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Do siblings free-ride in “being there” for parents?

Shiko Maruyama
Economics Discipline Group, University of Technology Sydney

Meliyanni Johar
Economics Discipline Group, University of Technology Sydney

There is a potential free-rider problem when several siblings consider future pro-
vision of care for their elderly parents. Siblings can commit to not providing long-
term support by living far away. If location decisions are made by birth order, older
siblings may enjoy a first-mover advantage. We study siblings’ location decisions
relative to their parents by estimating a sequential participation game for U.S.
data. We find (i) limited strategic behavior, that is, in two-child families, more than
92% of children have a dominant strategy, and (ii) a nonnegligible public good
problem, that is, in families with multiple children, 18�3% more parents would
have had at least one child living nearby had location decisions been made coop-
eratively.

Keywords. Public goods, empirical game, informal care, free-riding, sequential
participation game, first-mover advantage, prisoners’ dilemma.

JEL classification. C72, D13, D62, D64.

1. Introduction

The burden of caring for elderly parents has been well documented (e.g., Ettner (1996),
van den Berg, Brouwer, and Koopmanschap (2004), Bolin, Lindgren, and Lundborg
(2008), and Lilly, Laporte, and Coyte (2010)). When several siblings consider providing
care for their elderly parents, altruism toward the parents and the cost of caregiving re-
sult in a textbook public good problem. The more altruistic the siblings are, the stronger
is their incentive to free-ride on each other because a stronger altruism implies a larger
positive externality of caregiving.

This public good problem is particularly plausible when we consider siblings’ loca-
tion decisions. The opportunity cost of living near the parent may be substantial, al-
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though it is not widely documented in the literature. The discrete nature of location
choice and associated relocation costs make efficient bargaining difficult. Furthermore,
there exists a potential commitment device arising from birth order: the oldest child
may enjoy a first-mover advantage by moving far away as soon as schooling is com-
pleted. Consistent with this argument, Konrad, Künemund, Lommerud, and Robledo
(2002) find that in Germany, older siblings are more likely to move far away from their
parents than younger siblings.

We quantify this free-rider problem and first-mover advantage for the first time in
the family care literature by studying siblings’ location decisions relative to their elderly
parents. We build a game-theoretic econometric model to explain cross-sectional vari-
ation in the patterns of sibling location in the United States. It is a perfect-information
participation game in which, by birth order, each sibling sequentially makes a once-and-
for-all location decision whether to live close to their parent. Although this approach ab-
stracts from dynamics in location decisions except for birth order (as in most previous
studies), our model instead features rich heterogeneity and encompasses a wide variety
of participation games. Consequently, our analysis allows us to discover (i) the degree
and nature of externality, (ii) the associated underprovision or overprovision of proxi-
mate living, (iii) the game structure and equilibrium characteristics, (iv) the size of the
first-mover advantage, and (v) how externality and inefficiency vary across families. To
confirm the validity of our model, we also estimate a private-information model and a
cooperative model in which siblings maximize their utility sum.

The key innovation in our empirical framework relies on the fact that a wide range
of participation games can be summarized by three structural parameters: altruism, pri-
vate cost, and cooperation. The “cooperation” term captures another likely source of pos-
itive externality of proximate living, the so-called synergy effect : siblings living near par-
ents may be able to cooperate and provide care more efficiently. In fact, shared caregiv-
ing is widely observed (see, e.g., Matthews and Rosner (1988) and Checkovich and Stern
(2002)). By modeling altruism and cooperation together and by introducing heterogene-
ity in the three structural parameters, we can incorporate a broad range of participation
games and identify the games played by American families.

Informal care still plays an important role in aging societies, despite a trend toward
formal care. The Organization for Economic Cooperation and Development (OECD
(2005)) reports that around 80% of the hours of care for the elderly with a disability or se-
vere medical condition are provided informally. Despite declining intergenerational co-
residence, the majority of adult Americans still live within 25 miles of their mothers (see
Compton and Pollak (2013)). Family assistance, such as companionship, frequent vis-
its, and mental and emotional support, contributes to the well-being of elderly parents
and enables them to remain in the community (see Matthews and Rosner (1988) and
Bonsang (2009)). A good understanding of adult children’s location decisions, hence,
serves as an important step in designing public policies to promote the well-being of
families in aging societies. In particular, by quantifying the extent of the public good
problem, externality, and strategic behavior in the location decisions of families and by
examining Pareto optimality, this study offers useful insights into who should be sup-
ported, subsidized, or taxed so as to achieve higher family welfare.
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The results are summarized as follows. First, the location game played by Ameri-
can siblings is characterized by moderate altruism and cooperation. This implies very
limited strategic behavior. In two-child families, more than 92% of children have a dom-
inant strategy. The first-mover advantage is almost negligible: reversing birth order af-
fects only 1�9% of two-child families. Second, however, there is nonnegligible underpro-
vision of proximate living due to free-riding. In multi-child families, 28�8% end up in
location configurations that are not joint-utility optimal. Most typical in this case is the
situation in which no child lives near the parent and no Pareto-improving location con-
figuration exists; however, the siblings can achieve higher joint utility if one of them lives
near the parent. In families with multiple children, 18�3% more parents than actually
observed in data would have had at least one child living nearby had location decisions
been made cooperatively than as actually observed in data. Third, we find substantial
heterogeneity across families. The underprovision of proximate living is more severe if
children exhibit strong altruism toward their parents, particularly in a family with a sin-
gle mother who has limited education, poor health, and younger children. Last, we find
that the noncooperative model fits the data considerably better than the joint-utility
maximization model.

This paper also contributes to the empirical literature on games. First, our model fea-
tures rich heterogeneity in the two sources of externality. Consequently, different play-
ers face participation games with different equilibrium characteristics (e.g., coordina-
tion and anti-coordination games). This enables us to draw inferences about the shares
of families in the prisoners’ dilemma situation, families achieving the joint-utility opti-
mum, and families with a large first-mover advantage. Second, this paper is one of very
few empirical analyses to study the first-mover advantage, preemption, and commit-
ment in sequential decision making. Most prior empirical studies examine extremely
simple cases, such as two-player games, with two exceptions. Schmidt-Dengler (2006)
studies the timing game of adoption of magnetic resonance imaging (MRI) by hospitals
in a fairly general setup and finds a significant but small preemption effect. Stern (2014),
probably the closest work to ours, studies the patterns of sibling location in a private-
information sequential framework. The models in these two studies, however, lack the
rich heterogeneity of our model that allows us to capture a wider variety of participation
games.

2. Related literature

A small but tangible body of literature applies a noncooperative game-theoretic frame-
work to study interactions among siblings with respect to informal care arrangements
(see Hiedemann and Stern (1999), Checkovich and Stern (2002), Engers and Stern (2002),
Byrne, Goeree, Hiedemann, and Stern (2009), and Knoef and Kooreman (2011)). In these
models, each family member acts to maximize his/her own utility, and the equilibrium
arrangement is solved in estimation. Hiedemann and Stern (1999) and Engers and Stern
(2002) study the family decision about the primary caregiver. Checkovich and Stern
(2002) study the amount of care, allowing for multiple caregivers. Byrne et al. (2009)
enrich these studies by also modeling consumption, financial transfers for formal home
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care, and labor supply. These studies use U.S. data, whereas Knoef and Kooreman (2011)
estimate a model using European multicountry data. With the exception of Byrne et al.
(2009), the results of these studies all indicate interdependence in caregiving decisions
among siblings. For example, Knoef and Kooreman (2011) argue that if siblings engage
in joint-utility maximization, 50% more informal care will be provided to parents, and
the cost to the children will increase to a much lesser extent. All these structural studies
employ a game-theoretic framework to explain across-family variations in care arrange-
ments, taking families’ location decisions as given.

We advance the literature on informal care in two ways. First, we are one of the
first to apply a game-theoretic framework to the location decisions of siblings, rather
than the informal care arrangement decision. Studying the location decision is im-
portant because the location pattern is a critical determinant of formal and infor-
mal care arrangements (see Checkovich and Stern (2002), Engers and Stern (2002),
Bonsang (2009), and Hiedemann, Sovinsky, and Stern (2013)). There are myriad eco-
nomics and noneconomics studies on co-residence and collocation between elderly
parents and their children (e.g., Börsch-Supan, Kotlikoff, and Morris (1988), Dostie and
Léger (2005), Hank (2007), Fontaine, Gramain, and Wittwer (2009), Johar and Maruyama
(2011), Compton and Pollak (2013), Johar and Maruyama (2014), Maruyama (2015), and
Wiemers, Slanchev, McGarry, and Hotz (2017)), but few investigate the noncoopera-
tive decision of family living arrangements,1 and none quantifies the free-rider problem
among siblings, although the discrete and long-term nature of location decisions may
reinforce the free-riding and strategic behavior involved in the coordination of caregiv-
ing among siblings.

Second, we are the first to develop an econometric model that captures the sequen-
tial aspect of decision making among siblings and to quantify its empirical importance.
All studies with a game-theoretic econometric model in this literature assume that sib-
lings make decisions simultaneously. Our study builds on the nonstructural study by
Konrad et al. (2002), who estimate an ordered logit model of children’s distance from
the parent with child-level data of two-child families drawn from the German Aging
Survey. They find that firstborn children are more likely to live far from their parents
than their younger siblings, and argue that this finding supports their first-mover ad-
vantage hypothesis: by locating sufficiently far from the parent, the first-born child can
force a younger sibling to locate closer to the parent as the primary caregiver. However,
observed birth-order asymmetry may simply be explained by the observed character-
istics of siblings. To the best of our knowledge, Stern (2014) is the only empirical work
that studies the strategic location decision of families with more than two siblings. The
unique feature of his work is that his model allows for private information in each child’s
location preferences, in addition to common-knowledge factors that are unobservable

1Pezzin and Schone (1999) study American families with one daughter using a bargaining model of co-
residence, care arrangements, and the child’s labor force participation. Sakudo (2008) studies Japanese fam-
ilies with one daughter using a bargaining model of co-residence, monetary transfers, and marriage. The
study on living arrangements by Hoerger, Picone, and Sloan (1996) allows multiple children to contribute
to caregiving, based on a single family utility function.
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to the econometrician. In one sense, Stern’s (2014) setup is more general than ours be-
cause it allows for two types of unobservable factors, but this feature itself makes the
identification of model parameters challenging, and hence requires strong model re-
strictions: in particular, the private term in each sibling’s location preferences follows an
independent normal distribution, what we call altruism has limited heterogeneity, and
externality due to cooperation is not allowed. Consequently, Stern’s (2014) setup lacks
the rich heterogeneity of our approach, and the source of identification and the gener-
alizability of the results need further investigation.

Given the complexity of care and living arrangements, one model does not capture
all the possible aspects of family decision making. Prior studies utilize various mea-
sures of informal care and other transfers, endogenize labor force participation and for-
mal care decisions, and/or incorporate important policy variables, such as eligibility for
Medicaid. We abstract from these relevant features to concentrate on modeling sequen-
tial interaction and externality. Our study should therefore be regarded as a complement
to existing studies.

3. Data and descriptive results

3.1 Data

The data are drawn from the Health and Retirement Study (HRS), a nationally represen-
tative biannual longitudinal survey of Americans over 50. The HRS took its current form
in 1998, and has since added two new cohorts in 2004 and 2010. It tracks the health,
wealth, and well-being of elderly individuals and their spouses. The HRS also questions
respondents about the demographics and location of all their children.

To make our econometric model tractable, we take a cross-sectional approach and
abstract from dynamic aspects other than sequential decision by birth order. We com-
bine the three HRS waves in 1998, 2004, and 2010, and construct our “cross-sectional”
sample as follows. First, we choose family observations from HRS 1998 that meet the
sample selection criteria explained below. Next, we add families from HRS 2004 that
(i) meet the criteria and (ii) are not included in our HRS 1998 sample. We then add fam-
ilies from HRS 2010, repeating the same procedure. Each family thus appears only once
in our sample. We pool the three waves to increase the sample size and secure time vari-
ation (12 years apart). As reported in Johar and Maruyama (2012), our basic results are
unaffected by the choice of survey waves.

Our sample consists of individuals over 50 (i) who do not live in a nursing home or
institution, (ii) who do not have a spouse younger than 50, (iii) who have at least one
surviving biological child, (iv) who do not have more than four children, (v) who have
no step- or foster children, (vi) whose youngest child is 35 years old or older and whose
oldest child is younger than 65, (vii) whose oldest child is at least 16 years younger than
the parent (or the spouse, if the spouse is younger), and (viii) who have no same-age
children. In HRS 2010, 3% of the elderly population live in nursing homes and fewer than
7% have no child. We restrict the number of children to four to limit the computational
burden. For the purpose of our research, we expect to learn little from adding very large
families.
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We focus on relatively older children because the moves of younger children are of-
ten temporary; for example, they may move for postgraduate education. The location
configuration of those above 35 is more likely to involve serious long-term commitment.
We find that lowering this limit to age 30 does not affect our main results. We also set the
maximum age of children because our model focuses on where children set up their
own families; thus moves around retirement age should be excluded. Last, we exclude
families with same-age children because we utilize birth order.

From this sample of parents, we create a child-level data set. Spousal information is
retained as explanatory variables. Our final data consist of 18,647 child observations in
7670 families, of which 55�0%, 24�9%, and 20�0% is from the HRS waves 1998, 2004, and
2010, respectively.

3.2 Location patterns of siblings

The location of the children relative to the parent defines our dependent variable. We
group “living with the parent” and “living close to the parent” together and refer to this
as living near the parent. Although co-residence is becoming less common, shared care-
giving by siblings living nearby is commonly observed (e.g., Matthews and Rosner (1988)
and Checkovich and Stern (2002)). Siblings living nearby also contribute to the family
by other means—by frequent visits and as a backup in the case of primary caregiver
burnout.2 Due to the design of the HRS, proximity is defined as a distance of less than
10 miles. This definition is used in HRS reports and previous studies (e.g., McGarry and
Schoeni (1995) and Byrne et al. (2009)).3

Table 1 presents the location patterns of siblings in our sample by the number of
children in a family. The top panel shows that 48�7% of only children live far from their
parents. The second panel shows that elderly parents with two children are most likely
to have one child nearby (43�1%) and least likely to have both of them nearby (17�4%).
Naturally, the probability of having at least one child nearby increases with the number
of children: parents of four children are least likely to live with no child nearby (20�5%)
compared to parents with fewer children. Table 1 also reports the detailed location con-
figurations by birth order. Each possible configuration is denoted by the sequence of F
and N, indicating each sibling’s decision from the oldest to the youngest. For example,
FFN indicates the configuration of a three-child family where only the youngest child

2We focus on the binary setup for the ease of computation and interpretation, following the majority of
the literature. One of the referees suggests a three-alternative setup rather than a binary setup, referring to
Compton and Pollak’s (2013) work, which finds qualitative difference between those who choose proximate
living and those who choose co-residence. To examine the validity of the binary setup, we estimated several
nested logit models that allow for two different nesting structures: (i) siblings make a decision between
“living far” versus “living near/co-residence” and (ii) siblings make a decision between “separate living”
(living far/near) versus “co-residence.” We found no strong evidence for the latter, that is, adult children do
not appear to decide whether to leave the parents before they choose distance. This finding supports our
binary aggregation.

3Using the National Survey of Families and Households, Compton and Pollak (2013) report that the me-
dian distance between a married couple and the husband’s (wife’s) mother is 25 (20) miles. Their finding
suggests that a substantial proportion of children whom we categorize as living far live within 30 miles of
their parent.
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Table 1. Sibling location configurations by birth order with implied shares under indepen-
dence.

Number of Implied Share Under
Children Total Independence
Living Near Share Detailed Location Configurations With Birth Order (p = 0�404)

One-child families (N = 1493)
0 48�7% Far: 48�7% 59�6%
1 51�3% Near: 51�3% 40�4%

Two-child families (N = 2840)
0 39�6% FF: 39�6% 35�5%
1 43�1% NF: 19�9%; FN: 23�2% 48�2%
2 17�4% NN: 17�4% 16�3%

Three-child families (N = 2054)
0 30�1% FFF: 30�3% 21�2%
1 34�3% NFF: 10�2%; FNF: 11�1%; FFN: 13�0% 43�1%
2 23�8% NNF: 7�3%; NFN: 7�1% FNN: 9�4% 29�2%
3 11�7% NNN: 11�7% 6�6%

Four-child families (N = 1283)
0 20�5% FFFF: 20�5% 12�6%
1 30�4% NFFF: 6�7%; FNFF: 6�3%; FFNF: 8�5%; FFFN: 8�9% 34�2%
2 24�2% NNFF: 3�1%; NFNF: 3�4%; NFFN: 4�7%; FNNF: 3�3%;

FNFN: 4�9%; FFNN: 4�8%
34�8%

3 16�3% NNNF: 3�7%; NNFN: 4�4%; NFNN: 3�8%; FNNN: 4�4% 15�7%
4 8�7% NNNN: 8�7% 2�7%

Note: Each digit in the key indicates the proximity of each child to their parents, either far or near, with the first digit
representing the oldest child, for example, FFN indicates the location configuration of a three-child family in which only the
youngest child lives near the parent. N includes co-residence. As a benchmark, the last column shows the shares computed
under the assumption that each child makes a location decision independently and chooses N with probability 0�404 (= overall
average).

lives near the parent. In the last column, we report the theoretical share of each loca-
tion configuration under the independence assumption. We compute these shares by
using the overall propensity of living near parents (p = 40�4%) under the assumption
that there is no externality and each child makes a decision independently.

Table 1 highlights five empirical regularities that our econometric model needs to
address. First, only children are more likely to choose to live nearby compared to chil-
dren with siblings, perhaps because only children have no one on which to free-ride.
Second, in multi-child families, the location decisions of siblings are correlated: we ob-
serve polar cases such as FFF and NNN more frequently than theoretically implied by
shares under independence. This correlation may arise as a result of (i) similarity in sib-
lings’ preferences, (ii) similarity in siblings’ characteristics, or (iii) cooperation between
siblings. These three possibilities are distinguished in our econometric model.

The third empirical regularity is birth-order asymmetry. Conditional on one child
living near the parent, two-child families have two possible location configurations: NF
and FN. Table 1 shows that NF is less frequently found than FN. The three- and four-
child family panels show the robustness of this birth-order asymmetry: in all rows with
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multiple possible location configurations, the rightmost cell has the largest share. This
robust birth-order asymmetry is in line with Konrad et al.’s (2002) argument of first-
mover advantage. However, this may simply reflect systematic difference between older
and younger siblings. For example, it is a well documented fact that older children tend
to have more education than their younger siblings (see, e.g., Davis (1997), Sulloway
(2007), and Booth and Kee (2009)). In our sample, the share of those who have a uni-
versity degree is 37�0% and 35�6%, respectively for the first and second children in two-
child families, and in three-child families, it is respectively 36�2%, 32�0%, and 31�3% for
the first, second, and third children. How much of the observed birth-order asymmetry
is attributed to first-mover advantage is an empirical question.

The fourth empirical regularity concerns how a younger child responds to an older
sibling’s location decision. In the panel of two-child families, for example, conditional
on the first child moving far from the parent, 63�1% (= 0�396/(0�396 + 0�232)) of second
children choose F, whereas conditional on the first child staying near the parent, 53�4%
of second children choose F. On the surface, this appears inconsistent with the free-
rider problem, in which the second child is more likely to leave the parent when the first
child remains near the parent. However, these numbers may simply capture the above-
mentioned similarities in preferences and characteristics. Whether free-riding behavior
exists needs to be examined after we have controlled for correlation.

Last, among the polar cases such as FFF and NNN, everyone-far location patterns
show larger differences between observed and predicted shares than everyone-near lo-
cation patterns. This distortion toward everyone-far location patterns is not explained
by either correlation or the cooperation effect. It instead suggests that free-riding behav-
ior under altruism leads to underprovision of proximate living.

3.3 Explanatory variables

We use the characteristics of both parents and children. Table 2 provides the definitions
of the explanatory variables and their summary statistics. The parental variables, which
are always named with prefix P_, include demographics (age, sex, marital/cohabitation
status, and ethnicity), education, health status, location type (urban or rural), and hous-
ing status. For the child variables, which always have prefix C_, we use age, sex, edu-
cation, marital status, and information on grandchildren. Parental health status is con-
structed as the first factor from a factor analysis that includes (i) self-assessed health in-
dex, (ii) Activities of Daily Living (ADL) and Instrumental Activities of Daily Living (IADL)
scores, and (iii) previous diagnoses of diabetes, hypertension, and stroke. These diag-
noses are chosen because they tend to be persistent and are relatively common among
the elderly. When a respondent parent is married, the health data of the couple are av-
eraged to reduce the computational burden of the full model while keeping its interpre-
tation simple.4 Our assumption about parental location and housing status is that the
location configuration is determined by children’s migration, not parental migration.

4Our specification tests based on various binary probit models of the location decision suggest that how
we include and aggregate the health indexes of married parents (e.g., separate indexes, adding interaction
term, the worst of the two, etc.) does not affect our main results.
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This approach is justified by the fact that although elderly parents sometimes relocate
closer to their children, our calculation based on HRS 2010 reveals that more than 80%
of new co-residence is formed by children moving in with the parents.5

The majority of the parents in the sample own a house and are single, with widowed
mothers being the most common. The majority of children are married. The mean ages
of parents and children are 72 and 45, respectively.

4. The model

4.1 Environment

We consider a game played by children. Each child chooses whether to live close to their
parent. To make our analysis tractable, “living near” includes living together. Let ai�h ∈
{0�1} denote the action of child i = 1� � � � � Ih in family h = 1� � � � �H. If child i lives near
the parent, ai�h = 1. Child i = 1 denotes the oldest child.

We model the location choice of children as a perfect-information sequential game
in which each child sequentially makes a once-and-for-all location decision. This ap-
proach has several implications. First, we formulate the location problem of families
solely as the children’s problem, not modeling the role of parents. This simplification
helps us to focus on the interaction among siblings, but it does not mean that parents are
passive and play no role. Parents may influence children’s payoff function by promising
compensation for informal care in the future. Family bargaining and intergenerational
transfers are implicit in our payoff function and our coefficient estimates should be in-
terpreted in a reduced-form way.6

Second, modeling location choice as a once-and-for-all decision abstracts from the
dynamic aspects of location choice except for the birth-order sequence. Location choice
dynamics caused by events and decisions in later life, such as changes in the family
structure and the deterioration of parents’ health, is beyond the scope of this study, as
it has been for most previous studies. Our utility function should be interpreted as the
present discounted value of future utility.

Third, we rely on a noncooperative framework. An alternative is a model of joint-
utility maximization, which we also estimate and test against our noncooperative frame-
work. Fourth, ex post bargaining and side payments among siblings are beyond the
scope of our discrete setup. Large relocation costs justify this approach to some extent.
Alternatively, our estimates of externality and strategic interaction can be regarded as
their lower bound estimates, because in general, side payments neutralize externality
and strategic interaction.

Fifth, we assume a game with perfect information. Although most studies of empir-
ical games assume incomplete information, the perfect-information assumption is rea-
sonable in the family setting because family members know each other well.7 To verify
this assumption, we also estimate an incomplete-information simultaneous game.

5Removing the location and housing variables does not affect our main results.
6Checkovich and Stern (2002) and Knoef and Kooreman (2011) employ the same approach.
7The informal care literature uses both approaches: Byrne et al. (2009) assume a complete information

game, whereas Engers and Stern (2002) and Stern (2014) assume a game with private information.
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Table 2. Definition and summary statistics of variables.

Variable Definition Mean Std. Dev.

Outcome
Near = 1 if the child lives with or within 10 miles of the

parent
0�404 0�491

Parent
P_cohab = 1 if the respondent lives with a partner, regardless

of marital status (reference group)
0�447 0�497

P_father_widow = 1 if the respondent is a father living with no
partner, widowed

0�062 0�242

P_father_nonwidow = 1 if the respondent is a father living with no
partner, not a widow (e.g., separated/divorced)

0�057 0�232

P_mother_widow = 1 if the respondent is a mother living with no
partner, widowed

0�302 0�459

P_mother_nonwidow = 1 if the respondent is a mother living with no
partner, not a widow (e.g., separated/divorced)

0�132 0�339

P_age∗ Parent’s age 71�939 7�576
P_whiteˆ = 1 if race is white 0�838 0�369
P_healthy∗ The first factor from factor analysis consisting of

self-assessed health index, ADL and IADL scores
(functional limitations expected to last more than 3
months), and three indicator variables for ever being
diagnosed with diabetes, hypertension, and stroke.
The larger the healthier.

−0�033 0�782

P_College# = 1 if highest education is college or post college 0�197 0�398
P_SomeCollege# = 1 if highest education is some college (13–15 years

of formal education)
0�209 0�407

P_HighSchool# = 1 if highest education is high school (reference
group— includes 15 observations of parents with
missing education)

0�354 0�478

P_<HighSchoolˆ = 1 if less than 12 years of formal education 0�239 0�427
P_Geo_HighPop = 1 if lives in a metro area of 1 million population

/more (reference group)
0�441 0�476

P_Geo_MedPop = 1 if lives in a metro area of 250,000 to 1 million
population

0�250 0�433

P_Geo_LowPop = 1 if lives in a metro area of fewer than 250,000
population or non-metro area

0�283 0�450

P_Geo_missing = 1 if geographical information is missing 0�026 0�160
P_House = 1 if owns a residential house 0�698 0�459
Child
C_age Child’s age 44�775 6�863
C_male_single = 1 if the child is a male and single 0�151 0�358
C_female_single = 1 if the child is a female and single (reference

group)
0�154 0�360

C_male_partner = 1 if the child is a male and lives with a partner 0�357 0�479
C_female_partner = 1 if the child is a female and lives with a partner 0�339 0�473
C_College = 1 if the child’s highest education is college or post

college
0�324 0�468

C_SomeCollege = 1 if the child’s highest education is some college
(13–15 yrs of formal education)

0�212 0�408

(Continues)



Quantitative Economics 8 (2017) Do siblings free-ride? 287

Table 2. Continued.

Variable Definition Mean Std. Dev.

C_HighSchool = 1 if the child’s highest education is high school or
lower (reference group)

0�345 0�475

C_EducMiss = 1 if the child’s formal education is
missing/unknown by parents

0�119 0�324

C_kids_partner † The number of children of the child when the child is
married

1�403 1�522

C_kids_single The number of children of the child when the child is
single

0�352 0�937

C_age_difference Age difference between child i and child j (absolute
value)

C_sex_difference = 1 if child i and child j are of different sex; 0
otherwise

Wave
Wave1998 = 1 if the data are from wave 1998 (reference group) 0�550 0�497
Wave2004 = 1 if the data are from wave 2004 0�249 0�433
Wave2010 = 1 if the data are from wave 2010 0�200 0�400

Note: ˆ Both parents if a spouse/partner is present. ∗ Average if a spouse/partner is present. # The one with higher edu-

cation if a spouse/partner is present. † Information about grandchildren in the 1998 wave is missing for observations in the
AHEAD cohorts. We use information from the next HRS wave in 2000.

4.2 Preferences

Denote the utility of child i by ui�h(ai�h�a−i�h), where a−i�h ∈ {0�1}Ih−1 is the choices of
child i’s siblings. In the rest of the paper, subscript −i indicates a vector that contains
the values of all siblings except for child i, and the family subscript, h, is omitted when
no ambiguity arises. Given a−i, child i’s problem is written as

max
ai∈{0�1}

ui(ai� a−i)�

We further assume that child i’s utility depends only on ai and the number of siblings
who choose to live near the parent, irrespective of which siblings.8 Let N = ∑I

k=1 ak de-
note the number of siblings who choose to live near the parent. The utility levels when
child i lives far from the parent and near the parent are specified as{

ui(ai = 0� a−i) = uαi (N)�

ui(ai = 1� a−i) = uαi (N)+ u
β
i + u

γ
i (N)�

(1)

Utility flow consists of three structural parameters, uαi (N), uβi , and u
γ
i (N). The first pa-

rameter, uαi (N), captures the child’s altruism toward the parent. It is a utility gain of child
i from the parent’s well-being (such as happiness, good health, and long-term security)
that arises if the parent has a child nearby, regardless of which child that is. We assume
uαi (0) = 0, that is, we normalize the system without loss of generality so that when every
sibling lives far from the parent, everyone receives zero utility. If uαi (N > 0) is positive,

8Relaxing this restriction is conceptually straightforward but computationally challenging.
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proximate living has a positive externality, and child i free-rides on child j if child i lives
far and child j lives near the parent. Altruism, uαi (N), may be an increasing function of
N if the number of children living nearby relates to the amount of care and attention
given to the parent.

The next parameter, uβi , captures child i’s private cost (or benefit) from living near
the parent irrespective of the other children’s decision, a−i. This term includes not only
caregiving burdens but also any other net utility or monetary gain/loss from living near,
such as opportunity costs, housing benefits in the case of co-residence, attachment to
the location, grandchild care from parents, and the consumption value of the time child
i shares with the parent. When living far away, a child often provides financial assistance
instead of informal care (as discussed by Antman (2012)). This is also a part of the net
private cost term.

The third parameter, uγi (N), is child i’s private costs or benefits that depend on a−i.
This cooperation parameter is likely to be a positive function of other siblings’ proximity
because siblings can share the costs of looking after parents. This term, however, be-
comes negative under the bequest motive hypothesis discussed in Bernheim, Schleifer,
and Summers (1985): the presence of another sibling taking care of the parent reduces
transfers from the parent. The cooperation term, uγi (N), may also capture the benefit of
proximate living that is unrelated to the parent; for example, children may enjoy living
close to each other and they may provide childcare to their nephews and nieces.9 We
normalize this term as u

γ
i (1) = 0 without loss of generality, that is, when child i is the

only child near the parent, child i’s utility is uαi (1)+ u
β
i .

4.3 Equilibrium and efficiency benchmarks

Siblings make location decisions by birth order. Their preferences and the game struc-
ture are known to every sibling. In this sequential game, child i’s strategy, si ∈ Si, speci-
fies the child’s decision at every decision node (thus note the difference between ai and
si). A subgame-perfect Nash equilibrium (SPNE) is obtained when no child expects to
gain from individually deviating from their equilibrium strategy in every subgame. Every
finite game with perfect information has a pure-strategy SPNE (Zermelo’s theorem).10

In this study, we only consider pure strategies. In our perfect-information setup, mixed
strategies are irrelevant because every decision node has a choice that is strictly better
than the other.

The sequential nature of the game is illustrated in the extensive-form representa-
tion in Figure 1. The figure shows four possible SPNE when the first child chooses to live
nearby. Because the second child has two decision nodes, the choice set of the second
child comprises four strategies, which we refer to as always far, imitate, preempted, and
always near, as shown in Figure 1. Preempted, for example, refers to the second child’s
strategy of staying near the parent only when the older sibling moves away. Given the

9In reality, siblings living near one another may enjoy this benefit even if they do not live with their
parent. In our setup, the utility flow, uγi (N), only occurs when siblings live near the parent.

10For Zermelo’s theorem, see Mas-Colell, Whinston, and Green (1995, p. 272).
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Figure 1. Strategies and outcomes in extensive-form presentation.

payoffs at each terminal node, we can find the SPNE outcome and strategies by sequen-
tially solving the choice problem at each decision node from the youngest child to the
oldest child (backward induction). Note that in Figure 1, if the first child lives nearby,
two strategies of the second child, always far and preempted, lead to the same game out-
come, (Near�Far), because the difference between always far and preempted lies only in
the unobservable off-the-equilibrium path. In estimation, we exploit this many-to-one
mapping structure.

To examine the desirability of an equilibrium outcome, we use two efficiency mea-
sures: (i) Pareto efficiency and (ii) efficiency in joint utility. Even if a game has a unique
SPNE, it may have a Pareto-improving (nonequilibrium) outcome, which constitutes
the well known prisoners’ dilemma. Efficiency in joint utility, or Kaldor–Hicks efficiency,
concerns the sum of siblings’ utility. Although this criterion does not guarantee a Pareto
improvement, it is sensible to study this efficiency measure because it has implications
for implementable compensation schemes.11

The following examples in the normal form illustrate the relationship between these
concepts:

Example 1

a2 = 1 a2 = 0
a1 = 1 (2�2) (−1�1)
a1 = 0 (1�−1) (0�0)

Example 2

a2 = 1 a2 = 0
a1 = 1 (1�1) (−1�2)
a1 = 0 (2�−1) (0�0)

Example 3

a2 = 1 a2 = 0
a1 = 1 (−1�−1) (−2�4)
a1 = 0 (4�−2) (0�0)

Without the sequential structure, Example 1 has two Nash equilibria, (Near�Near)
and (Far�Far). The former is Pareto-dominating and the latter is called coordination
failure. Once we introduce the decision order, (Near�Near) becomes the only SPNE out-

11Note that our framework does not include parents’ welfare, although this may be partly captured by
the children’s altruism parameter. The terms “inefficiency” and “underprovision” in this study should be
interpreted as such. If proximate living increases parental utility, our inefficiency measures are the lower
bound of family inefficiency.
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come.12 Example 2 shows the prisoners’ dilemma. (Near�Near) is no longer an equi-
librium, but it remains Pareto dominating and hence creates Pareto inefficiency in the
equilibrium. The unique equilibrium in Example 3, (Far�Far), is Pareto efficient but
not joint-utility efficient. The family can achieve greater joint utility at (Near, Far) or
(Far�Near)—at the expense of either sibling’s disutility. If compensation is possible,
these efficient outcomes will be chosen.

Altruism, private cost, and cooperation in our model govern the game structure in
each family. For example, assuming a constant altruism (i.e., uα(N = 1) = uα(N = 2)),
the payoff matrix in Example 1 corresponds to (uai �u

β
i �u

γ
i ) = (1�−2�3).13 Similarly,

(uai �u
β
i �u

γ
i ) = (2�−3�2) in Example 2, and (4�−6�1) in Example 3. A negative coopera-

tion leads to an anti-coordination game (also known as a congestion game), as is typical
in entry games. Example 4 assumes (uai �u

β
i �u

γ
i ) = (2�−1�−2), and has two Nash equi-

libria, (Near�Far) and (Far�Near). A smaller uγi leads to a larger first-mover advantage.
When the sequence is introduced, the SPNE is (Far�Near), and child 1 enjoys higher util-
ity than child 2. Example 5 shows a rather rare but interesting case. Its normal form has
a unique Nash equilibrium (Near�Far), in which child 1 plays a dominant strategy. How-
ever, the SPNE is (Far�Near), in which child 1 receives higher utility by not playing the
normal-form dominant strategy. The decision order provides child 1 with a commitment
device and hence a first-mover advantage.

Example 4

a2 = 1 a2 = 0
a1 = 1 (−1�−1) (1�2)
a1 = 0 (2�1) (0�0)

Example 5

a2 = 1 a2 = 0
a1 = 1 (0�5�0�25) (0�2�0�26)
a1 = 0 (0�4�0�01) (0�0)

4.4 Theoretical predictions

The main theoretical predictions in symmetric two-player games are summarized as fol-
lows. First, joint-utility inefficiency increases with the absolute size of the two sources of
externality—altruism, uα, and cooperation, uγ . Both positive and negative values of uγ

enlarge inefficiency. The underprovision of proximate living results from positive values
of uα and uγ because children do not take into consideration positive externality to other
siblings. Similarly, if uγ < 0, excessive participation may occur, creating a setting simi-
lar to the standard entry game.14 When there is no externality (uα = uγ = 0), the SPNE
outcome maximizes joint utility.

Second, the prisoners’ dilemma case only appears when uα > 0, uγ > 0, and uβ <

0, that is, when cooperation increases payoffs but the incentive to free-ride exists. Its
associated Pareto inefficiency increases as uα and uγ become large.

12Although we do not discuss it here, there is a normal-form representation corresponding to the se-
quential game.

13To see this, use u1(1�1) = uα + uβ + uγ = 2, u1(1�0) = uα + uβ = −1, and u1(0�1) = uα = 1.
14Both positive uα and negative uγ create strategic substitutability, but the former leads to underpartic-

ipation and the latter to excessive participation. This makes our setting different from the standard entry
game.
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Third, the size of the first-mover advantage depends on strategic substitutability.
Gal-Or (1985) studies a two-player Stackelberg game and proves that when the reaction
functions of the players are downward (upward) sloping, the first mover earns higher
(lower) profits. The same principle applies here. Consider child 1’s utility in a two-child
family:

u1(a1 = 1� a2 = 1)= uα1 + u
β
1 + u

γ
1 � u1(a1 = 1� a2 = 0) = uα1 + u

β
1 �

u1(a1 = 0� a2 = 1)= uα1 � u1(a1 = 0� a2 = 0) = 0�
(2)

Strategic substitutability in our two-player setup can be studied based on[
u1(1�1)− u1(0�1)

] − [
u1(1�0)− u1(0�0)

] = −uα1 + u
γ
1 �

Analogous to Gal-Or’s (1985) argument, when the payoff function exhibits decreasing
difference (−uα1 + u

γ
1 < 0), it implies strategic substitutability and we observe a larger

first-mover advantage. If cooperation benefits siblings (uγ > 0), it reduces the size of the
first-mover advantage. Strategic complements (or a supermodular game) may also result
from a small uα and/or large uγ . In our symmetric binary setup, however, a second-
mover advantage never appears because strategic complementarity degenerates the
game into the choice between (Near�Near) and (Far�Far), and at the same time, the first
mover is never worse off. Decreasing difference is also necessary for anti-coordination
games such as Example 4 above.

In summary, if we find uα > 0 and uγ > 0, this suggests positive externality and
free-riding among siblings, the underprovision of proximate living, possible prisoners’
dilemma, and, if uγ and uα are of similar size, a small first-mover advantage. Finally, the
extent of externality and distortion depends on the size of uα and uγ relative to the size
of uβ. If the absolute value of uβ is dominantly large, the family is more likely to achieve
the joint-utility optimum.

5. Estimation

5.1 Random term

To match the model with the data, we need an individual-specific random term. We
assume an additive random term, εi, that affects utility from living near the parent. For-
mally, {

ui(ai = 0� a−i) = uαi (N)�

ui(ai = 1� a−i) = uαi (N)+ u
β
i + u

γ
i (N)+ εi�

(3)

The random term is assumed to follow a normal distribution independent of (uαi �u
β
i �

u
γ
i ). Under the assumption of perfect information, εi is unobservable to an econome-

trician but is observed by child i’s siblings. The normality assumption implies that the
game almost surely has a unique equilibrium because ties occur with probability mea-
sure zero.15

15Here we use the term almost surely rather than generically because from the player’s point of view, the
payoff function is deterministic, unlike games for which game theorists use the term generically.
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As with standard random-utility models, the level of utility is not identified. Assum-
ing the same variance for every child, we normalize the variance of εi�h to 1. Formally,

εh ≡ {εi�h}i=1�����Ih ∼�
(
Ωh

)
� (4)

where Ωh is an Ih × Ih covariance matrix whose diagonal elements are 1 and whose (i� j)

off-diagonal element is ρi�j ∈ (−1�1), which we parameterize as

ρi�j =X
ρ
i�jθ

ρ� (5)

where θρ is a vector of parameters and X
ρ
i�j is a set of relational variables between chil-

dren i and j, such as their age difference.

5.2 Specifying functional forms

For estimation, we also need to specify the functional forms of uαi (N), uβi , and u
γ
i (N).

Let Xα
i , Xβ

i , and X
γ
i be vectors of covariates observable to the econometrician includ-

ing a constant term. Below, we report the results of the following four specifications.
Specification 1 imposes uαi (N) = u

γ
i (N) = 0, uβi = X

β
i β, and ρi�j = 0. This specification

implies no interdependency between siblings, and the model degenerates to a standard
binary probit model. Specification 2 allows ρi�j to be some constant, ρ0, so that the pref-
erences of siblings may correlate. Specification 3 introduces externality in the most par-
simonious way: uαi (N) = α0, uβi = X

β
i β, uγi (N) = 0, and ρi�j = ρ0. Specification 4 allows

externality to vary depending on N and the covariates. Specifically,

uαi (N) = I[N ≥ 1] · exp
{
Xα

i α0 + α1 · I[N ≥ 2] + α2 · I[N ≥ 3]}�
u
β
i =X

β
i β� and

u
γ
i (N)= X

γ
i γ0 · (I[N ≥ 2] + γ1 · (N − 2) · I[N ≥ 3])�

(6)

where α1, α2, and γ1 are scalar parameters, and α0, β, and γ0 are vectors of coefficient
parameters, which allow preference heterogeneity based on observables. In our setup, a
negative value of uαi (N) has no sensible interpretation because it implies a situation in
which a child receives disutility if one of the children lives near the parent, irrespective of
which child that is. After we estimate Specification 3 and confirm a positive estimate of
α0, we introduce heterogeneity in this term using the exponential function to guarantee
positive values. As discussed below, we have attempted many alternative specifications
to (6), and the main results are found to be robust.

5.3 Identification

To understand how our structural parameters are identified, take a simple model of two-
child families as an example: (uαi (N)�u

β
i �u

γ
i (N)) = (α0�β0�γ0) and ρi�j = 0. First, con-

sider the choice problem of child 2 who observes that child 1 chooses to live near the
parent. This binary choice problem compares u2(a2 = 1� a1 = 1) = α0 +β0 + γ0 + ε2 and
u2(a2 = 0� a1 = 1) = α0, and thus allows us to identify β0 + γ0. Similarly, when child 1
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chooses to live far, we identify α0 +β0. These two values determine the degree of strate-
gic substitutability, α0 − γ0. When we assume no cooperation effect (i.e., γ0 = 0), the
identification of α0 and β0 follows.

If γ0 �= 0, the rest of the identification relies on sequential interaction. To illustrate
this point, consider the two families (a) free-riding siblings, (α0�β0�γ0)= (2�−2�0), and
(b) siblings who hate each other, (α0�β0�γ0) = (0�0�−2). Both types of family result in
α0 + β0 = 0, β0 + γ0 = −2, and α0 − γ0 = 2; thus these two family types are indistin-
guishable when studying the choice problem of child 2. In this particular example, the
payoff function exhibits decreasing difference (−α0 + γ0 = −2 < 0). Under decreasing
difference, child 2 never chooses the imitate strategy because for imitate to be opti-
mal, the net gain of living near must be larger when child 1 chooses near than when
child 1 chooses far. Thus, we will observe one of the other three strategies, always far,
preempted, and always near, depending on the value of ε2. The last step of the identifi-
cation is achieved by studying child 1’s choice problem when child 2 takes the strategy
preempted by comparing u1(a1 = 1� a2 = 0) = α0 + β0 + ε1 and u1(a1 = 0� a2 = 1) = α0,
and thus identifying β0. If we observe that child 1 almost always chooses to live far when
child 2 takes the preempted strategy, it implies a larger α0 and a smaller β0, that is, sib-
lings with free-riding. In the second type of family, we will observe child 1 choosing near
and far with the same probability. In other words, the size of the birth-order asymmetry
given the size of the first-mover advantage provides essential information for separately
identifying the three parameters.

The identification of ρ also relies on sequential interaction. Positive correlation be-
tween the location decisions of siblings can be generated by positive ρ and positive γ0.
Negative correlation between the location decisions of siblings can be generated by neg-
ative ρ and positive α. We can nevertheless identify ρ because of the fact that any cor-
relation generated by ρ is unrelated to the sequence, whereas externalities caused by α

and γ imply sequential interaction.

5.4 Method of simulated likelihood

The estimation relies on the maximum likelihood (ML) estimation in which the game is
solved for an equilibrium outcome, a∗

h. Denote the observed family location configura-
tion as ao

h ∈ {0�1}Ih . The ML problem is written as

θ̂ML = arg max
θ

{
1
H

H∑
h

ln Prρ
[
ao
h = a∗

h(Xh�εh;α�β�γ)]}, (7)

where θ is the vector of the model parameters, (α�β�γ�ρ), and X is the union of Xα
i , Xβ

i ,
and X

γ
i . The intuition behind the likelihood function is that, given X and (α�β�γ), the

location configuration is determined by ε, and hence the distribution of ε determines
the probability of a location configuration.

The probability term in (7) does not have an analytical form due to multidimen-
sional integrals over the εh space. When the dimension of εh is more than two, compu-
tationally demanding numerical approximation, such as the quadrature method, is im-
practical. For high-dimensional integration, the maximum simulated likelihood (MSL)
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method, which utilizes Monte Carlo integration, has been developed in the literature.
The most straightforward simulator for MSL is the crude frequency simulator. Given the
model parameters, the data, and the assumed distribution of εh, the procedure takes
a large number of random draws. For each random draw ε̃h, an equilibrium location
configuration, ã∗

h, is solved by backward induction. The probability in (7) is then ob-
tained based on how many times the predicted equilibrium outcome coincides with the
observed outcome out of the number of simulation draws. Although this simulator pro-
vides a consistent estimate of the probability, it is inefficient and requires a large num-
ber of simulation draws, and the estimation of our model is particularly computationally
demanding because the game has to be solved for each simulation draw. To overcome
this computation problem, we use the Monte Carlo integration method developed by
Maruyama (2014).

5.5 Monte Carlo integration with GHK simulator

Maruyama (2014) develops the Monte Carlo integration method applicable to finite se-
quential games with perfect information, in which each player makes a decision by
publicly known exogenous decision order. The proposed method relies on two ideas.
First, the MSL procedure utilizes the Geweke–Hajivassiliou–Keane (GHK) simulator, the
most popular solution for approximating high-dimensional truncated integrals in probit
models. This powerful importance-sampling simulator recursively truncates the multi-
variate normal probability density function by decomposing the multivariate normal
distribution into a set of univariate normal distribution, using Cholesky triangulariza-
tion.

Strategic interaction, however, complicates high-dimensional truncated integration,
causing interdependence among truncation thresholds, which undermines the ground
of the recursive conditioning approach. The second building block of the proposed
method is the use of the GHK simulator, not for the observed equilibrium outcome per
se, but separately for each of the SPNE profiles that rationalize the observed equilib-
rium outcome. In the sequential game framework, the econometrician does not observe
the underlying SPNE because an equilibrium strategy consists of a complete contingent
plan, which includes off-the-equilibrium-path strategies as unobserved counterfactu-
als. Different realizations of unobservables that lead to different subgame-perfect equi-
libria but generate an observationally equivalent game outcome may therefore exist.

Figure 2 visualizes this point. The integration domain of (ε1� ε2) that leads to the lo-
cation outcome, (Near�Far), is not rectangular due to the strategic interaction between
the two children, and hence the standard GHK simulator breaks down for this domain.
The use of subgame perfection resolves this nonrectangular domain problem. The non-
rectangular integration domain for (Near�Far) consists of two rectangular regions that
correspond to two sets of SPNE, labeled (1) and (3), which correspond to (1) and (3) in
the extensive form in Figure 1. Maruyama (2014) proves that the separate evaluation of
the likelihood contribution for each subgame-perfect strategy profile makes it possible
to control for the unobserved off-the-equilibrium-path strategies so that the recursive
conditioning of the GHK simulator works by making the domain of Monte Carlo inte-
gration (hyper-)rectangular.
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Figure 2. Dividing observed location outcome into strategy profiles.

Based on this logic, we obtain Prρ[ao
h = a∗

h(Xh�εh;α�β�γ)] in (7) as follows. First, the
complete list of SPNE profiles that rationalize the observed location configuration, ao

h, is
identified. Second, for each SPNE on the list, its associated probability is computed by
the standard GHK simulator. In applying the GHK simulator, we sequentially calculate
the truncation thresholds, that is, the interval within which each child’s random term,
εi�h, has to fall for the SPNE to be realized. Last, we obtain the probability of the observed
location configuration by summing the probabilities of all the SPNE profiles on the list.

6. Results

6.1 Probit results

It is useful to first summarize the results from a simple probit model, which serves as
a benchmark for extended specifications. In addition to its reduced-form interpreta-
tion, the probit specification offers a simple random-utility-model interpretation under
the assumptions that each child makes his/her location decision independently, his/her
decision has no implications for the other children, and each child’s unobserved pref-
erence component is distributed as an independent and identically distributed (i.i.d.)
normal distribution.

The results are reported in column [1] of Table 3. Parents who have a child living
nearby tend to be old widowed parents with limited education and poor health who live
in their owned home in an urban area. Proximate living is less likely for white parents
and single but nonwidowed fathers. Child variables are also relevant. Proximate living is
less likely for older children (after controlling for parental age). Married children are less
likely to live near their parents than single children. This is especially the case for daugh-
ters, probably because married daughters are more likely to live near their parents-in-
law than married sons. This marriage effect is slightly offset by the presence of their
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Table 3. Estimated parameters.

[1] Probit

[2] Constant ρ; uα = 0
(No Altruism,

Constant Correlation)

[3] Constant uα and ρ

(Constant Altruism
and Correlation) [4] Full Model

Coefficient s.e. Coefficient s.e. Coefficient s.e. Coefficient s.e.

P_father_widow 0�101∗ ∗ ∗ 0�036 0�104∗∗ 0�046 0�109∗∗ 0�048 0�093 0�060
P_father_nonwidow −0�339∗ ∗ ∗ 0�038 −0�351∗ ∗ ∗ 0�047 −0�377∗ ∗ ∗ 0�049 −0�318∗ ∗ ∗ 0�065
P_mother_widow 0�132∗ ∗ ∗ 0�022 0�132∗ ∗ ∗ 0�028 0�135∗ ∗ ∗ 0�029 0�066∗ 0�039
P_mother_nonwidow −0�037 0�029 −0�021 0�035 −0�023 0�037 −0�137∗∗ 0�054
P_age 0�005∗∗ 0�002 0�005∗∗ 0�002 0�005∗∗ 0�002 0�003 0�002
P_white −0�080∗ ∗ ∗ 0�024 −0�087∗ ∗ ∗ 0�030 −0�090∗ ∗ ∗ 0�031 −0�092∗ ∗ ∗ 0�032
P_healthy −0�061∗ ∗ ∗ 0�012 −0�065∗ ∗ ∗ 0�015 −0�069∗ ∗ ∗ 0�016 −0�048∗∗ 0�020
P_College −0�227∗ ∗ ∗ 0�026 −0�227∗ ∗ ∗ 0�032 −0�246∗ ∗ ∗ 0�033 −0�254∗ ∗ ∗ 0�043
P_SomeCollege −0�076∗ ∗ ∗ 0�024 −0�072∗∗ 0�030 −0�074∗∗ 0�031 −0�094∗∗ 0�039
P_<HighSchool 0�060∗∗ 0�023 0�068∗∗ 0�030 0�080∗ ∗ ∗ 0�031 0�046 0�038
P_Geo_MedPop −0�009 0�022 −0�009 0�027 −0�007 0�028 −0�007 0�029
P_Geo_LowPop −0�091∗ ∗ ∗ 0�021 −0�091∗ ∗ ∗ 0�026 −0�095∗ ∗ ∗ 0�027 −0�095∗ ∗ ∗ 0�028
P_House 0�093∗ ∗ ∗ 0�020 0�087∗ ∗ ∗ 0�025 0�091∗ ∗ ∗ 0�026 0�096∗ ∗ ∗ 0�026
C_age −0�014∗ ∗ ∗ 0�002 −0�015∗ ∗ ∗ 0�002 −0�014∗ ∗ ∗ 0�002 −0�008∗ ∗ ∗ 0�003
C_male_single −0�137∗ ∗ ∗ 0�034 −0�139∗ ∗ ∗ 0�034 −0�134∗ ∗ ∗ 0�033 0�023 0�100
C_male_partner −0�375∗ ∗ ∗ 0�037 −0�386∗ ∗ ∗ 0�036 −0�378∗ ∗ ∗ 0�035 −0�249∗∗ 0�100
C_female_partner −0�374∗ ∗ ∗ 0�037 −0�376∗ ∗ ∗ 0�037 −0�367∗ ∗ ∗ 0�036 −0�341∗ ∗ ∗ 0�045
C_College −0�406∗ ∗ ∗ 0�025 −0�396∗ ∗ ∗ 0�026 −0�393∗ ∗ ∗ 0�026 −0�423∗ ∗ ∗ 0�035
C_SomeCollege −0�070∗ ∗ ∗ 0�026 −0�066∗∗ 0�026 −0�069∗ ∗ ∗ 0�026 −0�071∗∗ 0�034
C_kids_partner 0�021∗ ∗ ∗ 0�008 0�021∗ ∗ ∗ 0�008 0�021∗ ∗ ∗ 0�008 0�021∗ ∗ ∗ 0�008

α0 (= uαi (altruism) in model [3] and a constant term in loguαi in [4]) 0�171∗ ∗ ∗ 0�023 −0�951∗ ∗ ∗ 0�364
P_father_widow 0�107 0�178
P_father_nonwidow −0�308 0�317
P_mother_widow 0�329∗∗ 0�135
P_mother_nonwidow 0�481∗ ∗ ∗ 0�170
P_health −0�111∗∗ 0�051
P_College 0�067 0�117

(Continues)
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Table 3. Continued.

[1] Probit

[2] Constant ρ; uα = 0
(No Altruism,

Constant Correlation)

[3] Constant uα and ρ

(Constant Altruism
and Correlation) [4] Full Model

Coefficient s.e. Coefficient s.e. Coefficient s.e. Coefficient s.e.

P_SomeCollege 0�119 0�109
P_<HighSchool 0�205∗ 0�108
C_male −0�328 0�222
C_College 0�155 0�108
C_SomeCollege 0�009 0�113

α1 (additional term in uαi when more than one child lives near) 0�048 0�144
α2 (additional term in uαi for the third and fourth child living near) −0�038 0�105

γ0 (constant term in u
γ
i (cooperation)) 0�628∗ ∗ ∗ 0�201

C_age −0�008∗ ∗ ∗ 0�003
C_male_single −0�178 0�117
C_male_partner −0�124 0�111
C_female_partner −0�050 0�057

γ1 (additional term in u
γ
i when two siblings join child i) −0�058 0�174

ρ0 (constant term in ρ (correlation)) 0�238∗ ∗ ∗ 0�014 0�361∗ ∗ ∗ 0�021 0�476∗ ∗ ∗ 0�035
C_age_difference −0�008∗∗ 0�003
C_sex_difference −0�114∗ ∗ ∗ 0�024

Log L −11,951�04 −11,788�79 −11,759�61 −11,693�94
% correct prediction:
All children 62�50% 61�40% 61�58% 61�95%
All families 38�37% 38�71% 39�14% 39�62%

1-child families 57�13% 57�33% 58�94% 59�95%
2-child families 43�03% 41�83% 42�18% 43�06%
3-child families 29�70% 31�60% 31�65% 31�35%
4-child families 20�11% 21�51% 21�36% 21�59%

Note: N = 18,647. The asterisks ∗, ∗∗, and ∗ ∗ ∗ indicate statistical significance at 10%, 5%, and 1%, respectively. The top section reports the coefficients of the u
β
i (=X

β
i β) term, followed

by the coefficients in uαi , uγi , and ρ. The uαi term in the full model [4] is specified in the exponential function as in equation (5). For all models the u
β
i term includes the following unreported

variables: a constant term, P_Geo_missing, C_EducMiss, C_kids_single, Wave2004, and Wave2010. Model [4] also includes Wave2004, Wave2010, and C_EducMiss in the uαi term.
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children (grandparenting effect). Education moves children away from their parents;
both C_College and C_SomeCollege have negative and significant coefficient estimates.
These findings are consistent with Checkovich and Stern (2002), Byrne et al. (2009), and
Compton and Pollak (2013).

6.2 Specifications with interactions among siblings

The first step to building interdependence among siblings is to introduce correlation
in the random term, {εi�h}Ihi=1. Specification 2 has a covariance matrix, Ωh, whose off-
diagonal elements are all equal to a constant, ρ0 ∈ (−1�1), which captures resemblance
in the preferences of siblings, shared environments, and a certain behavioral interac-
tion between siblings. The results shown in column [2] of Table 3 testify to a significant
positive correlation in the random term.

Now we explicitly introduce externality, first by including a constant altruism,
uαi (N) = α0. As shown in column [3], we find a positive and significant estimate of α0.16

To confirm the robustness of this result, we estimate Specification 3 separately using
each wave of the HRS from 1998 to 2010, and we find that the estimates of α and ρ are
always positive and highly significant.

Whereas there is no substantial change in coefficient estimates when we compare
Specifications 1–3, the goodness-of-fit improves over every step of elaboration. In terms
of log L, a decent improvement results from incorporating externality α, but introduc-
ing correlation ρ makes the largest contribution. The proportion of correctly predicted
observations, which are defined on the basis of location configuration with the highest
predicted probability, also shows improvement. Although the simple probit model per-
forms the best in predicting at the child level, it performs the worst at the family level
because it ignores similarities and interactions among siblings.

6.3 Specification with heterogeneous externality

To introduce cooperation and allow for heterogeneity in externality, we now parameter-
ize uαi , uγi , and ρi�j as specified in (5) and (6), by introducing covariates in each term. In-
cluding the full set of covariates in every term is impractical because it makes the model
substantially flexible and makes the precise identification of parameters significantly
difficult. We thus need a reasonably general yet parsimonious specification. Two guide-
lines have led us to our preferred specification. The first is the behavioral interpretation
of each term: variables in uαi are supposed to be the determinants of innate altruism,
and variables in u

γ
i should affect the cost and benefit of cooperation. Second, we adjust

the sets of covariates by attempting various specifications. We exclude covariates whose
coefficient parameters are always estimated with a large standard error and/or without
statistical and economic significance.17 We find our main results are reasonably robust

16This specification leads to an even larger ρ than Specification 2 because altruism creates strategic sub-
stitutability, and omitting altruism forces the correlation term to capture this negative behavioral correla-
tion, resulting in a smaller estimate of ρ.

17For example, including parental health in all three terms makes identification and convergence quite
unreliable, and thus we take a conservative approach and do not include it in u

γ
i .
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Figure 3. Predicted and observed location configurations. Note: Each digit in the key indicates
the proximity of each child: Far or Near.

across these modifications. Regarding correlation between siblings, we allow ρi�j to de-
pend on the age and gender differences between children i and j.

Column [4] of Table 3 reports the results of the full model. Compared to Specification
3, the goodness-of-fit is improved both in terms of log likelihood and correct prediction,
indicating the importance of heterogeneity in externality. The likelihood ratio (LR) test
confirms that the improvement is significant at standard significance levels. Figure 3
compares the predicted distributions of the location configurations of Specifications 1–
4 with the actual distribution in data, illustrating a step-by-step improvement in model
prediction.

Correlation in the random term is stronger for siblings who are closer in age and of
the same sex than for other siblings, indicating similarity in their preferences and envi-
ronments. The altruism parameter, uαi , varies across children and families. According
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to the statistically significant coefficients in uαi , altruism is the strongest toward sin-
gle mothers with limited education and poor health. The estimates of α1 and α2 are
small and insignificant, indicating that what is important to children is whether at least
one child lives near the parent. Based on the distribution of Xα

i , the range of uαi is
[0�120�1�370] with its mean 0�377.18 The cooperation term, uγi , also exhibits heterogene-
ity, having range [−0�046�0�361] with its mean 0�199. The absolute size of uγi is overall
smaller than that of uαi . The negative and significant coefficient on C_age in u

γ
i indicates

greater cooperation between younger children. One interpretation of this heterogeneity
is that younger siblings have less experience of care provision, hence mutual assistance
reduces the cost of providing care and attention. Alternatively, younger siblings may en-
joy living close to each other. This interpretation has little to do with caregiving. Simi-
larly to α1 and α2, the estimate of γ1 indicates that having the third sibling nearby has
no significant effect on the degree of cooperation. Thus, externality does not distort the
behavior of families in which more than two siblings choose to live near parents.

Heterogeneity in altruism and cooperation determines the extent of inefficiency and
strategic interaction in each family. Inefficiency is larger in families with larger uαi and
u
γ
i , and our results reveal that these are families with a single mother who has limited ed-

ucation, poor health, and relatively younger children. Prisoners’ dilemma is more likely
in these families. First-mover advantage, on the other hand, is larger when uαi is larger
and u

γ
i is smaller. We find that relatively older children do not value cooperation greatly,

and if their parent is a nonwidowed single mother who has limited education and poor
health, the incentive to free-ride is large. The first child also has a large first-mover ad-
vantage.

The ranges of uαi and u
γ
i indicate that the vast majority of families show a certain

altruism and cooperation. On the other hand, the range of Xβ
i β is [−2�193�0�861] with

its mean −0�545. Given that the variance of εi is unity, the range of the three preference
components suggests that although the two externalities are not negligible, the private
cost component, uβi + εi, is the primary determinant of location decisions.

Examining the estimated coefficients on covariates that appear in both u
β
i and uαi

offers additional insight. Whereas Specifications 1–3 find that parents with poor health
are more likely to have their children nearby, this effect in u

β
i in Specification 4 becomes

smaller and we find that poor health significantly increases uαi . This implies that poor
parental health induces intergenerational proximity both (i) because children are more
concerned about the well-being of those parents and (ii) because poor parental health
increases children’s net utility of living near the parent. The latter holds despite the ex-
pected large cost of care provision, probably because children value sharing time with
parents who have shorter life expectancy. The education levels of children provide an-
other contrast. Specifications 1–3 reveal a significant negative relationship between the
child’s education level and that child’s propensity to live near their parents. Specification

18We also estimate a model with a linearly parameterized uαi , instead of using the exponential function.
Its results imply that uαi sometimes takes a small negative value, although the vast majority of children
have a positive uαi . We find no substantial difference in the model fit and main findings between these two
models.
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4 confirms that this negative effect arises completely through the private utility compo-
nent, uβi , probably reflecting the high opportunity cost for educated children of staying
near the parent. The estimated coefficients in uαi show no evidence that well educated
children are less concerned about the well-being of their parents than children with lim-
ited education.

Last, our coefficient estimates offer a partial explanation for the birth-order asym-
metry. We find a negative age effect in both u

β
i and u

γ
i ; the private cost of living near

the parent increases with age, and an additional sibling near the parent benefits older
siblings less. Both of these effects contribute to the lower tendency of older siblings to
live near their parents, and these effects have nothing to do with first-mover advantage.
At the same time, the significant estimates of altruism, uαi , and cooperation, uγi , indi-
cate the existence of sequential strategic interaction. In the next section, we quantify
how much of the birth-order asymmetry in our data can be attributed to the first-mover
advantage.

7. Counterfactual simulations

7.1 Method

Counterfactual simulations allow us to quantitatively illustrate how the game structure
and game outcomes vary across families under different settings. In the counterfactual
exercises, we simulate location configurations under certain assumptions based on es-
timated parameters, θ̂, and data, {aoi�h�Xi�h}Ihi=1. This simulation is not straightforward
for several reasons. First, if we knew the true values of εi�h, solving for equilibrium and
optimal location configurations would be trivial, but we do not observe εi�h in the data.
We thus rely on Monte Carlo simulations, in which we generate simulated values of εi�h
that rationalize the observed location configuration. For example, we can compute the
probability that the siblings in family h result in location configuration ãh by taking the
following integral over the domain of εh that rationalizes family h’s observed outcome,
ao
h. By denoting this integration domain over the space of εh as Δ(ao

h),

Pr(̃ah) = 1
Pr

(
εh ∈ Δ

(
ao
h

)) ∫
εh∈Δ(aoh)

I
[̃
ah = a∗

h(Xh�εh)
]
φ(εh)dεh�

where φ(εh) is the density function of εh, and a∗
h(Xh�εh) is the solution function. Sec-

ond, because this multidimensional integral does not have an analytical solution, a
simulation method is necessary to numerically approximate the integral. Third, this
simulation-based integration is complicated by strategic interaction among siblings. We
evaluate this integral and the probability in the denominator by the Monte Carlo inte-
gration method explained in Section 5.5.

7.2 Normal-form game structure

We first examine the simulated normal-form representation of corresponding simulta-
neous games, which provides useful information to understand the nature of the games
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Table 4. Characteristics of simultaneous normal-form games in two-child families.

Observed Location Configuration (SPNE)

(Far�Far) (Far�Near) (Near�Far) (Near�Near) Total

Total
When
uαi × 2�0

Who Has Dominant Strategy
Both children 99�5% 66�5% 71�1% 99�2% 86�2% 62�7%
Only 1st child 0�3% 16�0% 9�9% 0�5% 5�9% 14�9%
Only 2nd child 0�5% 14�0% 19�0% 0�3% 7�1% 16�3%
Neither 0�0% 3�5% <0�1% <0�1% 0�8% 6�1%

Equilibrium Patterns in Simultaneous Normal-Form Games
No normal-form equilibrium 0�0% <0�1% 0�0% <0�1% <0�1% <0�1%
Unique equil. (Far�Far) 100�0% 0�0% 0�0% 0�1% 39�6% 23�9%
Unique equil. (Far�Near) 0�0% 94�6% 0�0% 0�0% 21�9% 27�5%
Unique equil. (Near�Far) 0�0% 2�0% 99�9% 0�0% 20�3% 24�6%
Unique equil. (Near�Near) 0�0% 0�0% 0�0% 99�9% 17�3% 18�0%
Two equil. (coordination) 0�0% 0�0% 0�0% <0�1% <0�1% <0�1%
Two equil. (anti-coordination) 0�0% 3�5% <0�1% 0�0% 0�8% 6�1%

Note: An event that occurs for less than 0�1% of the population is denoted as “<0�1%”. Two equil. (coordination) means
multiple equilibrium that consists of (Near�Near) and (Far�Far), and Two equil. (anti-coordination) means (Near�Far) and
(Far�Near). Results are based on empirical distribution with Monte Carlo simulation for the error terms with 1000 random
draws.

played by American siblings. Table 4 characterizes the payoff matrices of two-child fam-
ilies by observed SPNE location configuration. The top panel reports whether siblings
have dominant strategies in their payoff matrix. In 86�2% of two-child families, both
children have a dominant strategy. This reflects that for the majority of children, the
size of private cost, uβi , is so large that altruism, uαi , and cooperation, uγi , have no in-
fluence on their decisions. It is trivial to show that when every child has a dominant
strategy, the equilibrium outcome of the simultaneous game is always achieved as an
SPNE. Table 4 thus highlights limited strategic behavior in two-child families. The table
also shows that when we observe (Far�Far) or (Near�Near) in the data, it almost always
implies that both children in those families have a dominant strategy. The last column of
Table 4 reports a simulation in which we double uαi for every family. The share of families
in which both children have a dominant strategy reduces to 62�7%. A larger externality
induces strategic behavior to a greater extent.

The bottom panel of Table 4 characterizes the Nash equilibrium of the simultaneous
game, showing limited strategic behavior even more clearly. More than 99% of the two-
child families have a unique simultaneous equilibrium and it is rare to have no equi-
librium or multiple equilibria. In most cases, the unique equilibrium in the simultane-
ous game actually occurs as an SPNE outcome. The only nonnegligible gap between the
normal-form equilibrium outcome and the SPNE outcome is found among the families
that choose (Far�Near). This group includes not only families whose normal-form equi-
librium is (Far�Near), but also families whose normal-form equilibrium is (Near�Far)
and families with two equilibria that consist of (Far�Near) and (Near�Far). This gap sug-
gests the presence of first-mover advantage.
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Table 5. Observed and family-optimal location configurations by family size.

Number of Children Living Near
the Parent in SPNE (Observed

Location Configuration)

Number of Children Living Near
the Parent in the Joint-Utility

Optimal Location Configuration

Nobody Nobody
Near 1 2 3 4 Near 1 2 3 4

Family Size
1-child family 48�7% 51�3% 48�7% 51�3%
2-child family 39�6% 43�0% 17�4% 24�4% 51�0% 24�6%
3-child family 30�3% 34�3% 23�8% 11�7% 8�0% 46�5% 35�3% 10�2%
4-child family 20�5% 30�4% 24�1% 16�3% 8�7% 1�9% 36�5% 39�6% 14�1% 7�9%

Overall average 35�7% 40�2% 16�8% 5�9% 1�5% 21�0% 47�4% 25�2% 5�1% 1�3%
Average (Ni ≥ 2) 32�5% 37�5% 20�9% 7�3% 1�8% 14�2% 46�5% 31�3% 6�3% 1�6%

Note: The last row shows average numbers over multi-child families. Results are based on empirical distribution with
Monte Carlo simulation for the error terms with 1000 random draws.

7.3 Joint-utility optimal location configuration

We now turn to the joint-utility inefficiency of SPNE location configurations. We simu-
late the location configuration that maximizes each family’s utility sum, which is com-
pared in Table 5 with the actual location configuration by family size. There are many
families in which the optimal number of children living near the parent is one or
more but no child lives nearby. This gap between the SPNE and the joint-utility op-
timum increases with family size because positive externality is shared by more chil-
dren. The last row in the table shows that in multi-child families, 18�3% more parents
(= 32�5% − 14�2%) would have had at least one child living nearby had location deci-
sions been made cooperatively.19 On the other hand, the overprovision of proximate
living exists among three- and four-child families but much less frequently.

The observed SPNE location configurations can be classified into three groups:
(i) joint-utility optimal; (ii) joint-utility suboptimal but Pareto efficient; and (iii) pris-
oners’ dilemma, that is, there is a non-SPNE location configuration that is Pareto-
dominating. Table 6 presents the shares of these three groups by family size across dif-
ferent externality parameter values. Panel [1], which is based on the estimated parame-
ters, shows that prisoners’ dilemma is observed only for 2�0% of multi-child families, but
that its presence increases with family size. More importantly, although 98�0% of multi-
child families achieve Pareto efficiency, more than a quarter of them do not achieve the
joint-utility optimum. This joint-utility inefficiency is particularly large in three- and
four-child families: only 65�6% of those families achieve the joint-utility optimum. The
simulation results reported in panels [2]–[4] confirm the theoretical predictions: larger
altruism, uαi , and cooperation, uγi , lead to larger joint-utility inefficiency and Pareto in-
efficiency, and uαi explains a larger part of joint-utility inefficiency than u

γ
i , whereas a

large u
γ
i is necessary for prisoners’ dilemma to occur.

19Knoef and Kooreman (2011) also find a large implication of inefficiency in joint utility in a similar
context.
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Table 6. Efficiency type by family size.

[1] Based on Estimated Distribution
of uαi and u

γ
i [2] Based on uαi × 2�0 and u

γ
i × 1�0

Joint-Utility
Optimal

Joint-Utility
Suboptimal
but Pareto
Efficient

Prisoners’
Dilemma

Joint-Utility
Optimal

Joint-Utility
Suboptimal
but Pareto
Efficient

Prisoners’
Dilemma

Family Size
1-child family 100�0% 0�0% 0�0% 100�0% 0�0% 0�0%
2-child family 76�7% 21�7% 1�6% 71�8% 25�9% 2�3%
3-child family 65�6% 32�0% 2�4% 66�9% 30�0% 3�1%
4-child family 65�6% 31�7% 2�7% 66�3% 30�3% 3�4%

Overall average 76�8% 21�6% 1�6% 75�1% 22�7% 2�3%
Average (Ni ≥ 2) 71�2% 26�8% 2�0% 69�0% 28�1% 2�8%

[3] Based on uαi × 1�0 and u
γ
i × 0�0 [4] Based on uαi × 2�0 and u

γ
i × 2�0

Family Size
1-child family 100�0% 0�0% 0�0% 100�0% 0�0% 0�0%
2-child family 82�8% 17�0% 0�1% 65�6% 30�0% 4�4%
3-child family 73�5% 26�3% 0�2% 61�7% 32�9% 5�4%
4-child family 74�3% 25�4% 0�3% 63�1% 32�0% 4�9%

Overall average 82�2% 17�6% 0�1% 70�8% 25�3% 3�9%
Average (Ni ≥ 2) 77�9% 21�9% 0�2% 63�8% 31�4% 4�8%

Note: Panels [2]–[4] report the results of simulations under different externality parameter values; for example, in panel
[2], the value of uαi is multiplied by 2�0 for every observation. A joint-utility optimal location configuration is a location ar-
rangement that maximizes the sum of children’s utility. Prisoners’ dilemma means a location configuration that has another
Pareto-dominating location configuration. The last row shows average numbers over multi-child families. Results are based on
empirical distribution with Monte Carlo simulation for the error terms with 1000 random draws.

Table 7 compares the shares of the efficiency types in two-child families by observed
location configuration (the top panel) and by joint-utility optimal location configura-
tion (the bottom panel). The first number in each cell represents its column share and
the second number its row share. The table illustrates how prisoners’ dilemma occurs.
In families in the prisoners’ dilemma situation, 70�5% have no one near the parent de-
spite the fact that (Near�Near) is Pareto-dominating. The remaining 29�5% have the sec-
ond child near the parent, although (Near�Far) is Pareto-dominating. Joint-utility inef-
ficiency occurs in a similar way. When (Far�Far) is joint-utility optimal, a family can
always achieve it as an SPNE outcome. In this type of family, positive externality is very
small compared to large private costs. When we observe (Near�Near) in the data, it is
always joint-utility optimal, whereas when we observe (Far�Far), it is joint-utility effi-
cient only for 61�5% of those families, showing the importance of the underprovision of
proximate living, rather than overprovision.

7.4 First-mover advantage

To quantify the first-mover advantage, an ideal benchmark is the equilibrium outcome
that arises in the simultaneous setup, but because simulating simultaneous games is
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Table 7. Location configurations and efficiency type in two-child families.

Efficiency Type

Joint-Utility
Optimal

Joint-Utility Suboptimal
but Pareto Efficient

Prisoners’
Dilemma Total

Observed Location Configuration (SPNE)
(Far�Far) 31�5% / 61�5% 67�3% / 35�8% 70�5% / 2�6% 39�6% / 100%
(Far�Near) 23�6% / 78�7% 21�3% / 19�4% 29�5% / 1�9% 23�2% / 100%
(Near�Far) 22�6% / 87�9% 11�4% / 12�1% 0�0% / 0�0% 19�9% / 100%
(Near�Near) 22�4% / 100% 0�0% / 0�0% 0�0% / 0�0% 17�4% / 100%

Total 100% / 77�4% 100% / 21�1% 100% / 1�5% 100% / 100%

Joint-Utility Optimal Location Configuration
(Far�Far) 31�5% / 100% 0�0% / 0�0% 0�0% / 0�0% 24�4% / 100%
(Far�Near) 23�6% / 69�3% 36�7% / 29�4% 24�2% / 1�4% 26�3% / 100%
(Near�Far) 22�6% / 70�8% 31�9% / 27�3% 32�8% / 2�0% 24�7% / 100%
(Near�Near) 22�4% / 70�5% 31�4% / 26�9% 43�0% / 2�6% 24�6% / 100%

Total 100% / 77�4% 100% / 21�1% 100% / 1�5% 100% / 100%

Note: The first number in each cell represents its column share and the second number represents its row share. A joint-
utility optimal location configuration is the location configuration that maximizes the sum of siblings’ utility. Results are based
on empirical distribution with Monte Carlo simulation for the error terms with 1000 random draws.

not straightforward due to the multiplicity of equilibria, we instead employ a sequen-
tial game with reversed order (i.e., the youngest child makes a decision first and the
oldest last). If order reversion does not affect the game outcome, it implies negligible
first-mover advantage. The top panel in Table 8 compares the simulated location con-
figurations of two-child families in the observed and reverse-order SPNE. The bottom
panel investigates how reversing the order alters each child’s utility. Overall, the sequen-
tial interaction is negligible. Reversing the order affects only 1�9% of two-child families.
When it does affect a family, it is almost always the case that the SPNE outcome changes
from (Far�Near) to (Near, Far), decreasing the first child’s utility and increasing the sec-
ond child’s utility. The joint utility may or may not increase. If we double the degree of
altruism, the share of families with a first-mover advantage increases from 1�9% to 9�3%.

Konrad et al. (2002) argue that observed birth-order asymmetry in location supports
the first-mover advantage hypothesis. In our data, the number of two-child families that
result in (Far�Near) and (Near�Far) is 658 and 564, respectively. The difference between
these two numbers, 94 families, is the birth-order asymmetry in our data. An interesting
question is how much of this difference is attributable to the first-mover advantage. As
shown in Table 8, 7�8% of the 658 families with (Far�Near), or 51 families, change their
location configuration from (Far�Near) to (Near�Far) after order reversion. If we assume
that imposing reversed order affects twice as many families as imposing simultaneous
move, removing the first-mover advantage should affect 26 (half of 51) families and re-
sult in 632 and 590 families with (Far�Near) and (Near�Far) configurations, respectively.
The resulting difference of 42 families is the remaining birth-order asymmetry that is un-
explained by the first-mover advantage. Hence, even though the first-mover advantage
implied by our estimates is small, birth-order asymmetry in the U.S. data is also small,
thus the first-mover advantage explains roughly half of the asymmetry (42/94 = 45%).
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Table 8. Reverse-order SPNE in two-child families.

Observed Location Configuration (SPNE)

(Far�Far) (Far�Near) (Near�Far) (Near�Near)
N = 1125: N = 658: N = 564: N = 493: Total When

39�6% 23�2% 19�9% 17�4% Total uαi × 2�0

Location Configuration of Reverse-Order SPNE
(Far�Far) 99�9% 0�0% 0�0% 0�1% 39�6%
(Far�Near) 0�0% 92�2% 0�0% 0�0% 21�4%
(Near�Far) 0�0% 7�8% 100�0% <0�1% 21�7%
(Near�Near) <0�1% <0�1% 0�0% 99�9% 17�4%

Utility Changes in Reverse-Order SPNE
No change 99�9% 92�2% 100�0% 99�9% 98�2% 90�8%
1st child (−); 2nd (+); total (−) 0�0% 3�7% 0�0% 0�0% 0�9% 4�8%
1st child (−); 2nd (+); total (+) 0�0% 4�1% 0�0% 0�0% 1�0% 4�5%

Note: Events that occur for less than 0�1% of the population are denoted as <0�1%. Although we do not report it here
because it is extremely rare, the first child’s utility may increase in a reverse-order SPNE. The second child’s utility may also
decrease, but these two events never occur at the same time (i.e., there is no second-mover advantage). Results are based on
empirical distribution with Monte Carlo simulation for the error terms with 1000 random draws.

8. Robustness and validity of results

8.1 Sensitivity check

We have attempted various sample selection criteria and functional forms, and the main
findings are fairly robust. In this subsection, we discuss selected robustness tests that are
critical to the interpretation of our results. The detailed results of these tests are reported
in the Appendix.

Measuring decision order If the decision order we impose in estimation (i.e., the birth
order recorded in the data) contains measurement error, the estimated strategic effect
may be biased toward zero. Although we expect little measurement error in the recorded
birth order, birth order may not necessarily coincide with the actual order of location de-
cisions. There may be a number of temporary moves when siblings are in their twenties,
and some of those moves may become permanent; for example, younger siblings may
make a permanent move before their older siblings complete postgraduate education.
Conceptually, decision order in our model is a broader notion than the mere timing of
migration, involving any credible commitment related to a permanent move, such as the
choice of occupation and spouse. Hence, although younger siblings may make a perma-
nent location choice before their older siblings, this does not necessarily contradict the
use of birth order. Nevertheless, an important question is how well birth order approxi-
mates the true decision order, because the degree of measurement error in the decision
order determines the size of the bias. Maruyama (2014) conducts a Monte Carlo experi-
ment by applying the same estimation method for a sequential entry game, and reports
that such bias tends to be marginal if the decision order is correctly specified in more
than 90% of game observations.

One way to investigate potential bias resulting from misspecified order is to esti-
mate the same models excluding siblings of similar age. In this way, birth order reflects
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the true decision order more accurately and the strategic effect will be estimated more
precisely. Specifically, we exclude families that have a pair of siblings whose age differ-
ence is only 1 year and reestimate the same model. Our main results are not affected by
this additional restriction20 or when we increase the minimum age difference to 3 years.

Are only children special? We include one-child families in our sample because they aid
identification; however, the results could be biased if only children differ considerably
from children with siblings (after controlling for observable characteristics). To address
this concern, we estimate our model without one-child families. We find that excluding
one-child families makes the parameter estimates less robust. Standard errors tend to
be larger with slightly worse goodness-of-fit. Although these findings suggest that one-
child families play an important role in estimation, the results are consistent with our
main results overall, indicating that our results are unlikely to be an artifact generated
by the distinct nature of only children.

Potential bias due to the cross-sectional approach To quantify sequential strategic in-
teraction in a tractable yet intuitive manner, this study takes a cross-sectional approach,
abstracting from the dynamic aspects of siblings’ location decisions with the exception
of birth order. For our estimates to be meaningful and credible, our empirical frame-
work must be approximately consistent with the underlying data generating process.
In particular, the explanatory variables used in estimation are taken from information
recorded many years after children have made their location decisions. The results can
be interpreted consistently with our behavioral model if all our explanatory variables
were either observed or accurately predicted at the time children made those decisions.
For this reason, we have carefully selected our independent variables such that they can
be argued as being time-invariant or reasonably stable and predictable in the long run.
Nevertheless, a number of factors may undermine the validity of our cross-sectional
approach. A child’s location decision might have a long-term effect on our explana-
tory variables, such as parental health (reverse causality). Location and spouse might
be determined at the same time (simultaneity). A child might have responded to recent
parental health decline many years after that child first left the parent (misspecifica-
tion of the time frame), and current variables might have accumulated stochastic errors
since the child makes the decision; thus they may lead to downward bias even if the
child’s prediction is not biased (measurement error).

To address these concerns, we estimate a model that excludes parental health and
marital variables, which may be endogenous events in later life. We find that the results
of the simplified model are consistent with the full model overall, despite its poorer
model fit. Counterfactual simulation results also remain similar. This finding provides

20We find slightly larger estimates of externality as well as a smaller proportion of families experienc-
ing inefficient family location. These two findings arise at the same time because although the sample of
siblings with a larger age gap leads to a larger estimate of strategic effect, such siblings tend to have more
diverse characteristics than siblings of similar age. When players differ to a greater extent, they are more
likely to have a dominant strategy and game outcomes depend less on strategic interaction.
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some assurance that our main findings are not driven by the time inconsistency due to
the time-variant variables.21

8.2 Alternative behavioral assumptions

We have so far centered our analysis on perfect-information sequential games. To inves-
tigate the appropriateness of this behavioral assumption, we discuss three alternative
models.

Cooperative maximization First, we examine the assumption of noncooperative deci-
sion making. This assumption is to some extent justified by the discrete and long-term
nature of location choice, but siblings may be able to arrange enforceable side-payment
transfers to achieve the highest joint utility possible, as discussed by Engers and Stern
(2002). We examine this possibility by estimating a model of joint-utility maximization.
This model uses the same functional-form specification as our preferred model, namely,
(3), (4), and (6), and assumes the joint-utility maximization

max
ah∈{0�1}Ih

Ih∑
i=1

ui(ah)�

We estimate this model by using the multinomial probit framework. Because the multi-
variate normal distribution does not have an analytical form, the estimation is based on
the method of simulated likelihood with the GHK simulator.

Incomplete-information game To examine the validity of the perfect-information
assumption, we estimate an incomplete-information model, maintaining the same
functional-form specification as before. In this setup, each child makes a decision si-
multaneously by maximizing expected utility based on the privately observed value of
εi, the distribution of ε−i (conditional on εi), and “conjectures” of the other siblings’
strategies. The conjectures underlie utility maximization because they affect one’s ex-
pected utility. Child i’s strategy, or decision rule, is denoted as ai(εi), and effectively, it is
a threshold value of εi above which child i chooses “near” or ai = 1. A strategy profile in
family h, {ai(εi)}i=1�����Ih , constitutes a Nash equilibrium if

aei (εi) = arg max
a∈{0�1}

Eε−i

[
ui

(
a�

{
aek(εk)

}
k�=i

� εi
)]

for i = 1� � � � � Ih� (8)

We estimate this multivariate probit model using the method of simulated likelihood.
The procedure for constructing the simulated likelihood consists of three key algo-

rithms. The first is an algorithm to obtain the optimal strategy of child i, a∗
i (εi), given

21A more conservative view is that even if our cross-sectional approach does not lead to precise esti-
mates, it is an empirical model exercise that focuses not on the precision of estimates, but on finding mod-
els with new features that better fit the data. It is not uncommon for the empirical game-theoretic analysis
of an inherently dynamic subject to start with a cross-sectional framework. The econometric literature on
firms’ market entry, for example, started with the analysis of a cross-sectional snapshot of market struc-
tures.
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the strategies of the siblings, {ak(εk)}k�=i, by evaluating the net expected utility gain of
choosing “near.” For incomplete-information games, previous studies typically assume
that the distribution of the error component is independent across players, but our
random terms are correlated between siblings, and hence, the optimal strategy, a∗

i (εi),
needs to be obtained from a conditional normal distribution that incorporates the corre-
lation parameters. When child i has more than one sibling, the expectation is evaluated
numerically by the GHK probit simulator.22 The second algorithm obtains the equilib-
rium strategy profile, {aei (εi)}i=1�����Ih ≡ ae

h. This algorithm consists of a numerical itera-
tion loop that nests the first algorithm inside, and solves the equilibrium strategy profile
as a fixed point in (8).23 We find that this numerical iteration procedure is well behaved
as long as parameter values are not far from reasonable ranges. Because the mapping
defined by (8), f : at → at+1, is a continuous mapping from R

I to R
I , the existence of

a fixed point is guaranteed by Brouwer’s fixed point theorem. Although the uniqueness
of the equilibrium depends on model parameters, it is trivial to show the uniqueness as
long as f is decreasing or moderately increasing (derivatives less than 1) at any point of
R
I . In our model, uniqueness is guaranteed under the condition that the positive coop-

eration effect does not overwhelmingly dominate the altruism effect to the extent that
the game exhibits strong strategic complementarity at some point on R

I . The results
of the perfect-information model indicate that this condition is very likely to hold. The
third algorithm, based on the equilibrium strategy profile obtained by the above algo-
rithms, computes the likelihood value. The algorithm conducts Monte Carlo integration
over a multivariate normal distribution of dimension Ih, taking the correlation of εi into
account and using the GHK simulator.

Sequential game with reversed order The difference between the perfect-information
sequential game and the incomplete-information simultaneous game may result from
the information structure and the timing of decisions. A direct way to disentangle these
two effects would be to estimate a perfect-information simultaneous game, but its esti-
mation is not trivial due to the multiplicity of equilibrium. We instead estimate a perfect-
information sequential game with reversed order, that is, we estimate our preferred
model under the assumption that the youngest child makes the decision first and the
oldest last. This experiment allows us to examine the relevance of our decision order
assumption.

Model fit comparison Table 9 compares the goodness-of-fit of six alternative models
with different behavioral assumptions: independent maximization under no externali-
ties (Specification 1), the noncooperative perfect-information sequential model (Spec-
ifications 3 and 4), joint maximization, the noncooperative private-information model,

22Because the value of εi affects the net utility gain not only as the additive random term but also through
the conditional distribution of ε−i , the optimal decision rule (the optimal threshold value for εi) does not
have an analytical solution. Thus, the optimal strategy is solved by numerical iteration using the fact that
expected net utility gain is given by a continuous increasing function of εi within the region of parameter
values of our interest.

23We start the estimation with a1
i (εi), the threshold values of εi that make near and far indifferent under

the standard binary probit model. Every time the likelihood value improves, the previously saved initial
point is replaced by the new strategy profile.
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and the noncooperative perfect-information sequential model with reversed order. The
last four columns compare different behavioral assumptions based on the same func-
tional form assumption as Specification 4. The table reports three comparison mea-
sures: the log likelihood values, the Akaike information criterion, and the percentage
of correct prediction.

Overall, the comparison supports the use of a noncooperative sequential framework.
The joint-maximization model shows worse goodness-of-fit than the noncooperative
models, indicating the presence of conflicting self-interest.24 The private-information
model fits the data better than the joint-decision model, but not as well as the perfect-
information sequential model. Between these two lies the model with reversed order,
supporting the use of both the perfect-information framework and birth order.25 We also
conduct the same comparison using simpler specifications and find that our conclusion
is not affected.

9. Conclusion

We study externality and strategic interaction among adult siblings regarding their lo-
cation decisions relative to their elderly parents by estimating a sequential participa-
tion game that exceeds the scope of previous studies. We find a positive externality and
strategic interaction. Siblings make location decisions noncooperatively and their free-
riding behavior results in the underprovision of proximate living to their elderly parents.
Whereas the size of the strategic behavior is limited, the impact of the public good prob-
lem is striking; in multi-child families, 18�3% more parents would have had at least one
child living nearby had location decisions been made cooperatively.

The complex nature of the subject requires us to employ a tractable framework: we
rely on a cross-sectional approach and do not explicitly model parental utility. We con-
duct a number of model comparisons, however, and our parameter estimates consis-
tently support the significant role of the noncooperative behavior of siblings, the empir-
ical relevance of externality, and the empirically limited role of sequential interaction,
largely for the first time in the literature. Validating our results under a more general
setup is left for future research.

The most direct way to achieve the joint-utility optimum is to develop a mechanism
that forces the child with the smallest opportunity cost to assume caregiving obliga-
tions regardless of his/her willingness so that all other siblings can free-ride on this child.
Historically, social norms and traditions in many countries have forced daughters, who
supposedly have a smaller opportunity cost than sons, to fulfill caregiving obligations
(see, e.g., Holroyd (2001) and Silverstein, Gans, and Yang (2006)). These social norms
and traditions have served as an enforceable mechanism for families to achieve a larger

24Engers and Stern (2002) conduct a similar model comparison in their framework of family long-term
care decisions, and favor a game-theoretic model over a collective model.

25Unlike our finding, Stern’s (2014) study on the location choice game of siblings finds the empirical im-
portance of private information. This may be because his game-theoretic framework is not as comprehen-
sive as ours or because his model of private information is more general, in the sense that it incorporates
private information in addition to unobservable common-knowledge heterogeneity.
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Table 9. Comparison of alternative behavioral assumptions.

Non-cooperative Non-Cooperative, Non-Cooperative,
Behavioral Independent Sequential Joint Private Reverse Order
Assumption: Maximization (Preferred Model) Maximization Information Sequential

uα, ρ Constant; Heterogeneous
Functional Form uα = uγ = ρ = 0 uγ = 0 Externality Heterogeneous Heterogeneous Heterogeneous
Assumption: (Model [1]) (Model [3]) (Model [4]) Externality Externality Externality

Log L −11,951�0 −11,759�6 −11,693�9 −11,957�7 −11,727�8 −11,711�4
# of parameters 26 28 52 52 52 52
AIC 23,954�1 23,575�2 23,491�9 24,019�5 23,559�5 23,526�9
% correct prediction:
All children 62�50% 61�58% 61�95% 61�31% 61�91% 61�94%
All families 38�37% 39�14% 39�62% 38�63% 39�35% 39�66%

1-child families 57�13% 58�94% 59�95% 58�20% 61�29% 60�55%
2-child families 43�03% 42�18% 43�06% 42�25% 41�87% 42�61%
3-child families 29�70% 31�65% 31�35% 30�77% 31�30% 31�69%
4-child families 20�11% 21�36% 21�59% 20�42% 21�12% 21�59%

Note: Based on 18,647 child observations in 7670 families. When uα = uγ = ρ = 0, there is no dependency among siblings, and independent utility maximization and joint-utility
maximization coincide. AIC stands for the Akaike information criterion. The percentage of correct prediction is based on the predicted location outcome for each family observation that is
defined as the location configuration with the largest predicted probability among all possible location configurations.
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joint utility. In modern societies, however, improved gender equality and increased fe-
male labor force participation may have undermined this mechanism and thus reduced
the joint utility of families. The maximum joint utility can also be achieved by a trans-
fer scheme from those who free-ride to those who provide care, but this option may be
difficult in practice. Parents can utilize inheritance to enforce such a transfer, but this
option is not available for socioeconomically disadvantaged parents, who face a partic-
ularly severe free-rider problem. Further, this within-family transfer may not be effec-
tive where there is the law of legitim—a statutory fraction of the decedent’s gross estate
from which the decedent cannot disinherit his/her next-of-kin. Free-riding is thus likely
to be more severe in jurisdictions that have legitim, such as Scotland, Japan, and, until
recently, the U.S. state of Louisiana. In general, policies that reduce the private cost of
caring for elderly parents, such as tax benefits for caregivers, increase proximate living,
but if the costs of such policies are financed by taxing other children equally, the overall
welfare effect is ambiguous. The welfare effect of public support for parents is similarly
ambiguous, depending on families’ preferences and how such policies are financed.

Misleading conclusions may be drawn from future research if the free-rider problem
identified in this study is not taken into consideration. Future research should direct its
attention toward externality, the free-rider problem, and the underprovision of care and
attention rather than to strategic interactions such as the first-mover advantage.

Appendix A: Results of selected robustness tests

Table A.1. Robustness of results.

[5] Without
Siblings of

[4] Full Age Difference [6] Multi-Child [7] Simplified Model Without
Model < 2 years Families Potentially Endogenous Variables

P_father_widow 0�093 0�093 0�076
P_father_nonwidow −0�318*** −0�338*** −0�263***

P_mother_widow 0�066* 0�077 0�041
P_mother_nonwidow −0�137** −0�172*** −0�176***

P_age 0�003 0�000 0�003 P_age 0�006***

P_white −0�092*** −0�086** −0�057* P_white −0�150***

P_healthy −0�048** −0�073*** −0�034
P_College −0�254*** −0�262*** −0�241*** P_College −0�274***

P_SomeCollege −0�094** −0�092** −0�104 P_SomeCollege −0�132***

P_<HighSchool 0�046 0�038 0�014 P_<HighSchool 0�038
P_Geo_MedPop −0�007* −0�024 −0�004 P_Geo_MedPop −0�002
P_Geo_LowPop −0�095*** −0�097*** −0�097*** P_Geo_LowPop −0�100***

P_House 0�096*** 0�100*** 0�105*** P_House 0�088***

(Continues)
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Table A.1. Continued.

[5] Without
Siblings of

[4] Full Age Difference [6] Multi-Child [7] Simplified Model Without
Model < 2 years Families Potentially Endogenous Variables

C_age −0�008*** −0�005 −0�011*** C_age −0�005**

C_male_single 0�023 −0�072 0�218 C_male −0�117
C_male_partner −0�249** −0�370*** −0�040
C_female_partner −0�341*** −0�345*** −0�337***

C_College −0�423*** −0�438*** −0�441*** C_College −0�422***

C_SomeCollege −0�071** −0�058 −0�066 C_SomeCollege −0�064
C_kids_partner 0�021*** 0�018** 0�025***

α0 (constant term) −0�951*** −1�129*** −0�495 α0 −0�338**

P_father_widow 0�107 0�178 0�091
P_father_nonwidow −0�308 −0�199 −0�365
P_mother_widow 0�329** 0�280** 0�297**

P_mother_nonwidow 0�481*** 0�553*** 0�344**

P_healthy −0�111** −0�104** −0�097*

P_College 0�067* 0�126 0�043 P_College 0�011
P_SomeCollege 0�119 0�171 0�132 P_SomeCollege 0�213
P_<HighSchool 0�205* 0�360*** 0�155 P_<HighSchool 0�374**

C_male −0�328 −0�045 −0�622** C_male 0�166
C_College 0�155 0�145 0�086 C_College 0�077
C_SomeCollege 0�009 −0�047 −0�019 C_SomeCollege −0�053

α1 0�048 −0�142 0�214** α1 0�252
α2 −0�038 −0�267 0�073 α2 0�074

γ0 (constant term) 0�628*** 0�710*** 0�701*** γ0 0�498***

C_age −0�008*** −0�011*** −0�005* C_age −0�011***

C_male_single −0�178 −0�103 −0�281* C_male 0�078
C_male_partner −0�124 0�038 −0�249*

C_female_partner −0�050 −0�013 −0�064
γ1 −0�058 −0�197 0�311* γ1 −0�130

ρ0 (constant term) 0�476*** 0�490*** 0�364*** ρ0 0�511***

C_age_difference −0�008** −0�003 −0�009*** C_age_difference −0�008
C_sex_difference −0�114*** −0�108*** −0�122*** C_sex_difference −0�094***

N of child observations 18,467 13,029 16,974 18,467
Log L −11,693�94 −8,241�08 −10,694�73 −11,846�95
% correct prediction:
All children 61�95% 62�22% 62�07% 60�87%
All families 39�62% 42�58% 34�66% 38�14%

1-child families 59�95% 60�35% NA 57�33%
2-child families 43�06% 42�49% 42�71% 40�88%
3-child families 31�35% 32�09% 31�69% 30�92%
4-child families 21�59% 23�49% 21�59% 21�28%

Note: The asterisks ∗, ∗∗, and ∗ ∗ ∗ indicate statistical significance at 10%, 5%, and 1%, respectively. See equation (5) for

the functional specification. All models include in the u
β
i term a constant term, P_Geo_missing, C_EducMiss, C_kids_single

(except for model [4]), Wave2004, and Wave2010. The uαi term also includes C_EducMiss, Wave2004, and Wave2010.
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