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We present a partial identification approach for ascending auctions with bid-
der asymmetries, where bidders’ asymmetric types may be unobservable to the
econometrician. Our approach yields sharp bounds and builds on and generalizes
other recent bounds approaches for correlated private values ascending auctions.
When bidder identities are observable, our approach yields tighter bounds than
previous approaches that ignore asymmetry, demonstrating that bidder asymme-
tries can function as an aid rather than a hindrance to identification. We present
a nonparametric estimation and inference approach relying on our identification
argument and apply it to data from U.S. timber auctions, finding that bounds on
optimal reserve prices and other objects of interest are noticeably tighter when
exploiting bidder asymmetries.

Keywords. Ascending auction, partial identification, correlated values, asymme-
tries.

JEL classification. C10, D44, L10.

1. Introduction

Identification of bidder valuations in ascending auctions faces a variety of challenges:
the dropout point of the highest-value bidder is never observed, bidding may not
follow a button auction model, valuations may be correlated, and bidders may be
asymmetric—potentially with their asymmetric types or identities being unobservable
to the econometrician. Consequently, little empirical work on ascending auctions has
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been done outside of the symmetric independent private values (IPV), button auction
framework. Recent advances in the literature have developed bounds approaches that
relax the button auction assumption (Haile and Tamer (2003)) or the independence as-
sumption (Aradillas-López, Gandhi, and Quint (2013)) but maintain the assumption of
symmetry; other novel advances have relaxed the symmetry or independence assump-
tions but require that information about bidders’ asymmetric types be observable by the
econometrician (Komarova (2013a)).

This paper takes a uniquely different approach from the previous literature, demon-
strating that in private values ascending auctions, even when allowing for values to be
correlated, relaxing the assumption of bidder symmetry need not complicate identifica-
tion or estimation, and can in fact aid identification and estimation. This arises because,
unlike first price auctions, where equilibrium bidding strategies are affected by bidder
asymmetries, bidding in private values ascending auctions need not be. The approach
in this paper is also unique in that we consider cases where bidders’ asymmetric types
may be unobservable to the econometrician. We demonstrate that for certain identifi-
cation arguments in ascending auctions unobservable asymmetries can be ignored. We
demonstrate further that when bidder types are observed exploiting these asymmetries
yields tighter bounds on objects of interest, such as buyer and seller surplus or the opti-
mal reserve price. Finally, we derive a precise sufficient condition, new to the literature,
on the composition of types participating in the auction such that the researcher may
exploit exogenous variation in the number of bidders even in asymmetric settings. This
condition has easily testable implications which we verify in our empirical application.

In this paper, we focus on the setting of Aradillas-López, Gandhi, and Quint (2013)
(AGQ), although the ideas behind our approach could also apply in other settings, such
as Haile and Tamer (2003). AGQ modeled a symmetric private values setting and demon-
strated that buyer and seller surplus depend only on the marginal distributions of the
highest and second-highest order statistics, and that, even under correlation, order
statistics relationships can be used to obtain bounds on buyer and seller surplus when
only the transaction price and the number of bidders is observed. We demonstrate that
their approach applies to more general settings than symmetric correlated private val-
ues. In particular, we show that all their bounds on buyer surplus, seller surplus, and the
optimal reserve price hold without modification if bidders are asymmetric with corre-
lated private values, even if bidder identities are unobserved. When bidder identities are
observed, we derive new bounds, which will typically be tighter than AGQ’s. All of our re-
sults apply to the most general type of bidder asymmetries, where the joint distribution
of buyer valuations is unrestricted, and the bounds we derive are sharp.

In addition to our nonparametric identification arguments, we present an estima-
tion approach that allows the researcher to control for auction-level heterogeneity fully
nonparametrically. We illustrate the approach using U.S. timber auction data, where the
common categorization of bidder asymmetries is between mills and loggers (e.g., Athey,
Levin, and Seira (2011), Athey, Coey, and Levin (2013), Roberts and Sweeting (2016)). We
demonstrate that, relative to previous approaches that treat bidders as symmetric, ex-
ploiting this dimension of bidder asymmetry leads to tighter bounds on objects of inter-
est, including the estimated distribution of the willingness-to-pay of the highest-value
bidder, seller surplus, and the optimal reserve price.
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To our knowledge, these are some of the first positive identification results for as-
cending auctions with asymmetric correlated values that do not rely on the existence of
bidder-specific covariates for all bidders.1 Such covariates may not be readily available
in practice, and our bounds still apply in these settings. Komarova (2013a) is one ex-
ception to this. She provides several identification arguments for asymmetric correlated
private values ascending auctions, requiring that bidder identities or types be observ-
able. Athey and Haile (2002) and Komarova (2013b) provide identification arguments
for asymmetric IPV ascending auctions. Our results are the first identification results of
which we are aware for ascending auctions with bidder asymmetries and unobserved
bidder identities or types. Lamy (2012) presents results on unobserved bidder identities
in asymmetric first price auctions.

The remainder of the paper is as follows. In Section 2, we introduce the AGQ frame-
work. In Section 3, we present a general asymmetric version of this framework and
demonstrate how bounds on order statistic distributions and, consequently, on bidder
and seller surplus and the optimal reserve price, can be obtained when bidder asymme-
tries are unobservable and how these bounds can be improved when bidder asymme-
tries are observable. We describe the nonparametric estimation approach in Section 4.
Section 5 presents the empirical application and Section 6 concludes. Replication file are
available in a supplementary file on the journal website, http://qeconomics.org/supp/
474/code_and_data.zip.

2. Baseline model: Symmetric bidders

We first present the AGQ framework and then show how it is nested by our more general
model that allows for unobservable or observable bidder asymmetries. The identifica-
tion results of AGQ are stated under the following assumptions and definitions.

Assumption 1. Bidders have symmetric private values.

Assumption 2. The transaction price in an auction is the greater of the reserve price and
the second-highest bidder’s willingness to pay.

Assumption 3. Let N be a random variable denoting the number of bidders in an auc-
tion, with n representing realizations of N . For each n in the support of N , the joint dis-
tribution Fn of private values (V1� V2� � � � � Vn) is such that for any v and i, the probability
Pr(Vi < v|N = n� |{j �= i : Vj < v}| = k) is nondecreasing in k.

Definition 1. Let Fnm be the joint distribution of m randomly chosen bidders in an n-
bidder auction. Valuations are independent ofN if Fnm = Fn

′
m for anym≤ n�n′.

1Athey and Haile (2007, Theorem 6.1) describe an identification-at-infinity argument showing how vari-
ation in bidder-specific covariates can be used to recover the distribution of bidder values. Somaini (2011)
demonstrates that bidder asymmetries, along with observable, bidder-specific covariates, can also be ad-
vantageous in first price auction settings with common values.

http://qeconomics.org/supp/474/code_and_data.zip
http://qeconomics.org/supp/474/code_and_data.zip


184 Coey, Larsen, Sweeney, and Waisman Quantitative Economics 8 (2017)

Assumption 1 will be relaxed in the following section to allow for asymmetric bid-
ders. Assumption 2 is the button auction assumption, which is relaxed by Haile and
Tamer (2003) in their IPV framework (AGQ also contains a discussion of how this as-
sumption may be relaxed in their framework). Assumption 3 nests several well known
information settings, such as affiliated private values, conditional IPV, and auctions with
unobserved, auction-level heterogeneity.

Under these assumptions, AGQ derive two core results. First, Assumptions 1 and 3
imply that, for any n and v,

Fn:n(v)≥φn
(
Fn−1:n(v)

)n
� (1)

where φn : [0�1] → [0�1] is the inverse of the mapping from p to npn−1 − (n− 1)pn, and
where Fm:n denotes the marginal distribution of the mth order statistic. Second, when
valuations are independent ofN , then, for a fixed n and n̄ > n and for any v,

Fn:n(v)=
n̄∑

m=n+1

n

(m− 1)m
Fm−1:m(v)+ n

n̄
Fn̄:n̄(v)� (2)

AGQ demonstrate further that the equality (2) becomes a “greater than or equal to” (≥)
when valuations are stochastically increasing inN , defined as follows.

Definition 2. Let Fnm:m denote the marginal distribution of the maximum order statis-
tic amongm bidders chosen at random from n bidder auctions. Valuations are stochasti-
cally increasing inN if n > n′ implies that Fnm:m first order stochastically dominates Fn

′
m:m

for anym≤ n′.

AGQ use the lower bound implied by (1), the upper bound implied by the fact that,
for any n and v, Fn:n(v) ≤ Fn−1:n(v), and the order statistics relationship in (2) to bound
Fn:n as

Fn:n(v)≤ F̄n:n(v)≡
n̄∑

m=n+1

n

(m− 1)m
Fm−1:m(v)+ n

n̄
Fn̄−1:n̄(v)� (3)

Fn:n(v)≥ ¯Fn:n(v)≡
n̄∑

m=n+1

n

(m− 1)m
Fm−1:m(v)+ n

n̄
φn̄

(
Fn̄−1:n̄(v)

)n̄
� (4)

These bounds on Fn:n(v) are then used to derive bounds on buyer and seller surplus,

πn(r)≥ ¯πn(r)≡
∫ ∞

0
max{r� v}dFn−1:n(v)− v0 − F̄n:n(r) · (r − v0)� (5)

πn(r)≤ π̄n(r)≡
∫ ∞

0
max{r� v}dFn−1:n(v)− v0 − ¯Fn:n(r) · (r − v0)� (6)

BSn(r)≥ BSn(r)≡
∫ ∞

0
max{r� v}dF̄n:n(v)−

∫ ∞

0
max{r� v}dFn−1:n(v)� (7)

BSn(r)≤ BSn(r)≡
∫ ∞

0
max{r� v}d ¯Fn:n(v)−

∫ ∞

0
max{r� v}dFn−1:n(v)� (8)
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where v0 represents the value of the good to the seller (assumed to be common knowl-
edge). Furthermore, AGQ demonstrate that maxr πn(r) ∈ [maxr ¯πn(r)�maxr π̄n(r)] and
arg maxr πn(r) ∈ {r : π̄n(r)≥ maxr′ ¯πn(r

′)}.
Importantly, these bounds only depend on the distribution of the second order

statistic, which, by Assumption 2, the econometrician observes when reserve prices are
nonbinding. When valuations are independent of N , the bounds are two sided, and
when valuations are stochastically increasing in N , only the upper bounds hold. These
bounds are sharp: the upper bounds on buyer and seller surplus correspond to the case
of independence of bidders’ valuations and the lower bound corresponds to the case of
perfect correlation of bidders’ valuations.

We follow AGQ in maintaining Assumption 2 throughout. We demonstrate how
AGQ’s bounds generalize when Assumption 1 is relaxed to allow for asymmetric bid-
ders, even when the types of the bidders are unobserved, and we present bounds that
improve on the AGQ bounds when bidder types are observed.

3. Asymmetric bidders

3.1 Definition of symmetry

Let N be the full set of potential bidders. Let P be a random vector representing the
identities or types of bidders participating in an auction, with realizations P ⊂ N. As in
Section 2, let N be a random variable representing the number of bidders participat-
ing in an auction, with realizations n ∈ N. When necessary to clarify the number of bid-
ders in a set of participating bidders, we let Pn denote an arbitrary set of n participating
bidders. Define FP to be the joint distribution of (Vi)i∈P when P is the set of partici-
pating bidders.2 As in Section 2, Fn represents the joint distribution of values condi-
tional on there being n entrants, but unconditional on the set of participants. Therefore,
Fn(v1 · · ·vn)= ∑

Pn⊂N
Pr(P = Pn|N = n)FPn(v1 · · ·vn).

Following AGQ, we use the term bidder symmetry to mean exchangeability, defined
below.

Definition 3. Bidders are exchangeable if Fn(v1� � � � � vn) = Fn(vσ(1)� � � � � vσ(n)) for any
permutation σ : {1� � � � � n} → {1� � � � � n} and any (v1� � � � � vn).

We will say that a subset of bidders are of the same type if they are exchangeable. All
the results we derive below apply in the most general case of bidder asymmetries, where
each unique bidder is potentially a unique, asymmetric type. The results also apply in
cases where multiple bidders are of the same type, such as in the timber auctions exam-
ple in Section 5, where we categorize bidders as mills or loggers. For example, in a setting
in which each bidder identity is a distinct bidder type and N = {1�2� � � � �10}, one possi-
ble five-bidder set of participating bidders is P5 = {1�2�5�8�9}. If N again contains ten

2We adopt the convention that bidders are ordered according to their identities, that is, if P = {2�5�12},
then FP is the joint distribution of (V2� V5� V12), rather than, for example, the joint distribution of
(V5� V2� V12).
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bidders but these bidders are only of two types, high (H) and low (L), with five bidders
of each type, then one possible five-bidder set of participating bidders is P5 = {3H�2L}.

To show that the AGQ approach applies without symmetry (i.e., exchangeability), we
first prove that an analog of (1) holds, and then give natural sufficient conditions for (2).
Finally, we combine these results to obtain the required bounds.

3.2 Bounds on the maximum order statistic distribution with bidder asymmetries

We show that an analog of (1) holds, even without bidder exchangeability. The intuition
behind this result is that one can randomly permute bidders’ values, which preserves
order statistics and yields an exchangeable random vector, allowing us to then lever-
age one of AGQ’s technical lemmas. Our relaxation of bidder symmetry requires a slight
modification of Assumption 3.

Assumption 3′ . For each set Pn ⊂N, FPn is such that for any v and i, C ⊂ C ′ ⊆ Pn implies
Pr(Vi < v|P = Pn� {j �= i : Vj < v} =C)≤ Pr(Vi < v|P = Pn� {j �= i : Vj < v} =C ′).

Let FPnm:n be the marginal distribution of the mth order statistic of valuations when
the set of participating bidders is Pn. As in Section 2, Fm:n represents the distribution of
themth order statistic of values conditional on there being n entrants, but unconditional
on the set of participants. Therefore, Fm:n(v)= ∑

Pn⊂N
Pr(P = Pn|N = n)FPnm:n(v).

Lemma 1. If Assumption 3′ holds, then for any v and n, Fn:n(v) ∈ [EP(φn(FP
n−1:n(v))

n|N =
n)�Fn−1:n(v)].

Proof. We first prove that, for any Pn, FPnn:n(v) ∈ [φn(FPnn−1:n(v))
n�FPnn−1:n(v)]; the desired

result follows by taking expectations with respect to P conditional on N = n. To prove
this intermediate result, we create an exchangeable random vector whose order statis-
tics have the same distribution as the order statistics of (Vi)i∈Pn , and we show that under
Assumption 3′ it satisfies AGQ’s Assumption 3.

Suppose without loss of generality that Pn = {1� � � � � n}. We condition on the event
P = Pn throughout the remainder of this proof and omit it from the notation. Denote
the n! possible permutation functions of n elements by σ1� � � � �σn!. Let HPn(v1� � � � � vn)=
1
n!

∑n!
t=1 FPn(vσt(1)� � � � � vσt(n)). Let (U1� � � � �Un) be a random vector with cumulative dis-

tribution function HPn , and note that this random vector is exchangeable. We now prove
that it satisfies Assumption 3. For any v, i, and C, we have

Pr
(
Ui < v|{j �= i :Uj < v} =C) = 1

n!
n!∑
t=1

Pr
(
Vσt(i) < v|{j �= i : Vσt(j) < v} = C)

�

By Assumption 3′, the summand above is nondecreasing in C for each σt , so the
sum is nondecreasing in C. That is, C ⊂ C ′ implies Pr(Ui < v|{j �= i : Uj < v} = C) ≤
Pr(Ui < v|{j �= i : Uj < v} = C ′). Consequently, Pr(Ui < v||{j �= i : Uj < v}| = k) is non-
decreasing in k. Thus the random vector (U1� � � � �Un) satisfies Assumption 3. De-
note the distribution of its mth order statistic by HPn

m:n. Applying AGQ’s Lemma 3,
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HPn
n:n(v) ∈ [φn(HPn

n−1:n)
n�HPn

n−1:n(v)]. The distributions of order statistics of (V1� � � � � Vn)

and (U1� � � � �Un) are identical, so FPnm:n(v)=HPn
m:n(v) form≤ n and the result follows. �

The lower bound proposed in Lemma 1,EP(φn(FP
n−1:n(v))

n|N = n), is an expectation
over all possible sets of participants P of n bidders, while the upper bound is the same
as in AGQ. Our next lemma shows that this new lower bound on Fn:n(v) (used below
to obtain upper bounds on buyer and seller surplus) is no smaller than AGQ’s, and is
strictly larger when FP

n−1:n(v) is not almost surely constant with respect to P .

Lemma 2. For all n ≥ 2 and all v, φn(Fn−1:n(v))n ≤ EP(φn(FP
n−1:n(v))

n|N = n). If
FP
n−1:n(v) is not almost surely constant with respect to P , then φn(Fn−1:n(v))n <
EP(φn(FP

n−1:n(v))
n|N = n).

Proof. We apply Jensen’s inequality. Define the function g : [0�1] → [0�1] by g(x) =
φn(x)

n. Recall that φ−1
n (p)= npn−1 − (n− 1)pn. By construction, g−1(p)=φ−1

n (p
1/n) so

that g−1(p) = np(n−1)/n − (n− 1)p. The function g−1 is increasing and strictly concave
on [0�1], so g is strictly convex on [0�1]. By Jensen’s inequality, g(EP(FP

n−1:n(v)|N = n))≤
EP(g(FP

n−1:n(v))|N = n), with strict inequality unless FP
n−1:n(v) is almost surely constant

with respect to P . �

Lemmas 1 and 2 establish a lower bound on Fn:n that is generally tighter than
the AGQ lower bound when bidder identities or types are observable. Moreover,
when bidder identities or types are not observable to the researcher (and hence
EP(φn(FP

n−1:n(v))
n|N = n) cannot be computed) they imply that the AGQ bounds,

[φn(Fn−1:n(v))n�Fn−1:n(v)], are still valid bounds even with nonexchangeable bidders.
For a simple numerical illustration of Lemma 2, consider a setting with two bidder

types. TypeH has value 1 and type L has value 0. With equal probability, either two type
H bidders enter or two type L bidders enter, so that Pr(P = {H�H})= Pr(P = {L�L})=
0�5. For any v ∈ (0�1),EP(φ2(F

P
1:2(v))

2|N = 2)= 0�5 ·φ2(0)2 +0�5 ·φ2(1)2 = 0�5 ·0+0�5 ·1 =
0�5. By contrast, φ2(F1:2(v))2 =φ2(0�5)2 ≈ 0�086. Thus, taking into account asymmetries
among bidders can lead to a much higher lower bound (0�5) than the value given by
ignoring these asymmetries (0�086).

3.3 Sufficient conditions for valuations independent ofN with bidder asymmetries

Having shown that (1) holds without exchangeability, and that, in fact, a tighter bound
than (1) holds when bidder types are observable, we now provide sufficient conditions
for (2) to hold. In doing so, we introduce some additional notation. For P ′ ⊂ P , let FP

′|P
denote the joint distribution of (Vi)i∈P ′ in auctions where P is the set of participants. For
r ≤m< n and Pm ⊂ Pn, let FPm|Pn

r:m be the marginal distribution of the (r :m) order statis-
tic of (Vi)i∈Pm in auctions where Pn are the participants. Let FPnr:m denote the marginal
distribution of the (r :m) order statistic in auctions where Pn are the participants and all
butm bidders have been removed at random. Therefore,

FPnr:m(v)≡ 1(
n

m

) ∑
Pm⊂Pn

F
Pm|Pn
r:m (v)� (9)
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Define Fnr:m to be distribution of the (r :m) order statistic ofm randomly chosen bidders
from all n bidder auctions unconditional on the set of participants, so that Fnr:m(v) =∑
Pn⊂N

Pr(P = Pn|N = n)FPnr:m(v). Let Pr(Pn|Pn+1) denote the probability that Pn would
be obtained by dropping a bidder at random from Pn+1.3

For (2) to hold, it suffices that Fn:n = Fn+1
n:n . AGQ assume this is the case; that is, they

assume that valuations are independent of N (Definition 1). While this is a natural as-
sumption when bidders are symmetric, it is less clear what it entails in the asymmetric
case. In particular, it is not obvious how it restricts participation of different types of
bidders and their valuations conditional on participation or how it relates to existing
definitions of exogenous participation with asymmetric bidders (e.g., Athey and Haile
(2002)). Instead of assuming Fn:n = Fn+1

n:n , we give more primitive conditions on bidder
participation and valuations that imply it. To this end, we modify Definitions 1 and 2 for
the asymmetric case, and introduce a new definition.

Definition 1′ . Valuations are independent of supersets if for all P ′ ⊂ P , FP
′|P = FP

′
.

Definition 2′ . Valuations are stochastically increasing in supersets if Pn ⊃ Pn′ implies

that FPnm:m first order stochastically dominates F
Pn′
m:m for anym≤ n′.

Definition 4. Bidder types are independent of N if, for all Pn, Pr(P = Pn|N = n) =∑
Pn+1⊃Pn Pr(Pn|Pn+1)Pr(P = Pn+1|N = n+ 1).

Definitions 1′ and 4 describe different kinds of exogeneity. Definition 1′ requires that
conditional on some set of bidders participating, those bidders’ values are independent
of which other bidders participate (what Athey and Haile (2002) refer to as exogenous
participation). Definition 4 is new to the literature, requiring that the distribution of par-
ticipating bidder types in n bidder auctions is just like the distribution of participating
bidder types in n + 1 bidder auctions, with one bidder randomly removed. It restricts
who participates, but not what their values are. Also, it is important to note that Defi-
nition 4 is much weaker than equal mixing over bidder types; the condition allows for
the distribution of bidder types to be unrestricted within a given auction size n, and only
requires that this distribution be the same across n.

To further clarify the meaning of Definition 4, we observe that one direct implication
of bidder types being independent ofN is that for any bidder type τ the expected fraction
of bidders who are of type τ should be constant acrossN . We state this result as a lemma.

Lemma 3. If bidder types are independent of N , then for any bidder type τ the expected
fraction of bidders who are of type τ in auctions with n bidders is the same as in auctions
with n′ bidders for all n, n′.

3For example, consider a case with two types, H and L. Then Pr({2H�2L}|{3H�2L}) = 3
5 ,

Pr({3H�2L}|{3H�3L})= 1
2 , and so forth. If instead each bidder is a distinct type, Pr(Pn|Pn+1)= 1

n+1 for all n.
To see this, fix Pn and note that for each Pn+1 ⊃ Pn, Pn is obtained by dropping the bidder Pn+1 \ Pn from
Pn+1. When bidders are dropped uniformly at random, this occurs with probability 1

n+1 .
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Proof. Let τ be a fixed bidder type and let Pr(i = τ|i ∈ Pn) be the probability that a
bidder i randomly selected from a set Pn is of type τ. By taking a weighted sum of the
left-hand and right-hand sides of the condition for bidder types being independent ofN ,
one obtains∑

Pn

Pr(i= τ|i ∈ Pn)Pr(P = Pn|N = n)

=
∑
Pn

Pr(i= τ|i ∈ Pn)
∑

Pn+1⊃Pn
Pr(Pn|Pn+1)Pr(P = Pn+1|N = n+ 1)

=
∑
Pn+1

Pr(P = Pn+1|N = n+ 1)
∑

Pn⊂Pn+1

Pr(i= τ|i ∈ Pn)Pr(Pn|Pn+1)�

(10)

The left-hand side of this weighted sum,
∑
Pn

Pr(i = τ|i ∈ Pn)Pr(P = Pn|N = n), is the
average fraction of type τ bidders in n-bidder auctions. The second equality is obtained
by exchanging the order of the summations.

For a given Pn+1 and Pn ⊂ Pn+1, note that

Pr(Pn|Pn+1)= #
{
P
Pn+1\Pn
n

} + 1
n+ 1

�

Pr(i= τ|i ∈ Pn)= #
{
Pτn

}
n

�

where Pτn represents the subset of Pn containing all bidders of type τ and #{·} is the count

operator. Thus, #{PPn+1\Pn
n } denotes the number of times the bidder type randomly re-

moved from Pn+1 to obtain Pn appears in the set Pn.
The interior sum in the final expression in (10) can now be written as∑

Pn⊂Pn+1

Pr(i= τ|i ∈ Pn)Pr(Pn|Pn+1)

= 1
n(n+ 1)

∑
Pn⊂Pn+1

(
#

{
P
Pn+1\Pn
n

} + 1
n+ 1

)(
#

{
Pτn

}
n

)
�

(11)

Now fix a set Pn+1 and let A denote the set of unique bidder types in Pn+1. Note that
summing over all Pn ⊂ Pn+1 is equivalent to summing each of the types in A. For any

set Pn obtained by removing a type a �= τ from Pn+1, #{Pτn} = #{Pτn+1} and #{PPn+1\Pn
n } =

#{Pan } = #{Pan+1} − 1. Also, for the specific set Pn obtained by removing a type τ from

Pn+1, #{Pτn} = #{PPn+1\Pn
n } = #{Pτn+1} − 1. Therefore, (11) can be written∑

Pn⊂Pn+1

Pr(i= τ|i ∈ Pn)Pr(Pn|Pn+1)

= 1
n(n+ 1)

[(
#

{
Pτn+1

} − 1 + 1
)(

#
{
Pτn+1

} − 1
)
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+
∑

a∈A�a�=τ

(
#

{
Pan+1

} − 1 + 1
)
#

{
Pτn+1

}]

= #
{
Pτn+1

}
n(n+ 1)

[
#

{
Pτn+1

} − 1 +
∑

a∈A�a�=τ
#

{
Pan+1

}]

= #
{
Pτn+1

}
n(n+ 1)

[
−1 +

∑
a∈A

#
{
Pan+1

}]

= #
{
Pτn+1

}
n+ 1

�

Plugging the last expression into (10) yields the desired result:∑
Pn

Pr(i= τ|i ∈ Pn)Pr(P = Pn|N = n)

=
∑
Pn+1

Pr(i= τ|i ∈ Pn+1)Pr(P = Pn+1|N = n+ 1)�
�

In addition to providing intuition behind the meaning of Definition 4, Lemma 3 also
provides a simple, testable implication of the condition that bidder types are indepen-
dent of N . We apply this test below in our empirical application in Section 5. Note that
rather than testing the implication of Definition 4 provided in Lemma 3, one could in-
stead directly test the condition that bidder types are independent ofN by examining all
sets of participating bidders, but this test would be much more unwieldy.

Our next result shows that together these conditions imply Fn:n = Fn+1
n:n .

Lemma 4. If bidder types are independent of N , then, for all n, Fn:n = Fn+1
n:n if valuations

are independent of supersets and Fn:n ≥ Fn+1
n:n if valuations are stochastically increasing in

supersets.

Proof. We prove the case where valuations are independent of supersets. The stochas-
tically increasing case is analogous:

Fn:n(v)=
∑
Pn

Pr(P = Pn|N = n)FPnn:n(v)

=
∑
Pn

∑
Pn+1⊃Pn

Pr(Pn|Pn+1)Pr(P = Pn+1|N = n+ 1)FPnn:n(v)

=
∑
Pn+1

∑
Pn⊂Pn+1

Pr(Pn|Pn+1)Pr(P = Pn+1|N = n+ 1)FPnn:n(v)

=
∑
Pn+1

∑
Pn⊂Pn+1

Pr(Pn|Pn+1)Pr(P = Pn+1|N = n+ 1)FPn|Pn+1
n:n (v)

=
∑
Pn+1

Pr(P = Pn+1|N = n+ 1)FPn+1
n:n (v)

= Fn+1
n:n (v)�
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The second equality follows because bidder types are independent of N , and the fourth
equality follows because valuations are independent of supersets. �

Lemma 4 is the first result of which we are aware that demonstrates sufficient con-
ditions for a setting to have valuations independent of N even when bidders are asym-
metric. The assumption that valuations are independent of N is not used solely in AGQ
but rather is central to identification in much of the empirical auctions literature (see,
for example, Haile and Tamer (2003) or Sections 5.3 and 5.4 of Athey and Haile (2007)).4

Lemma 4 demonstrates that this condition will be satisfied if valuations are independent
of supersets and bidder types are independent ofN .

3.4 Bounds on buyer and seller surplus with bidder asymmetries

We introduce some notation for our new upper bounds on buyer and seller surplus:

F∼n:n
(v)≡

n̄∑
m=n+1

n

(m− 1)m
Fm−1:m(v)+ n

n̄
EP

(
φn̄

(
FP
n̄−1:n̄(v)

)n̄|N = n̄)� (12)

π̃n(r)≡
∫ ∞

0
max{r� v}dFn−1:n(v)− v0 − F∼n:n(r) · (r − v0)� (13)

B̃Sn(r)≡
∫ ∞

0
max{r� v}dF∼n:n(v)−

∫ ∞

0
max{r� v}dFn−1:n(v)� (14)

Our next result combines Lemmas 1 and 4 above with results established in AGQ
to yield the full set of bounds for private values auctions without assuming bidder ex-
changeability.

Theorem 1. If bidders have private values, bidder types are independent of N , and As-
sumption 3′ holds, then, for any r ≥ v0 and for any n and n̄ > n, the following statements
hold:

(i) If valuations are independent of supersets, then πn(r) ∈ [¯πn(r)� π̃n(r)] and BSn(r) ∈
[BSn(r)� B̃Sn(r)]. Likewise, maxr πn(r) ∈ [maxr ¯πn(r)�maxr π̃n(r)] and arg maxr πn(r) ∈ {r :
π̃n(r)≥ maxr′ ¯πn(r

′)}.

(ii) If valuations are stochastically increasing in supersets, then πn(r) ≤ π̃n(r) and
BSn(r)≤ B̃Sn(r).

Proof. We prove (i); (ii) is analogous. From Lemma 4, Fn+1
n:n = Fn:n. AGQ’s Lemma 4

implies that (2) holds. Lemmas 1 and 4 above imply that Fn:n(v) ≥ F∼n:n(v), so Fn:n(v) ∈
[F∼n:n(v)� F̄n:n(v)]. Finally, we obtain the above bounds by applying AGQ’s Lemma 2. �

4This type of independence has a variety of other names in the auctions literature, such as “exogenous
participation” or “exogenous variation in the number of bidders” (Athey and Haile (2002, 2007)), or in some
models corresponds to an absence of “selective entry” (Roberts and Sweeting (2016)).
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Lemma 2 implies that our upper bounds on buyer and seller surplus are at least as
small as AGQ’s, as F∼n:n

(v) ≥ ¯Fn:n(v) for all v implies π̃n(r) ≤ π̄n(r) and B̃Sn(r) ≤ BSn(r).

Also by Lemma 2, if for all v, FP
n−1:n(v) is not almost surely constant with respect to P ,

then for all v, F∼n:n
(v) > ¯Fn:n(v). In this case our upper bounds are strictly smaller than

AGQ’s, that is, π̃n(r) < π̄n(r) and B̃Sn(r) < BSn(r). Interestingly, our bounds can be
tighter even if F is exchangeable. Consider the case where bidders 1 and 2 have inde-
pendent valuations distributed as exp(1), bidders 3 and 4 have independent valuations
distributed as exp(2), and Pr(P = {1�2}) = Pr(P = {3�4}) = 0�5. Then F is a mixture of
exchangeable distributions, and so is exchangeable. However for all v, FP

1:2(v) depends
on the realization of P , and hence Lemma 2 implies our upper bounds will be tighter.
The lower bounds on surplus are the same as in AGQ, as found in (5) and (7). For the
bounds on the optimal reserve price, however, both the upper and lower bound will be
tighter than those in AGQ, as both the upper and lower bound depend on the tighter
upper bound on profits, π̃n.

All the bounds—on buyer and seller surplus and the optimal reserve price—are
sharp. This follows from the same logic as the sharpness of the AGQ bounds, as their
symmetric setting is a special case of ours. Specifically, the upper bound on surplus will
hold with equality in the symmetric IPV environment and the lower bound will hold with
equality in a perfectly correlated private values environment.

We also find that exploiting bidder asymmetries is increasingly beneficial as the
number of bidders increases. We state this as a corollary.

Corollary 1. For any r ≥ v0 and any n̄ > n, π̄n(r)− π̃n(r) increases linearly in n for all
n≤ n̄.

Proof. Applying the definition of π̄n(r) and π̃n(r) from (6) and (13) yields

π̄n(r)− π̃n(r)= n

n̄
(r − v0)

[
EP

(
φn̄

(
FP
n̄−1:n̄(r)

)n̄|N = n̄) −φn̄
(
Fn̄−1:n̄(v)

)n̄]
�

This expression only depends on n through the scaling factor at the beginning, yielding
the desired result. �

Corollary 1 implies that the improvement of the upper bound on seller surplus, ac-
counting for asymmetry over the original AGQ bound in (6) that ignores asymmetry, is
increasing in n. This is important given that it is precisely when n is large, and thus close
to n̄, that the AGQ surplus bounds tend to be wide because there are fewer possible levels
of the number of bidders between n and n̄ to exploit when applying the order statistics
relationship from (2).

As a final remark on these surplus bounds in Theorem 1, we note that one can also
obtain bounds on surplus that do not rely on the assumptions of bidder types being in-
dependent of N and valuations being independent of (or stochastically increasing in)
supersets. These alternative, wider bounds would simply use a single value of n, exploit-
ing the bounds on Fn:n derived in Lemma 1 in Section 3.2 rather than the tighter bounds
derived in Section 3.3 that rely on variation in n.
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4. Estimation

The method described herein for estimating bounds for the objects of interest follows
closely that of AGQ, modified to allow for bidder asymmetries. We state the estimation
approach for bounds on seller surplus; the bounds on buyer surplus are analogous.

We use a multiplicative kernel K(ψ1� � � � �ψ5) = ∏5
c=1 k(ψc), where each k(·) is a

quartic kernel given by k(ψ) = b · (s2 − ψ2)2 · 1{|ψ| ≤ s}. The support of k(·) is the
compact set [−s� s], and the constant b is calculated so that the kernel integrates to∫ s
−s k(ψ)dψ = 1. We set s = 25 so that the density is always strictly positive, which im-

plies that b= 9�6 × 10−8. We choose a bandwidth that eliminates the asymptotic bias of
the estimator. Since the order of the quartic kernel we used is r = 2, and since we have

d = 5 covariates, we set the bandwidth to be h= T
−1

d+2r−1 , where T is the number of ob-
servations (for more details, see the final section of Chapter 11 of Hansen (2016)).

Letting K(ξ/h)=Kh(ξ), we compute the cumulative distribution function (CDF) of
the (n− 1)th valuation at r givenX = x as

F̂n−1:n(r|x)=

Tn∑
t=1

Kh(Xt − x)1{Bt ≤ r}

Tn∑
t=1

Kh(Xt − x)
� (15)

We use this expression to compute the upper bound from Lemma 1. To compute
the lower bound, we average (15) across all partitions (combinations of bidder types)
we observe for auctions with n bidders. Let Qn be the total number of such partitions
of size n. For partition q, let part t denote auction t’s partition. We estimate the objects
required for the lower bound as

F̂
q
n−1:n(r|x)=

Tn∑
t=1

Kh(Xt − x)1{Bt ≤ r}1{part t = q}

Tn∑
t=1

Kh(Xt − x)1{part t = q}
� (16)

ÊP
(
φn

(
F̂P
n−1:n(r|x)

)n|N = n) =
Qn∑
q=1

( Tn∑
t=1

1{part t = q}

Tn

)
F̂
q
n−1:n(r|x)� (17)

Thus, using (15) and (17) we obtain the bounds on the distribution of the maximum
order statistic:

F̂∼n:n
(r|x)=

n̄∑
m=n+1

n

(m− 1)m
F̂m−1:m(r|x)+ n

n̄
ÊP

(
φn̄

(
F̂P
n̄−1:n̄(r|x)

)n̄|N = n̄)�
ˆ̄Fn:n(r|x)=

n̄∑
m=n+1

n

(m− 1)m
F̂m−1:m(r|x)+ n

n̄
F̂n̄−1:n̄(r|x)�

(18)
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Finally, we obtain bounds on expected seller surplus as

ˆ̄πn(r|x)= Ψ̂n(r|x)− v0 − (r − v0) · ˆ̄Fn:n(r|x)�
ˆ̃πn(r|x)= Ψ̂n(r|x)− v0 − (r − v0) · F̂∼n:n(r|x)�

where v0 is the seller’s valuation for the good and

Ψ̂n(r|x)=

Tn∑
t=1

Kh(Xt − x)max{Bt� r}

Tn∑
t=1

Kh(Xt − x)
�

For inference we adopt a simple, conservative approach. As in AGQ, we rely on point-
wise inference throughout; developing a uniform inference approach for this estimation
approach or the AGQ estimation approach is beyond the scope of this paper but would
be an interesting avenue for future research. Rather than the asymptotic inference ap-
proach used by AGQ (which could be adapted to our estimator), we adopt conservative
bands based on a nonparametric bootstrap, which we found to be computationally sim-
pler to implement. At each estimated pointwise bound, we obtain the upper confidence
band by taking the 1 − α/2 quantile of 200 nonparametric bootstrap replications of the
upper bound and the lower confidence band given by the α/2 quantile of 200 nonpara-
metric bootstrap replications of the lower bound. These bands will be conservative by a
simple Bonferroni-style argument.

5. Empirical application: U.S. timber auctions

To demonstrate the applicability of our approach we rely on data from U.S. tim-
ber auctions. Previous empirical auctions research has highlighted a natural asymme-
try among bidders at these auctions: some bidders represent logging companies and
others represent mills (Athey, Levin, and Seira (2011), Athey, Coey, and Levin (2013),
Roberts and Sweeting (2016)). Mills have the capacity to process the timber whereas
loggers do not, and mills typically have higher valuations than loggers. The bounds ap-
proaches of both AGQ and Haile and Tamer (2003) also focused on timber auction data
and relied on the assumption that valuations are independent ofN , but abstracted away
from bidder asymmetries. Coey, Larsen, and Sweeney (2014) developed a test of the as-
sumption that valuations are independent of N and, using a mixed sample of loggers
and mills at timber auctions, rejected the assumption that valuations are independent
of N . However, Coey, Larsen, and Sweeney (2014) demonstrated that within auctions
where only loggers participated, the test fails to reject that valuations are independent
of N , suggesting that accounting for bidder asymmetries is important in these settings
so that required conditions hold for the validity of empirical auctions approaches, such
as the bounds approaches of AGQ and Haile and Tamer (2003). We demonstrate below
how exploiting these asymmetries can also improve and tighten bounds estimates when
bidder identities or types are observed.
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Table 1. Descriptive statistics for timber auction data.

Number of Bidders Number of Average Fraction
in Auction Observations of Loggers

2 246 0�5915
3 250 0�616
4 244 0�6434
5 210 0�5971
6 137 0�635
7 102 0�647
8 59 0�6462

Our data are the same as those used in Coey, Larsen, and Sweeney (2014) and come
from ascending auctions held in California between 1982 and 1989 in which there were
at least two and less than nine entrants. We restrict the sample to auctions with winning
bids lower than $500 so as to exclude outliers, eliminating nine observations. The final
sample consists of 1248 auctions. The data contain all bids, as well as auction-level in-
formation, such as appraisal variables, measures of local industry activity, and other sale
characteristics. Table 1 displays, for each value of n ∈ {2� � � � �8}, the number of auction
observations in which n bidders participated as well as the average fraction of loggers
in these auctions. Lemma 3 implies that one implication of the condition that bidder
types are independent of N is that the average fraction of a given bidder type should be
constant across different values of n. We test this with a simple F-test of the hypothesis
of equivalence of the means in the final column in Table 1 and fail to reject that this is
the case (p-value = 0�254).

We follow the approach described in Section 4 to estimate bounds on the distribu-
tion of the maximum order statistic and also bounds on the expected seller profit at
various values of the reserve price. We set n̄ = 8. The controls we include are the esti-
mated sales value of the timber (per unit of timber), estimated manufacturing and log-
ging costs, the species concentration index (HHI), and the total volume of timber sold in
the 6 months prior to each auction, first dividing each variable by its standard deviation.
The units in the figures are dollars per thousand board feet.

Figure 1 displays the estimated bounds on the distribution of the maximum order
statistic for different values of N ranging from 2 to 7 evaluated at the median values of
the covariates (as are all results displayed in this paper). The figure displays the lower
bound on this object using the approach described in AGQ, ignoring bidder asymme-
tries, as well as the approach proposed herein. Dashed lines represent pointwise, conser-
vative 95% confidence bands as described in Section 4. As can be seen in each panel, the
asymmetric approach provides tighter bounds at each value of n, illustrating two impor-
tant implications of our identification results: first, ignoring bidder asymmetries, which
may be necessary in some settings, for example, when information on bidder identities
is unobserved, does not lead to inappropriately small bounds; instead, the bounds ig-
noring asymmetries are conservative. Second, when accounting for asymmetries is fea-
sible, doing so will lead to strictly tighter bounds than ignoring these asymmetries. At
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Figure 1. Bounds on the distribution of the maximum order statistic. Notes: Figure displays
upper and lower bounds on the distribution of the maximum order statistic in n-bidder auctions
for n= 2� � � � �7. Filled-in area marks the region contained in the bounds that account for bidder
asymmetries. Solid line represents lower bound on distribution that ignores bidder asymmetries.
Dashed lines are bootstrapped pointwise 95% confidence bands.

some points in the support, the estimated lower bound ignoring asymmetry lies outside
the confidence band surrounding the tighter estimates.

Figure 2 displays the estimated bounds on the expected profit function for different
values of reserve price assuming that the seller’s valuation, v0, is 50.5 Ignoring asymme-
tries among bidders yields strictly wider bounds on the expected profit function as it

5We choose this number because it is close to the actual reserve price reported in other timber auction
settings (Haile and Tamer (2003)); the results do not differ qualitatively at different values of v0.
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Figure 2. Bounds on the expected profit function. Notes: Figure displays upper and lower
bounds on the seller surplus in n-bidder auctions for n = 2� � � � �7 at different levels of the re-
serve price r (on the horizontal axis). Filled-in area marks the region contained in the bounds
that account for bidder asymmetries. Solid line represents upper bound on surplus that ignores
bidder asymmetries. Dashed lines are bootstrapped pointwise 95% confidence bands.

increases the upper bound on the profit function. The difference between the bounds
ignoring asymmetries and those exploiting asymmetries appears to grow larger at larger
values of r, where each of the bounds are also less precisely measured. As with the re-
sults in Figure 1, at some values of r, the estimated lower bound ignoring asymmetries
lies beyond the 95% confidence band of the tighter bounds. This suggests that ignor-
ing bidder asymmetries can lead to inaccurate conclusions as to which profits levels are
achievable at a given reserve price.
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Table 2. Bounds on optimal reserve price.

Number of Bidders Optimal Reserve Bounds, Optimal Reserve Bounds,
in Auction Ignoring Asymmetries Exploiting Asymmetries

2 [90�5�251�17] [90�68�223�87]
3 [81�76�258�14] [82�01�237�95]
4 [72�15�264�27] [72�25�237�95]
5 [60�62�213�78] [61�14�177�89]
6 [59�73�264�27] [60�03�246�21]
7 [62�02�269�55] [62�35�246�21]

Note: The second column displays estimated lower and upper bounds on optimal re-
serve price when bidder asymmetries are ignored. The third column displays bounds that
account for bidder asymmetries.

Table 2 displays bounds on the optimal reserve price which exploit bidder asymme-
tries and compare these bounds to those which ignore bidder asymmetries. Note that,
unlike Figures 1 and 2, where exploiting bidder asymmetries only affected the lower or
upper bound, respectively, but not both, in Table 2 both the upper and lower bounds
on the optimal reserve are affected by the tightening that occurs due to averaging over
different sets of participating bidders. For example, when N = 2, bounds on the opti-
mal reserve price that would be suggested by ignoring bidder asymmetries are given by
[91�36�246�21]. Exploiting bidder asymmetries increases the estimated lower bound only
slightly to 91�59 and decreases the upper bound dramatically to 214�60. Similar patterns
are observed for other values ofN .

We now turn to the question of how economically significant bidders’ value corre-
lation and asymmetry are. In the symmetric framework of AGQ, if the true information
environment were one of independent private values, AGQ’s upper bounds on buyer and
seller surplus are attained:πn(r)= π̄n(r) and BSn(r)= BSn(r). In the more general asym-
metric, correlated private value framework, πn(r)≤ π̃n(r) and BSn(r)≤ B̃Sn(r). It follows
that π̄n(r)− π̃n(r) and BSn(r)− B̃Sn(r) are lower bounds on the amount by which allow-
ing for asymmetries and correlation affects our estimates of buyer and seller surplus.6

Figure 3 displays this lower bound for expected seller surplus in auctions with n= 4 bid-
ders. The bound is monotonic over most of the range of reserves prices considered. As
demonstrated in Corollary 1, this gap will be similar in shape for other values of n ≤ n̄,
with n simply scaling the gap linearly.

Figure 3 implies that at a reserve price of $200 per thousand board feet, which lies
within the estimated bounds on the optimal reserve price from Table 2, correlation and
asymmetries among bidders contribute to a loss in expected seller surplus of at least
$2�50 (approximately) per thousand board feet relative to what the seller would receive in
a symmetric IPV setting. Given that Figure 2(c) demonstrates that the seller’s surplus lies
between about $30 and $60 at this reserve price, $2�50 may represent an economically
meaningful fraction of the seller’s surplus. At a reserve price of $250, on the other hand,
this loss would be at least $10 (approximately), representing a much larger fraction of

6By Lemma 2, these lower bounds must be nonnegative.
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Figure 3. Lower bound on loss due to asymmetries/correlation, π̄n(r|x)− π̃n(r|x). Notes: Fig-
ure displays, in solid line, an estimate of �πn(r|x) = π̄n(r|x) − π̃n(r|x) in auctions with n = 4
bidders at different levels of the reserve price r (on the horizontal axis). Dashed line represents
bootstrapped lower, one-sided pointwise 95% confidence band.

the surplus displayed in Figure 2. Interestingly, however, $250 is a level of the reserve
price that lies within the bounds obtained by ignoring asymmetries but is rejected by
the approach exploiting asymmetries (see Table 2).

6. Conclusion

In private values ascending auctions when bidder identities or types are observable
these asymmetries can provide useful information to improve estimated bounds on ob-
jects of interest. Thus, these asymmetries can help rather than hinder identification and
estimation. When bidder identities or types are not observed but are still believed to
differ, we provided sufficient conditions for bounds to remain valid. Some, but not all,
of these results rely on a new condition we introduced that requires that the distribu-
tion of bidder types participating in the auction does not change as the number of bid-
ders changes. We focused in this paper on the setting of Aradillas-López, Gandhi, and
Quint (2013), but the ideas behind this approach can similarly be applied to other as-
cending auction settings, such as Haile and Tamer (2003), averaging over sets of partic-
ipating bidders to obtain tighter bounds on distributions and surplus if bidder identi-
ties/types are observable, or demonstrating robustness of bounds to unobserved asym-
metric types.
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