�03119

Table 2. Frequency of first-price rule at EA auctions.

Distribution

� Exponential(2�0) Rayleigh(0�3) Power(1�5)

N = 3 0�01 2�90% 4�04% 3�80%
0�02 5�80% 8�04% 7�47%
0�05 14�65% 20�23% 18�04%

N = 5 0�01 3�53% 5�21% 6�72%
0�02 7�00% 10�27% 13�07%
0�05 17�04% 25�35% 30�07%

N = 10 0�01 5�04% 6�54% 13�52%
0�02 9�90% 12�85% 25�37%
0�05 23�71% 31�48% 52�88%

In Table 1, we summarize the expected relative error involved in assuming a SPA—
which we computed as E[ε(V )] = ∫ v

v ε(v)fV (v)dv—for each of the three distributions.
The expected relative errors reported in Table 1 are all greater than 3% and can be as
high as 11%. For each distribution we see that as the number of bidders increases, the
expected error decreases. For an EA, the sign of this effect is not obvious: with more com-
petition bidders behave more aggressively, but with more participants at an auction, the
probability that the top two bids are within � of each other also increases. The numbers
in the table suggest that the former competitive effect dominates the latter probabilistic
effect.

3.2 Bid increments and the frequency of a first-price rule

Hickman (2010) found, within a sample of 1128 eBay auctions for laptop computers, that
23�05% of final sale prices were generated by a first-price rule being triggered (because
the top two bids were close together), as opposed to the often assumed second-price
rule. For our test distributions, we simulated EA auctions involving 3, 5, and 10 bidders,
with bid increments of 0�01, 0�02, and 0�05.10 In each case we simulated 1 million auc-
tions and computed the fraction where the first-price rule determined the transaction
price.

In Table 2, we present these frequencies for the simulated scenarios. The results il-
lustrate that, for a given distribution and a fixed number of players at auction, increasing

10By calibrating v = 1, the bid increments correspond to a percentage of the highest possible valuation.
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the bid increment increases the share of transaction prices determined by the first-price
rule. Likewise, for a given distribution and a fixed bid increment, increasing the num-
ber of players at auction increases the share of transaction prices determined by the
first-price rule. The power distribution dominates the exponential one, but there is no
clear ranking between these two and the Rayleigh distribution. For a given (N��) pair,
the power distribution involves a higher share of bid profiles triggering the first-price
rule than the exponential. The distributions we consider, with realistic bid increments,
are capable of generating phenomena consistent with what is observed in actual data.
Moreover, assuming an EA is a SPA involves potentially serious consequences.

To evaluate the effects of misspecification, we employed a nonparametric empiri-
cal model under the correct EA assumption as well as the misspecified SPA assumption.
Next, we report the results of simulation experiments in which we used these distribu-
tions to demonstrate that misspecification can lead to significantly different estimates
of the latent valuation distribution. In Section 3.4, we consider the implications that
model misspecification can have, estimating optimal auctions and quantifying the eco-
nomic importance of the biased policy prescriptions and predictions deriving from the
SPA assumption.

3.3 Simulation experiments

We conducted a series of simulation experiments in which we varied model compo-
nents, including FV ∈ {Exponential(2�0)�Rayleigh(0�3)�Power(1�5)}, N ∈ {3�5�10}, and
� ∈ {0�02�0�05�0�10}. We also varied the sample size of auctions T ∈ {100�300}. We simu-
lated each instance S = 1000 times and allowed the econometrician to observe the bids
from all potential bidders. For each simulation s, we performed the following steps:

Step 1. We generated T N-tuples of valuations from a given distribution.

Step 2. We used the true EA bid function to map these valuations into bids that we
assume the researcher actually observes.

Step 3. We assumed the bids came from a SPA and estimated the model via the one-
step nonparametric estimator described in the previous section.

Step 4. We assumed the bids came from an EA auction and estimated the EA model
via the two-step nonparametric estimator described in the previous section.

To evaluate the statistical performance of the estimators, we constructed tests of the
null hypothesis that the sample of estimated pseudo values recovered under the SPA and
EA assumptions, respectively, came from the same distribution as the actual sample of
simulated valuations. Specifically, we used a two-sample Kolmogorov–Smirnov test as
well as an Anderson–Darling test based on Scholz and Stephens (1987). Results are pre-
sented in Tables A.1 and A.2, respectively, in the Supplemental Appendix. Specifically, we
present results from this simulation exercise by reporting the number of null hypotheses
rejected (that the two distributions are the same, at the 5% level) as well as the median
p-value of the relevant test statistic for the instances involving the various distributions,
bid increments, number of bidders at auction, and sample sizes.
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The most robust result is that the two-step EA estimator always outperforms the
one-step, albeit misspecified, SPA estimator. For the exponential and Rayleigh distribu-
tion cases, a null hypothesis is never rejected under the EA estimation. For a given bid
increment, as either T or N increases, the number of times the SPA-based null hypothe-
sis is rejected increases. Moreover, once � reaches 5%, nearly every simulation involving
the SPA assumption allows the null hypothesis to be rejected. Regardless of the distribu-
tion, we never reject the null hypothesis for the 2% bid increment cases involving the
EA-based estimates. The power distribution case, however, is notably difficult for both
estimators if � or L ≡ NT is sufficiently large, though the correctly specified EA model
is superior. The EA model gets rejected because the Kolmogorov–Smirnov test statistic
was designed to be used on direct observations from a given CDF, whereas in the EA
case, the pseudo values are estimated. Moreover, the Kolmogorov–Smirnov test statistic
converges at rate 1/

√
L, which is faster than the optimal nonparametric convergence

rate for a two-step estimator (logL/L)1/5 derived by GPV. The power distribution has a
right-hand mode, where kernel-based estimators are known to have difficulty. For the
power distribution, in addition to the full sample, we present a 95% sample (we drop
the top 5% of each data set) and show that this issue is related to the upper boundary;
the EA model is never rejected in these subsamples while the SPA is almost always for
large enough L or �.

Under the SPA assumption, the private value distribution is the same as the bid dis-
tribution. Thus, structural estimation methods that employ the second-price rule will
uncover the population bid distribution GB(b) as the sample size gets large. That is, if
we denote the estimated valuation distribution under a SPA assumption given a sam-
ple of T auctions by F̂T

SP(V ), then as the number of auctions in the sample increases,

we have plimT→∞ F̂T
SP(V ) = GB(b) = FV [β−1(b)]. Since β(v) does not equal v when � is

positive, it is clear that F̂SP(V ) will fail to converge in probability to FV (v). As such, the
estimated demand functions under the SPA assumption will always lie to the left of the
estimated demand function under the EA assumption.

3.4 Economic importance of misspecification

To investigate the economic importance of the bias that obtains when a researcher es-
timates an EA under the SPA assumption, we considered two exercises that an econo-
metrician might be asked to conduct: recommending a reserve price and predicting an-
ticipated revenues if another bidder were to enter the auction. First, we computed the
implied optimal auctions (involving optimally chosen reserve prices) corresponding to
each estimated distribution (based off the EA and the SPA assumptions), for each simu-
lation s for each instance of our experiment. Denote by Ω the set of all auctions at which
(i) any bidder can submit a bid as long as it is greater than some value r∗, (ii) the buyer
submitting the highest bid above r∗ is awarded the object, (iii) auction rules are anony-
mous in that each bidder is treated in the same way, and (iv) there exists a monotone,
symmetric, pure-strategy, Bayes–Nash equilibrium. At any auction satisfying these four
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conditions, the optimal reserve price r∗ must satisfy

r∗ = v0 +
[
1 − FV

(
r∗

)]
fV

(
r∗

) �

where v0 is the seller’s valuation for the item at auction; see, Riley and Samuelson (1981)
as well as Myerson (1981). In our simulation experiments, we assumed v0 is zero and
computed the optimal reserve price implied by the EA and SPA estimates for each sim-
ulation experiment.

In Table A.3 in the Supplemental Appendix, we present the mean reservation price
r̂EA and r̂SP implied by the estimates of the latent valuation distribution and density un-
der each assumption, EA and SPA, respectively, along with their standard errors σ̂rEA

and σ̂rSP . The true optimal reserve price for the Exponential(2�0), Rayleigh(0�3), and
Power(1�5) cases are 0�36077, 0�29905, and 0�54288, respectively.11 The mean reservation
price under the EA auction is always within a standard deviation of the true optimal
reservation price. In contrast, under the SPA assumption, the mean reservation price is
regularly at least 2 standard deviations away from the truth for large enough sample size
and especially for the larger bid increments, suggesting that, from a policy perspective,
misspecification has important effects.

In our second exercise, we used the estimated latent value distributions to estimate
what revenues would be were another bidder to participate at auction. This consider-
ation is motivated by researchers who have pointed out that adding another bidder to
the auction is often far more valuable than getting the reservation price exactly right.
For example, Bulow and Klemperer (1996) showed that, in a world with a fixed number
of participants, the optimal auction with a specific number of bidders provides less rev-
enue than an auction with no reserve price, but one additional bidder. We consider an
econometrician who might be asked to predict the expected revenues were another bid-
der to show up at auction. To do this, we appeal to the revenue equivalence theorem and
note that we need only draw with replacement from each estimated valuation distribu-
tions and compute the average values of the second-highest valuation a sufficiently high
number of times. In this way, the root cause of any discrepancy is entirely attributed to
the error deriving from the original misspecification in recovering the valuation distri-
bution from the observed bids.

In Table A.4 in the Supplemental Appendix, we present the expected revenue an
econometrician would predict were another bidder to enter the auction. For the reasons
documented earlier, the SPA-estimated specification always underpredicts expected
revenue. Note that since our simultaneous EA model satisfies the assumptions of the
revenue equivalence theorem, a practitioner should predict the same expected revenue
regardless of the minimum bid increment � corresponding to the data from which the
underlying distribution was estimated. The results in the table illustrate the substan-
tial variation in predictions from the SPA-based estimations for fixed values of N and

11Recall that the optimal reserve price does not depend on the number of bidders at auction, although
we present estimates in Table A.3 for which the number of bidders at auction varied according to the cases
we considered in our simulation experiments.
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T across the sections of the table in which � is changing. Specifically, as � increases,
a practitioner assuming a SPA pricing rule would underpredict the expected revenue by
larger amounts.

Our simulation results suggest that misspecifying the pricing rule can result in sig-
nificantly different estimates of the latent distribution of valuations. These differences
carry over to policy recommendations because the SPA-estimated valuation distribu-
tions suggest significantly different policy estimates—optimal reserve prices. There are
also consequences in applying estimates from the misspecified model to predict ex-
pected revenues; for example, if another bidder were to participate at auction. In con-
trast, concerns about the two-step estimation process required of a correctly specified
EA model do not appear to cause issues in practice as the estimator performs quite well
in these dimensions.

4. Identification and estimation under stochastic participation

We now extend our model to make it more compatible with real-world data from eBay.
The principal challenges in empirical applications are threefold: first, the econometri-
cian does not observe all bids, but rather a selected sample of bids that may or may not
be consistent with equilibrium play. Second, the total number of bidders participating
in an auction is unobserved to the econometrician, and instead, only a lower bound
on total participation can be gleaned from data. Third, real-world EAs do not use con-
stant bid increments, but bid increment schedules that are piecewise constant (that is,
they discretely jump at specific, predetermined points in bid space). In this section, we
provide tractable solutions to these three problems and demonstrate that a model with
a correctly specified pricing rule is still nonparametrically identified under these more
empirically realistic conditions. We then propose a sieve-type estimation strategy, based
on B-splines, that we implement in the next section using data from eBay laptop auc-
tions.

4.1 A bidding model with stochastic N

One common characteristic of EAs is that the web-based interface makes it impossible
to observe precisely the number of potential competitors within a given auction; that is,
the number of users who are following an item with intent to bid on it. Difficulty in mea-
suring N has long been a principal challenge within the empirical auctions literature,
particularly when the bidders are able to observe N and adjust their bidding strategies
with information unavailable to the econometrician. At an EA, however, the researcher
and the bidders are on the same footing in that neither observes N . Therefore, we shall
model participation from the perspective of a bidder as a stable stochastic process that
exogenously allocates bidders to a given auction.

Specifically, let bidders view N as a random variable with probability mass func-
tion ρN(n;λ) ≡ Pr(N = n) indexed by a parameter vector λ and assume that they do
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not know the realization of N ex ante when they compute their strategic bids.12 In for-
mulating the exogenous participation process this way, we allow for λ to be infinite
dimensional so that the distribution of N may be fully nonparametric if, for example,
λ= {λ0�λ1�λ2� � � �}, where λn = Pr(N = n).

Once again, consider the auction from bidder 1’s perspective, and let M ≡ N − 1
denote the number of opponents she faces. We also define

ρM(m;λ) ≡ Pr(M =m|N ≥ 2) = Pr(N =m+ 1|N ≥ 2)

= ρN(m+ 1)
1 − ρN(0)− ρN(1)

� m ∈ {1�2�3� � � �}�

as the probability that bidder 1 faces exactly m ≥ 1 opponents.13 Just as before when N

was known ex ante, a bidder’s strategic decision problem within an auction is how to re-
spond optimally to her highest rival bid. We denote the highest rival valuation and bid as
random variables VM and BM , respectively, and we denote their respective distributions
as

FM(VM) =
∞∑

m=2

ρM(m;λ)FV (VM)m and

(6)

GM(BM) =
∞∑

m=2

ρM(m;λ)GB(BM)m�

As such, FM and GM are weighted sums of powers of their respective parent distribu-
tions, where the weights represent the probability of a given realization for the number
of potential bidders.

With these adjustments to notation, the bidding model based on a hybrid pricing
rule can be easily extended to handle stochastic exogenous participation. By inserting
FM into equation (3) in place of FZ , we get a new differential equation to redefine the
equilibrium β for the stochastic participation case (with the same boundary condition
as before); namely,

β′(v) = [v−β(v)]fM(v)

FM(v)− FM [β−1(τ[β(v)])] and β(v)= v� (7)

Intuitively, whether N is known or stochastic, the highest rival bid is still a random vari-
able to which each player best responds. The only difference now is that randomness

12Song (2004b) was the first to propose a bidding model of first-price auctions where bidders view un-
known N as a random variable. She then showed that assuming N is Poisson distributed makes it possible
to identify the distribution of private valuations without knowing the exogenous arrival rate of bidders.
However, knowledge of λ is needed for counterfactuals and revenue projections using structural estimates.
We take a different approach here that aims to identify both the private value distribution and the distri-
bution of N from observable data. The advantages of our approach are that parametric assumptions are
unnecessary and structural counterfactual simulations are well defined.

13Conditioning on the event that N ≥ 2 comes from two facts. First, if bidder 1 exists, then she knows N

is at least 1. Second, if N = 1 so that bidder 1 faces no opponent, then she wins the object at a price of �.
But since her own bid has no bearing on the likelihood of this possibility, the N = 1 scenario does not enter
her decision making.



522 Hickman, Hubbard, and Paarsch Quantitative Economics 8 (2017)

comes from two sources: a given opponent’s valuation is unknown and the quantity of
opponents is also unknown.

Going forward we denote the inverse bidding function by ξ(b) ≡ β−1(b) : [b�b] →
[v� v]. As before, equation (7) can be transformed to express the inverse bidding rela-
tionship as

ξ(b)= v = b+ GM(b)−GM

[
τ(b)

]
gM(b)

� (8)

where gM(b) is the density corresponding to the distribution of the highest rival bid.
These two equations establish that the form of the inverse bid function can be inferred,
as long as λ and the parent distribution of bids GB can be identified. If ξ and GB are
known, then FV is also known since FV (v) = GB[ξ(b)]. Thus, structural identification
now hinges crucially on recovering the distribution of N from data. This we address in
the next subsection.

4.2 Identifying exogenous participation rates

The set of observables available from an electronic platform like eBay, however, presents
several challenges. We assume the econometrician does not observe all bids, from which
the parent distribution GB could be easily estimated. Rather, she observes a selected
subset, being only the second-order statistic from a sample of stochastic size. Note that
on eBay, the maximal bid is only observed at auctions where the first-price rule was trig-
gered, roughly one in every five in our data. There may also be reasons to doubt whether
the third-highest and other observed bid submissions are generated by equation (8), as
we discuss below in Section 5.1. If the researcher has access to a broader subset of bids
than what we describe here, then the estimator resulting from our identification strategy
will have more statistical power. But so as to be conservative on the capabilities of our
proposed method, we use only the highest losing bid (the second-order statistic).

Furthermore, the econometrician does not observe N , the total number of bidders,
directly, but rather, she sees only the number of bidders who submit tenders to the
server, call it Ñ . This number we argue is merely a lower bound: some bidders who watch
an item with intent to bid may find that their planned bid was surpassed before they get
around to submitting it. Thus, the list of actual participants is passed through a natu-
ral “filter process” that withholds some of them from view before the econometrician is
allowed to see the list of observed participants.

4.2.1 The filter process Underlying this idea is an assumption of simple intra-auction
dynamics in the sense that ordering of bidders’ submission times is random.14 We as-
sume that, prior to the auction, Nature generates a list of bidders, indexed {1�2� � � � � n},
where n follows known distribution ρN(n;λ), but each bidder is confined to an enclosed

14Note that our assumption allows us to be agnostic concerning how agents individually decide on bid-
ding early or late within the auction. We do rule out, however, the possibility of coordination on some ob-
servable aspect of the auction so that the relative ordering of agents’ bid submission times is systematic,
rather than random. See further discussion on our assumptions that simplify intra-auction dynamics in
Section 5.2 below.



Quantitative Economics 8 (2017) Bidding model for electronic auctions 523

cubicle so that she cannot observe the realization of n. For each i, Nature generates an
independent and identically distributed (iid) private valuation vi from FV . Each bidder
then formulates her strategic sealed bid, β(vi), and waits for Nature to come collect it
from her. Nature visits each bidder in order of her index within the list, but if the high-
est two bids from previous tenders both exceed β(vi), then Nature skips bidder i’s sub-
mission, discarding it as if it never happened. At the conclusion, Nature reports to the
econometrician the number of recorded bidders.

Within this simple environment, for each bidder i ≥ 3, whenever the second-highest
bid from among {β(v1)� � � � �β(vi−1)} exceeds β(vi), then i will not appear to have partic-
ipated, even though she may have intended, ex ante, to submit a bid. Observing only a
subset of potential bidders presents a challenge to the econometrician, but by explicitly
modeling the filter process we can overcome it and still identify λ from observed lower
bounds ñ. Moreover, if one is interested solely in modeling auction participation, then
the filter process can be further simplified. Since equilibrium bidding is monotone and
bidder visibility depends on the relation between rank ordering of bids and bid timing,
we can recast the filter process in equivalent terms where Nature endows each bidder
i with an iid quantile rank Qi ∼ Uniform(0�1), rather than a private valuation. Nature
then walks through the (unordered) list q = {q1� q2� � � � � qn} (for a given value of n) and
reports the number to the econometrician,

ñ =

⎧⎪⎪⎨
⎪⎪⎩
n� if n ≤ 2�

2 +
n∑

i=3

1
(
q∗
i < qi

)
� if n ≥ 3�

(9)

where q∗
i is the second-highest from among {q1� q2� � � � � qi−1}, and 1(·) is an indicator

function. This observation facilitates simulation of the filter process without knowing
FV ex ante, which in turn makes it possible to separate identification/estimation of λ
and FV .

From the above description, it is easy to see that the distribution of Ñ for a given
value of N is invariant to changes in λ. Therefore, the filter process can be repeatedly
simulated for arbitrary hypothetical values of n, and we can treat the conditional prob-
abilities Pr(ñ|n) as known quantities for arbitrary (ñ� n) pairs. Since Ñ is observable, we
can in turn treat its probability mass function, denoted ρ̃N(Ñ), as an observable since
it can be directly estimated from data. Moreover, by the law of total probability, we have
the following relationship, which establishes identification of the exogenous participa-
tion process:

ρ̃N(ñ) =
∞∑
n=0

Pr(ñ|n)× ρN(n;λ)� (10)

Since the above argument does not rely on an assumption that λ is finite-
dimensional, our identification result is, in fact, nonparametric. In other words, ob-
served participation together with our model of the filter process is enough to identify
the distribution of N on its own, without appealing to specific functional-form assump-
tions on ρN . In practice, additional parametric assumptions (for example, specifying N
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as Poisson) may provide benefits such as statistical efficiency or numerical tractability,
but they are not fundamentally necessary from an identification standpoint. Below in
our empirical application, we shall see that the parametric generalized Poisson model
(Consul and Jain (1973)), a two-parameter distribution, provides a remarkably tight fit to
the data, leaving very little room (given our finite sample) for additional improvements
to fit through functional-form relaxations.

4.3 Identifying FV

With the above result in hand, nonparametric identification of the remainder of the
structural model is straightforward. Let H(b) denote the ex ante distribution of the high-
est losing bid within an auction (the second-order statistic from a sample of stochastic
size N). Once again, since the highest losing bid is observable, we can treat H as observ-
able since it can be directly estimated from data. It relates to the parent distribution of
bids via the mapping

H(b)=
∞∑
n=2

ρN(n;λ)
1 − ρN(0;λ)− ρN(1;λ)

(
GB(b)

n + nGB(b)
n−1[1 −GB(b)

])
� (11)

For fixed λ this mapping is a bijection for each b in the bid support. Therefore knowing
λ and H implies that the parent distribution of bids is identified.

With the above arguments in place, we can state formally our identification result.
So as to fix notation, we define a model as a set of (potentially nonparametric) arrival
probabilities ρN(n;λ)�n = 0�1�2� � � � � and a private value distribution FV . Moreover, we
assume that the observables available to the econometrician include H(b), the distribu-
tion of the highest losing bid, and ρ̃N(ñ)� ñ = 0�1�2� � � � � the probability mass function
for observed participation Ñ (which is a lower bound on actual participation).

Proposition 4.1. Under the assumptions of Section 4.2.1, the bidding model
({ρN(n;λ)}∞n=0�FV ) is nonparametrically identified from the observables (H(b)�

{ρ̃N(ñ)}∞ñ=0).

Proof. Equation (10) establishes identification of the nonparametric bidder arrival
probabilities {ρN(n;λ)}∞n=0 from the distribution of observed lower bounds under the
model of the filter process described in Section 4.2.1. Given known arrival probabilities,
the bijectivity of the mapping (11) establishes that the parent distribution of bids GB is
nonparametrically identified from the observables.

This in turn means that we can now construct GM from equation (6) using the parent
bid distribution and the bidder arrival probabilities.15 Moreover, if GM is known, then

15Note that H(b), the distribution of the highest of (N − 1) draws, and GM(b), the distribution of the
second highest of N draws, are not the same distribution. To see why, consider the task of repeatedly sim-
ulating order statistics based on fixed N . For each simulation, N iid realizations are generated from some
distribution and stored in an unordered list. To compute the value of the second highest from the list of N ,
we find the maximum, discard it, and take the maximum of the remaining (N − 1) draws; that is, in this
case, the highest draw from the original list of N is discarded with certainty. To compute the highest draw
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we can reconstruct the inverse bidding function ξ(b)= β−1(v) from equation (8). Finally,
this also implies that the private-value distribution FV is nonparametrically identified
through the relationship FV (v)=GB[β(v)]. �

4.4 Model extension: Nonconstant �

Having presented the basic identification strategy, we now extend our model to handle
a final challenge. Above, we assumed that the bid increment � is constant, but at most
real-world EAs � changes at predetermined transition points. For simplicity, consider a
single transition point, as the extension generalizes straightforwardly for two or more
transition points.

Suppose we have a transition point, denoted by b∗, and two bid increments, denoted
�1 < �2: �1 applies when the second-highest bid is strictly less than b∗, and �2 applies
when it is weakly above.16 Recall that when optimizing bids on the margin, players only
consider how the bid increment controls the threshold (below their own bid) at which a
first-price rule is triggered, so that their own bid determines sale price. Thus, the impor-
tant detail to keep in mind is that when one’s own bid b passes the transition point b∗,
the threshold at which the first-price rule is triggered changes and moves farther away
from b, since �1 <�2. With this in mind, we redefine an adjusted threshold function as

τ(b) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

v� b ≤ v +�1�

b−�1� v +�1 ≤ b < b∗ +�1�

b∗� b∗ +�1 ≤ b < b∗ +�2�

b−�2� b∗ +�2 ≤ b�

(12)

Intuitively, whenever one’s own bid is less than b∗ +�1, then the first-price rule will only
be triggered by BM within �1 of b; likewise, whenever one’s bid is weakly above b∗ + �2,
the first-price rule will only be triggered by BM within �2 of b. Between these two points,
the first-price threshold remains constant at b∗: if one’s own b is in the interval [b∗ +
�1� b

∗ +�2), then BM within �1 of b implies BM > b∗, but at the same time, �2 cannot be
involved in a second-price outcome until b ≥ b∗ + �2. Note, however, that the difference
b − τ(b) steadily increases from �1 to a value of �2, from which it follows that τ(b) is a
continuous function.

Given this fact, existing results by Hickman (2010) establish that the equilibrium bid
function with a transition point is still continuous, with right- and left-hand derivatives
that are the same everywhere.17 Therefore, inserting the expanded version of the thresh-
old function above into equations (7) and (8) suffices to characterize the equilibrium
and establish nonparametric identification of the bidding model with transition points
as well. The principal challenge that transition points will pose is on the implementation
of an estimator, which we discuss in the following section.

from a sample of size (N −1), we merely discard the first observation of the unordered list and then find the
maximum of the remaining (N − 1) draws. But this procedure only discards the maximum of the original N
draws with probability (1/N). Therefore, the two random variables cannot have the same distribution.

16We shall also assume for simplicity that v +�1 < b∗.
17See Lemma 3.3.1 and Proposition 3.3 of Hickman (2010).
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4.5 Two-stage estimator

In this section, we propose a simple estimator for the bidder arrival process, as well as a
sieve-type estimator of the private value distribution FV based on B-splines. Our choice
of B-splines is motivated partly by their ability to accommodate elements of the empir-
ical model flexibly, such as the abrupt change in the bid function at (b∗ + �1), which
alternative methods such as kernel smoothing or global polynomials cannot easily do.

To fix notation, let {yt� ñt}Tt=1 denote a sample of auctions; for each we observe the
highest losing bid, yt , and the number of observed participants, ñt . Although we have
demonstrated nonparametric identification of the bidder arrival process, we shall focus
our discussion on estimation of a model in which λ is finite-dimensional. In our empir-
ical application, we shall specify the distribution of N as generalized Poisson, or

ρn(n;λ) = λ1(λ1 + nλ2)
n−1

n! e−λ1−nλ2� 0 < λ1� |λ2| < 1�

Later, we show that this two-parameter model leaves little room for further improve-
ments to data fitting through more flexible functional forms: the generalized Poisson
model is able to generate a distribution over the observables ρ̃N(ñ;λ) that lay within
the nonparametric 95% confidence bounds of the empirical distribution of Ñt . For
the present discussion, however, it suffices to consider any known parametric family
ρN(n;λ) that is indexed by a finite-dimensional parameter vector, λ. Where appropriate,
we shall discuss further concerns and complications that would arise if the parametric
assumptions are relaxed.

4.5.1 First stage: Estimating λ We begin by constructing a simulation routine that
mimics the filter process and allows us to estimate Pr(ñ|n). Fix a finite upper bound
N and for each n ∈ {0�1�2� � � � �N} simulate s = 1�2� � � � � S auctions wherein a list of
ns independent (unordered) quantile ranks qns = {q1s� � � � � qns} are drawn from the
Uniform(0�1) distribution. For each such a list, we then compute ñs according to the
definition in equation (9). For each n, the simulated conditional frequencies are then
computed as

P̂r(ñ|n)= 1
S

S∑
s=1

1(ñs = ñ)�

Note that the simulation frequencies are zero whenever n < ñ.
In a slight change of notation, we now redefine the model-generated frequencies of

Ñ as

ρ̃N(ñ;λ)=
N∑
n=0

P̂r(ñ|n)× ρN(n;λ)� (13)

and define the empirical frequencies as ˆ̃ρN(k) ≡ 1
T

∑T
t=1 1(ñt = k). Finally, letting ñ =

{k1�k2� � � � �kL} denote the complete set of unique observed values of ñ in the data, we
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define a nonlinear least squares (NLS) estimator as the optimizer of the objective func-
tion

λ̂= argmin
λ

{
L∑
l=1

[
ρ̃N(kl;λ)− ˆ̃ρN(kl)

]2
}
� (14)

In words, the estimate λ̂ is chosen to make the model-generated frequencies of observed
bidders as close to the empirical frequencies as possible.18

As a practical matter, specifying N and S involves a trade-off between computational
cost and numerical accuracy. For the former, we judged N = 100 to be a sensible choice
for several reasons. First, note that the Poisson probability ρN(100;40) ≈ 7�315 × 10−16,
so the terms truncated out of the infinite sum in (13) will be on or below the order of
machine precision whenever N is roughly Poisson with a parameter that is weakly less
than 40. Second, while eBay auctions are known for high participation rates, 40 is still
quite a large number. For example, in our empirical application with laptop computer
data we observed a maximum of 11 participants in any given auction. Thus, our choice
of N = 100 ensures that the finite truncation that we must impose on equation (10) will
have no discernible effect for a wide array of eBay data sets. In turn, a relatively low
truncation point allowed us to simulate a large number of auctions, or S = 1010, which
delivers at least 5 (and up to 6) digits of accuracy in each cell of the matrix P̂r(ñ|n). In
other words, if the conditional probabilities in equation (13) above are expressed as per-
centages, then our simulation estimates are accurate to within one one-thousandth of
a percentage point.19 One advantage of our approach is that these need only be simu-

18An analogous nonparametric estimator could be similar, but with additional complications. Reverting
back to the case where λ = {λ0�λ1�λ2� � � �}, λn = Pr(N = n), is infinite-dimensional. The main challenge
now is that only finitely many elements of λ can be estimated with finitely much data. Therefore, for finite
sample size T , we begin by choosing an upper bound, NT < ∞, after which we restrict λn = 0 whenever
(n− 1) >N and define

{
ρ̂N(n;λ)}NT

n=0 = argmin
λ

{
L∑
l=1

[
ρ̃N(kl;λ)− ˆ̃ρN(kl)

]2
}

subject to
N∑
n=0

ρ̂N(n;λ) = 1�

(15)

The choice of NT involves the usual variance–bias tradeoff. For larger NT , less bias arises from setting high-
order elements of λ to zero, but as (NT /T) gets large the variance of the estimator will increase as well.
A second challenge involves specifying the rate at which NT should optimally grow as T → ∞. However,
our empirical application suggests strongly that solving these problems would produce little benefit above
available finite-dimensional parametric methods, so we do not address them here.

19The probabilities P̂r(ñ|n) are computed as the sample mean of a Bernoulli random variable 1(Ñ =
ñ|N = n). Since the sample mean is known to converge at rate

√
S, our simulation error is on the order of 1/√

1010 = 10−5, but may be even less. Simulation was performed in 100 blocks of 108 simulations. As a check
on accuracy, these can be used to compute 100 different estimates of the conditional probability matrix.
Taking standard deviations across all 100 estimates for each (ñ� n) pair (and excluding pairs that trivially
render a conditional probability of zero), we get mean and maximum standard deviations of 1�47×10−5 and
5�55×10−5, respectively. Of course, averaging across these 100 estimates (as our final conditional probability
matrix does) should further improve the precision for each (ñ� n) pair, reducing the mean and maximum
standard deviations further to roughly 1�47 × 10−6 and 5�55 × 10−6, respectively.
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lated once and, given our choice of N and S, can be reused with any data set for which
the average participation rate is less than 40. A copy of the matrix of simulated condi-
tional probabilities P̂r(ñ|n), n = 1� � � � �100, as well as Matlab code implementation of
the estimator, is available in the Supplemental Code and Data.20

Before moving on, one caveat is worth discussion. In the above proposal we have
implicitly maintained a scale invariance assumption (SIA)—that the filter process may
be simulated using quantile ranks without respect to the underlying equilibrium bid
values—so as to make our estimator tractable by simplifying computation of the con-
ditional probability matrix Pr(ñ|n). While the resulting simulations are quite involved
(see footnotes 19 and 20), the SIA allows for Pr(ñ|n) to be computed only once and then
reused in many different settings, and, more importantly, it can be reused for each sep-
arate evaluation of the objective function in (14). Having to recompute the conditional
probability matrix repeatedly during runtime would render implementation infeasible.
While the SIA is approximately true, small deviations from it exist due to the bid incre-
ment, �: the EA price evolution in practice may filter out an additional small number of
bidders from being observed, even though their planned bids would exceed the second-
highest bid from previous bid submissions. Specifically, at a given point in time, with
positive probability the next bidder to arrive may wish to submit a bid that is less than
� above the second-highest previous bid, and in that case the posted price will have al-
ready updated to a level slightly above her planned bid.21 Because of this deviation from
the SIA induced by the bid increment, our data will tend to somewhat undercount the
number of observed bidders, relative to what would be the case if the SIA were never
violated.

To address this concern, we propose a simple, data-driven correction that allows us
to still use our conditional probability matrix Pr(ñ|n), whose computation relied on the
SIA. Note that under the complication introduced by �, there is a positive fraction of
the time that k bidders are observed in the data, but if the SIA were perfectly true there
would actually have been at least (k + 1) observed bidders. Fortunately, our data con-
tain some additional information that provides clues as to how this process played out.
Within each eBay auction, one can observe the complete price path during the life of the
auction, from which one can also deduce whether the final sale price involved the trig-
gering of a first-price rule—this happened whenever the value of the final price adjust-
ment was strictly less than �. Thus, we add to the set of observables an additional vari-
able Ft , being 1 if a first-price rule was triggered within auction t, and 0 otherwise. Note
that, by definition, this variable informs us on the equilibrium frequency with which the
top two order statistics were within � of one another, which is also connected to devia-
tions from the SIA. We use this information to adjust our estimator as follows. First, for

20 In all, we simulated the filter process for 1010 × 98 separate auctions (1010 simulations for each N ∈
{3� � � � �100}). Computation was performed in parallel using a cluster of 150 Matlab workers for 310 hours.
We occasionally reset the seed so as to avoid surpassing the periodicity of the random number generator.

21Note that it is the value of � itself that directly controls the degree of deviation, with no other indirect
effects since monotone bidding strategies do not by themselves violate the SIA.
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each value kl contained in the vector ñ, compute

Pkl ≡
∑T

t=1 1(Ft = 1 ∩ ñt = kl)∑T
t=1 1(ñt = kl)

� l = 1� � � � �L�

which estimates the conditional Bernoulli probability that a first-price rule was trig-
gered, given Ñ = kl. Second, we compute an adjusted empirical mass function for Ñ ,

call it ˆ̃ρadj
N , by resampling from the data with replacement S > T times, and building an

adjusted sample {ñadj
s }Ss=1 where whenever ñt = kl is sampled in the sth draw, we assign

a value

ñ
adj
s =

{
kl + 1� with probability Pkl ,

kl� otherwise.
(16)

The adjusted empirical mass function then becomes ˆ̃ρadj
N (kl) = ∑S

s=1 1(ñadj
s = kl)/S for

each kl ∈ {ñ ∪ (kL + 1)}. Note that if Pkl = 0 ∀kl, then the adjusted mass function will
be the same as the original for large S. Third, rather than using the raw empirical mass

function ˆ̃ρN in the objective function (14), we substitute ˆ̃ρadj
N instead. For practical pur-

poses, since the resampling step happens only once during runtime, it is not terribly
costly to choose S farily large. For our implementation, we chose S = 107, which means

that the simulation error will have little or no effect on the first four digits of ˆ̃ρadj
N .

Intuitively, this adjustment recognizes that the raw empirical distribution of Ñ is
stochastically dominated by the one we would observe if the SIA were never violated,
and it tends to push the former toward the latter. However, it only partially offsets the
overelimination of bidders in reality, since the conditional Bernoulli probabilities Pkl

only inform us on the tendency for the top order statistics to be close together. Therefore,
we also propose and execute a robustness check (see Figure A.6 in the Supplemental Ap-
pendix) so as to assess the magnitude of the remaining problem. Briefly, we generated a
sample of data from our point estimates in which for each simulated auction we knew
the true n, valuations, and equilibrium bids for all n potential bidders, as well as the ñ

that would result under the SIA and the ñraw, which accounts for the overelimination
due to �. We then performed estimation using three hypothetical scenarios: (i) with an
ideal data set in which the true n was known for each auction and can therefore be di-
rectly estimated (for a baseline comparison); (ii) an estimator that maintains the SIA,
even though the generated ñraw data are subject to overelimination; (iii) an estimator
that employs the same set of generated ñraw data but also incorporates a corresponding
simulated F variable to perform our proposed correction. We also provide, for com-
parison, a plot of the private value CDF that results from misspecifying EAs as simple,
second-price auctions. As is clear from Figure A.6, the overall bias in our baseline esti-
mator of FV is small relative to the effect of pricing-rule misspecification. Moreover, our
proposed adjustment eliminates nearly all of the bias due to deviations from the SIA.
We take this as evidence that our estimator does not unduly oversimplify the actual EA
price dynamics, and achieves an appropriate balance of statistical accuracy and com-
putational tractability.
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4.5.2 Second stage: B-spline estimator of FV Our identification argument above states
that knowledge of GM is sufficient to recover the private value distribution. A seemingly
natural way to proceed then would be to estimate GB(b) directly from the observables
and then reverse-engineer FV . Implementing this approach can be difficult, as ĜB must
also ensure that the mappings implied by equation (7) and/or (8) are monotone so as
to be consistent with equilibrium bidding. These requirements rule out kernel density
estimators in favor of sieve estimation where a finite-dimensional parametric restric-
tion is imposed and then gradually relaxed as the sample size increases. Even then, pa-
rameterizing GB and then optimizing some empirical criterion function subject to the
constraints mentioned above, along with enforcing monotonicity and boundary condi-
tions of GB itself, poses a formidable numerical challenge. The resulting constraint set
becomes very complicated and highly nonconvex, making it difficult to compute admis-
sible initial guesses and converge to global optima afterward.

We propose an alternative approach whereby we directly parameterize the private
value distribution FV as a flexible B-spline function. Still, since GB(b) = FV [ξ(b)], build-
ing and optimizing an empirical criterion function of the observables—order statistics
of bids—requires finding the solution to a differential equation based on FV given in (7)
(or, equivalently, (8)). To solve this piece of the puzzle, we employ the Galerkin method,
which is commonly used to solve differential equations numerically in physical sciences
applications.22 This approach involves parameterizing the inverse bid function ξ as a B-
spline as well, and afterward enforcing its adherence to the conditions of the boundary
value problem defined by the equilibrium first-order conditions (FOCs). This is done by
defining a grid of points on the domain (where the number of grid points is at least as
large as the number of free parameters in the B-spline function), and then augmenting
the estimator objective function with extra terms that penalize it for deviations from
equilibrium. Our approach of augmenting an extremum estimator with the Galerkin
method has the added benefit of being relatively inexpensive to compute: rather than
repeatedly updating parameter values for FV and then solving a differential equation in
sequence, modeling ξ as a B-spline allows us to fit FV to the data while simultaneously
adjusting ξ to conform to the equilibrium conditions required by theory. We explain our
approach concretely below, but first a brief word on B-splines is in order.

B-splines have many attractive properties that are well adapted to our application.
First, they behave identically to piecewise splines, so by the Stone–Weierstrass theo-
rem they can fit a broad class of nonparametric curves to arbitrary precision, given a
fine enough partition of the domain. They also mimic attractive properties of piecewise
splines: being locally low-dimensional they are numerically stable, and adjusting pa-
rameters to improve model fit at one point will have little or no effect on behavior of the
B-spline function at points outside of a relatively small neighborhood. This is in contrast
to global polynomials, where adjusting parameters to improve fit at one point may have
drastic consequences for the behavior of the function at points far away.

22See Zienkiewicz and Morgan (2006) for details on Galerkin method approximation. Hubbard and
Paarsch (2014) discuss and compare various ways in which researchers have solved the differential equa-
tion(s) characterizing equilibrium behavior at auctions.



Quantitative Economics 8 (2017) Bidding model for electronic auctions 531

On the other hand, like global polynomials, B-spline basis functions are globally
defined—in fact, the name “B-spline” is short for basis spline because of this—making
their functional values, derivatives, and integrals less cumbersome to compute than
piecewise splines. In addition, B-splines are more adaptable in applications where the
researcher may have a priori information about regions of the domain where the func-
tion is likely to display a high degree of curvature or complexity. For global polynomials,
if the researcher wishes to infuse extra flexibility at a single point, she must increase flex-
ibility on the entire functional domain. In contrast, B-splines allow for surgical targeting
of an arbitrary degree of curvature within a small neighborhood of a particular point, up
to and including infinite curvature at that point if kinks or discontinuities are known to
occur. This property will be particularly useful in dealing with transition points where
the bid increment discretely shifts and the bid function must therefore adjust itself to
account for the abrupt change in the strategic environment just above b∗. A brief primer
on construction of our B-spline functions is included in the Supplemental Appendix.

To outline our estimator, let jJ = {j1 < j2 < · · · < jJ < jJ+1} denote a set of unique
“knots” that partition the private value support into J subintervals, with j1 = v and
jJ+1 = v, and let kK = {k1 < k2 < · · · < kK < kK+1} denote a partition of the bid support
into K subintervals, with k1 = b = v and kK+1 = b. These knot vectors uniquely define
a set of (J + 3) and (K + 3) fourth-order (cubic) B-spline basis functions {Vj(·)}J+3

j=1 and

{Bk(·)}K+3
k=1 , where Vj : [v� v] → R for each j and Bk : [b�b] → R for each k.

The basis functions are uniquely defined from their respective knot vector through
the Cox–de Boor recursion relation formula with concurrent boundary knots (see the
Supplemental Appendix for details). The resulting basis behaves the same as a set of
piecewise cubic splines that are constrained to be C2 at the endpoints of the subintervals
defined by the knot vector. Each basis function is C2 everywhere on the global domain,
with the C2 conditions at the knots being built into the recursion formula. Moreover,
each one is nonzero on at most four of the K subintervals (though some are nonzero
on fewer than four), and exactly four of the cubic basis functions are nonzero on each
of the K subintervals, which explains the name “fourth-order B-spline,” and also why
there are (K + 3) basis functions in total. Figure 4 depicts a basis on the interval [−1�1]
partitioned by a uniform knot vector with K = 3.

Letting μ = {μ1� � � � �μJ+3} ⊂ R
J+3 and α = {α1� � � � �αK+3} ⊂ R

K+3 denote sets of
weights, we can now parameterize FV and ξ as

F̂V (v;μ) =
J+3∑
j=1

μjVj(b)�

ξ̂(b;α) =
K+3∑
k=1

αkBk(b)�

Given this parameterization, the bid distribution is ĜB(b;μ�α) = F̂V (ξ(b;α);μ), and,
in a slight change of notation, we can redefine the model-generated distribution of the
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Figure 4. Fourth-order (cubic) B-spline basis functions.

highest losing bid as

H(b;μ�α� λ̂) =
N∑
n=2

ρN(n|N ≥ 2; λ̂)
(17)

× (
ĜB(b;μ�α)n + nĜB(b;μ�α)n−1[1 − ĜB(b;μ�α)])�

This function can now be directly compared to its empirical analog, Ĥ(b) ≡
1
T

∑T
t=1 1(yt ≤ b), so as to build a criterion function that will form the basis of an es-

timator. While optimizing the empirical criterion function, we must also impose the
equilibrium conditions to ensure that F̂V and ξ̂ will be jointly consistent with the theory
model. In other words, our final estimate for ξ̂ must constitute a valid solution to the
boundary value problem in (7). To accomplish this, we specify a uniform grid of check-
points {bl}Ll=1 ⊂ [b�b], with L ≥ K + 3, and we introduce four additional parameters, ε0,
ε1, ε2, and ε3, and a residual function based on equations (12) and (8):

R(bl;μ�α� λ̂) = (
ξ̂(bl;α)− bl

)
ĝM(bl;μ�α� λ̂)− ĜM(bl;μ�α� λ̂)

(18)
+ ĜM

(
τ(bl);μ�α� λ̂

)
�

where ĜM(b;μ�α� λ̂) = ∑N
n=2 ρN(n|N ≥ 2; λ̂)ĜB(b;μ�α)(n−1). With that, we can now

define a constrained NLS estimator as

(μ̂� α̂) = argmin
( μ�α
ε0�ε1�ε2

)∈RJ+K+6×R
3+

{
T∑
t=1

[
H(xt;μ�α� λ̂)− Ĥ(xt)

]2

+ P0ε0 + P1ε1 + P2ε2 + P3ε3

}
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subject to

F̂V (v;μ)= 0� F̂V (v;μ) = 1�

f̂V (v;μ) > 0� v ∈ [v� v]�
ξ̂(b;α)= v� (19)

ξ̂′(b;α) > 0� b ∈ [v�b]�
N

[{
R(bl;μ�α� λ̂)

}L
l=1

] ≤ ε0� bl ≤ v +�1�

N
[{
R(bl;μ�α� λ̂)

}L
l=1

] ≤ ε1� v+�1 < bl < b∗ +�1�

N
[{
R(bl;μ�α� λ̂)

}L
l=1

] ≤ ε2� b∗ +�1 ≤ bl < b∗ +�2�

N
[{
R(bl;μ�α� λ̂)

}L
l=1

] ≤ ε3� b∗ +�2 ≤ bl�

d(μ̂� ε0 ≥ 0� ε1 ≥ 0� ε2 ≥ 0� ε3 ≥ 0�

where N [·] is a norm function such as the L∞ norm (the sup-norm),
supl∈{1�2�����L} |R(bl;μ�α� λ̂)|, or the L2 norm, (

∑L
l=1 R(bl;μ�α� λ̂)2)1/2, and (P0�P1�P2�

P3) are prespecified penalty parameters.23

Intuitively, the residual function equals zero when the private-value distribution F̂V

together with the numerical bid function ξ̂ exactly conforms to the first-order conditions
of a bidder’s decision problem, and the constraint that ξ̂(b;α) = v enforces the bound-
ary condition. Thus, the vector (ε0� ε1� ε2� ε3) controls the degree of numerical error in
the approximated solution to the piecewise differential equation. Moreover, by fitting
the parameterized distribution FV to the data while simultaneously searching over pa-
rameter values for ξ̂ that conform to the first-order conditions, given FV , we avoid the
computational cost involved in repeatedly solving differential equations each time the
objective function is evaluated, which can easily number into the thousands. Instead
we essentially only solve the equilibrium once, and our NLS estimator with Galerkin or-
dinary differential equation (ODE) solution is in the spirit of the MPEC (mathematical
programming with equilibrium constraints) method pioneered by Su and Judd (2012):
we choose the parameters of the parent distribution GB so that the model-generated or-
der statistic quantiles match the empirical order statistic quantiles as closely as possible,
while penalizing the objective function for deviations from the equilibrium conditions
in (12) and (8). Although we tailor our estimator here to the equilibrium of electronic
auctions, our approach may be applicable to broader structural contexts outside of auc-
tions where the distribution of a latent, structural random variable is linked to an ob-
servable distribution through an equilibrium mapping that must otherwise be repeat-
edly solved during estimation runtime.

23Note that the sup-norm variant of the estimator may be implemented without violating differentia-
bility of the Lagrangean objective function: one can replace the absolute value operator with a two-part,
nonlinear constraint where R(bl;μ�α� λ̂) < εi and −R(bl;μ�α� λ̂) < εi must both be satisfied for each rel-
evant (l� i) pair, for l = 1�2� � � � �L and i = 0�1�2�3. In our experience we have found the L∞ (sup) norm to
be much more stable and accurate than the L2 (Euclidean) norm. See Figure A.8 in the Supplement for a
comparison.
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The main difference between our proposal here and the way Galerkin methods are
typically implemented stems from how the equilibrium conditions are enforced. The
most common implementation is to define the residuals R(bl) on a grid of checkpoints
{b1� � � � � bL} with L = K + 2. This, plus a boundary condition, produces a square system
of K+ 3 equations in K+ 3 unknowns, which can be solved exactly on the grid of check-
points (see, e.g., Hulme (1972) for further discussion). However, following this standard
approach during estimator runtime would once again necessitate solving the differen-
tial equation once for every objective function evaluation, which can number well into
the thousands. This is why we opt for the objective function penalization approach de-
scribed above (with overfitting, or L ≥ K + 2), which allows for the parameters of F̂V

and ξ̂ to move independently during runtime. This essentially means that the differen-
tial equation need only be solved once. As a check on output though, having obtained
the point estimate F̂V (v; μ̂), the researcher can easily verify the solution for ξ̂(b; α̂) by
resolving the equilibrium boundary value problem in (12) and (8) using the standard
Galerkin solution method based on a square system of nonlinear equations, holding μ̂

fixed, and even with a finer knot vector than jJ , if desired.

4.5.3 Enforcing boundary conditions and shape restrictions Before moving on, a final
attractive property of B-splines is their ability to facilitate known shape restrictions on
the latent function they parameterize. Note from Figure 4 that, by construction, the ex-
tremal basis functions are the only ones to attain nonzero values at the boundaries,
and they both equal 1 exactly at their respective endpoints. This makes enforcement
of boundary conditions very easy: F̂V (v; μ̂) = 0 ⇔ μ1 = 0, F̂V (v; μ̂) = 1 ⇔ μJ+3 = 1, and
ξ̂(b; α̂) = v ⇔ α1 = v, which also reduces the number of free parameters by three. Fi-
nally, B-splines also have some other remarkable properties that make enforcement of
monotonicity conditions (and hence, concavity/convexity also, if needed) quite sim-
ple: it turns out that for any B-spline function F̂V (v;μ) = ∑J+3

j=1 μjVj(b), we have that

F̂ ′
V (v) ≥ (>)0 ⇔ αj+1 ≥ (>)αj , for each j = 1� � � � � J+2 (see de Boor (2001, p. 115)). There-

fore, enforcing the shape and boundary conditions required by the theory reduces to
adding a set of equality constraints and linear inequality constraints directly on the pa-
rameter values themselves. This presents another substantial numerical advantage over
global polynomials, where enforcing shape conditions can require imposition of com-
plicated, nonlinear constraints on the functional values, which may lead to nonconvex
constraint sets and increase the tendency of a solver to get stuck at local optima.

4.5.4 Accommodating transition points Given the above derivations, we know that the
primitives of the strategic environment remain fixed for bids below b∗ + �1 and above
b∗ + �2, but between these two points there is an abrupt (though continuous) increase
in the probability that a first-price rule will be triggered, which means that the degree
of demand shading is also expected to abruptly increase on this segment of the domain.
Fortunately, the Cox–de Boor recursion formula (with concurrent boundary knots; see
the Supplemental Appendix), which we used to compute our B-spline basis functions,
was developed with such a contingency in mind. Specifically, it allows for arbitrary cur-
vature at a particular point by adding additional knots that are closely spaced together.



Quantitative Economics 8 (2017) Bidding model for electronic auctions 535

Figure 5. Fourth-degree (cubic) B-spline basis functions with additional knots.

Recall from the above discussion that we defined knot vector kK = {k1 < · · · < kK+1}
in bid space, which in turn uniquely defines (K+ 3), C2 basis functions. For simplicity of
discussion, let K > 2 and suppose that (b∗ + �1� b

∗ + �2) ⊂ [k2�k3]. We now modify the
knot vector by inserting four additional knots between k2 and k3 so that we now get a
knot vector with (K + 5) elements:

k′
K = {

k1 <k2 < κ∗
1 ≤ κ∗

2 ≤ κ∗
3 ≤ κ∗

4 <k3 < · · · <kK+1
}
�

This insertion will have several effects on the recursion formula, which we briefly
outline here; the interested reader is once again directed to the Supplemental Appendix
for additional details. First, we increase the number of B-spline basis functions by four;
in particular, exactly eight basis functions will be nonzero on the subinterval [k2�k3]
now. Second, each set of basis functions—uniquely determined by a particular config-
uration of the knot vector—places an implicit bound on the second derivative of the
B-spline function, but this bound is relaxed within a certain neighborhood as the ad-
ditional knots are spaced more closely together. Figure 5 illustrates this phenomenon:
each of the four panes depicts the knot vector from Figure 4 with four additional knots
inserted between k2 and k3 and placed at varying distances from one another. As these
knots get closer together, the amount of curvature displayed nearby in the four new ba-
sis functions becomes ever more extreme, and in the limit as the four knots are stacked
on top of one another, two of the basis functions become kinked and two are even dis-
continuous. Although the region with increased flexibility collapses as the bound on the
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second derivative is relaxed, the researcher may spread the increased flexibility over a
wider area by including more knots, if desired. This is useful because usually the condi-
tions that require extra flexibility within a particular neighborhood are not meant to pro-
foundly impact the behavior of the B-spline function at points far away. Once again, the
intuitive properties of B-splines come to bear; recall that each basis function is nonzero
on at most four subintervals defined by the knot vector. Suppose then that the researcher
wishes to locate four new knots within a small neighborhood of the middle subinterval,
so that k2 < κ∗

1 ≤ κ∗
2 ≤ κ∗

3 ≤ κ∗
4 < k3, but she does not wish the influence of the new cor-

responding basis functions to extend outside of [k2�k3] either. In this case, inclusion of
four additional knots in [k2�κ

∗
1) and four additional knots in (κ∗

4�k3] (for a total of 12
new knots) would suffice.

A final change induced by the inclusion is that the adjacent basis functions also
change shape as well, relative to Figure 4. This highlights an important difference be-
tween B-splines and global polynomials. With the latter, inclusion of new terms leads
to a nested model structure, wherein new basis functions are simply being added to
the preexisting set. For B-splines, however, as we pack the functional domain with an
increasing number K of knots, we get a sequence of nonnested models for the under-
lying function we wish to approximate, since adding one additional knot will cause the
preexisting basis functions with nonzero domain nearby that knot to change form. Nu-
merically, this is of little consequence, but econometrically, this fact will have bearing
on interpretation of varying model fit as K → ∞.

5. Empirical application

5.1 Data

We now consider a sample of laptop auctions collected between April and June of 2008
from the eBay website, which provides extensive information on item characteristics
and bid histories. This application highlights various challenges present in real-world
data, including those addressed in the previous section. The largest seller during the
data collection period was a firm by the name of CSR Technologies (henceforth CSRT),
which purchased large quantities of second-hand laptops for resale on eBay. CSRT’s
product line was mostly made up of Dell Latitude laptops, which come in several dif-
ferent configurations. Because laptop and auction characteristics can be important de-
terminants of the price a computer will receive, we attempt to homogenize our sample
as much as possible.

CSRT’s most common laptop configuration, comprising 733 total auction listings,
included an Intel Pentium 4M processor with a clock speed of 1.4 GHz, 512 MB of ran-
dom access memory (RAM), 30-GB hard drive, a DVD–ROM (digital versatile disc–read-
only memory) optical drive, a 14.1-inch screen, and with the Windows XP Professional
operating system installed. All laptops in this sample were described by the seller as
either “refurbished” or “used,” and all corresponding auctions lasted for 24 hours. We
restrict our sample to only laptops sold by CSRT, which ensures constant seller repu-
tation, exchange and upgrade policy, flat shipping rate ($36), auction setup, and so on.
Moreover, CSRT used a template format for the display of each of its auction listings on
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Table 3. Descriptive statistics.

Variable Mean Median St. dev. Min Max # Obs.

Time remaining (minutes)
Winning bid submission 24�04 1�43 97�50 0�00 1392�65 733
High loser bid submission 24�29 3�10 61�76 0�00 633�40 733

Observed participation
Ñ (serious bidders only) 4�69 4 1�70 2 11 733

Monetary outcomes
Sale price (w/o shipping) $299�63 $300 $31�31 $202�50 $405 733
Highest losing bid $295�42 $299 $31�20 $200 $400 733
First-price frequency 22�24% – – – – –

eBay, making appearance during the auction uniform as well. After these restrictions,
the only auction characteristics that vary are the bidding data themselves. This unique
and homogeneous sample of auctions will allow us to abstract away from further com-
plications (such as unobserved heterogeneity) as we develop an empirical methodology
to tackle the already formidable challenges inherent in ideal eBay data.

5.2 Sample paring

For each auction, we have detailed bidding information, including the timing and
amount of each bid submitted to the eBay server, as well as the identity of the bidder
who submitted it. Looking into the bid history allows us to calculate the number of ob-
served bid submissions and the number of observed unique bidders. The first empirical
challenge we encounter is that bidders may play different, potentially nonequilibrium
actions at various points in the auction; for example, submitting low, cheap-talk bids
early on and then later bidding based on best-response calculations resembling those
in a sealed-bid auction. Empirically, a significant fraction of observed bid amounts, par-
ticularly those submitted early on in the life of the auction, fall too far below realistic
transaction prices to be taken seriously.

On the other hand, in the vast majority of cases, the top two bids arrive within the
final 30 minutes of the auction. Table 3 shows that the average time to end when the
winning bid arrives is 24�04 minutes, and the median time to end is 1�43 minutes. For
the highest losing bid, the mean and median time remaining are 24�29 and 3�10 min-
utes, respectively. Previous empirical work on eBay has established these phenomena
as empirical regularities and our data are no different.

5.2.1 Intra-auction dynamics This discussion hints at a need to deal with the issue of
intra-auction dynamics on eBay in some way. We adopt an approach similar to that of
Bajari and Hortaçsu (2003) by partitioning the auction runtime into two stages.24 Taking

24Bajari and Hortaçsu (2003) were motivated by the fact that eBay does not fit within Milgrom and We-
ber’s (1982) “open-exit” ascending auction format where bidders’ exit decisions are observable to their
competitors. On the contrary, eBay bidders may rejoin the auction at any time after an initial proxy bid
is surpassed.
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the total auction time to be T , we treat the first stage as an open-exit ascending auction
played until T − ε; the final (terminal) stage, of length ε < T , is treated as a sealed-bid
auction.25 During the first stage of the auction bidders submit cheap-talk bids that con-
vey little, if any, information on the likely sale price that will result from the auction.

As in Bajari and Hortaçsu (2003), bidders formulate a strategic sealed bid for sub-
mission during the terminal stage. We assume that this strategic bid ignores the out-
come of the initial cheap-talk stage and the terminal stage is like a sealed-bid auction
in the sense that bidders do not reoptimize their strategic bids in response to observed
price-path dynamics during the terminal stage. Bidders may, however, submit these bids
directly to the server to take advantage of eBay’s automated proxy bidding capability, or
they may choose to incrementally increase their bid submissions up to the level of their
strategic bid on their own. In other words, we assume bidders formulate strategic bids
based on the distribution of private values and their expectation of N at the beginning
of the terminal period, and afterward they stick to their planned strategic bid through
the end of the auction. Finally, consistent with the previous section, price-path dynam-
ics within the terminal period are assumed to be simple in the sense that ordering of
bidders’ submission times is random rather than coordinated.

5.2.2 Serious bidders and strategic bids This partitioning of the auction into an initial
cheap-talk period followed by a terminal sealed-bid auction leads to the following defi-
nition: a serious bid is one that affects the price path within the terminal period; likewise,
a serious bidder is one who is observed to submit at least one serious bid. This distinction
allows for the possibility that some observed bidders early on in the life of the auction
were merely “fishing for a steal” or casually dabbling, rather than seriously vying to win
a laptop like other bidders who remain active close to the end. Of course, the possibility
always exists that some bidders who are determined to be nonserious by the above cri-
terion had serious intent to compete for the item, but were priced out before submitting
a serious bid. This, however, is just part of the problem that our proposed estimator for
λ based on our explicit model for the filter process is meant to solve: recall that observed
participation is merely treated as a lower bound on actual participation when identify-
ing the arrival rate of bidders within an auction.

In our empirical application, we specify the terminal period as the last 30 minutes
of an auction. During this period, we see an average of 4�69 observed serious bidders.
Figure 6 provides a justification for this choice. It shows two empirical distribution func-
tions: one for time remaining when the highest losing bid is submitted, and one for time
remaining across all serious bids. Note that the highest losing bid arrives with fewer than
30 minutes left in over 80% of the auctions in our sample. Note also that 20�98% of all
serious bids are submitted prior to the final 30 minutes of the auction. This possibility

25Some other work within the related literature, including Nekipelov (2007), has attempted to develop an
explicit empirical model for determining both levels and timing of bids within an auction. One challenge to
such an undertaking is that fully formed equilibrium theories of bid timing within an auction are rare. Such
an exercise would introduce considerable complexity and is beyond the scope of our current purposes.
Thus, for tractability, we follow the standard approach of adopting assumptions that simplify intra-auction
dynamics.
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Figure 6. Empirical distributions: time remaining when bids are submitted.

is naturally built into our serious bidder criterion so as to avoid making too sharp a dis-
tinction between the two stages of the auction. Whenever there are at least two bidders
over the life of an auction, the two highest bids during the cheap-talk phase are the ones
that set the initial price for the final 30 minutes. Therefore, the individuals who submit-
ted them will be logged as serious bidders, even if they are not observed to actively bid
during the final 30 minutes.

The majority of serious bidders only submit a single proxy bid, but just under one-
third of serious bidders are observed to raise their own bid levels incrementally with
multiple submissions during the terminal stage. This discrepancy motivates our final
data restriction: so as to be conservative we assume only that the highest losing submis-
sion (that is, the second-highest overall bid) is reflective of a strategic equilibrium bid
consistent with the model from Section 4.1 above. Within the context of our simplified
model of intra-auction dynamics, if some bidders log multiple bid submissions, we in-
terpret such behavior as raising bid levels manually up to the point of their planned
strategic bid (which we assume is not updated during auction runtime), rather than
availing themselves of the automated proxy bidding system.26 Thus, many submissions
by serious bidders may still represent only lower bounds on their equilibrium strategy.
In defense of our implicit trust in the highest losing bid, we appeal to the Haile and
Tamer (2003) assumption that bidders will never allow an opponent to win at a price
they would be willing to pay, where willingness to pay is interpreted here as a planned
strategic bid rather than a private valuation. By this logic one can at least be confident
that the highest losing submission is reflective of a full strategic bid, and it will always
be available since it is always recorded by Nature as the filter process runs its course.27

26Our assumption that bidders choose not to update their planned strategic bids during auction runtime
is based in the idea that electronic auctions exist in larger marketplaces where a loser today may return
tomorrow to bid again. Bodoh-Creed, Boehnke, and Hickman (2016) find empirical evidence in support of
this view; in Section 6.1 we provide a brief discussion of intra-auction dynamics.

27Nature also always records the attendance of the winner, but the eBay bidding system only reports
exact amounts for bids that were surpassed by the next lowest bid plus �. Thus, the winning bid itself is
only observable to the econometrician for auctions where price is generated by a first-price rule, which
occurs in roughly 22�24% of the auctions in our sample. In principle, inclusion of these bids may improve
the statistical efficiency of the estimator, but it would come with added complexity and computational cost.
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Of course, if the researcher is able to incorporate more bidding data per auction in a
reliable way, then it would improve the statistical precision of resulting estimates.

In total, our various sample restrictions leave us with 733 observed highest loser bids
(that is, all auctions in our data had at least two serious bidders).28 Table 3 displays de-
scriptive statistics on bid timing, observed participation, sale prices, and highest losing
bids. With probability 0�2224 the sale price takes on a value of exactly the highest bid
for our sample. Note, too, that bids and sale prices do not include the flat shipping fee
of $36.

5.2.3 Practical matters As a final practical matter, we had to, choose two knot vectors
jJ and kK for the B-spline basis functions Vj� j = 1� � � � � J + 3, and Bk�k = 1� � � � �K + 3 to
be well defined. The first challenge is to specify the endpoints. Since the sample extrema
are superconvergent estimators of the support endpoints, and since theory requires that
β(v) = v, we set j1 = k1 = mint{yt} and kK+1 = maxt{yt}. Because the bid function does
not touch the 45◦ line at the upper end, we can only bound v from below and must,
therefore, make a guess at an appropriate value. We chose jJ+1 = b + 2�2 as an approx-
imate value for the upper bound of the private-value support. Our point estimates, dis-
cussed below, suggest that this was a reasonable choice that does not seem to drive re-
sults in any meaningful way.

The next step is to select the number and placement of the knots. The primary con-
cern in selecting K is to minimize numerical error in the approximate solution to the
equilibrium differential equation. We chose a grid of 48 knots to be placed uniformly
over the set [b�b∗ +�1 − 4ε] ∪ [b∗ +�1 + 8ε�b], with ε= (�2 −�1)/4. We also inserted an
intermediate knot grid {b∗ + �1 − 3ε�b∗ + �1 − 2ε� � � � � b∗ + �1 + 7ε}, with 12 additional
subintervals, to provide extra flexibility for the transition region where the bid increment
changes from �1 to �2, but without projecting the influence of this region to points far
away. This gives us K = 60 total knots and 63 total basis functions for the inverse bid
function approximant ξ̂. The vector of points where equilibrium conditions were en-
forced was a uniform grid of 500 points on [b�b]. From experimentation, this configu-
ration of knots and checkpoints seemed to deliver a reasonable trade-off between com-
putational cost and numerical accuracy: larger values of either K or L do not improve
model fit or numerical accuracy in any meaningful way.

As for the principal knot vector jJ , the primary concern is goodness of fit to the dis-
tribution of the observables. One challenge is first to reduce the dimensionality of the
decision problem in a data-driven way, if possible. Our proposal is to specify a uniform
grid of J quantile ranks {q1� � � � � qJ−1� qJ+1} spanning [0�1], and then to map them into
bid space using the empirical quantile function Ĥ−1(q). We then replace the uppermost
knot jJ+1 with a value of (b+ 2�2), as mentioned above, so as to account for the fact that
these knots will govern the behavior of F̂V in private-value space. Finally, because our

For simplicity sake, we ignore them here. Despite this additional data loss, the confidence bounds we get
on our estimates are still remarkably tight.

28In addition, we used one final sample restriction so as to avoid numerical instability issues in the upper
tail of the private-value distribution. The original data set contained 736 observations fitting the description
above, but for three of these, the highest losing bid was 4 standard deviations or more above the mean. We
drop these three auctions from the sample, leaving us with 733 total auctions.
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highest loser bid distribution is skewed to the right with a long, curved upper tail, we
insert an additional knot jJ = (jJ−1 + jJ+1)/2 to provide some added flexibility in this re-
gion. The advantage of this approach is that it reduces the (J + 1)-dimensional decision
of knot choice to a single decision of J, the number of knots, while letting the data de-
termine the placement of the knots. On the other hand, this method concentrates knots
more densely within higher quantiles of F̂V , since we are choosing knots at the quantiles
of highest losing bids. However, this is a natural problem inherent in estimating a parent
distribution from any data set consisting of order statistics: observations selected from
the within-auction sample extremes will always be more informative of the higher quan-
tiles of the parent distribution. Thus, in finite samples, knot choice involves the familiar
bias–variance trade-off. We propose the above method because it allows the observables
to determine knot location. Statistically optimal knot choice, while an interesting prob-
lem, is beyond the scope of the current exercise and is therefore left to future work.29

Finally, when enforcing the equilibrium conditions, we found the L∞ norm most ef-
fective. The problem with the other Lp norms (with finite p; for example, the L2 norm) is
that they allow for a small number of drastic deviations from the FOCs, as long as the so-
lution to ξ̂ is well behaved at most domain points. This can lead to poor performance of
the solution method. Although both methods produce a spline estimate with the same
overall trend, the L∞ norm, by directly disciplining the worst-behaved segments of the
spline, is able to achieve a better overall fit, while avoiding wild oscillations around the
bidder optimality condition. As an illustration of this point, Figure A.8 in the Supple-
mental Appendix plots the relative approximation error of the B-spline approximation,
R(b)/ξ̂(b; α̂) under the L∞ and L2 norms. The plot shows that the approximation error
under the L∞ norm is several orders of magnitude smaller along much of the functional
domain. Moreover, few remedies exist to improve this comparison without drastically
increasing computational load; for example, the picture remains virtually unchanged if
we double the number of domain checkpoints. Thus, we recommend the L∞ norm for
practical use. We chose values of P0 = 10 and P1 = P2 = P3 = 200 as this allowed for a
good balance of least squares fit and small numerical error.

5.3 Empirical results

We first separately estimated two parametric models of the bidder arrival process—
a generalized Poisson model indexed by (λ

gp
1 �λ

gp
2 ) and a standard Poisson model in-

dexed by λp (where the second parameter in the generalized model is restricted to be
zero). Under the generalized Poisson model we get both a higher mean, 11�569, and stan-
dard deviation, 6�832, of the random variable N as compared to the Poisson model with
10�023 and 3�166, respectively. Figure 7 depicts a comparison of the empirical distribu-
tion of Ñ versus the two parametric models. Both fit the data fairly well, but the general-
ized Poisson model emerges as the clear winner: on the majority of the sample domain

29By experimenting with alternatives where knots are placed uniformly in V space instead, we found that

the shape of the point estimate for f̂V changed somewhat near the lower end, but variance of the estimator
increased significantly. The simple intuition is that with uniform knots in V space there are several model
parameters whose values are being determined by sparse data near the lower extreme of the sample, which
is likely leading to higher mean squared error.
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Figure 7. Model fit: empirical CDF of Ñ versus parametric model-generated CDFs.

Table 4. Parameter estimates and standard errors.

λ̂1 λ̂2 j1 j2 j3 j4 j5 j6 μ̂1 = 0 μ̂14 = 1
5.760 0.502 200.00 255.08 267.86 278.18 287.19 294.99 μ̂2 μ̂3
(0.424) (0.049) j7 j8 j9 j10 j11 j12 0�0291 0�3443

301.87 309.10 318.90 337.78 373.89 410.00 (0.0513) (0.0547)

μ̂4 μ̂5 μ̂6 μ̂7 μ̂8 μ̂9 μ̂10 μ̂11 μ̂12 μ̂13
0�6345 0�7300 0�7775 0�8206 0�8621 0�8994 0�9374 0�9593 0�9897 0�9989
(0�0201) (0�0152) (0�0126) (0�0108) (0�0079) (0�0064) (0�0052) (0�0049) (0�0050) (0�0016)

ε0 ε1 ε2 ε3 SSR|J=11
9�8 × 10−6 3�4 × 10−6 8�6 × 10−5 9�9 × 10−5 0�1194

the model-generated distribution of observables under the generalized Poisson model
is within the nonparametric 95% confidence bounds of the adjusted empirical distri-
bution of observed bidders. This implies that, although there still may be asymptotic
gains from a more flexible functional form, the current sample size precludes further
improvement without more data.

For the private-value distribution we settled on a value of J = 11, meaning 12 knots
in V space and 14 total parameters, with 12 of them being free parameters after we en-
force the boundary conditions on F̂V . This choice seemed to provide a high degree of
flexibility for fitting patterns in the data, while producing a high degree of numerical ac-
curacy. Table 4 displays our chosen knots {j1� � � � � j12}, parameter point estimates, and
bootstrapped standard errors in parentheses. Figure 8 conveys how the model specifi-
cations J = 9�10� � � � �13 all fit the data remarkably well. In selecting J = 11 we conducted
a bootstrap exercise to compare the mean integrated squared error across these spec-
ifications.30 All of them implied virtually identical pointwise mean values for the CDF,

30A broader question concerns the optimal rate at which model complexity should increase as the sam-
ple size grows. Given our rule for knot placement (uniform in quantile rank space), could one construct a
consistent estimator that includes a rule for choice of J → ∞ as a function of sample size T ? Given that the
Stone–Weierstrass theorem applies to B-splines as it does to global polynomials, the answer is likely yes.
However, it is beyond the scope of this work, as is the question of optimal rate of increase for J, and is left
to future research.
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Figure 8. Model fit: empirical H(b) and estimated H(b) with J = 9–13.

Figure 9. Estimated valuation distribution and density with knots.

meaning that there should be no meaningful difference in bias. Therefore, the integrated
mean squared error comparison reduces to one of integrated variance, which is lowest
for specification J = 11. Figure A.7 in the Supplemental Appendix also shows that the
relative numerical errors under the different model specifications are all quite small and
roughly the same.

Figure 8 illustrates the fit between the empirical CDF Ĥ(b) (thick dashed line), and
the model-generated version under varying choices for J. The thick solid line corre-
sponds to our preferred specification with J = 11. Figures 9 and 10 depict the estimated
private-value distribution and inverse bid function with bootstrapped 95% confidence
bounds.31 In each figure, the thin vertical lines indicate knots. The inverse bid function
plot is zoomed in below the 90th percentile of the private-value distribution so that the
features of the function can be seen more clearly. Note the abrupt transition in the de-
gree of demand shading above the point b∗ = $250. The confidence bounds on the in-
verse bid function are remarkably tight because within the relevant ranges for �, private-

31To compute our bounds we estimated the model parameters λ, μ, and α on 1000 bootstrapped sam-
ples, holding the knot vectors kK and jJ fixed.
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Figure 10. Estimated equilibrium inverse bidding function.

value distributions that significantly differ tend to still largely agree on the appropriate
degree of demand shading. For completeness, Figure A.7 in the Supplemental Appendix
presents the relative approximation error, or the ratio of the residual function R(b) to
the units of ξ̂(b; α̂). As suggested in Section 4.5.2 above, we also compute a final check
on our solution for ξ̂(b; α̂) by holding the structural parameters λ̂ and μ̂ fixed, and com-
puting a standard Galerkin approximant, call it ξ̃(b; α̃), by solving a square system of
nonlinear equations on an appropriately chosen grid of checkpoints. This we do with
a knot vector j̃J̃ , where J̃ = 5J for improved accuracy (under the fixed-point estimates
for distributional parameters), and we then compare the two solutions; see Figure A.9
in the Supplemental Appendix. The knot vector we selected followed the same rule as
the one used in estimation, just with more knots; the grid of checkpoints included the
midpoint of each subinterval, the endpoints of the knot vector, and a final point cho-
sen halfway between the lowermost knot and the lowermost midpoint. The sup-norm
distance between our runtime ODE solution ξ̂(b; α̂) and the ex post, standard Galerkin
implementation ξ̃(b; α̃) (using a square system of equations) turns out to be 20 cents,
but over the majority of the domain, the two differ by less than 5 cents. Figure A.9 dis-
plays the runtime solution with a thick, dark line and the ex post solution with a thin,
light line so that the two can be visually distinguishable. This comparison indicates that
our point estimates for the private-value distribution are based on a differential equa-
tion solution with an acceptable level of numerical error.

It is interesting to note that both the point estimate ξ̂(b; α̂) and the lower confidence
bound lay significantly above the 45◦ line, which represents the hypothetical inverse bid
function under a second-price equilibrium. To put the picture into context, the upper
panel of Table 5 summarizes the degree of estimated demand shading for bids occur-
ring at various quantiles of the observable distribution H(b). Within the 90–10 range,
the difference between the estimated EA bid function and the second-price bid function
ranges from $3�41 to $5�29. Note that the information on bid shading in the table implic-
itly represents the magnitude of the misspecification problem from ignoring the hybrid
EA pricing rule as well: under a second-price assumption, the econometrician would
estimate the parent distribution of bids using our model of the filter process, and then
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Table 5. Absolute and relative differences between private values and bids.

10th 25th 75th 90th
Percentile Percentile Median Percentile Percentile

High loser bid: $255.50 $275.00 $299.00 $311.86 $339.00
Bid shading : V −β(V ) $3�41 $4�61 $4�54 $5�29 $4�61

10th 25th 75th 90th
Buyer Information rents Percentile Percentile Median Percentile Percentile
I = V(1:N) − min{B(2:N) +��B(1:N)} $5�01 $9�19 $22�51 $44�46 $69�36

incorrectly interpret GB as being the same as FV since bids and private values are the
same under a second-price rule. Our approach is to incorporate equations (12) and (8)
into the estimation step as a correction factor. The numbers from Tables 3 and 5 indicate
that failing to do so would result in misspecifying point estimates of private valuations
by between 11% and 17% of a standard deviation of the observable distribution H. It is
also worth mentioning that if we compute an alternative B-spline estimator, call it F̃V ,
using the same knot vector as our preferred specification (with J = 11) and the general-
ized Poisson point estimate λ̂gp, but under the second-price assumption (where we just
interpret observed bids as private values), then we get a CDF estimate that is strongly
rejected by the EA bidding model. Specifically, the estimator F̃V is shifted to the left and
parts of it lay outside of the bootstrapped 99% confidence bounds of F̂V (v; μ̂).32

5.4 Model simulations and counterfactual analysis

We begin by exploring auction winners’ market rents arising from private information
on their willingness to pay. We define information rents as the random variable

I ≡ V(1:N) − P = V(1:N) − min{B(2:N) +��B(1:N)}�

or the winner’s private valuation minus the price she pays. Note that the randomness
in I comes from it being a function of three separate random variables: N , V(1:N), and
B(2:N). In our case, where we only occasionally observe the highest bid, and where we
never directly observe N , our structural model estimates are needed so as to simulate
the distribution of I .

To do so, we proceed in three steps: first, we generate a random value of N from
the generalized Poisson distribution with our point estimate λ̂gp; second, we generate
N random draws from the private-value distribution F̂V (v; μ̂) and map them into bid
space using a cubic interpolant of the inverse of ξ̂(b; α̂); finally, we collect the highest
private valuation and the two highest bids to compute a simulated value for I . We fol-
lowed this process 1,000,000 times to get a large enough sample to reliably represent
the moments of the distribution of I . The lower panel of Table 5 summarizes informa-
tion rents at several quantiles of the winner distribution. On average, the winner in an

32See Figure A.6 in the Supplemental Appendix for a robustness check in which we compare the bias
induced by pricing-rule misspecification with the bias resulting from deviations in the scale invariance
assumption.
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auction from our sample retained an information rent of $30�57, but the distribution is
highly skewed to the right with a large standard deviation of $26�36. From a seller’s per-
spective, one of the main concerns is how to maximize their own revenues by extracting
as much of these information rents as possible through auction design. We now con-
clude our discussion with a counterfactual exploration of optimal reserve prices.

One puzzling regularity within eBay data is that the vast majority of sellers set re-
serve prices at or near zero. In the 733 auctions from our empirical application, a reserve
price is never used, but this could represent default seller policy (given that all of these
auctions come from the same seller, CSRT). Nevertheless, in a broader set of used laptop
data from the same time period, with 13,193 separate auctions, only 724 of them, or 5�5%
overall, involved a reserve price that exceeded $1; 359, or 2�6%, had a reserve price that
exceeded $10; and 156, or 1�1%, had a reserve price that exceeded $100. The sparse use of
reserve prices might be surprising given the literature on optimal mechanisms in which
a positive reserve price is suggested even for a seller who values the item at $0. Equipped
with our estimates of the private-value distribution and the parameters of the general-
ized Poisson distribution, we can consider counterfactual experiments to understand
why.

First though, following McAfee and McMillan (1987) and Harstad, Kagel, and Levin
(1990), observe that because we have a symmetric, independent private-values model
with an unknown number of risk-neutral bidders, standard auctions will be revenue
equivalent as long as bidders have the same beliefs about the number of potential bid-
ders. Our EA model has the same equilibrium allocation rule as the canonical first-
and second-price formats—the bidder with the highest valuation always wins the ob-
ject (efficiency)—and the expected payoff of the lowest possible type v is zero; therefore,
the revenue equivalence principle applies. Second, optimal auction design does not de-
pend on the distribution of N ; see McAfee and McMillan (1987). Taken together, these
facts imply that the optimal auction can be implemented using a first- or second-price
format or via an EA.

This simplifies computation of counterfactuals: we can generate the correct ex-
pected revenues by considering a second-price auction, which avoids the need for solv-
ing the EA bid function using our estimated valuation distribution for every possible
choice of reserve or value of the participation parameters. Let R denote revenue and let
r denote reserve price. Expected revenues are given by

E(R|r)= r
[
1 − FV (r)

] ∞∑
n=1

ρN(n;λ)nFV (r)
n−1

+
∫ v

r
v
[
1 − FV (v)

]
fV (v)

∞∑
n=1

ρN(n;λ)n(n− 1)FV (v)
n−2 dv�

(20)

where the integral is solved using an adaptive recursive Simpson’s rule. The maximizer,
r∗, of this expression satisfies the equation

r∗ = v0 + 1 − FV

(
r∗

)
fV

(
r∗

) � (21)
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Figure 11. Counterfactual revenue curve comparisons.

first derived by Myerson (1981), where v0 is the seller’s valuation. For the purpose of this
discussion, we shall assume throughout that v0 = 0.

Figure 11 depicts three expected revenue curves as a function of reserve price r: one
deriving from model point estimates (solid line), and two hypothetical curves where the
generalized Poisson parameters are altered. For both of these we compute an alterna-
tive λ vector so that Var[N] is held constant while for one, call it λ+, E[N] increases by
1 relative to the point estimates, and for the other, call it λ−, E[N] decreases by 1. A well
known result concerning reserve prices in auctions by Bulow and Klemperer (1996) is
that the benefit from attracting an additional bidder to an auction exceeds any possible
gain by optimizing the reserve price. This result plays out strongly in the figure: the im-
pact on expected revenues from changing E[N] by 1 is hundreds of times greater than
the impact of moving from r = 0 to r = r∗. However, our empirical results say something
even stronger about optimal reserve prices on eBay: they are, in fact, almost entirely
irrelevant to begin with! Although the expected revenue curves in the figure have an in-
terior global optimum, under our model estimates, the maximum benefit a seller may
reap by optimizing the reserve price is estimated to be $0�0288. To put this number in
perspective, if we assume that an eBay seller values her time at a conservative $10/hour,
then if it takes her longer than a mere 11 seconds to decide what the optimal reserve
price should be, she would be better off by simply setting r = 0 and allocating her time
toward some other, more profitable use. This resolves the puzzle of why the vast major-
ity of eBay sellers choose nonbinding reserve prices: the online auction house has done
its job of attracting buyers to the market well enough so there is no longer any need to
worry about this aspect of auction design.

6. Discussion and conclusion

6.1 Model extensions

Two possible extensions are worth comment before we conclude. Our estimation frame-
work presented here assumes away two common aspects of online auction markets:
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binding reserve prices and inter-auction, dynamic incentives. Specifically, we have as-
sumed here that sellers set reserve prices at a value of zero, as this was consistent with
our empirical application to laptop data. We have also shown in our counterfactual anal-
ysis that if sellers have reservation values of zero, then they have little to gain by opti-
mizing this particular aspect of auction design. However, in many data sets involving
online auctions, nontrivial fractions of sellers do choose binding reserve prices. From
an estimation standpoint, this addition introduces another source of sample selection:
some actual bidders who would otherwise have been observed are withheld from the
econometrician’s view because they happen to have low private valuations. Incorporat-
ing binding reserve prices into the filter process involves significant complications of
both the model and the estimator—it is no longer possible to estimate λ separately from
GB since both objects influence the link between the distributions of N and Ñ—and is
explored in ongoing work by Bodoh-Creed, Boehnke, and Hickman (2016). Another im-
portant assumption underlying our framework presented here is the idea that individ-
ual auctions may be treated in isolation as a series of static, one-shot games. In reality
though, online auction markets for many consumer products are more complicated en-
vironments where bidders’ opportunity costs of losing are not the full amount of their
private valuations, since they can always return in a future period if they lose an auc-
tion today. This positive continuation value gives rise to an additional source of demand
shading from intertemporal incentives. Still, much can still be learned from a framework
like ours that characterizes only purely static strategic demand shading. Bodoh-Creed,
Boehnke, and Hickman (2016) develop a model of dynamic platform markets like eBay.
They characterize equilibrium bidding behavior and show that in the dynamic platform
setting there is an intuitive layering of the intertemporal and static demand shading in-
centives. Their results imply that our identification and estimation strategy, based on
a static, one-shot bidding model, can be applied in broader settings where bidding is
influenced by the future outside option.

6.2 Conclusion

EAs are important market mechanisms in the world today, with eBay in 2010 accounting
for total sales of $25 billion from auction listings alone.33 In this paper, we have made
four contributions to research on EAs: first, we documented how failing to account for
the nonstandard EA pricing rule can bias estimates of the latent valuation distribution.
Second, we demonstrated that a realistic EA bidding model is nonparametrically identi-
fied by observables readily available. As part of this exercise, we solved another, indepen-
dent problem by proposing a new identification strategy for inferring the distribution of
N using observable lower bounds on bidder participation. Third, we proposed an esti-
mation strategy to recover model parameters from actual eBay data in a flexible yet com-
putationally tractable way. Although conceptually complex, the method we employed
is easily implementable using a Matlab toolbox that is available in the Supplemental

33See the eBay Annual Report 2010 available at http://investor.ebayinc.com/annuals.cfm. Our calcula-
tion is based on the gross merchandise value (GMV) multiplied by the reported share of GMV obtained
under an auction-style format.

http://investor.ebayinc.com/annuals.cfm
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Code and Data. Thus, this research fills two important methodological gaps in the liter-
ature: (i) researchers no longer need to assume (incorrectly) that eBay bids are private
valuations; (ii) having estimates of both the latent valuation distribution and the ex ante
participation rate permits model simulations, where previous work only managed to
identify the latent valuation distribution. Finally, we used our framework to shed light
on empirically relevant questions in online auction design. For example, our model es-
timates explain why reserve prices are commonly not used by sellers: given the number
of bidders who typically participate, they play very little role in determining revenues.
On the other hand, varying the expected number of bidders who participate can play
a significant role under observed market conditions. This suggests that the most rele-
vant aspects of online market design take place at the level of the auction house itself,
where policy levers exist to produce movements on the margin of marketwide, buyer–
seller mix. Future research to investigate this question further will surely yield fruitful
new insights and will benefit from the methodological advances we developed here.
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