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This paper introduces a nonlinear certainty-equivalent approximation method

for dynamic stochastic problems. We first introduce a novel, stable, and efficient

method for computing the decision rules in deterministic dynamic economic

problems. We use the results as nonlinear and global certainty-equivalent approx-

imations for solutions to stochastic problems, and compare their accuracy to the

common linear and local certainty-equivalent methods. Our examples demon-

strate that this method can be applied to solve high-dimensional problems with

up to 400 state variables with acceptable accuracy. This method can also be ap-

plied to solve problems with inequality constraints. These features make the non-

linear certainty-equivalent approximation method suitable for solving complex

economic problems, where other algorithms, such as log-linearization, fail to pro-

duce a valid global approximation or are far less tractable.
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1. Introduction

Many important problems across different fields of economics require solving dynamic
stochastic general equilibrium (DSGE) or optimal decision-making problems. Numeri-
cal dynamic programming (DP) is a typical method to solve such problems by formu-
lating them as Bellman equation (Bellman (1957)) and then solving them with value
function iteration (or some accelerating methods like policy function iteration) or time
iteration.1 However, implementing numerical DP faces challenging problems such as
time-consuming high-dimensional integration, keeping the shape properties of the
value/policy function approximation (Cai and Judd (2013, 2015)), choosing appropri-
ate approximation domains, avoiding possible nonconvergence because of accumu-
lated approximation errors, and dealing with the kinks from inequality constraints that
occasionally bind. Choosing a good approximation can be particularly challenging for
multidimensional dynamic stochastic problems where the domain of state variables ex-
pands quickly over time, while a wider domain requires a higher degree approximation.
Its implementation for high-dimensional problems is very time-consuming even if we
take advantage of recent innovations, such as parallel dynamic programming methods
(Cai, Judd, Thain, and Wright (2015b)) in a supercomputer or a computational grid.

Because of these challenges it is common in applied economics to rely on methods
other than numerical DP and sacrifice accuracy of results for the greater ease of nu-
merical implementation. The most common method is log-linearization; Magill (1977)
introduced linearization methods for dynamic stochastic models to economics. Linear
(and log-linear) approximations produce decision rules that depend only on the state
of a deterministic dynamical system. They are also called certainty-equivalent approxi-
mations because they do not depend on the variance of any random variable. Because
of its local nature, log-linearization often fails to give a good solution on states that are
not near the steady state.2 Moreover, perturbation methods are unsuitable for problems
with inequality constraints.

This paper introduces a new method for solving dynamic problems in economics
that we call the nonlinear certainty-equivalent (NLCEQ) approximation method. Ap-
plication of certainty-equivalent approximations goes back to Simon (1956) and Theil
(1957), who suggested solving dynamic programming problems with quadratic objec-
tives and linear transition laws by optimizing under perfect foresight, and then using
optimal deterministic forecasts for approximating unknown future values. They also
demonstrated that for some stochastic control problems, the certainty-equivalent ap-
proximation is the exact solution for the optimal decision rules.3 The NLCEQ method
is a natural extension of the idea of a certainty equivalent in that it solves for a nonlin-

1For a detailed discussion of these methods, see Judd (1998), Bertsekas (2005, 2007), Rust (2008), and Cai
and Judd (2014).

2For more detailed discussion of perturbation methods in economics, see Gaspar and Judd (1997), Jin
and Judd (2002), Schmitt-Grohe and Uribe (2004), Fernandez-Villaverde and Rubio-Ramirez (2006), Kim,
Kim, Schaumburg, and Sims (2008), and Den Haan and De Wind (2012).

3For a formal derivation of this result see, for example, Hansen and Sargent (2005, Section 3.2).
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ear decision rule for the nonstochastic problem that is globally valid and applies this
decision rule to the stochastic model.4

The NLCEQ method chooses a finite set of points in the state space, solves the deter-
ministic dynamic optimization problem using each of those points as the initial condi-
tion, and then applies numerical approximation methods to those results to construct a
global nonlinear approximation for the value function and decision rules. This method
is simple, stable, and efficient, and it can be naturally parallelized with high efficiency for
high-dimensional problems. Furthermore, it avoids the challenges faced by the numeri-
cal DP. Like log-linearization (and other certainty-equivalent approximations) it ignores
the impact of uncertainty on the decision rule, but it is better than log-linearization over
nontrivial neighborhoods of the deterministic steady state.

For deterministic dynamic problems (both social planner’s problems and competi-
tive equilibrium problems), NLCEQ can provide very accurate solutions. For stochastic
dynamic problems, similar to other numerical approaches, it sacrifices some accuracy
of the solution for the ease of numerical implementation. However, NLCEQ has a num-
ber of important advantages over those methods.

NLCEQ can exploit parallelism to solve high-dimensional problems (up to 400 state
variables in our examples) in minutes with acceptable accuracy. Moreover, NLCEQ is
also appropriate for solving dynamic stochastic problems with inequality constraints
that occasionally bind, where perturbation is well known for its failure to get solutions
with acceptable accuracy. Furthermore, NLCEQ provides a global solution that can be
used for effective nonlinear impulse function analysis.

These attractive features make NLCEQ suitable for solving complex economic prob-
lems, where other algorithms fail or are too costly to get solutions with acceptable ac-
curacy. Of course, like any numerical methods, NLCEQ has its own limitations: it may
be not applicable to problems where uncertainty significantly affects optimal decision
rules, such as dynamic portfolio optimization. Like other certainty-equivalent approx-
imations, NLCEQ also has a limit on its accuracy for stochastic problems (NLCEQ can
solve deterministic dynamic problems very accurately) but the accuracy of a NLCEQ so-
lution can be checked. In fact, our results show that NLCEQ is about 100 times more
accurate than log-linear or log-linear–quadratic perturbation methods for multicountry
real business cycle problems.

In this paper we apply the NLCEQ method to solve two social planner’s optimal
decision-making problems and one competitive equilibrium problem. Our first exam-
ple is a multicountry real business cycle (RBC) problem (Den Haan, Judd, and Juil-
lard (2011)). We first show that NLCEQ achieves higher accuracy than log-linear or log-
linear–quadratic perturbation methods in low-dimensional RBC problems, and then
demonstrate that NLCEQ can solve up to a 200-country RBC problem (400 state vari-
ables) in minutes by parallelism with acceptable accuracy. Our second example is a dy-
namic stochastic model of food and clean energy (Chakravorty, Magne, and Moreaux
(2008)), which has inequality constraints that occasionally bind. Moreover, the prob-
lem’s initial state is far away from its steady state and even its state path cannot reach

4Solvability of the NLCEQ method follows directly from the global concavity of the value function by
implicit differentiation; see, for example, Theorems 1–6 in Jin and Judd (2002).
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its steady state in a finite time. Our results show that NLCEQ achieves acceptable ac-
curacy in solving these problems, which are quite challenging for all other general nu-
merical methods to the best of our knowledge. Our final example is a New Keyne-
sian DSGE model with zero lower bound (Guerrieri and Iacoviello (2015)). Solving New
Keynesian DSGE models has been studied frequently in the literature, such as Wood-
ford (2003), Del Negro, Schorfheide, Smets, and Wouters (2007), Smets and Wouters
(2007), Gali (2008), Maliar and Maliar (2015), Fernández-Villaverde, Gordon, Guerrón-
Quintana, and Rubio-Ramírez (2015), and Guerrieri and Iacoviello (2015). Our results
show that NLCEQ can easily solve competitive equilibrium problems with occasionally
binding constraints.5

The paper is organized as follows. Section 2 introduces the NLCEQ method. Sec-
tion 3 describes a road map to numerical illustrations of NLCEQ, which are given in
Sections 4–6 for solving multicountry RBC problems, a dynamic stochastic model of
food and clean energy, and a New Keynesian DSGE model with zero lower bound. Sec-
tion 7 concludes. Appendixes A–D and replication files are available in supplemen-
tary files on the journal website, http://qeconomics.org/supp/533/supplement.pdf and
http://qeconomics.org/supp/533/code_and_data.zip.

2. NLCEQ method

An infinite-horizon stochastic optimal decision-making problem can be expressed by
the general model

V (x0)= max
at∈D(xt )

E

{ ∞∑
t=0

βtu(xt �at )

}
�

s.t. xt+1 = g(xt �at �εt )�

(1)

where xt ∈ R
d is a state vector process with an initial state x0 (each state variable could

be either continuous or discrete), at ∈ R
n is the vector of action variables at time t, εt

is a serially uncorrelated random vector process with identical and independent distri-
butions across time (for simplicity, we assume that the mean or median of εt is zero),
u(x�a) is a utility function, g(x�a�ε) is the stochastic law of motion for the state vari-
able vector x, β is the discount factor (0<β< 1), D(xt ) is a feasible set of action at , and
E{·} is the expectation operator. Here, g is a general transition law of the vector of state
variables, but some elements of the state variable vector x could be exogenous or have a
deterministic transition law independent of ε.

5In this paper, we use GAMS (McCarl et al. (2011)) code for all examples except for high-dimensional
problems in Section 4.4. The NLCEQ method can also easily be implemented in other programming lan-
guages like MATLAB or Dynare (Adjemian et al. (2011)). We use CONOPT (Drud (1996)) as the optimization
solver in our GAMS code, run them on one 3�5-GHz Intel processor, and get the solution in seconds/minutes
for each case. For high-dimensional problems in Section 4.4, we use Fortran code and SNOPT (Gill, Murray,
and Saunders (2005)) as the optimization solver, implement parallelism on a supercomputer, and then get
solutions in minutes.

http://qeconomics.org/supp/533/supplement.pdf
http://qeconomics.org/supp/533/code_and_data.zip
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To solve the problem (1), value function iteration is often used by solving the Bell-
man equation backward:

Vt(xt )= max
at∈D(xt )

u(xt �at )+βE{
Vt+1(xt+1)

}
�

s.t. xt+1 = g(xt �at �εt )�
(2)

Numerical implementation of value function iteration can be challenging for a number
of reasons. It requires choosing an appropriate approximation domain for the state vari-
ables, which can be way wider than the one we are interested in, because of the stochas-
ticity in the transition law of the states. In particular, when εt has an infinite support, this
may lead to an infinite support for xt+1 so that we have to use some remedies like trun-
cation methods. Their impact on the solution is, however, hard to measure. Moreover, a
wider domain requires a higher degree approximation for the value functions, and then
requires more time for an optimization solver to find the optimal solution of the Bellman
equation. In addition, in the presence of multiple uncertainties, the integration part of
the Bellman equation can be very time-consuming, and may even become infeasible,
to get good accuracy for high-dimensional integration. Finally, many problems have oc-
casionally binding constraints that lead to kinks in value functions, a big challenge for
multidimensional value function approximation.6

However, in many cases it is acceptable to obtain a solution to the problem (1) with
less demanding accuracy. For these cases, we propose Algorithm 1—a simple and fast
nonlinear certainty-equivalent (NLCEQ) approximation method—to obtain the value
function V and corresponding optimal decision rules.

Algorithm 1 contains three steps: (i) the transformation step, which transforms
the infinite-horizon stochastic problem (1) into a finite-horizon deterministic optimal
decision-making problem; (ii) the optimization step, which solves the finite-horizon de-
terministic decision-making problems from the transformation step; (iii) the approx-
imation step, which collects the results from the optimization step and uses them to
construct approximations of the decision rules. These steps are laid out in Algorithm 1.
Sections 2.1–2.3 below discuss the steps in more detail.

NLCEQ is a natural extension of the certainty-equivalent approximation idea that
the locally accurate linearization (log-linearization) method implements, but it solves
the deterministic optimization problems to find approximate values of value/policy
functions at prespecified state nodes and then uses global nonlinear approximation
methods to get the approximate value/policy functions, so NLCEQ is a globally accurate
method. Because (3) is a convex optimization problem for most of dynamic program-
ming problems in economics, NLCEQ is stable and can work well for problems with oc-
casionally binding constraints. Stability of the NLCEQ algorithm ensures that solution
accuracy is little changed by variations in model parameter values (we illustrated this in
examples of Section 4.2).7

6Cai and Judd (2012) propose a rational spline interpolation method for value function approximation
so that the value function iteration is stable and accurate for the problems with kinks, but it applies to
problems with only one continuous state variable.

7A standard way to avoid any problems with model calibration and sensitivity analysis is to choose a
wide approximation domain, so that changing calibrated parameter values does not push state variables
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Algorithm 1 Nonlinear Certainty-Equivalent Approximation Method for Infinite-
Horizon Stochastic Dynamic Programming Problems.

Step 1. Transformation step. Transform the infinite-horizon stochastic problem into a
finite-horizon deterministic optimal decision-making problem,

Ṽ (x0)= max
at∈D(xt )

T−1∑
t=0

βtu(xt �at )+βT ṼT (xT )�

s.t. xt+1 = g(xt �at �0)�

(3)

where ṼT is a terminal value function given by an initial guess of the value function V .
Step 2. Optimization step. Choose a set of approximation nodes, X = {xj0: 1 ≤ j ≤m} ⊂
R
d , and compute vj = Ṽ (xj0) and its corresponding optimal initial action aj0 ∈R

n using

an optimization solver to solve (3), for each xj0 ∈X, 1 ≤ j ≤m.
Step 3. Approximation step. Using an appropriate approximation method, such that
V̂ (x0; bv) approximates {(xj0� vj): 1 ≤ j ≤ m} data and a vector of functions P̂(x0; ba)
approximates {(xj0�aj0): 1 ≤ j ≤ m}, that is, vj ≈ V̂ (xj0; bv) and aj0 ≈ P̂(xj0; ba) for all

xj0 ∈X, where bv and ba are vectors of parameters.

If there is no uncertainty in the underlying problem, the NLCEQ method gives us
a very accurate value and policy function for large enough T . For the stochastic prob-
lems, NLCEQ can give an estimate of the value/policy functions, which can be subse-
quently employed in the economic analysis, such as impulse function analysis and sen-
sitivity analysis. To obtain more accurate approximation, if necessary, we can use the
solutions of NLCEQ—V̂ (x0; bv) and P̂(x0; ba)—as the initial guess for the value/policy
functions, and then apply other more accurate methods like numerical value function
iteration (Cai and Judd (2014)). When there is some freedom in choosing T , ṼT , ap-
proximation nodes, and approximation methods, we make choices that imply small
global errors as defined later in equation (19). We will discuss the steps in more details
below.8

After we get the optimal policy functions P̂(x0; ba), it is easy to do a forward simula-
tion: with a given initial state x0 and one simulation path εt , we use at = P̂(xt; ba) to get
xt+1 = g(xt �at � εt) for any time t = 0�1�2� � � � . That is, in the simulation process, we do
not need to repeatedly apply NLCEQ or solve its optimization problem (3); instead we
only need to use the solved policy functions P̂(x; ba)while making sure that xt is located
inside the approximation domain.9 We can do an impulse response analysis in a similar
way.

outside the approximation domain, and choose large enough T so that the terminal value functions do not
have a significant effect on the solution.

8For a more complete and general discussion on approximation and optimization in solving dynamic
stochastic problems, see Judd (1998) and Miranda and Fackler (2002).

9That is, we have to choose an appropriate approximation domain in the optimization step, so that it is
wide enough to contain simulated future states. This can be done in an iterative way: first guess a wider
approximation domain, and then use the NLCEQ solution over it to do simulation: if the simulated states



Quantitative Economics 8 (2017) Dynamic stochastic problems 123

2.1 Transformation

In the transformation step of the NLCEQ method, it is usually straightforward to ob-
tain deterministic transition laws for continuous state variables. For example, if an ex-
ogenous state θt has a transition law ln(θt+1) = ρ ln(θt) + σεt+1, where εt+1 ∼ N (0�1)
enters linearly into the law of motion of the exogenous state, then a simple trans-
formation is to set ln(θt+1) = ρ ln(θt). A more general choice of the transformation is
lnθt+1 = ρ lnθt−f (σ)with function f chosen in such way that the deterministic u(xt �at )
is close to the expectation of stochastic utility, that is, the deterministic u(xt �at ) is
nearly a certainty equivalent of its stochastic version. One example of such transfor-
mation is shown in Appendix B, where we obtain a more accurate solution by choos-
ing ln(θt+1) = ρ ln(θt)− 0�5σ2 with σ = 0�05. Using this general transformation, we can
deal with problems such as stochastic volatility (see, e.g., Caldara, Fernández-Villaverde,
Rubio-Ramírez, and Yao (2012)).

A typical way to choose the terminal value function is that for each terminal state xT ,
we find a corresponding action a∗

T (xT ) so that its next state xT+1 = g(xT �a∗
T (xT )�0)= xT ,

and then we let xt = xT and a∗
t (xt )= a∗

T (xt ) for all t > T , implying that the terminal value
function ṼT (xT )= u(xT �a∗

T (xT ))/(1 −β) is equal to the sum of discounted utilities from
t = T to t = ∞ with the policy function a∗

t (xt ). We use this in our multicountry RBC
examples. Another potential way is to use a second-order perturbation as the terminal
value function, but we do not apply it in this paper because we want to focus on NL-
CEQ only, without hybrid algorithms. The terminal time, T , depends on the terminal
value function and the discount factor. If the terminal value function is close to the true
value function, then T could be small, for example, we choose T = 20 for some large-
dimensional multicountry RBC examples in Section 4; otherwise, T could be chosen
such that βT < 10−4 if it is hard to find a terminal value function close to the true value
function. For example, we choose T = 200 in the example with β= 0�95 in Section 5 such
that βT = 3�5 × 10−5.

We can also apply NLCEQ to problems with a discrete stochastic state θt by replacing
it by its expected value conditional on its initial value, that is, E{θt | θ0}. For example, let
θt be an exogenous Markov chain with k possible values, {ϑ1� � � � �ϑk}, and let P be its
k × k transition matrix, where its (i� j) element represents the probability of θt+1 = ϑi
conditional on θt = ϑj . If the initial-time value of θt is ϑi (i.e., θ0 = ϑi), then we know
that its unconditional probability vector at time t is pt�i = Ptei, where ei is the column
vector with 1 at the ith element and 0 everywhere else. Thus, in the transformation step,
we set the transformed deterministic value for θt as its expected value,

∑k
j=1pt�i�jϑj ,

conditional on its initial value θ0 = ϑi, where pt�i�j is the jth element of the vector pt�i.
Our example in Section 5 has a discrete stochastic state and applies this method.

2.2 Optimization

In the NLCEQ method, the optimization step will be time-consuming for high-dimen-
sional problems, but they can be naturally parallelized across the approximation nodes,

locate in a much more narrow domain, choose the narrower domain to rerun NLCEQ algorithm for a more
accurate solution.
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as every node corresponds to one optimization problem, which is independent of the
others. Moreover, each optimization problem has a sparsity structure: the action vari-
ables and state variables at time t are only connected with the state variables at t − 1
and t + 1, that is, it has the blockwise tridiagonal pattern in the constraints. We em-
ploy this sparsity in optimization solvers like the one we used in our high-dimensional
multicountry RBC examples, SNOPT (Gill, Murray, and Saunders (2005)), so that each
optimization problem can be solved more efficiently.10

2.3 Approximation

For low-dimensional problems, we can use a variety of approximation methods like,
for example, multidimensional Chebyshev polynomial approximation (see Appendix A).
However, one advantage of NLCEQ is that it can be applied to large-dimensional prob-
lems. For large-dimensional problems, we will use sparse grid approximation meth-
ods. For example, in our large-dimensional examples, we employ Smolyak grid points
as the approximation nodes and Chebyshev–Smolyak polynomials as the approxima-
tion method (Smolyak (1963) and Malin, Krueger, and Kubler (2011)).11 Moreover, we
can also implement adaptive sparse grid methods (Brumm and Scheidegger (2014)) in
NLCEQ.

After we get the approximated value/policy functions, V̂ (x0; bv) and P̂(x0; ba), it is
essential to estimate their errors to the “true” solution so we know whether NLCEQ gives
an acceptable solution. In our examples below we implement the unit-free Euler error
measure. We also compute approximation errors for the approximation functions. That
is, we choose a set of out-of-sample points, X̂ = {̂xj0: 1 ≤ j ≤ m̂} ⊂ R

d , and compute v̂j =
Ṽ (̂xj0) and its corresponding optimal initial action âj0 ∈ R

n using an optimization solver

to solve (3), for each x̂j0 ∈ X̂, 1 ≤ j ≤ m̂. Using these v̂j , we compute the approximation
errors in the L∞ or L1 norm for the value function with the formulas

ÊL∞ = max
1≤j≤m̂

∣∣̂vj − V̂ (̂
xj0; bv

)∣∣
1 + ∣∣̂vj∣∣ �

ÊL1 = 1
m̂

∑
1≤j≤m̂

∣∣̂vj − V̂ (̂
xj0; bv

)∣∣
1 + ∣∣̂vj∣∣ �

10The optimization step of the NLCEQ algorithm can be employed with a variety of modern nonlinear
optimization solvers, such as, for example, SNOPT (Gill, Murray, and Saunders (2005)), CONOPT (Drud
(1996)), and KNITRO (Byrd, Nocedal, and Waltz (2006)). These solvers are also freely available at the NEOS
server (Czyzyk, Mesnier, and Moré (1998); Gropp and Moré (1997)) with two popular high-level modeling
languages: GAMS (McCarl et al. (2011)) and AMPL (Fourer, Gay, and Kernighan (2003)). If the code is written
in MATLAB, it can call its internal optimization routine, fmincon, or an external solver such as KNITRO.

11Smolyak polynomials do not preserve the shape of the value functions, so using them in standard value
function iteration can easily make it fail because the optimization problem in the Bellman equation be-
comes a nonconcave/nonconvex problem; thus it is very challenging to find the global maximizer by a
standard optimization solver. See Cai and Judd (2013, 2015) for discussion about the importance of shape
preservation in numerical DP. However, with the NLCEQ algorithm we do not need to use the approximate
value functions in the objective of an optimization problem, so it does not face the shape-preservation
challenge while the value function iteration does.
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Similarly, we can compute approximation errors for the policy functions. In our exam-
ples, we let X̂ be a set of 1000 points uniformly and randomly drawn in the approxima-
tion domain. Note that the computation of v̂j = Ṽ (̂xj0) and its corresponding âj0 can be
parallelized naturally together with the optimization step of NLCEQ.

2.4 NLCEQ method for competitive equilibrium

Algorithm 1 describes the NLCEQ method for social planner’s decision-making prob-
lems, but it can also be modified for solving competitive equilibrium. Similar to the
transformation step of Algorithm 1, we first remove the stochasticity of models by re-
placing those shocks by their mean or median. For the transformed deterministic prob-
lem, its equilibrium solution should satisfy a set of equations (including the determin-
istic version of Euler equations, deterministic transition laws of states, market clearing
conditions, and other first-order conditions)

F(xt �at �xt+1�at+1)= 0� t = 0�1�2� � � � � (4)

where xt is the state vector and at is the action vector that should satisfy constraints
at ∈ D(xt ). If there are occasionally binding constraints, then the arguments of F should
also contain corresponding Lagrange multipliers that we omit below without loss of gen-
erality. Moreover, we know that its state and control variables will converge to its steady
values (xss�ass) as time goes to infinity, that is,

x∞ = xss� a∞ = ass�

To solve the infinite-horizon system (4), we approximate it as the minimization
problem with a finite horizon and a given initial state xj0,

min
at∈D(xt )

∥∥xEndo
T − xEndo

ss

∥∥ + ‖aT − ass‖

s.t. F(xt �at �xt+1�at+1)= 0� t = 0�1� � � � �T − 1�

x0 = xj0�

(5)

where ‖ · ‖ is a norm and xEndo represents the endogenous state variables. By sweep-
ing over the approximation nodes of xj0, we can construct the approximation of policy
functions over the state space. Algorithm 2 summarizes the NLCEQ method for solving
competitive equilibrium.

Algorithm 2 yields a very accurate solution of a deterministic competitive equilib-
rium problem for large enough T . Similar to Algorithm 1, Algorithm 2 is also stable and
efficient, and can be naturally parallelized in its optimization step, so that it can solve
large-dimensional problems using sparse grid approximation methods.

Algorithm 2 can also be applied to solve social planner’s stochastic dynamic pro-
gramming problems, but Algorithm 1 is easier to implement as it does not require for-
mulating the first-order conditions. Therefore, in the examples of this paper, we will use
Algorithm 1 for solving social planner’s problems and Algorithm 2 for computing com-
petitive equilibrium.
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Algorithm 2 Nonlinear Certainty-Equivalent Approximation Method for Competitive
Equilibrium.
Step 1. Transformation step. Transform the stochastic problem into a finite-horizon de-

terministic system (5).
Step 2. Optimization step. Choose a set of approximation nodes X = {xj0: 1 ≤ j ≤m} ⊂
R
d . For each xj0 ∈X, solve (5) and get its corresponding optimal initial action with aj0.

Step 3. Approximation step. Use an appropriate approximation method, such that
P̂(x0; ba) approximates {(xj0�aj0): 1 ≤ j ≤m}, where ba is a vector of parameters.

3. Guide for numerical illustrations

The previous section introduces NLCEQ with two algorithms: one for social planners’
problems; another for competitive equilibrium problems. In the next sections, we illus-
trate these algorithms with three examples from macroeconomics and environmental
economics.12 The first two examples are the social planners’ problems and we employ
NLCEQ (Algorithm 1) to solve them. Specifically, we solve a multicountry real business
cycle model in Section 4 and demonstrate that NLCEQ can be applied to solve up to 400
dimensional dynamic stochastic problems. In Section 5 we solve an optimal resource
extraction problem and show that NLCEQ can be applied to solve stochastic problems
with kinks (occasionally binding constraints). In the last example (Section 6), we ap-
ply NLCEQ (Algorithm 2) to solve a competitive equilibrium problem, which is the New
Keynesian DSGE model with zero lower bound. All these examples show that NLCEQ is
a powerful tool for solving these complex economic problems.

In our numerical illustrations, we focus on comparison between NLCEQ and (log-)
linearization, and we show that NLCEQ is much more accurate for problems with wide
state domains and/or kinks. One main reason to choose (log-) linearization for compar-
ison is that it is as easy to apply as NLCEQ and it is the most known and popular tool in
economic analysis.

It is important to note several other new tools for solving dynamic stochastic prob-
lems that have recently emerged in the economic literature, such as the generalized
stochastic simulation method (GSSA) of Judd, Maliar, and Maliar (2011), the OccBin
method (Guerrieri and Iacoviello (2015)), and the method of Maliar and Maliar (2015).

The OccBin method is a piecewise linear interpolation method, “linking the first-
order approximation of the model around the same point under each regime” (Guerrieri
and Iacoviello (2015)), where one region represents that the inequality constraint does
not bind, and another region represents that the inequality constraint is binding. In the
absence of kinks, the OccBin method becomes the order-1 perturbation method (i.e.,
(log-) linearization method), so our comparison with (log-) linearization in the multi-
country RBC example can also be applied to the OccBin method. That is, the OccBin
method will also have the same big errors from the (log-) linearization method on the
wide state domain in our examples. Guerrieri and Iacoviello (2015) also admit that the
OccBin method “is not able to capture precautionary behavior linked to the possibility

12For an entry-level illustration we also solve a simple real business cycle model in Appendix B.
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that a constraint may become binding in the future, as a result of shocks yet unrealized,”
while the NLCEQ method has no such limit.

The GSSA method (Judd, Maliar, and Maliar (2011)) is a stochastic simulation
method, and the method of Maliar and Maliar (2015) combines simulation and pro-
jection methods. Both methods solve for the impact of uncertainty on solutions but are
not as simple to implement as the NLCEQ method. They can also be unstable as their
iteration cannot guarantee convergence, but the NLCEQ method is stable and robust.
Moreover, NLCEQ can be naturally and massively parallelized, but efficient parallelism
is challenging for both GSSA and the Maliar and Maliar method. In addition, a solution
from NLCEQ can also be used as a good initial guess for GSSA or the Maliar and Maliar
method that might produce a solution with higher accuracy for some problems.

4. Application to multicountry real business cycle model

We apply NLCEQ to solve a multicountry real business cycle (RBC) model introduced
in Den Haan, Judd, and Juillard (2011). We assume that there are N countries with
a capital stock state vector Kt = (Kt�1� � � � �Kt�N) and a productivity state vector θt =
(θt�1� � � � � θt�N) at the beginning of period t. For the jth country, its production at time
t is given by θt�jf (Kt�j� �t�j), where �t�j is labor supply and f is the Cobb–Douglas pro-
duction function

f (Kt�j� �t�j)=A(Kt�j)α(�t�j)1−α� (6)

where α is the expenditure share of capital in the production and A is the productivity
parameter. The law of motion of capital is

Kt+1�j = (1 − δ)Kt�j + It�j� (7)

where It�j is investment and δ is the depreciation rate of capital. The law of motion of
productivity is exogenous,

ln(θt+1�j)= ρ ln(θt�j)+ σ(εt+1�j + εt+1)� (8)

where εt�j� εt ∼ i�i�d�N (0�1) are a country-specific shock and a worldwide shock, respec-
tively.

The jth country has an instantaneous utility

uj(ct�j� �t�j)= (ct�j)
1− 1

γj

1 − 1
γj

−Bj (�t�j)
1+ 1

ηj

1 + 1
ηj

� (9)

where ct�j is consumption, γj is the intertemporal elasticity of substitution, ηj is the
Frisch elasticity of labor supply, and Bj = (1 − α)A(γj−1)/γj is the relative weight of con-
sumption and leisure in the welfare.
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We want to solve a social planner’s problem with an aggregate utilityU(ct� �t), which
is the weighted sum of the instantaneous utilities of all countries, that is,

U(ct� �t)=
N∑
j=1

τjuj(ct�j� �t�j)�

where τj =A1/γj are Negishi weights, ct = (ct�1� � � � � ct�N), and �t = (�t�1� � � � � �t�N). Let β
be the discount factor, and let �t�j be an adjustment cost

�t�j ≡ φ

2
Kt�j

(
It�j

Kt�j
− δ

)2
� (10)

with φ as the intensity of the friction. The social planner problem then becomes

max
c���I

E

( ∞∑
t=0

βtU(ct� �t)

)
(11)

subject to (7) and the aggregate world resource constraint

N∑
j=1

(ct�j + It�j − δKt�j)=
N∑
j=1

(
θt�jf (Kt�j� �t�j)− �t�j

)
� (12)

Therefore, the problem has 2N state variables, Kt and θt , and 3N control variables, ct ,
�t , and It .

In our example, we setA= (1−β)/(αβ) and use the parameter values in Juillard and
Villemot (2011) as the default. That is, we set β= 0�99, α= 0�36, δ= 0�025, ρ= 0�95, φ=
0�5, and σ = 0�01 as the default values. Since the optimal solution depends only on the
states and not the time t, we use (K�θ) to denote current states by omitting the subscript
t, and use (K+� θ+) to denote next-period states. We are interested in the policy solutions
over the domain of the state variables (K�θ) ∈ [0�7�1�3]2N .

4.1 Error measure

For a given current state vector (K�θ), the first-order conditions of the RBC model (11)
tell us that the optimal policy (c� �� I) should satisfy

∂uj

∂c
(cj� �j)τj = ∂uj′

∂c
(cj′� �j′)τj′� j′ �= j� (13)

∂uj

∂�
(cj� �j)= −∂uj

∂c
(cj� �j)θj

∂f

∂�
(Kj� �j)� (14)

and theN Euler equations

∂uj

∂c
(cj� �j)ωj = E

{
β
∂uj

∂c

(
c+j � �

+
j

)[
π+
j + θ+

j

∂f

∂K

(
K+
j � �

+
j

)]}
(15)
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for j = 1� � � � �N . Here

ωj ≡ 1 +φ
(
Ij

Kj
− δ

)
� (16)

π+
j ≡ 1 + φ

2

( I+j
K+
j

− δ
)(

2 − δ+
I+j
K+
j

)
� (17)

and (c+� �+� I+) is the optimal policy in the next period.
We use NLCEQ to get the estimate of the optimal policy functions of the problem

(11): Cj(K�θ) for consumption, Lj(K�θ) for labor supply, Ij(k�θ) for investment, and
K+
j (K�θ)= (1 − δ)K + Ij(K�θ) for the next-period capital. Thus, for any (K�θ), we can

compute cj = Cj(K�θ), �j = Lj(K�θ), Ij = Ij(K�θ), K+
j = K+

j (K�θ), c
+
j = Cj(K

+� θ+),
�+j = Lj(K

+� θ+), and I+j = Ij(K+� θ+), and then compute ωj and π+
j from equations

(16) and (17).
Therefore, for a given (K�θ), we can compute the unit-free Euler error

E1(K�θ)= max
1≤j≤N

∣∣E{
Fj

(
K�θ�θ+)} − 1

∣∣� (18)

with

Fj
(
K�θ�θ+) ≡

β
∂uj

∂c

(
c+j � �

+
j

)
∂uj

∂c
(cj� �j)ωj

[
π+
j + θ+

j

∂f

∂K

(
K+
j � �

+
j

)]
�

Moreover, the unit-free errors for the intratemporal-choice conditions (13) and (14) are
also available:

E2(K�θ)= max
2≤j≤N

∣∣∣∣∣∣∣
∂uj

∂c
(cj� �j)τj

∂u1

∂c
(c1� �1)τ1

− 1

∣∣∣∣∣∣∣ �

E3(K�θ)= max
1≤j≤N

∣∣∣∣∣∣∣
∂uj

∂c
(cj� �j)θj

∂f

∂�
(Kj� �j)

∂uj

∂�
(cj� �j)

+ 1

∣∣∣∣∣∣∣ �
The unit-free error for the resource constraint is given by

E4(K�θ)=

∣∣∣∣∣∣∣∣∣∣∣∣

N∑
j=1

(cj + Ij − δKj + �j)

N∑
j=1

(
θjf (Kj� �j)

) − 1

∣∣∣∣∣∣∣∣∣∣∣∣
�

Using the above errors for the first-order conditions and the resource constraint, we
compute the global L∞ error on a domain of (K�θ), denoted D , to measure the accuracy
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of our solution:

E = max
(K�θ)∈D

{
max

1≤i≤4
Ei(K�θ)

}
� (19)

Note that the estimated policy functions Cj , Lj , and Ij should be defined not only in
the domain of (K�θ) ∈ D (in our examples, we let D = [0�7�1�3]2N ), but also in a wider
domain for (K+� θ+). Therefore, so as to get the Euler errors E1, we should apply NL-
CEQ in a wider domain than we are interested in. In our examples, we choose a domain
[0�5�1�5]2N for approximating NLCEQ policy functions, and then estimate the global er-
ror in [0�7�1�3]2N . In addition, we could have E2 and E3 (and even E4) to be zero: for
any (K�θ), we let c1 = C1(K�θ) and compute other cj from equation (13) instead of let-
ting cj = Cj(K�θ), and then compute �j from (14) instead of letting �j = Lj(K�θ). This
method may obtain a smaller global error as it has smaller approximation errors from Cj
and Lj . But this method may require solving a complicated system of nonlinear equa-
tions, so we do not apply it in this paper for more generality.

To compute the Euler error E1(K�θ) for a given (K�θ), we estimate the integration
in (18) using a Monte Carlo simulation method with 10,000 points randomly drawn from
the distribution of θ+ (whenN ≤ 4, we can use the Gauss–Hermite quadrature rule with
seven quadrature nodes in each dimension for a faster run). Since the standard devia-
tion of Fj(k�θ�θ+) is around the size of σ in all of our cases, the accuracy of the numer-
ical integration is about 10−4, which is acceptable for measuring the errors of NLCEQ.
In our results, the global error E is estimated by the maximal value of max1≤i≤4Ei(K�θ)

among 10,000 randomly and uniformly drawn points (K�θ) in the domain [0�7�1�3]2N .
This is time-consuming for high-dimensional problems, but it can also be parallelized
naturally. For all of our examples, we computed the standard error of the estimated ex-
pectation, and found that the standard error is one or two orders of magnitude smaller
than the Euler error, so the numerical integration error is negligible in our computation
of the Euler error.

4.2 Examples for accuracy test

We first test NLCEQ for its accuracy for the two-country real business cycle problem (i.e.,
N = 2), which has four continuous state variables: two capital stocks and two productiv-
ity levels. In the transformation step of NLCEQ (Algorithm 1), we choose T = 50 and the
problem becomes

Ṽ (K0� θ0)= max
c���I

T−1∑
t=0

βtU(ct� �t)+βT ṼT (KT �θT )� (20)

subject to (7) and (12) with a deterministic process of θt : ln(θt+1�j)= ρ ln(θt�j). The ter-
minal value function ṼT (K�θ) is given as U(f(K��∗)� �∗)/(1 −β) with �∗ = (1� � � � �1).

In the NLCEQ method, we first use the tensor grid of Chebyshev nodes (D+ 1 nodes
in each dimension) over the domain of the state variables, [0�5�1�5]2N , and then ap-
ply degree-D complete Chebyshev polynomials in the approximation step. Since we
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Table 1. Global errors in the L∞ norm for two-country problems.

Global Error E

Degree-D Chebyshev Level-l Smolyak

β γ η D= 2 D= 4 l= 1 l= 2

0�99 0�25 0�1 2�4(−2) 1�7(−3) 5�3(−2) 6�7(−3)
0�5 2�1(−2) 2�0(−3) 6�5(−2) 1�0(−2)

0�5 0�1 2�0(−2) 1�3(−3) 6�1(−2) 5�3(−3)
0�5 2�1(−2) 1�1(−3) 6�5(−2) 6�1(−3)

0�95 0�25 0�1 2�8(−2) 2�6(−3) 5�1(−2) 9�3(−3)
0�5 1�8(−2) 3�7(−3) 7�0(−2) 1�3(−2)

0�5 0�1 2�0(−2) 1�5(−3) 5�7(−2) 5�6(−3)
0�5 1�5(−2) 1�7(−3) 6�2(−2) 8�7(−3)

Note: Note that ζ(−j) represents ζ × 10−j .

will apply NLCEQ to high-dimensional problems using the level-l Smolyak points and
Chebyshev–Smolyak polynomials (a subset of degree-2l complete Chebyshev polynomi-
als) for approximation, we also try them in the low-dimensional problems to check their
accuracy.

Our starting examples have a symmetric model specification, that is, we let γj be a
constant γ and let ηj be a constant η. Table 1 lists the global errors in the L∞ norm over
[0�7�1�3]2N for the symmetric cases with β ∈ {0�99�0�95}, γ ∈ {0�25�0�5}, η ∈ {0�1�0�5}, and
σ = 0�01.13 From Table 1, we see that degree-4 complete Chebyshev polynomials have
the smallest global errors at O(10−3).14

We also show that NLCEQ (Algorithm 1) can very accurately solve deterministic dy-
namic problems. Table 2 lists the maximal Euler errors and global errors in the L∞
norm over [0�7�1�3]2N for the two-country problem with σ = 0 and β = 0�99, γ = 0�5,
and η= 0�5 (the results are similar for other values of (β�γ�η)). As we seek higher accu-
racy and the only source of errors for deterministic problems comes from truncation of
the infinite horizon and the value/policy function approximation, we use a large T = 200
and high degree approximation. From Table 2, we see that the global errors are always
larger than Euler errors so it is not good enough to use Euler errors as a criterion. More-

13The range for θ, [0�7�1�3]N , is narrow: from (8), if θt�j is inside the range[
exp

(−√
2σ

1 − ρ
)
�exp

( √
2σ

1 − ρ
)]
�

which is close to [0�7�1�3], then only when εt+1�j and εt+1 are simulated to let εt+1�j + εt+1 be bounded
in [−√

2�
√

2], can we make sure that θt+1�j is inside the same range. That is, if θt�j is at one end of the
range, then it has about 16% probability that θt+1�j is outside of the range. Kollmann, Maliar, Malin, and
Pichler (2011) also checked the errors of solutions of perturbation methods on the sphere in the state space
centered at the steady state with a radius 0�3.

14Since our solutions are independent of the value of σ but the Euler errors E1 depend on σ , we also
checked the errors with σ = 0�02. We found that the global errors of σ = 0�02 are the same as with those of
σ = 0�01 although the σ-related maximal Euler errors with σ = 0�02 are a bit higher.
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Table 2. Errors in the L∞ norm for two-country problems with σ = 0.

Degree-D Chebyshev Level-l Smolyak

D= 4 D= 6 D= 8 l= 2 l= 3 l= 4

Euler error 4�2(−5) 2�1(−5) 2�1(−5) 2�6(−4) 2�7(−5) 2�1(−5)
Global error 1�1(−3) 5�6(−5) 3�8(−6) 5�9(−3) 6�1(−4) 7�3(−5)

Note: Note that ζ(−j) represents ζ × 10−j .

over, we see that our solution can reach five-digit accuracy in L∞ for the deterministic
problem.

4.3 Comparison with log-linearization

Log-linearization is the most popular method for solving dynamic stochastic models. It
is also a certainty-equivalent approximation method: it computes a log-linear approxi-
mation for the policy function of a deterministic problem and uses it in simulations of
the stochastic model. While this may be acceptable for states close to the deterministic
steady state, it is not likely to be a good approximation beyond a small neighborhood
around the steady state. This is particularly relevant if the mean of the stochastic prob-
lem is not the deterministic steady state.

We next present one two-country example where we compare NLCEQ with log-
linearization. We use an example with asymmetric model specification by assuming
γ1 = 0�25 and η1 = 0�1 for the first country, and γ2 = 1 and η2 = 1 for the second country
in their utility functions. The other parameters are set as their default values. We use the
degree-4 complete Chebyshev polynomials for approximation in NLCEQ.

For NLCEQ, the global L∞ error, E , is 0�0014, which is similar to the examples in Ta-
ble 1. Kollmann et al. (2011) report the errors of solutions from other methods for this
asymmetric case (Model II with N = 2 in their Table 4). The perturbation methods (or-
der 1 or order 2) have large errors on the sphere in the state space centered at the steady
state with a radius 0�3 (this sphere is inside our domain [0�7�1�3]2N ). The L∞ error of
the log-linear approximation (i.e., the order-1 perturbation, which is linear in log(K)
and log(θ)) is 0�51. Even its extended order-2 perturbation method (with quadratic poly-
nomials in log(K) and log(θ)) has an L∞ error equal to 0�21. Thus, NLCEQ is far more
accurate, up to two orders of magnitude higher, than log-linearization over the wider
and more relevant domain.

4.4 Application to high-dimensional problems

In this subsection we use NLCEQ to solve the high-dimensional RBC problems with the
default parameter values and γj ≡ 0�25 and ηj ≡ 0�1. We use the same transformed de-
terministic model (20) with T = 20 or 50 for more countries, and use the level-l Smolyak
grid and Chebyshev–Smolyak polynomials for approximation.

Table 3 lists the Euler errors and global errors in the L∞ norm over [0�7�1�3]2N and
running times (in wall clock time) in minutes, for cases with the number of countries
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Table 3. Errors and running times for high-dimensional RBC problems.

No. of No. of Max Euler Global Time
N Level l Points Cores T Error Error (minutes)

10 1 41 41 20 3�5(−3) 2�4(−2) 0�5
50 3�6(−3) 2�6(−2) 0�4

2 841 288 20 3�2(−3) 4�8(−3) 1�5
50 7�1(−4) 4�3(−3) 1�4

20 1 81 81 20 2�6(−3) 1�9(−2) 0�2
50 2�0(−3) 1�9(−2) 1�3

2 3281 352 20 2�1(−3) 3�3(−3) 1�7
352 50 5�8(−4) 3�1(−3) 13�5

3281 50 5�8(−4) 3�1(−3) 1�6

50 1 201 201 20 2�3(−3) 1�8(−2) 0�8
50 1�9(−3) 1�8(−2) 5�7

2 20,201 2048 20 1�5(−3) 2�7(−3) 8�3
2048 50 3�5(−4) 2�6(−3) 58�1

20,201 50 3�5(−4) 2�6(−3) 8�6

100 1 401 401 20 1�9(−3) 1�8(−2) 2�2

200 1 801 801 20 1�6(−3) 1�8(−2) 8�0

Note: Note that ζ(−j) means ζ × 10−j .

N = 10�20�50�100�200 (the dimension of continuous state variables is 2N). For example,
for the case with N = 200 countries and T = 20, its maximal Euler error is 0�0016 and its
global error is 0�018, and it is solved in only 8 minutes.

We employ parallelism in a supercomputer. Table 3 lists the numbers of approxima-
tion points (level-l Smolyak grid) and compute cores of the supercomputer for all cases.
For the level-1 Smolyak grid, the number of cores is chosen to be same as the number of
points, so each core runs one approximation node corresponding to one optimization
problem of the deterministic model (20). For the level-2 Smolyak grid, we see that it will
be faster if we use more cores.15

From Table 3, we see that the level-2 Chebyshev–Smolyak polynomial approxima-
tion obtains about one more digit accuracy than the level-1 Chebyshev–Smolyak poly-
nomial approximation for every case. Moreover, T = 50 does not improve much accu-
racy in global errors than T = 20 although it decreases the maximal Euler errors, while
T = 50 is far more time-consuming. With the parallelism, although our examples have
far higher numbers of countries than those in Kollmann et al. (2011), we still get the opti-
mal solutions with acceptable accuracy in minutes, much faster than the other methods
listed in Table 3 of Kollmann et al. (2011), except the perturbation methods, which will
have large errors in the wide domain [0�7�1�3]2N .

15If we can employ a parallel optimization solver for one approximation point so that we can use more
cores, then it could be even faster.
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5. Application to a dynamic stochastic model of food and clean energy

While high dimensionality is an important computational challenge to solving dynamic
stochastic problems, low-dimensional problems may have other challenges of their
own. For example, if there are occasionally binding constraints for state and/or control
variables, then the kinks in the value/policy functions often make the problem diffi-
cult to solve. One advantage of NLCEQ is that it can solve the problems with inequality
constraints that occasionally bind. Here we illustrate this by applying NLCEQ to solve a
dynamic stochastic model of food and clean energy with a constraint on pollution. In
Appendix B, we also illustrate this for a RBC model with a constraint on investment.

In Appendix B we solve problems with occasionally binding constraints and their
steady state in the center of their state space. However, in some problems like the one
shown below, the steady state is on the boundary of the feasible space of states and
is approached from only one side. Moreover, we know that usually the solution at the
initial states is the most important, but the initial states could be far away from the
steady state. For these problems, log-linearization is not reliable because it can only give
good solutions around the steady state. This section applies NLCEQ to solve such a low-
dimensional problem, where there are no reachable steady states, its initial states stay
in a corner region, and there are inequality constraints that occasionally bind.

5.1 Model setup

In this example we apply NLCEQ method to solve a stochastic version of a dynamic
model of food and clean energy introduced by Chakravorty, Magne, and Moreaux (2008).
This stylized model serves as a vehicle for developing and solving more complex models
aimed at understanding complicated real world economic problems related to biofuels
and global land use.16

We assume a single-country economy with two primary factors, land and fossil fuels
(e.g., oil). The economy has a fixed endowment of land,L, which can be used to produce
food or biofuels. LetLt�f andLt�b be the amounts of land dedicated to produce food and
biofuels crops at time t, respectively. The residual land, L− Lt�f − Lt�b, is unused. The
total land constraint is

Lt�f +Lt�b ≤L� (21)

The economy has also some stock of extractable fossil fuel resource (e.g., oil), S, with
initial stock S0. At period t the economy extracts st units of fossil fuel, so we have

St+1 = St − st � (22)

Production of food employs only the land resource. The production function for food
crops is linear in the amount of land used. There is one stochastic tipping event: once

16For direct model extension, see Chakravorty, Hubert, Moreaux, and Nostbakken (2012). Steinbuks and
Hertel (2014) present a closely related computable partial equilibrium model of land use at the global scale,
which incorporates additional sectors and nonhomothetic preferences. While all these works assume per-
fect foresight, Cai, Steinbuks, Elliott, and Hertel (2014) incorporate uncertainty in global land use decision
models.
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it happens, it adversely affects the production of food crops at a level J < 1, and this
damage is irreversible for any later periods. Let the food production per unit of land
be θt�f before the tipping event happens (we assume θt�f = 1 for simplicity). Thus, the
production function for food crops is

yt�f ≡ (1 − Jt)θt�fLt�f � (23)

where Jt denotes the stochastic damage level: Jt = 0 if the tipping event has not hap-
pened before time t; otherwise Jt = J. We assume that the stochastic process Jt is a
Markov chain with the transition probability matrix

P =
(

1 −p21 0
p21 1

)
� (24)

where p21 is the probability that the tipping event happens in 1 year, and the (2�2) ele-
ment of P is 1 because of the irreversibility of the tipping damage.17

Production of energy employs both fossil fuels and biofuels, and it is a constant elas-
ticity of substitution (CES) function,18

yt�e ≡A[
α(θt�bLt�b)

λ + (1 − α)(st)λ
] 1
λ � (25)

where A is the technology parameter of energy production, θt�b is the return of biofuel
crops per unit of land (we assume θt�b = 1 for simplicity), α is the cost share of biofuel
feedstocks, and λ is the CES function parameter proportional to the elasticity of substi-
tution of oil for biofuels.

LetM be the mass of pollution (e.g., carbon concentration), with the initial stockM0.
The law of accumulation of pollution is

Mt+1 = μst + (1 − δ)Mt� (26)

where μ is the amount of pollution produced from combustion of 1 unit of fossil fuel
(relative to biofuels), and δ is the natural rate of pollution absorption by the earth atmo-
sphere and oceans.

The nonland production costs of food and biofuels are linear,

ct�j ≡ψjLt�j� (27)

where ψj is the food or biofuels cost per unit of land, for j ∈ {f�b}. The fossil fuel extrac-
tion cost is

ct�e ≡ψ1est(St)
−ψ2e � (28)

17Cai, Judd, and Lontzek (2015a) assume a more general tipping process with irreversible damage on
production. We use this simpler version for illustrating the application of NLCEQ without loss of generality.

18Chakravorty, Magne, and Moreaux (2008) assume that fossil fuels and biofuels are perfect substi-
tutes. Our modification of the original model makes it more realistic (as biofuels substitute imperfectly for
petroleum in final liquid fuel demand), and avoids numerical problems caused by the bang–bang solutions
of Chakravorty, Magne, and Moreaux (2008).
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where ψ1e and ψ2e are two positive parameters, so that the oil extraction cost increases
with depletion of the oil stock St .19 Following Cai et al. (2014) we assume that at each
time t there is an exogenous endowment of other primary resources (e.g., labor, physical
and human capital, and materials), Πt . A part of this endowment is used in food and
energy sectors for oil extraction and refining, and production of food and biofuels. The
remaining amount of other primary resources is converted to other goods, which are
consumed in final demand. The production of other goods is linear in the remaining
amount of other primary resources with transformation coefficient θt�o (for simplicity
we assume θt�o = 1):

yt�o ≡ θt�o(Πt − ct�f − ct�b − ct�e)� (29)

We assume a utility function, which is additively separable in food, energy, and other
goods (positively), as well as pollution stock (negatively),

u(yt�f � yt�e� yt�o�Mt)= (yt�f )
1− 1

γf

1 − 1
γf

+Be (yt�e)
1− 1

γe

1 − 1
γe

+Bo (yt�o)
1− 1

γo

1 − 1
γo

−BMMη
t � (30)

where γf , γe, γo, Be, Bo, BM , and η are positive parameters.20 In addition, following
Chakravorty, Magne, and Moreaux (2008) we assume that pollution stock is capped at
a certain threshold by an international agreement, which is not necessarily consistent
with an unconstrained country pollution optimum. That is, we assume that

Mt ≤M

for all t with a given upper boundM .
The objective of the social planner is to maximize the expected sum of the dis-

counted utility with a discount factor β. That is, the social planner’s problem is

V (S0�M0� J0)= max
Lt�f �Lt�b�st≥0

E

{ ∞∑
t=0

βt
[
u(yt�f � yt�e� yt�o�Mt)

]}
(31)

subject to (21), (22), (26), and Mt ≤M , with three nonnegative control variables at each
time t: land dedicated to food crops Lt�f , land dedicated to biofuels Lt�b, and extracted
fossil fuels st .

There are two endogenous state variables: fossil fuel stock, St , governed by equation
(22), and accumulated pollution, Mt , governed by equation (26), and one exogenous
discrete state variable: damage level, Jt . Note that the steady endogenous states imply

19This is another modification of Chakravorty, Magne, and Moreaux (2008), who assume linear extrac-
tion costs for simplicity. Our cost specification is more commonly used in the environmental economics
literature (see, e.g., Nordhaus and Boyer (2003)).

20This formulation is different from Chakravorty, Magne, and Moreaux (2008), who do not incorporate
disutility from pollution in the utility function, but it is broadly consistent with the environmental eco-
nomics and growth literature; see, for example, Andreoni and Levinson (2001) and Xepapadeas (2005).
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zero extraction of fossil fuels and zero pollution from (22) and (26), that is, st = 0 and
Mt = 0. This means that the steady state will not be reached in the optimal path in a
finite horizon asMt is always greater than 0 in our model (althoughMt converges to 0 as
t goes to infinity).

We set the total amount of land, L, equal to 1. We also assume that the tipping event
has not happened at the initial time (i.e., J0 = 0). In our example, we let J = 0�1, p21 =
0�0034, β = 0�95, α = 0�5, λ = 0�5, δ = 0�001, μ = 0�25, γf = γe = γo = 0�5, Be = Bo = 0�5,
BM = 1, η= 4,Πt ≡ 1,A= 1, ψ1e = 0�4, ψ2e = 1, ψf = 0�3, ψb = 0�5, andM = 1�06.

5.2 Numerical results

Since St is always nonincreasing over time and Mt has an upper bound M = 1�06, we
set the approximation domain for the value/policy functions as S0 ∈ [0�01�1] and M0 ∈
[1�1�06], for each J0 ∈ {0� J}. We set the length of time path equal to T = 200 periods for
the dynamic model of food and clean energy in the deterministic model transformed
from (31) in the transformation step of NLCEQ (Algorithm 1). In the transformation step,
if J0 = 0, then we change Jt to its unconditional expectation at time t, pt�1�2J, where
pt�1�2 = 1 − (1 −p21)

t (the second element of the vector Pt(1�0)� with P given by (24)) is
the probability that the tipping event happens at a time not later than t; if J0 = J, then it
has been a deterministic model as Jt will always be J because of the irreversibility of the
tipping damage. We assume the terminal value function to be u(yT�f � yT�e� yT�o�MT )/(1−
β), where (yT�f � yT�e� yT�o) are given by (23), (25), and (29) with terminal extraction sT =
0�01XT .

For this specific problem, we can compute the true value/policy functions of the
model (31) so as to measure the accuracy of solutions from NLCEQ, so we do not need
to test the accuracy using its Euler equations errors like we did for the RBC model (11).
When J0 = 0, the problem can be solved as an optimal control problem by a large-scale
optimization solver in the form

VJ0=0(S0�M0)= max
Lt�f �Lt�b�st≥0

{
T∑
t=0

βt

[ 2∑
j=1

pt�1�ju(yt�f�j� yt�e� yt�o�Mt)

]}
(32)

subject to (21), (22), (26), and Mt ≤ M , where pt�1�1 = 1 − pt�1�2, yt�f�1 = θt�fLt�f , and
yt�f�2 = (1 − J)θt�fLt�f . When J0 = J, the problem is deterministic:

VJ0=J(S0�M0)= max
Lt�f �Lt�b�st≥0

{
T∑
t=0

βt
[
u(yt�f�2� yt�e� yt�o�Mt)

]}
(33)

subject to (21), (22), (26), andMt ≤M .
We use the initial-time solutions for the control variables at approximation nodes of

S0 and M0 to construct the optimal policy functions for each J0 ∈ {0� J}. In the NLCEQ
method, we use the tensor grid of Chebyshev nodes (D + 1 nodes in each dimension)
over the domain of the continuous state variables, [0�01�1]×[1�1�06], in the optimization



138 Cai, Judd, and Steinbuks Quantitative Economics 8 (2017)

Table 4. Errors of policy functions from NLCEQ for the model of food and clean energy.

Error for Lf Error for s

D L∞ L1 L∞ L1

4 9�4(−3) 1�2(−3) 1�8(−3) 2�8(−4)
6 3�7(−3) 5�8(−4) 1�1(−3) 1�6(−4)
8 2�2(−3) 3�0(−4) 7�8(−4) 9�5(−5)

10 2�1(−3) 1�8(−4) 6�0(−4) 6�1(−5)
20 8�4(−4) 4�8(−5) 2�6(−4) 1�9(−5)

Note: Note that ζ(−j) means ζ × 10−j .

Figure 1. Pre-tipping state paths for the model of food and clean energy.

step. We apply the degree-D complete Chebyshev polynomials in the approximation
step, for each J0 ∈ {0� J}.

Table 4 reports absolute errors21 of the policy functions computed by NLCEQ over
the approximation domain and all discrete state values for various degrees D. We see
that NLCEQ gives O(10−4) accuracy for the policy functions, after we use the degree-20
polynomial approximation. Figure 1 shows the pre-tipping paths of the stock of fossil
fuel Xt and pollution Mt , and we see that our NLCEQ solutions are very close to true
solutions, and that Mt hits its upper bound after 40 periods and sticks on the bound for
more than 100 periods.

Note thatMt+1 ≤M implies that

st ≤ 1
μ

(
M − (1 − δ)Mt

)
21We do not use relative errors because the solution of the fossil fuel extraction s could be nearly 0.
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Figure 2. Pre-tipping path for the optimal fossil fuel extraction.

from the law of transition forMt (i.e., equation (26)). Thus, ifMt reaches its upper bound,
then st ≤ δM/μ= 0�00424 will also be binding. Figure 2 shows this with the pre-tipping
optimal fossil fuel extraction path, and it also shows that our degree-20 complete Cheby-
shev polynomial from NLCEQ can approximate the true policy function very well, al-
though it has kinks.

6. Application to a new Keynesian model with zero lower bound

In this section, we apply NLCEQ for competitive equilibrium (Algorithm 2) to solving a
New Keynesian model with zero lower bound (ZLB). We use the New Keynesian model
in Guerrieri and Iacoviello (2015), a variant of the new Keynesian model with ZLB that
is used in Fernández-Villaverde et al. (2015) and Maliar and Maliar (2015). The values of
parameters are also chosen from Guerrieri and Iacoviello (2015).

6.1 Model overview

The model consists of a representative household, a government, a final-good firm, and
intermediate firms. At each time t the government issues bonds that expire at t + 1 and
the nominal interest rate for the bonds is rt (the time unit is a quarter). A representa-
tive household consumes ct with a price pt from the final-good firm, buys newly issued
bonds with a total face value bt from the government, sells the expired bonds bt−1, earns
wages from labor supply �t with a wage rate wt , and receives a lump-sum transfer Tt
from the government and profitΠt from all firms. The budget constraint is

ptct + bt

1 + rt =wt�t + bt−1 + Tt +Πt� (34)
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The representative household chooses consumption ct , labor supply �t , and govern-
ment bonds bt to maximize

max
ct ��t �bt

E

{ ∞∑
t=0

(
t∏
i=0

βi

)
U(ct� �t)

}
(35)

subject to the budget constraint (34), where

U(c� �)= ln(c)− �1+η

1 +η
with η= 1. The discount factor βt is a stochastic process following

ln(βt+1)= (1 − ρ) ln
(
β∗) + ρ ln(βt)+ σεt+1� (36)

where εt ∼ i�i�d�N (0�1), β∗ = 0�994, ρ= 0�8, and σ = 0�005. The first-order conditions of
the household problem imply

1 = Et

{
βt+1

1 + rt
πt+1

ct

ct+1

}
(37)

and

wt = ptct�ηt � (38)

where πt ≡ pt/pt−1 is the gross inflation rate.
The final-good firm purchases intermediate goods from intermediate firms to pro-

duce a final good yt and sell it at a price pt . The intermediate firms are assumed to have
Calvo-type prices: a fraction 1 − θ of the firms have optimal prices and the remaining
fraction θ of the firms keep the same price as in the previous period. Here the Calvo pa-
rameter θ is set as 0�9. In Appendix C we describe the detailed model specification for
the final- and intermediate- goods firms and derive the equilibrium conditions

1 = 1
χt�1

(
yt�

η
t + θEt

{
βt+1π

α
t+1χt+1�1

})
� (39)

1 = 1
χt�2

(
yt

ct
+ θEt

{
βt+1π

α−1
t+1 χt+1�2

})
� (40)

qt = αχt�1
(α− 1)χt�2

=
(

1 − θπα−1
t

1 − θ
) 1

1−α
� (41)

vt+1 = �t

yt
= (1 − θ)q−α

t + θπαt vt� (42)

where α= 6, for any time t ≥ 0.
Letπ∗, r∗, and y∗ be the steady-state gross level of inflation, the steady-state nominal

interest rate, and the steady-state output, respectively. Let the government spending gt



Quantitative Economics 8 (2017) Dynamic stochastic problems 141

be always equal to sgyt with sg = 0�2. From the market clearing condition yt = ct + gt , we
have

ct = (1 − sg)yt � (43)

Following the Taylor rule (Taylor (1993)), we have the nominal interest rate as

rt = max(zt�0) (44)

with

zt =
(
1 + r∗)( πt

π∗
)φπ(

yt

y∗
)φy

− 1� (45)

where we choose φπ = 2�5, φy = 0�25, and π∗ = 1�005. We have r∗ = π∗/β∗ − 1 from (37),
and the formula for y∗ is given in Appendix D. Equation (44) implies that the actual pol-
icy rate rt must be nonnegative, and this zero lower bound will be binding when the
notional policy rate zt is smaller than 0.

We now have one endogenous state variable vt and one exogenous state vari-
able βt , the system of equilibrium equations (37) and (39)–(45), and the exogenous
process (36). We apply NLCEQ (Algorithm 2) to compute the policy functions for
(ct�χt�1�χt�2�πt� qt� vt� �t� yt� rt� zt), and with the NLCEQ solution it follows that the con-
sumption price is computed by pt = πtpt−1 and then the wage is computed by (38).

6.2 Numerical results

In NLCEQ (Algorithm 2), we transform the stochastic process (36) to be deterministic as
ln(βt+1)= ρ ln(β∗)+ (1 − ρ) ln(βt), and then transform the system of equilibrium equa-
tions (37) and (39)–(45) to be deterministic by canceling their corresponding expectation
operator, and choose T = 200 in the transformed system (5).

In the approximation step of Algorithm 2, since the control variables (ct� �t� rt� qt�
zt�πt) can be simply substituted, we only need to approximate three control variables
(χt�1�χt�2� yt) over two state variables (vt�βt). We use the relative L1 norm (relative to the
steady-state values given in Appendix D, (v∗�χ∗

1�χ
∗
2� y

∗), respectively) in the objective of
(5). We use the tensor grid of Chebyshev nodes (D + 1 nodes in each dimension) and
degree-D complete Chebyshev polynomials to approximate the policy functions. We
want to get a solution over the state space [1�1�04] × [0�96�1�03], a slightly wider domain
than that used in Guerrieri and Iacoviello (2015), so it will have a higher chance of a bind-
ing ZLB. Thus we choose the approximation domain of (v�β) as [1�1�045]× [0�936�1�056]
so that the next simulated states transited from current states in [1�1�04] × [0�96�1�03]
using (42) and (36) will be inside the approximation domain.

Table 5 reports unit-free errors of the NLCEQ solution for various degrees D. The
errors are computed on the domain [1�1�04] × [0�96�1�03] . The global errors are defined
in a similar way in Section 4.1, while we need to estimate the unit-free errors for the
equations (37), (39), and (40), where we use the 15-point Gauss–Hermite quadrature rule
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Table 5. Errors of the NLCEQ solution with degree-D complete Chebyshev polynomials for the
New Keynesian DSGE model with ZLB.

D= 4 D= 6 D= 8 D= 10

L∞ global error 4�4(−3) 3�1(−3) 2�2(−3) 1�8(−3)
L1 global error 8�1(−4) 6�0(−4) 5�6(−4) 4�6(−4)

Note: Note that ζ(−j) means ζ × 10−j .

Figure 3. Errors of the NLCEQ solution for the New Keynesian DSGE model with ZLB.

to estimate the integrations. We see that they achieve O(10−3) errors in L∞ or O(10−4)

errors in L1, and a higher degree approximation improves the accuracy.
We also solve the model with the order-1 (linearization) and order-2 perturbation

methods. The order-1 perturbation gives an error 0�011 in L∞ and 0�0014 in L1. The
order-2 perturbation does not improve the accuracy: its error is 0�012 in L∞ and 0�0012
in L1. NLCEQ is almost 1 digit more accurate than the perturbation methods.

The comparison between NLCEQ and the linearization method is also shown in Fig-
ure 3, which shows the global errors of NLCEQ with degree-10 complete Chebyshev poly-
nomials and of the order-1 perturbation method when β= 0�96�0�994�1�03. We see that
NLCEQ is always more accurate than the linearization method. The errors are smaller
when β is closer to its steady state β∗ = 0�994. When β is the largest (i.e., β = 1�03), the
errors are the largest because a higherβ implies a higher chance of a binding ZLB (about
24% state points in [1�1�04] × [0�96�1�03] have a binding ZLB).

Figure 4 shows impulse responses of interest rate rt , inflationπt (the figure shows the
net inflation rate in percent, i.e., 100(πt−1)%), and output yt (the figure shows deviation
of output from the steady state in percent, i.e., 100(yt/yss − 1)%) to a shock of discount
factor β1 (with v1 = vss). The left panel of the figure shows responses to a shock that
brings β1 up to 1�03, and the right panel shows responses to a shock that brings β1 down
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Figure 4. Impulse responses to a shock of discount factor.

Table 6. Errors of the NLCEQ solution with degree-D complete Chebyshev polynomials for the
New Keynesian DSGE model with ZLB and σ = 0.

D= 10 D= 20 D= 50 D= 100

L∞ global error 1�3(−3) 7�3(−4) 5�2(−4) 1�7(−4)
L1 global error 2�3(−4) 8�5(−5) 4�6(−5) 1�3(−5)

Note: Note that ζ(−j) means ζ × 10−j .

to 0�96. We see that the interest rate hits the ZLB in the first four periods in the left panel,
and all three responses (rt�πt� yt) are decreasing functions of β (βt decreases along time
t in the left panel, and βt increases along time t in the right panel), and they are almost
steady after 20 periods (i.e., 5 years).

We also show that NLCEQ (Algorithm 2) can solve deterministic competitive equi-
librium problems very accurately. Table 6 lists global errors in the L∞ norm over
[1�1�04] × [0�96�1�03] for the New Keynesian DSGE problem with ZLB and σ = 0. We
choose a large T = 300 and a higher degree approximation so as to get higher accuracy.
We see that NLCEQ reaches about 4-digit accuracy in L∞ for the optimal policy func-
tions to the deterministic competitive equilibrium problem.

7. Conclusion

We have shown that NLCEQ can be applied to solve dynamic stochastic problems with
acceptable accuracy when we combine modern approximation optimization meth-
ods with parallel computing architectures. Examples include high-dimensional optimal
stochastic growth problems with up to 400 state variables and three problems with oc-
casionally binding constraints, including a dynamic stochastic model of food and clean
energy, and a New Keynesian DSGE model with zero lower bound. This approach greatly
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expands the range of problems that can be solved well globally, and clearly dominates
any form of linearization.
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