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1. Introduction

The empirical anomalies related to the capital asset pricing model (CAPM), typified by
the size, value, and momentum effects, lie at the center of multifactor asset pricing mod-
els. Especially the model by Fama and French (1992, 1993) incorporates the excess re-
turns on two portfolios, capturing the size and value premia as the additional factors.
They estimated and tested this three-factor model using 25 equity returns from port-
folios sorted by stocks’ sizes and book-to-market ratios. The research in empirical fi-
nance has been focused on multifactor asset pricing models since then, mainly geared
toward identifying asset pricing anomalies and, thereby, new pricing factors. Finding a
new factor typically begins with grouping stocks by a characteristic, such as size, book-
to-market ratio, or past return performances. Then econometric analyses follow, verify-
ing if there exist significant, abnormal returns that are not explained by the incumbent
pricing factors, and testing if a new model embedding an additional factor made from
the anomaly variable is rejected. That is, empirical asset pricing involves the construc-
tion of panel data sets of returns and the ensuing statistical investigation of those data
series with some economic restrictions.

In the paper, we develop a new framework and a new set of statistical tools for high-
frequency panels and use them to reexamine Fama–French regressions.1 Our approach
utilizes some recent econometric research on models with high-frequency observations.
Fama–French regressions have still been analyzed largely within the classical regression
framework. There are at least two dimensions that we may look into for a new oppor-
tunity using our approach. First, asset return data sets are available at several different
frequencies, for example, daily, monthly, and yearly. However, very few attempts have
been made to address the issue of how to use these data sets provided at multiple fre-
quencies. In modern financial markets, information flows almost in real time and assets
are traded at high frequencies. Thus, a valid asset pricing model under the premise of
well functioning markets must delineate relationships between asset returns and pric-
ing factors at the (high) frequency of market clearing. This implies that a proper integra-
tion of higher frequency models is needed to accurately estimate and test asset pricing
models at lower frequencies.

Second, at high frequencies, financial asset returns used in Fama–French regres-
sions have volatilities that are excessive and heterogeneous. Unless appropriately taken
care of, this excessive volatility introduces too much noise to make it meaningful to
run regressions at high frequencies. Virtually all asset returns show strong evidence of
time-varying and stochastic volatilities, and of leverage effects. The time-varying and
stochastic volatilities would have only a second-order effect if they were asymptoti-
cally stationary. Unfortunately, however, all empirical research reported in the literature
unanimously and unambiguously find that they are nonstationary, which is attributable

1The empirical asset pricing literature often uses the term Fama–French regressions to refer to multifac-
tor pricing models containing size or firm distress factors. For instance, a model including a momentum
factor in addition to the three Fama–French factors is called a four-factor Fama–French model. See Carhart
(1997) for details. Following this convention, we regard Fama–French regressions as multifactor models in
contrast to the CAPM.
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to structural breaks, switching regimes, and/or near-unit roots,2 and are endogenous
due to leverage effects. As shown in Chung and Park (2007), the nonstationary volatilities
generally affect the limit distributions and invalidate the standard tests.3 The negligence
or misspecification of the time-varying and stochastic volatilities would therefore have
a first-order effect. The presence of leverage effects introduces endogeneity in volatili-
ties, which makes it more complicated to deal with the nonstationarity of volatilities.4

It would certainly be a challenging problem to statistically analyze regressions with en-
dogenous nonstationary stochastic volatilities.

To analyze Fama–French regressions, we derive a continuous-time multifactor pric-
ing model and consider the corresponding panel regression. Our model is very general
in the sense that it allows for time-varying and stochastic volatilities, which are both
nonstationary and endogenous. The error term is just given as a general martingale
differential, consisting of two components, namely, the common component and the
idiosyncratic component, which are independent of each other. The common compo-
nent is specified as having volatility driven by the market, but otherwise it is entirely
unrestricted. We may of course permit the presence of endogenous nonstationarity in
the volatility process of the common component. On the other hand, the idiosyncratic
component is only assumed to be cross-sectionally independent and to have an asymp-
totically stationary volatility process. Our specification for the idiosyncratic component
is therefore also very flexible and unrestrictive. In fact, the only meaningful restriction
imposed on our error component model is that its nonstationary volatility component
is generated exclusively by the market. This implies in particular that only the market
risk is nondiversifiable over time.5 Our specification of the error components is justified
both theoretically and empirically in the paper.

For the statistical analysis of our model, we develop a new methodology that relies
on the sampling at random intervals in lieu of fixed intervals, and uses the realized vari-
ance measure at a higher frequency to estimate the variance of the resulting sample. Our
approach exploits a well known theorem in the theory of stochastic processes, due to
Dambis, Dubins, and Schwarz, which is often referred to as the DDS theorem.6 It implies
that any realization from a continuous martingale can be regarded as a realization from
Brownian motion if it is read using the clock running at a speed inversely proportional
to its quadratic variation. At least on its continuous part, a martingale generated with
an arbitrary volatility process can therefore be converted into a Brownian motion sim-
ply by a time change in sampling. Consequently, general martingale differentials now

2The reader is referred to Jacquier, Polson, and Rossi (1994, 2004), So, Lam, and Li (1998), and Kim, Lee,
and Park (2009) for the evidence of nonstationarity in stock return volatilities.

3They also show that the regressions may even become spurious in the case that the nonstationary
volatilities are excessive. Their results essentially carry over to a continuous-time and high-frequency set-
ting. See Jeong and Park (2013) and Kim and Park (2015).

4For more details of the leverage effects, the reader is referred to Harvey and Shephard (1996), Jacquier,
Polson, and Rossi (2004), Yu (2005), and Kim, Lee, and Park (2009).

5As shown in Park (2002), the usual law of large numbers does not hold in the presence of nonstationary
volatility.

6Readers are referred to, for example, Revuz and Yor (1994) for more details about the DDS theorem.
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become Brownian differentials, which are independent and identically distributed nor-
mals.7 The DDS theorem is not directly applicable if the error process is discountinuous
and has jumps. However, our approach also remains valid for a wide class of discon-
tinuous error processes with jumps, since we only require asymptotic normality—not
normality in finite samples—of the regression errors after time change.

For our model, we may use the market volatility to set the required random sampling
intervals. This is because only the market volatility drives the endogenous nonstation-
arity in our error component model. As long as the volatility in the common component
is taken care of by sampling at proper random intervals, the errors become asymptoti-
cally normal. The variance of the errors collected at the random intervals is also deter-
mined by the idiosyncratic component, but its volatility is asymptotically stationary as
in the standard regression model. Moreover, the error variance can be estimated readily
by the realized variance obtained from higher frequency observations available at each
random interval. Our methodology therefore utilizes observations at both high and low
frequencies. We use observations at a high frequency to set the random sampling in-
tervals and to estimate the variance of collected samples. On the other hand, samples
collected at a low frequency are used to analyze the main regressions. They are ana-
lyzed at a low frequency to avoid distortions caused by excessive volatilities that exist in
high-frequency observations. At the same time, however, we do not discard the available
observations at the higher frequency, that is, we also use them to deal with time-varying
and endogenous stochastic volatilities in observations collected at a low frequency.

With this new econometric methodology in hand, we revisit the classic issues in
empirical asset pricing. We estimate and test the CAPM and various multifactor Fama–
French models on four data sets of daily equity returns, which consist of two sets of
decile portfolios sorted, respectively, by size and book-to-market ratio (B/M), a set of 25
portfolios sorted by size and B/M, and a set of 30 portfolios from different industries. For
our random time regressions, we select the sampling intervals using the realized vari-
ance series of the daily excess market returns by setting the realized variance over each
random sampling interval at the level comparable to the average realized variance of the
monthly excess market returns. In the paper, we compare the results from our random
time regressions with those from fixed-time regressions using monthly observations.

We find that conventional regressions on fixed-time intervals yield confusing test re-
sults. Specifically, with the fixed-time sampling, we cannot reject the CAPM on the size
portfolios and the B/M portfolios even if the estimated market betas cannot explain the
higher risk premium generated by small size or high book-to-market ratio.8 This result
is inconsistent with the vast amount of literature on the existence of size and value pre-
mia of stock returns. Furthermore, when we incorporate the B/M or the size factor into
the CAPM regression on each of the corresponding data sets, the fixed-time monthly
ordinary least squares (OLS) regressions cannot reject the two-factor models with even

7For an application of this approach in the univariate setup, see Phillips and Yu (2005) and Andersen,
Bollerslev, and Dobrev (2007). It has been more systematically and rigorously developed recently by Park
(2009).

8For the industry portfolios, the CAPM is not rejected either.
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higher p-values, stating that one cannot statistically reject either CAPM or the respec-
tive two-factor models on those portfolios. However, when all three factors are included,
that is, when the Fama–French three-factor model is used for estimation on 25 portfolios
sorted both by size and B/M, we have a flat rejection of the model. That is, this conven-
tional method, which ignores time-varying volatilities, gives logically inconsistent test
results.

Meanwhile, our random sampling approach based on time change decisively rejects
the CAPM, reproducing the asset pricing anomalies that are compatible with the previ-
ous literature. Then we estimate the two-factor models on each corresponding portfo-
lios to find that the B/M factor is indeed a valid pricing factor that explains variations in
stock returns due to different book-to-market ratios. However, the test result shows that
the size factor is not sufficient to capture the cross sectional variations of stock returns.
Consistent with these findings, the three-factor model on 25 portfolios is rejected, and it
turns out to be closely related to the small firm effect. Therefore, the random sampling
approach offers a reliable and correct statistical method to estimate and test multifac-
tor asset pricing models with high-frequency data. In a related matter, we find that the
estimates of beta coefficients in most cases studied are not critically different across the
two econometric procedures. Thus, their differences seem to come mainly from the es-
timates of constant terms representing the pricing errors and variance–covariance ma-
trix of residual terms, implying the importance of properly treating highly persistent
stochastic volatilities of residual terms.

Finally, when applied to the industry portfolios, we again obtain similar results: the
conventional method cannot reject the CAPM, despite significant deviations of abnor-
mal returns from zero, resulting in the rejection of the CAPM in the random sampling
case. The main reason for the rejection turns out to be the portfolio returns from con-
sumer product companies. This only prevails in the random sampling case. We find that
the returns from the consumer goods industry help explain the size effect of the Fama–
French portfolios, especially the returns of the microcap, growth firms. In sum, our em-
pirical results coherently show that by appropriately handling stochastic volatilities, our
method provides an accurate statistical procedure for both estimation and testing, with-
out losing the attractive features of OLS regression. Thus, the good news that we want
to convey is that empirical researchers can run OLS regressions of multifactor pricing
models using data sets in any (especially high) frequencies and accurately test the ad-
equacy of those models, provided that the persistent market stochastic volatilities are
well treated using our time-change method. Another related point to be made from our
empirical result is that we still need valid pricing factors to explain cross sectional be-
haviors of stock returns via factor models.

The rest of the paper is organized as follows. In Section 2, we develop a continuous-
time multifactor model of asset returns with stochastic volatilities and propose a panel
regression model based on our theoretical framework. Section 3 presents a statistical
procedure to analyze our model and asymptotic theories. In so doing, we also provide
a statistical toolkit necessary for our empirical analysis. Section 4 describes the data
sets used in our empirical analysis and provides empirical evidence for various speci-
fications of our model. We then employ our new methodology to reexamine the CAPM
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and Fama–French regressions in Section 5, where empirical results from our analysis
of Fama–French regressions are summarized and compared with other results reported
in the literature. Section 6 concludes the paper. Useful lemmas and their proofs and the
proofs of the main theorems are collected in the Appendix, available in a supplementary
file on the journal website, http://qeconomics.org/supp/251/supplement.pdf.

2. The model and assumptions

2.1 Theoretical background

In this section, we derive a continuous-time beta model of asset returns on which our
study of Fama–French regressions will be based. For the derivation of our model, we let
π be the state price density given by

dπt

πt
= υt dt +

J∑
j=1

τjt dVjt� (1)

where υ and (τj) are, respectively, drift and volatility processes, and (Vj) are indepen-
dent Brownian motions. Subsequently, we specify the price process (Pi) of security
i = 1� � � � � I as

dPit

Pit
= μit dt + σt

(
J∑

j=1

κij dVjt +
K∑

k=1

λik dWk

)
+ωit dZit� (2)

where (μi) and (σ�ωi) are drift and volatility processes, (κij�λik) are nonrandom coef-
ficients, and (Zi) and (Wk) are independent Brownian motions. Throughout the paper,
we make the following assumption.

Assumption 2.1. We have that (Zi), (Vj), and (Wk) are independent Brownian motions
such that (ωi�Zi) and (σ�Vj�Wk) are independent of each other, and (Wk) are Brownian
motions independent of (Vj) conditional on σ .

State price density π is a process that makes (πPi) a martingale for all i = 1� � � � � I. It
is well known since Harrison and Kreps (1979) that the existence of a state price density
implies no arbitrage in the asset market. Throughout this section, we regard the instan-
taneous returns of a risky asset (dPi/Pi) as the total returns from trading gains and the
dividends paid between t and t + dt.

The drift term (μi) in (2) measures the risk–return trade-off, which will be deter-
mined below. For the specification of the diffusion term in (2), we introduce a compo-
nent with a common volatility σ , as well as a component that represents an idiosyn-
cratic volatility (ωi) specific to asset i. The common volatility component is then further
divided into two components: one involving (Vj) and the other consisting only of (Wk)

that are independent of (Vj). In total, we have three terms describing the stochastic evo-
lution of (dPi/Pi). The first term involving (Vj) results from the covariations with the
state price density π and is, therefore, closely related to the pricing factor. The coefficient

http://qeconomics.org/supp/251/supplement.pdf
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(κij) measures the proportionality of the risk of security i relative to that of (Vj). Mean-

while, the second and third terms including (Wk) and (Zi) have no bearing on π, and

are not used to pin down the conditional mean component (μi) in (2). Instead, (Wk) and

(Zi) are viewed as fluctuations related to the part of a firm’s cash flows that makes the

dividend process volatile and, in turn, to the gross return process. It is alluded that the

remainder of the firms’ cash flows will matter for valuing the equity of these firms and

these are already included in the first part (σκij dVj).9 What (Wk) and (Zi) capture, we

believe, are the fluctuations of the dividends of these firms that do not affect investors’

discount factors for pricing purposes. This is a sensible assumption based on the em-

pirical evidence that realized sample paths of firms’ dividends are much more volatile

than those of aggregate consumption growth or other macroeconomic variables, which

ought to be associated with the state price density process.10 Our setup states that if in-

dividual assets’ payoffs are not correlated with the state price density π, there will be no

risk–return trade-off, which will be reflected via the terms in (μi) despite the volatility of

asset returns.

Now we introduce pricing factors (Qj), which we specify as

dQjt

Qjt
= νjt dt + ρjσt dVjt (3)

for j = 1�2� � � � � J, where in particular (νj) are drift processes and (ρj) are nonrandom co-

efficients. In our specification, (Qj) can be understood as the price of a portfolio made

out of individual assets so that only the systematic diffusion part that is relevant for pric-

ing will remain.11 For instance, we can think of the price of a portfolio with a long posi-

tion for small firms (or high book-to-market ratio) and a short position for large firms (or

low book-to-market ratio) as a factor. In a similar context, the first factor Q1 is set to be

the market factor with the unit corresponding coefficient of ρs, that is, ρ1 = 1.12 The sub-

sequent derivation of our model depends crucially on the existence of a common volatil-

ity movement σ , especially with constant proportionality of risk for all assets. When the

assumption of constant proportion is relaxed, we obtain a conditional beta represen-

tation, leading to conditional factor models. With some additional assumptions on the

structure of betas, we may also consider such models as in Ang and Kristensen (2012).

However, given our emphasis on the Fama–French regressions on stock returns, we do

not pursue this route in this paper.

9It is an important task to quantify the relative contributions to explaining systematic return variations
between the discount factor risk and cash flow risk. However, it is beyond the scope of our paper.

10Alternatively, one may consider that the asset market is incomplete in the sense that a source of shock
(Wk) is either not priced or priced with a significantly downward bias via the conditional mean component.

11It is possible to allow for the presence of nonpricing factors (Wk) we introduced in (2). This will, how-
ever, make the Fama–French OLS regressions invalid, as we will explain later.

12That is, we regard the market as the asset that includes only the systematic component for pricing with
the reference value of 1 for the beta, which will be introduced later.
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We derive our main formula by invoking the definition of the state price density.
Under a no arbitrage condition, we may easily deduce from (1), (2), and (3) that

μit = −υt −
J∑

j=1

κijσtτjt�

(4)
νjt = −υt − ρjσtτjt

holds for i = 1� � � � � I and j = 1� � � � � J. Note that the left-hand side of the first equation in
(4) represents a conditional mean return for holding security i. If κij = 0 for all j, that is,
if there is no risk for this asset’s payoffs, then −υt is the resultant return process, which

thereby stands for the instantaneously riskless rate denoted as rft . As mentioned earlier,
this equation describes the important characteristics of risk–return trade-off via con-
ditional covariation between an asset’s return and the discount factor π. Upon setting

υt = −r
f
t , it follows immediately from (4) that

μit − r
f
t =

J∑
j=1

βij

(
νjt − r

f
t

)
� (5)

where βij = κij/ρj for i = 1� � � � � I and j = 1� � � � � J.
Now we have from (2), (3), and (5) that

dYit

Yit
= αi dt +

J∑
j=1

βij
dXjt

Xjt
+ dUit (6)

with αi = 0 and

dUit = σt

K∑
k=1

λik dWkt +ωit dZit� (7)

if we define

dYit

Yit
= dPit

Pit
− r

f
t dt�

dXjt

Xjt
= dQjt

Qjt
− r

f
t dt

for i = 1� � � � � I and j = 1� � � � � J.
Our subsequent empirical analysis will be based on the model given by (6) and (7).

Imposing the loadings of all factors other than the market factor to be zero gives us the
conventional CAPM regression in continuous time. One important restriction given in
this model is that the constant coefficient αi is not present for all i in our theoretical
models. Since we only use excess returns for both factors and test assets, αi = 0 must
hold for all i. In this vein, we call α the pricing errors throughout the paper, where we
write α = (α1� � � � �αI)

′. Testing the hypothesis of α = 0 has been a focal point of empir-
ical asset pricing literature. Unlike the conventional discrete time CAPM or multifactor
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models, note that our continuous-time model offers an error structure derived from the
underlying asset pricing model. Therefore, the estimation of model (6) and the related
statistical inference require further elaboration. To tackle this, we develop our econo-
metric method and procedure below.13

2.2 Regression formulation

Our model (6) is formulated as an instantaneous regression, where both the regressand
and regressors are measured over an infinitesimal time interval. The regressions for ob-
servations collected at any prescribed time intervals may easily be obtained from (6). If
time series observations are collected over the intervals defined by

0 ≡ T0 < T1 < · · · < TN ≡ T (8)

over the time interval [0�T ], then we have the corresponding regression model

∫ Tn

Tn−1

dYit

Yit
= αi(Tn − Tn−1)+

J∑
j=1

βij

∫ Tn

Tn−1

dXjt

Xjt
+ (UiTn −UiTn−1) (9)

with

UiTn −UiTn−1 =
K∑

k=1

λik

∫ Tn

Tn−1

σt dWkt +
∫ Tn

Tn−1

ωit dZit (10)

for n = 1� � � � �N . Herein, we consider both fixed and random sampling schemes. For
the fixed sampling scheme, we set Tn − Tn−1 to be nonrandom and constant for all
n = 1� � � � �N , like a month or a year. Instead, we define (Tn) to be a sequence of stop-
ping times, or a time change, for the random sampling scheme. In particular, we will
use the time change given by the volatility process σ in the common volatility factor. As
discussed earlier, σ is the volatility of the market factor introduced below (3).

For our random sampling scheme, we introduce a process S so that

dSt = dX1t

X1t
= dQ1t

Q1t
− r

f
t dt (11)

denotes the instantaneous market excess return, and we use its quadratic variation [S]
to define the time change (Tn) as

[S]Tn − [S]Tn−1 =
∫ Tn

Tn−1

σ2
t dt = Δ (12)

13In our model, the error process U is assumed to be a continuous process. However, the assumption
can be relaxed and we may allow for the presence of jumps. This will be discussed in the next section.
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for n = 1� � � � �N , where Δ is a fixed constant.14 This compares with the corresponding
fixed sampling scheme (Tn) given by

Tn = (n/N)T (13)

for n = 1� � � � �N . In particular, if we set

Tn = nΔ= (n/N)[S]T � (14)

then the random sampling scheme in (12) yields the same number of observations as
the fixed sampling scheme in (13) for regression (9). In what follows, we will often sim-
ply refer to the sampling schemes in (12) with (14) and (13) as the random- and fixed
sampling schemes, respectively.

The motivation for our random sampling scheme (12) is to effectively deal with the
endogenous nonstationarity of market volatility σ in the common error component of
(10). It is well known and clearly demonstrated in the literature that the market volatil-
ity has an autoregressive root that is very close to unity. Also, its leverage effect on the
market excess return is quite strongly negative. The reader is referred to Jacquier, Pol-
son, and Rossi (1994, 2004) and Kim, Lee, and Park (2009) for more discussions on the
nonstationarity and leverage effect of market volatility. In this situation, the usual law
of large numbers and central limit theory do not hold and hence the usual chi-square
tests for inference in regression (9) are invalid as shown in, for example, Park (2002).
This poses a serious problem in analyzing Fama–French regressions. Under the random
sampling scheme, however, we have

∫ Tn

Tn−1

σt dWkt =d N(0�Δ) (15)

for all n = 1� � � � �N and k = 1� � � � �K, and that they are independent of each other. Here
and elsewhere we use N to signify normal distribution. This is due to a theorem by
Dambis, Dubins, and Schwarz, which will be called the DDS theorem in this paper. Of
course, the normality in (15) only applies to the random sampling scheme.

The idiosyncratic error component of (10) is expected to behave much more nicely.
Under Assumption 2.1, (

∫ Tn
Tn−1

ωit dZit) becomes independent across i and has vari-
ance

E

(∫ Tn

Tn−1

ωit dZit

)2

= E

(∫ Tn

Tn−1

ω2
it dt

)
(16)

for each i = 1� � � � � I. In what follows, we make the following assumption.

14The choice of Δ is an important problem, and the reader is referred to Park (2009) for more discussions
on this subject. For the empirical analysis in the paper, we simply set Δ so that the random sampling scheme
has the same number of observations N as the fixed sampling scheme at monthly frequency. Strictly speak-
ing, this is not allowed in our theoretical framework, which requires Δ to be a nonrandom constant.
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Assumption 2.2. For all i = 1� � � � � I, we have

1
N

N∑
n=1

∫ Tn

Tn−1

ω2
it dt →p �2

i

as N → ∞, for some �2
i > 0.

Assumption 2.2 is not stringent and should be satisfied widely. It holds under mild
regularity conditions if, for instance, the volatilities generated by the idiosyncratic com-
ponent over the random sampling intervals are asymptotically stationary. In particu-
lar, the presence of nonstationarity is not allowed in the idiosyncratic error component
of our model. Note that we still permit endogeneity in (ωi). In the special case where
the idiosyncratic volatilities (ωi) are independent of the driving Brownian motions (Zi),
we have

∫ Tn
Tn−1

ωit dZit =d MN(0�
∫ Tn
Tn−1

ω2
it dt), where MN denotes mixed normal distribu-

tion.15

For the statistical inference in our model, we need an estimate for the error covari-
ance matrix for regression (9). It is easy to obtain the asymptotic error covariance matrix
implied by our error component model (10). Under the random sampling scheme, note
that we have

E(UiTn −UiTn−1)
2 = Δ

K∑
k=1

λ2
ik +E

(∫ Tn

Tn−1

ω2
it dt

)
�

E(UiTn −UiTn−1)(UjTn −UjTn−1)= Δ

K∑
k=1

λikλjk

for all 0 ≤ i ≤ I and 0 ≤ i �= j ≤ I. Therefore, if we define UTn − UTn−1 = (U1Tn −
U1Tn−1� � � � �UITn −UITn−1)

′, then we would expect to have

E(UTn −UTn−1)(UTn −UTn−1)
′ ≈ Σ

asymptotically, where Σ is a matrix with the ith diagonal entry Δ
∑K

k=1 λ
2
ik + �2

i and

(i� j)th off-diagonal entry Δ
∑K

k=1 λikλjk. Subsequently, we call Σ the asymptotic error
covariance matrix for our regression (9).16

The asymptotic error covariance matrix Σ can be estimated using two different ap-
proaches. As in the conventional approach, we may estimate Σ by

Σ̂= 1
N

N∑
n=1

(UTn −UTn−1)(UTn −UTn−1)
′� (17)

15This will be the case, if there is no leverage effect on the asset return generated from the idiosyncratic
error component.

16For K finite and known, our model imposes some restrictions on the asymptotic error covariance ma-
trix Σ. However, these restrictions will not be exploited here, since the inference on K is beyond the scope
of this paper.
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Clearly, we have Σ̂ →p Σ as N → ∞, if we assume some extra regularity conditions to
ensure that

1
N

N∑
n=1

(∫ Tn

Tn−1

ωit dZit

)2

→p �2
i �

(18)
1
N

N∑
n=1

(∫ Tn

Tn−1

ωit dZit

)(∫ Tn

Tn−1

ωjt dZjt

)
→p 0

for all i and for all i �= j. It is easy to see that (18) holds under appropriate assumptions,
due in particular to (16), Assumption 2.2, and the independence of (

∫ Tn
Tn−1

ωit dZit) across
i = 1� � � � � I. Furthermore, we may estimate the asymptotic error covariance matrix Σ

using

Σ̃= 1
N

∫ T

0

[
U�U ′]

t
dt� (19)

where [U�U ′] is the matrix of quadratic variations and covariations of U = (U1� � � � �UI)
′.

Note that

[Ui]Tn − [Ui]Tn−1 = Δ

K∑
k=1

λ2
ik +

∫ Tn

Tn−1

ω2
it dt�

[Ui�Uj]Tn − [Ui�Uj]Tn−1 = Δ

K∑
k=1

λikλjk

for all 1 ≤ i ≤ I and 1 ≤ i �= j ≤ I. Therefore, we have Σ̃ →p Σ as N → ∞, which holds
without any extra regularity conditions.

Due to Assumption 2.1, the usual condition for exogeneity of the regressors in (9)
holds and the OLS procedure is valid for regression (9) for our random sampling scheme
as well as the fixed sampling scheme. To see this more clearly, we let

Fn = σ
(
(Uit� i = 1� � � � � I� t ≤ Tn)� (Xjt� j = 1� � � � � J� t ≤ Tn+1)

)
�

n = 1� � � � �N , for our fixed or random sampling scheme (Tn). Then we may easily see that
the regressors (

∫ Tn
Tn−1

dXjt/Xjt), j = 1� � � � � J, are all Fn−1-measurable, and the regression
errors (UiTn −UiTn−1) satisfy the orthogonality condition

E[UiTn −UiTn−1 |Fn−1] = 0

for i = 1� � � � � I, as required for the validity of the OLS regression in (9). Recall in particular
that we assume in Assumption 2.1 that (Wk) are Brownian motions independent of (Vj)
conditional on σ .

Some discussions are in order on how we deal with the presence of jumps. Our the-
oretical development thus far assumes that the error process is given by a process with
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a continuous sample path almost surely (a.s.). However, for the validity of our econo-
metric methodology, we do not need to assume that the error process is continuous.
Indeed, our random sampling scheme is well expected to remove endogenous and non-
stationary volatilities even in the presence of jumps. In this case, the DDS theorem does
not apply and the regression errors are not in general normally distributed. Neverthe-
less, our approach remains valid in general, since we only require asymptotic normality
(not normality in finite samples) of the regression errors after time change. To be more
consistent with our theoretical model, however, we assume that jumps are generated
independently from the continuous part of the model and we do not include any infor-
mation on the model parameters. Therefore, jumps are regarded as pure noise. Accord-
ingly, for our empirical analysis, we simply get rid of the observations that appear to be
contaminated with jumps.17

3. Implementation, statistical theory, and simulation

3.1 Statistical procedure

We introduce the actual statistical procedure to analyze our model. We assume through-
out the section that a sample providing observations for

(Yi�mδ�Xj�mδ) (20)

is available for m = 0� � � � �M with δ time interval for each of i = 1� � � � � I and j = 1� � � � � J.
Moreover, from (Xi�mδ) and (r

f
mδ), we obtain the observations (Smδ) for the excess mar-

ket return process S introduced in (11) as

Smδ = X1�mδ −X1�(m−1)δ

X1�(m−1)δ
= Q1�mδ −Q1�(m−1)δ

Q1�(m−1)δ
− r

f
(m−1)δδ

for m = 1� � � � �M . We let Mδ = T , so that T is the horizon of the sample with size M col-
lected at δ time interval. Our subsequent procedure is based on the asymptotic theory
requiring δ→ 0 and T → ∞. In particular, δ should be small relative to T .18

We rewrite our model (9) as

yni = αicn +
J∑

j=1

βijxnj + uni� (21)

17For our empirical analysis, we use a test by Lee and Mykland (2008) to find the locations of jumps.
Once we find their locations, we identify the sampling intervals to which they belong and simply discard
the corresponding regression samples. Of course, this pretesting on jumps would render the size of the
subsequent test to deviate from its nominal. This is, however, ignored for simplicity.

18We use daily observations over approximately 45 years for the empirical analysis in this paper, for
which we believe our asymptotics are highly suitable. Of course, our theory allows for observations col-
lected at intraday ultrahigh frequencies. However, they appear to introduce much more noise—presumably
due to market microstructure—than signal to our inference procedure, especially if used over a long sam-
pling horizon.
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where

yni =
∫ Tn

Tn−1

dYit

Yit
� cn = Tn − Tn−1�

(22)

xnj =
∫ Tn

Tn−1

dXjt

Xjt
� uni = UiTn −UiTn−1

for n = 1� � � � �N and i = 1� � � � � I. Clearly, we cannot run regression (21) directly in most
cases, since we do not have observations in continuous time.

To implement our approach based on regression (21) under the random sampling
scheme, we need to estimate the time change (Tn). First, we use

[S]δt =
∑
mδ≤t

(Smδ − S(m−1)δ)
2

to estimate [S]t for each t ∈ [0�T ], upon noticing that if δ is small enough relative to T , we
have [S]δ ≈ [S] over [0�T ].19 Once we obtain an estimate [S]δ of [S], the corresponding
estimate of the time change (Tn) may easily be obtained, accordingly as in (12), for a
prescribed value of Δ. We propose the estimate (Tδ

n ) of (Tn), which is given by

Tδ
n = δargmin

1≤�≤M

∣∣∣∣∣
�∑

m=1

(Smδ − S(m−1)δ)
2 − nΔ

∣∣∣∣∣� (23)

and define Mn = δ−1Tδ
n for each n = 1� � � � �N . For the fixed sampling scheme, we may

set Mn = δ−1Tn with Tn defined in (13).
Now we consider the discretized version of regression (21),

yδni = αic
δ
n +

J∑
j=1

βijx
δ
nj + uδni� (24)

where (yδni), (cδn), and (xδnj) are, respectively, the discretized versions of (yni), (cn), and
(xnj) defined in (22) that are given by

yδni =
Mn∑

m=Mn−1+1

Yi�mδ −Yi�(m−1)δ

Yi�(m−1)δ
� cδn = Tδ

n − Tδ
n−1�

(25)

xδnj =
Mn∑

m=Mn−1+1

Xj�mδ −Xj�(m−1)δ

Xj�(m−1)δ
�

and (uδni) is defined by uδni = UiTδ
n

− UiTδ
n−1

for n = 1� � � � �N and i = 1� � � � � I. It is quite

obvious that (yδni), (cδn), and (xδnj) get close to (yni), (cn), and (xnj) under appropriate

19See Foster and Nelson (1996) for some relevant asymptotics. Here we just use the integrated variance as
an estimate for quadratic variation. In the presence of market microstructure noise, however, we may want
to employ more sophisticated methods in, for example, Barndorff-Nielsen, Hansen, Lunde, and Shephard
(2008), Zhang (2006), and Zhang, Mykland, and Aït-Sahalia (2005).
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conditions as δ → 0 and T → ∞. Note that we have a sample of size N to fit regression
(24), which is formulated using a sample of size M in (20) with M >N . We call the latter
the original sample, and the former the regression sample.

Our regression (24) can be analyzed exactly as the standard multivariate regres-
sion model. In particular, the single equation OLS estimators for (αi) and (βij) are fully
efficient asymptotically. Therefore, we may run the OLS regression on (24) for each
i = 1� � � � � I. This does not require the estimation of the asymptotic error covariance ma-
trix Σ introduced earlier in the previous section. However, we need to estimate Σ for the
test of a joint hypothesis involving multiple regression coefficients across i = 1� � � � � I.
For the estimation of Σ in regression (24), we may follow the usual two step procedure:
In the first step, we estimate (αi) and (βij) for each i by the single equation method.
Then we use the fitted residuals in the second step to estimate Σ by

Σ̂δ = 1
N

N∑
n=1

ûδnû
δ′
n � (26)

where ûδn = (ûδn1� � � � � û
δ
nI)

′ with (ûδni) being the fitted residual from regression (24) for
equation i.

The error variance estimate Σ̂δ is expected to behave well only when N 
 I, that is,
the size of the regression sample is substantially bigger than the number of cross sec-
tional units.20 In our approach, there is another way to estimate the asymptotic error
variance Σ using the original sample. The estimator would be useful especially when
N is small relative to I.21 It is indeed well defined even if N < I, as long as the size M

of the original sample is large enough. To introduce the estimator more explicitly, we
let (α̂δ

i ) and (β̂δ
ij) be the OLS estimators of (αi) and (βij) obtained from regression (24).

Moreover, we define

Ûi�mδ − Ûi�(m−1)δ = Yi�mδ −Yi�(m−1)δ

Yi�(m−1)δ
− α̂δ

i δ−
J∑

j=1

β̂δ
ij

Xj�mδ −Xj�(m−1)δ

Xj�(m−1)δ

and

Ûmδ − Û(m−1)δ = (Û1�mδ − Û1�(m−1)δ� � � � � ÛI�mδ − ÛI�(m−1)δ)
′�

Then we may estimate Σ by

Σ̃δ = 1
N

M∑
m=1

(Ûmδ − Û(m−1)δ)(Ûmδ − Û(m−1)δ)
′ (27)

as in (19), and use it in place of Σ̂δ in (26) that is based on (17).

20The estimator Σ̂δ defined in (26) even has a rank deficiency and becomes singular if N < I.
21Suppose, for instance, we run regressions at yearly frequency, when the data are available at daily fre-

quency, for 40 years on the panel consisting of 25 cross sectional units.
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In the CAPM and Fama–French regressions, it is one of the main interests to test for
the hypothesis

H0 :α1 = · · · = αI = 0� (28)

The rejection of the hypothesis implies that the proposed model is not a true model and
presumably requires a new factor. The Wald test for the hypothesis can be easily for-
mulated in our model (24), which may simply be regarded as the classical multivariate
regression. The test statistic τδ(α) is defined by

τδ(α) = (
cδ′cδ − cδ′Xδ

(
Xδ′Xδ

)−1
Xδ′cδ

)
α̂δ′Σ̄δ−1α̂δ� (29)

where cδ is an N-dimensional vector with cδn as its nth component and Xδ is an N × J

matrix with xδnj as its (n� j)th element, Σ̄δ = Σ̂δ or Σ̃δ, and α̂δ = (α̂δ
1� � � � � α̂

δ
J)

′. As will be

shown later, the test statistic τδ(α) has a chi-square limit distribution with I degrees of
freedom. It is also possible to use F distribution after an appropriate adjustment for the
degrees of freedom, as in Gibbons, Ross, and Shanken (1989).22 We may similarly test
the hypothesis

H0 :β1j = · · · = βIj (30)

for some factor j, using the statistic

τδ(βj)= (
xδ′
j x

δ
j − xδ′

j X
δ
j

(
Xδ′

j Xδ
j

)−1
Xδ′

j xδj
)
β̂δ′
j Σ̄

δ−1β̂δ
j � (31)

where xδj is an N-dimensional vector with xδnj as its nth component, Xδ
j is an N × J

matrix defined by deleting the jth column from Xδ and adding cδ as one of its columns,
and β̂δ

j = (β̂1j� � � � � β̂Ij)
′. The test statistic τδ(βj) is also distributed asymptotically as chi-

square with I degrees of freedom.
There are various methods developed in the literature that are comparable to

our procedure in this paper. Andersen, Bollerslev, Diebold, and Wu (2006), Barndorff-
Nielsen and Shephard (2004), and Todorov and Bollerslev (2010) all consider the infer-
ential problem in a continuous time regression model similar to ours. Indeed, we may
directly apply their methods to estimate (βi) in our regression model (6).23 However,
their approach is different from ours in that they fix T and let δ → 0. They focus on
the analysis of quadratic covariations of the regressands and regressors in continuous

22Strictly speaking, their test, often referred to as the GRS test in the literature, is not applicable in our
context, since we do not assume normality. Of course, the estimation samples would be closer to normal
under the random sampling scheme, and it would be more appropriate to use the random sampling scheme
for the GRS test. We do not report their test in this paper, however, since in our case the degrees of freedom
adjustment is negligible and their tests always yield the same results qualitatively as the Wald tests.

23As shown in Barndorff-Nielsen and Shephard (2004), (βi) in (6) can be estimated consistently simply
by the usual high-frequency regression without constant term, if δ → 0 with T fixed. It can be shown that the
regression continues to yield a consistent estimate for (βi) under our setup requiring T → ∞. The inclusion
of constant term (αi) does not affect the consistency of the estimate for (βi), as long as the integrated
regressors (

∫ T
0 dXjt/Xjt) are not exceedingly explosive.
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time over a fixed time interval. It would therefore be more appropriate to apply their
methods for ultrahigh frequency samples observed over a relatively short time horizon.
In contrast, our methodology would be more useful to analyze continuous time regres-
sion models over longer time horizons, since we require T → ∞ as well as δ → 0. For
the inference on constant term (αi) in regression (6), none of the aforementioned ex-
isting methods is applicable and it is absolutely necessary to utilize samples over long
time horizons. In particular, all other existing methods are not applicable to test for the
hypothesis (28).

The original Fama–French regressions and their variants have largely been analyzed
in discrete time models using low-frequency observations spanning relatively long time
horizons. It is possible to accommodate the presence of nonstationary stochastic volatil-
ities in a discrete time framework. In fact, various discrete time regression models with
nonstationary stochastic volatilities are suggested and studied by several authors in-
cluding Hansen (1995), Chung and Park (2007), and Xu (2007). In particular, we may
apply the methodologies developed in Hansen (1995) and Chung and Park (2007) to do
inference in appropriate discrete time models corresponding to our continuous-time
model (6). However, the form of nonstationary stochastic volatility we may consider in
discrete time model is rather limited and somewhat unrealistic. The required statisti-
cal procedure to properly deal with the presence of nonstationary stochastic volatility
is nevertheless quite complicated and difficult to implement. On the other hand, our
continuous time approach permits truly general nonstationary stochastic volatility, and
provides a very simple yet extremely powerful methodology to effectively deal with it.

3.2 Asymptotic theory

In this section, we develop the asymptotic theory for our statistical procedure. Under
Assumptions 2.1 and 2.2, our choice of random sampling time (Tn) yields a regression
model with errors, which are devoid of any potential endogenous nonstationarity in
volatility and have asymptotically stationary volatilities. Note in particular that the re-
gression errors (un), un = (un1� � � � � unI)

′, are approximately multivariate normal with
mild heterogeneity, even in the presence of a very general form of stochastic volatility
on the underlying error process. Moreover, as discussed earlier, the usual exogeneity of
regressors holds under Assumption 2.1. Consequently, assuming some mild and well ex-
pected technical conditions, we may easily show that the conventional asymptotics are
applicable for our regression in continuous time. This will not be done in this paper.
For expositional convenience, we just introduce necessary high-level assumptions in-
stead of laying out the details of required technical conditions. In what follows, we let
yn = (yn1� � � � � ynI)

′ and zn = (cn�x
′
n)

′ with xn = (xn1� � � � � xnJ)
′.

Assumption 3.1. We assume that N−1 ∑N
n=1 znz

′
n →p Λ > 0, N−1 ∑N

n=1 unu
′
n →p Σ > 0,

and N−1/2 ∑N
n=1 znu

′
n →d N(0�Λ⊗Σ) as N → ∞.

Assumption 3.1 is completely standard for regression asymptotics, and it is straight-
forward to show that the OLS procedure yields the conventional asymptotics for our
regression (21) defined with the random sampling scheme.
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It is intuitively clear that the regression (24) constructed from discrete samples re-
duces to our original regression (21) based on continuous time samples if δ decreases
to zero. Now we introduce a set of sufficient conditions to more formally establish the
asymptotic equivalence of these two regressions.

Assumption 3.2. We let (a) aT (t − s) ≤ ∫ t
s σ

2
u du ≤ bT (t − s) for all 0 ≤ s ≤ t ≤ T with

(aT ) and (bT ) depending only on T , (b) supt≥0 |νjt − r
f
t | = Op(1) for all j = 1� � � � � J,

(c) inft Xjt > 0 and sup0≤t≤T Xjt = Op(cT ) for all j = 1� � � � � J with (cT ) depending
only on T , and (d) supt≥0 ωit = Op(1) for all i = 1� � � � � I. Furthermore, we set (e) δ =
O(T−4−ε(a2

T /b
7
T c

4
T )) for some ε > 0.

The conditions in Assumption 3.2 are very mild and expected to hold widely, perhaps
except (e), which is not essential and is made to simplify the proofs.24 Under Assump-
tion 3.2, we have the following theorem.

Theorem 3.1. For all i = 1� � � � � I and j = 1� � � � � J,

max
1≤n≤N

∣∣cδn − cn
∣∣� max

1≤n≤N

∣∣xδnj − xnj
∣∣� max

1≤n≤N

∣∣uδni − uni
∣∣� max

1≤n≤N

∣∣yδni − yni
∣∣ = op

(
N−1/2)

as N → ∞.

It follows trivially from Theorem 3.1 that all the estimators and test statistics con-
sidered in this paper from regression (24) are asymptotically equivalent to those from
regression (21).

Moreover, under Assumptions 3.1 and 3.2, we have the following corollary.

Corollary 3.2. We have

Σ̂δ = Σ̂+Op
(
N−1/2)� Σ̃δ = Σ̃+Op

(
N−1/2)

for all large N .

In particular, Σ̂δ and Σ̃δ obtained from regression (24) are consistent. In fact, it is
straightforward to show that the infeasible estimators Σ̂ and Σ̃ based on continuous time
samples are consistent under Assumptions 3.1 and 3.2.

Finally, under the null hypotheses (28) and (30), we may easily deduce the following
corollary from Theorem 3.1 and Corollary 3.2.

24It is not meaningful to see whether or not this condition holds by directly comparing δ and T , since the
comparison is dependent on the time unit. Suppose, for instance, we have daily observations over 1 year.
If the annual time unit is used, we have δ ≈ 1/250  1 = T−r for any r > 0 and the condition appears to
hold. If the daily time unit is used, however, we have δ= 1 
 (1/250)r ≈ T−r for any r > 0 and the condition
clearly fails to hold. As shown in our simulation, we do not need δ to be very small. Our procedure works
satisfactorily for δ = 1/250, and acceptably well even for δ = 1/12, corresponding, respectively, to daily and
monthly observations, with T = 50 or larger.
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Corollary 3.3. We have

τ(α)→d χ
2
I� τ(βj) →d χ

2
I

for j = 1� � � � � J, as N → ∞.

Therefore, under the null hypotheses, the Wald statistics τ(α) and τ(βj) have the
usual chi-square limit distribution with I degrees of freedom.

3.3 Simulation

In this section, we execute a small scale simulation and present our simulation result
on the relative performance of our approach based on the random sampling scheme
and the conventional approach with the fixed sampling scheme. For our simulation, we
consider the continuous time model given by

dYit

Yit
= αi dt +βi

dXt

Xt
+ dUit

with

dXt

Xt
= σt dVt and dUit = σt dWt +ωit dZit

for i = 1�2, where (Wt), (Vt), (Z1t ), and (Z2t ) are independent standard Brownian mo-
tions, and where ωit = viσt with vi = 0�1 or 1�0 for i = 1�2, and

σt = 1 + 5|Vt + cWt |
with c = 0�1�3�or 5.25,26 The value of vi for i = 1�2 determines the relative magnitude
of the idiosyncratic volatility process (ωit) to the common volatility process (σt). We set
v1 = v2 in our simulation and denote their common value by v in what follows. The com-
mon volatility process (σt) becomes exogenous in case c = 0, whereas it is endogenous
in all other cases.

In our simulation, we consider the Wald tests for the null hypothesis of H0 :α1 = α2 =
0 to compare our approach based on the RT regression with the conventional approach
based on the FT regression, where FT and RT refer, respectively, to the fixed time and

25We believe that our volatility model here generates realistic samples. The relative performance of our
procedure depends only on the ratio max(σt)/min(σt) of the volatility process (σt), not on its absolute level.
The estimated value of this ratio using the daily realized volatilities obtained from the 5 minute Standard
and Poors (S&P) data for the period 2000–2012 is approximately 41, while our volatility model yields the
average values 22, 31, 68, and 110 of the ratio, respectively, for each value of c used in our simulation.

26Here we specify σt = a + b|Bt | with some constants a and b and Brownian motion B. In our simu-
lations, we also consider (σt) generated as σt = a + b|At |, where (At) is the Ornstein–Uhlenbeck process
given by dAt = −κAt dt+dBt with κ= κ̄/T for some constant κ̄ > 0 fixed. However, we do not report the de-
tails, since the simulation results from this volatility model were exactly the same as expected. Overall, the
advantage of our approach relative to the conventional approach becomes less dominating as the local-
to-zero parameter κ̄ increases and the volatility process becomes more stationary, though our approach
always outperforms the conventional approach.
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random time sampling schemes. We assume that (dY1t/Y1t ), (dY2t/Y2t ), and (dXt/Xt)

are observed at time intervals of length δ over T years. For the reported results, we set
T = 20 and 50, and δ = 1/252 mimicking the daily sampling interval.27 Therefore, in our
simulation, the size of the original samples becomes M = 252T , while that of the esti-
mation sample is given by N = 12T for both fixed and random sampling schemes. For
the fixed sampling scheme, we report the performances of two tests: one based on the
monthly observations of size N and the other on the daily observations of size M , called,
respectively, the FT1 and FT2 regressions. The FT1 regression uses the same number of
regression samples as the RT regression, while the FT2 regression uses the same number
of original samples as the RT regression. As shown in, for example, Jeong and Park (2013)
and Kim and Park (2015), the powers of the Wald tests we consider in our simulation do
not depend on the sample size N or M but on the sampling span T . Therefore, we may
well expect that the tests based on the FT regression would not perform any better even
if we used all M observations. Our simulation results are obtained from 10,000 iterations.

Table 1 compares the sizes of the tests. In the table, we report the actual rejection
probabilities for the 1%, 5%, and 10% Wald tests, for each combination of T = 20�50,
v = 0�1�1�0, and c = 0�1�3�5. In case c = 0 and the volatility process (σt) becomes ex-
ogenous, both the conventional fixed sampling and our random sampling scheme work
well and the Wald tests have no significant size distortions. The actual rejection proba-
bilities of the tests are all reasonably close to their nominal values for all combinations of
T and v we consider in our simulation. If c �= 0 and we have endogeneity in the volatil-
ity process (σt), quite different pictures emerge. In all such cases, the Wald tests with
the conventional fixed sampling scheme produce size distortions, which are generally
nonnegligible and often serious. They tend to underreject the null hypothesis, and this
problem remains and even gets slightly worse as we increase T . In sharp contrast, the

Table 1. Actual sizes of Wald tests.

v = 0�1 v = 1

5 (%) 10 (%) 5 (%) 10 (%)

T c FT1 FT2 RT FT1 FT2 RT FT1 FT2 RT FT1 FT2 RT

20 0 5�8 5�3 6�0 10�8 10�4 11�1 5�7 5�5 6�1 11�0 10�4 11�0
1 4�0 3�7 5�0 8�3 7�9 9�9 4�2 4�0 5�6 9�1 8�4 10�6
3 3�3 3�1 4�7 7�0 6�3 10�0 3�8 3�5 5�1 8�0 7�3 10�0
5 3�3 3�1 4�7 7�1 6�5 10�3 4�1 3�7 5�2 8�5 7�8 10�5

50 0 5�1 4�8 5�4 9�7 9�5 10�6 4�9 4�7 5�7 9�9 9�6 10�8
1 3�9 3�8 5�1 7�9 7�6 10�3 4�1 4�1 5�3 8�8 8�6 10�3
3 3�6 3�6 5�3 7�4 7�2 10�9 3�5 3�4 5�1 7�7 7�3 10�2
5 3�1 3�0 5�1 6�8 6�6 10�4 3�8 3�7 5�4 7�8 7�8 10�7

27We also consider smaller sampling intervals including δ = 1/252 × 1/6 corresponding to the hourly
sampling interval. Our simulation results do not change and remain very similar for any choices of δ once
it becomes smaller than 1/252. Observations at daily frequency seem to be good enough to implement our
methodology.
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actual rejection probabilities of the Wald tests based on our random sampling scheme
are all close to their nominal values regardless of the values of v and c as well as T . As
expected, the size performances of the Wald tests based on the fixed sampling scheme
do not change much regardless of whether or not we use the entire sample.

Figures 1–4 plot the size-adjusted power functions of the 5% Wald test against the
pricing errors αi, where we set α1 = α2 in the range of 0 ≤ α ≤ 50 for α = α1 = α2 as shown
on the horizontal axis, and we consider each combination of T = 20�50 and v = 0�1�1�0.
As before, RT and FT refer, respectively, to the Wald tests based on the RT and FT regres-

Figure 1. Size-adjusted powers of 5% Wald tests: T = 20, v = 0�1.

Figure 2. Size-adjusted powers of 5% Wald tests: T = 20, v = 1.
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Figure 3. Size-adjusted powers of 5% Wald tests: T = 50, v = 0�1.

Figure 4. Size-adjusted powers of 5% Wald tests: T = 50, v = 1.

sions. The power functions obtained from the FT1 and FT2 regressions are virtually the
same, and therefore, we just denote them commonly as FT. In all cases, the test based on
our random time approach outperforms—unambiguously and substantially—the test
with the conventional fixed time approach. It seems clear that the use of the random
sampling scheme significantly improves the discriminatory power of the test. The rela-
tive power of the test using the random sampling scheme tends to increase as c gets big-
ger and as T becomes larger. For example, in the case that α = 10, v = 0�1, and T = 20, the
power of the test based on the random time sampling is 46%, 144%, and 210% bigger for
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each value of c = 1�3�and 5 than that based on the test with the fixed time sampling. The
relative power performance of the random time test may become even more substantial
if we increase T . Indeed, if we set T = 50, for the same values of α = 10 and v = 0�1, its
power becomes 49%, 193%, and 263% bigger, respectively, for c = 1�3�and 5, compared
with the fixed time test. The power of the test decreases uniformly as v increases to v = 1.
However, the relative power performance between the tests with the random sampling
and the fixed sampling schemes is largely unchanged or even becomes more favorable
to the random time test. In fact, in the case that α = 10, v = 1, and T = 20, the power of
the random time test is 42%, 68%, 177%, and 219% bigger than that of the fixed time
test, respectively, for c = 0�1�3�and 5.

4. Data and preliminary analysis

4.1 Data

This section describes the data sets used in our empirical analysis. We make use of decile
portfolios stratified by sizes and book-to-market ratios (B/M). We also use 25 portfo-
lios sorted by sizes and B/M, and 30 industry portfolios. All the data sets are available
at French’s web page.28 For pricing factors, we adopt the market (MKT), the size (SMB
(small minus big)), and the B/M (HML (high minus low)), often referred to as the Fama–
French factors. The data sets cover the period from July 1963 to December 2008, and all
of the returns in the data sets are of daily frequency and are annualized. Table 2 presents
summary statistics of the factors and the corresponding portfolio returns. Specifically,
Panel A reports means and standard deviations of the factors, together with correlations
across each other. A high Sharpe ratio of HML states that buying and holding distressed
firms would have been lucrative investment strategies during this period. In terms of
correlations, both SMB and HML have moderately negative correlations with MKT. Cor-
relation between SMB and HML is small. Panel B of Table 2 reports means and stan-
dard deviations of annualized returns stratified into 10 portfolios. The 11th row in each
group refers to portfolio strategies with long positions of high returns and short posi-
tions of low returns, often called the hedged portfolio returns.29 The size strategy yields
about 1�6% per annum, while the book-to-market strategy earns about 5�6% per annum.
These summary statistics suggest that they are good candidates for pricing factors, as
discussed in the previous literature. How about the volatility structures of these portfo-
lio returns? We delve into this issue in the next subsection.

4.2 Preliminary analysis

Our factor pricing model specified in (6) and (7) imposes some special error structure in
the Fama–French regressions, which motivated us to invent a new methodology. Before

28http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.
29This, respectively, corresponds to (i) the returns from the smallest size (1st group) of market equity

minus the returns from the largest size (10th group) for the size strategy, and (ii) the returns from the highest
B/M (10th group) minus the lowest B/M (1st group) for the book-to-market strategy.

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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Table 2. Summary statistics of factors and portfolio returns.

Panel A: Factors

Correlations

Mean Stdev MKT SMB HML

MKT 0�0446 0�1515 1�0000 −0�2200 −0�4302
SMB 0�0152 0�0798 −0�2200 1�0000 −0�0623
HML 0�0511 0�0746 −0�4302 −0�0623 1�0000

Panel B: Decile Portfolio Returns

Size Mean Stdev B/M Mean Stdev

1 Small 0�0562 0�1267 1 Growth 0�0316 0�1779
2 0�0559 0�1544 2 0�0449 0�1619
3 0�0646 0�1558 3 0�0499 0�1545
4 0�0619 0�1551 4 0�0499 0�1542
5 0�0656 0�1546 5 0�0477 0�1521
6 0�0581 0�1478 6 0�0572 0�1447
7 0�0595 0�1493 7 0�0665 0�1436
8 0�0561 0�1528 8 0�0724 0�1486
9 0�0507 0�1510 9 0�0831 0�1512

10 Big 0�0406 0�1608 10 Value 0�0878 0�1631

1–10 0�0156 0�1230 10–1 0�0562 0�1220

we reexamine the Fama–French regressions using our methodology, it is therefore nec-
essary that we investigate whether various specifications of our model are empirically
justifiable. For this purpose, we consider the conventional three-factor Fama–French
regression, which uses 25 portfolio returns sorted by size and book-to-market ratio as
regressands and Fama–French factors as regressors.

An important implication of Assumption 2.1 is that the error processes (dUi) in (6)
are correlated cross sectionally due to the presence of the common component (dWk).30

To see how much cross-correlations exist among the errors in a typical factor pricing
model, we test for diagonality of the covariance matrix of fitted residuals estimated in the
usual way from the aforementioned conventional Fama–French regression. We use the
residuals from both fixed time regression and our new random time regression, which
was formally introduced in (24), and apply the Lagrange Multiplier (LM) test of diago-
nality suggested by Breusch and Pagan (1980). As can be seen in Table 3, the null of di-
agonality is rejected in both cases, indicating that there exist cross-correlations among
the errors, which may be generated by the common error component (dWk), that is, the
common error component that is not captured by the factors already included.

30Independence of (ωi�Zi) and (ωi) is not likely to be empirically testable by construction. However,
whether there is a common component in the error terms is a fair empirical question, which we illustrate
in Figures 5–6.
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Table 3. Test of diagonality of the variance–covariance matrix.

Model LM Test p-Value

Fixed time regression 7592�9883 0�0000
Random time regression 3530�9053 0�0000

Figure 5. Quadratic variations of market return and fitted residuals. Notes: There are 26 lines
in the figure. The thick darker line represents the quadratic variation series, estimated by the
realized variance series, of the daily excess market returns, and the remaining 25 lines represent
the quadratic variation series of the 25 fitted residuals from Fama–French three-factor regression
on 25 portfolios sorted by 5 size and 5 B/M ratio groups.

Our specification of the pricing formula given in (6) and (7) presumes the presence
of common volatility factor σ in the diffusion terms (dVj) of all pricing factors (dQj/Qj)

specified in (3) and more importantly in the common component (dWk) of the errors
(dUi). Especially, we assume that the common volatility factor σ is given by the volatil-
ity of the excess market return, which is defined from the first pricing factor as in (11). To
see if this assumption is empirically justified, we plot in Figure 5 the quadratic variation
series of daily excess market return along with those of the 25 daily residuals recovered
from Fama–French three-factor regression using the coefficient estimates obtained from
running our random time regression of the same model with monthly observations. It is
clear that the 25 residual quadratic variation series follow closely that of the excess mar-
ket return signified by the dark thicker line, thereby strongly supporting our assumption
that the volatility of excess market return represents the common component of indi-
vidual residual volatilities.

To more carefully investigate the appropriateness of our assumption, we also esti-
mate the instantaneous variances of the 25 fitted residuals and compare them with those
of the excess market returns. Note that the quadratic variation series presented in Fig-
ure 5 can be regarded as the estimates for the integrated variances of the fitted residuals,
and that the instantaneous variances are the time derivatives of integrated variances.
For the actual estimation, we apply the local linear smoothing method to the quadratic
variation series we obtained earlier and compute their time derivatives. We also conduct
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Figure 6. Instantaneous variances of market return and fitted residuals. Notes: The top panel
presents 26 lines, of which the thick darker line signifies the estimated instantaneous variance
series of the daily excess market returns, and the remaining 25 lines represent those of the 25 fit-
ted residuals from the three-factor Fama–French regressions on 25 portfolios sorted by 5 size and
5 book-to-market ratio groups. The instantaneous variances are estimated by the derivatives of
the quadratic variations that we obtain by using the local linear smoothing method with the rule
of thumb bandwidth selection provided by Fan and Gijbels (1996). The bottom panel compares
the estimated instantaneous variance series of the excess market returns (solid line) with that of
the leading factor of the 25 fitted residuals (dashed line).

the principal component analysis to extract the leading factor from the estimates of the
instantaneous variances for the fitted residuals. The leading factor is expected to repre-
sent the nonstationary volatility factor in the fitted residuals. Our results are provided in
Figure 6. The magnitudes of the estimated instantaneous variances of the fitted residu-
als are not exactly identical to those of the market or those of the extracted leading factor.
However, it is rather strongly suggested that they fluctuate together. In particular, their
cycles are remarkably overlapped. For instance, the timings of peaks and troughs for the
instantaneous variance series of the market and the extracted leading factor appear to
coincide perfectly.

We also investigate whether the errors (uni) are orthogonal to the regressors (cn) and
(xnj) in our regression (21), especially under random sampling scheme. Of course, this
is crucial for the validity of the OLS procedure. Indeed, they may be correlated with each
other. It happens, for instance, if the pricing factors (dQj/Qj) in (3) have nonpricing
volatility components (dWk) as well as the pricing volatility components (dVj). To see
whether the orthogonality between the regressors and the regression errors is a plausi-
ble tenet, we run the fixed time regression using monthly observations to estimate the
regression coefficients, and use the estimates to obtain the fitted residuals at the daily
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Table 4. Correlations between residuals and regressors in random time regressions.

Correlation Coefficients |Correlation Coefficients|
(Size, B/M) Alpha MKT SMB HML Alpha MKT SMB HML

(1�1) 0�0483 −0�0373 0�0862 0�0172 0�0483 0�0373 0�0862 0�0172
(1�2) −0�0982 −0�0320 −0�0842 0�0121 0�0982 0�0320 0�0842 0�0121
(1�3) −0�0459 −0�0204 0�1130 −0�0252 0�0459 0�0204 0�1130 0�0252
(1�4) −0�0667 0�0118 0�0811 −0�0685 0�0667 0�0118 0�0811 0�0685
(1�5) 0�0937 0�0013 0�0884 0�0015 0�0937 0�0013 0�0884 0�0015
(2�1) −0�0940 −0�0267 0�0303 −0�0147 0�0940 0�0267 0�0303 0�0147
(2�2) −0�0639 0�0313 0�0904 −0�0956 0�0639 0�0313 0�0904 0�0956
(2�3) 0�0895 0�0801 0�0412 −0�0841 0�0895 0�0801 0�0412 0�0841
(2�4) 0�0035 −0�0104 −0�0062 −0�0369 0�0035 0�0104 0�0062 0�0369
(2�5) −0�1049 0�0581 −0�0854 −0�0761 0�1049 0�0581 0�0854 0�0761
(3�1) −0�0319 0�0096 0�0033 −0�0088 0�0319 0�0096 0�0033 0�0088
(3�2) 0�0251 0�0488 0�1965 −0�1418 0�0251 0�0488 0�1965 0�1418
(3�3) 0�0292 0�0116 0�1070 −0�0940 0�0292 0�0116 0�1070 0�0940
(3�4) 0�0323 0�0749 0�1152 −0�1568 0�0323 0�0749 0�1152 0�1568
(3�5) −0�1181 0�0831 0�0676 −0�0624 0�1181 0�0831 0�0676 0�0624
(4�1) −0�1674 −0�0389 −0�0677 −0�0270 0�1674 0�0389 0�0677 0�0270
(4�2) −0�0564 −0�0432 0�0798 −0�0763 0�0564 0�0432 0�0798 0�0763
(4�3) −0�0025 −0�1101 0�0558 −0�0613 0�0025 0�1101 0�0558 0�0613
(4�4) 0�0346 −0�0127 0�0803 −0�0653 0�0346 0�0127 0�0803 0�0653
(4�5) −0�0298 0�0638 0�0809 −0�0281 0�0298 0�0638 0�0809 0�0281
(5�1) −0�0185 0�0646 0�0378 −0�0837 0�0185 0�0646 0�0378 0�0837
(5�2) −0�0800 0�0139 −0�0186 −0�0580 0�0800 0�0139 0�0186 0�0580
(5�3) 0�0559 0�0339 0�0561 0�0510 0�0559 0�0339 0�0561 0�0510
(5�4) 0�0002 −0�0420 0�0635 −0�0376 0�0002 0�0420 0�0635 0�0376
(5�5) 0�0497 0�0633 0�0699 −0�0855 0�0497 0�0633 0�0699 0�0855

Mean −0�0206 0�0111 0�0513 −0�0522 0�0576 0�0409 0�0723 0�0588
Stdev 0�0682 0�0490 0�0655 0�0482 0�0405 0�0280 0�0398 0�0395

frequency. Then we obtain the time change and compute the sample correlations be-
tween the regressors (cn) and (xnj), and the regression errors (uni), for the random time
regression. If the assumed orthogonality does not hold, then we must have at least some
evidence of nonzero correlation between the regressors and the regression errors under
the random sampling scheme. The results are reported in Table 4. The values of the ac-
tual sample correlations are quite low for all regressors, supporting the validity of OLS in
the random time regressions.

Last, based on all the results, we are ready to check if the volatility structure we im-
pose on error terms is plausible and well treated by the random sampling scheme pro-
posed in the paper. To empirically evaluate this issue, we consider a stochastic volatility
model to measure the degree of persistence in the stochastic volatilities of regression er-
rors in (21). Therefore, we specify uni = √

fi(vni)εni for n = 1� � � � �N and i = 1� � � � � I with
Eε2

ni = 1, where (vni) is the latent volatility factor generated as vni = γivn−1�i+ηni and (fi)

is the volatility function. We use the logistic function for the volatility function fi, and al-
low for nonzero correlation ρi between (εni) and (ηni), which represents the leverage
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Figure 7. Average realized volatility for fitted residuals. Notes: The daily residuals for 25 port-
folios formed with 5 size and 5 book-to-market ratio groups are recovered from Fama–French
three-factor regression using the coefficient estimates obtained from running our random time
regression with monthly equivalent observations. Then we calculate monthly (fixed time) and
monthly equivalent (random time) realized volatility for 25 series to get the average realized
volatility in both fixed and random time.

effect.31 The stochastic volatility model is fitted for each i using the fitted residuals from
regression (24) based on the random sampling scheme; the latent volatility factor is ex-
tracted using the conventional density-based Kalman filter method. For comparison, we
also estimate the stochastic volatility model using the fitted residuals from the fixed time
regression. The extracted volatility factors are given in Figure 7, and the estimated values
of the autoregression (AR) coefficients (γi) and the leverage effects (ρi) of the extracted
volatility factors are presented in Table 5.

It seems evident that the extracted volatility factors of the residuals from random
time regressions are not persistent. Note that the volatilities of the individual portfo-
lios consist of both the nonstationary common trend and stationary idiosyncratic com-
ponents, and only the nonstationary common component is corrected via our random
sampling method. Thus, one may expect that the estimated AR coefficients in this case
reflect only the stationary component of the extracted volatilities. Indeed, the average
of the estimated AR coefficients is around 0�804 in the random time, which is stationary.
This is in sharp contrast with the volatility factors extracted from the fixed time residu-
als, most of which have the estimated AR coefficient very close to unity. In addition, the
observed high persistence of the volatility factors extracted from the fixed time residu-
als is quite similar to that of the fixed time excess market return, as can be seen in the
left-hand-side panel of Figure 8. The estimated AR coefficient of the fixed time market
volatility factor is 0�6914.32 On the other hand, the AR coefficient of the extracted volatil-
ity factor from the time changed market return is much smaller, indeed close to zero, and
its sample path clearly shows no persistence as displayed in the right-hand-side panel of

31The reader is referred to Kim, Lee, and Park (2009) for more details about the stochastic volatility model
and estimation methodology we use in the paper.

32This is also consistent with the well known fact that the stochastic volatility of market return is highly
persistent. See aforementioned references for the nonstationarity in stock return volatilities.
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Table 5. AR coefficients and leverage effects of extracted volatility factors.

Fixed Time Random Time

(Size, B/M) Gamma Rho Gamma Rho

(1�1) 0�929 (0�014) −0�140 (0�149) 0�636 (0�039) −0�036 (0�138)
(1�2) 0�975 (0�011) 0�163 (0�324) 0�964 (0�011) 0�409 (0�000)
(1�3) 0�932 (0�018) 0�034 (0�190) 0�893 (0�023) 0�049 (0�153)
(1�4) 0�988 (0�008) −0�115 (0�273) 0�764 (0�028) 0�477 (0�130)
(1�5) 0�960 (0�014) −0�449 (0�395) 0�589 (0�037) 0�120 (0�216)
(2�1) 0�937 (0�015) −0�100 (0�172) 0�955 (0�013) −0�181 (0�185)
(2�2) 0�921 (0�024) 0�208 (0�167) 0�915 (0�019) −0�065 (0�161)
(2�3) 0�918 (0�022) 0�018 (0�172) 0�927 (0�019) −0�175 (0�139)
(2�4) 0�929 (0�023) −0�460 (0�462) 0�636 (0�041) −0�111 (0�145)
(2�5) 0�905 (0�019) −0�023 (0�203) 0�426 (0�038) −0�033 (0�015)
(3�1) 0�964 (0�012) 0�006 (0�241) 0�906 (0�020) 0�269 (0�236)
(3�2) 0�980 (0�011) −0�533 (0�543) 0�975 (0�011) −0�210 (0�190)
(3�3) 0�943 (0�017) −0�231 (0�201) 0�881 (0�020) −0�213 (0�183)
(3�4) 0�908 (0�021) −0�074 (0�150) 0�307 (0�049) 0�031 (0�117)
(3�5) 0�946 (0�015) 0�101 (0�176) 0�725 (0�036) −0�029 (0�117)
(4�1) 0�961 (0�012) −0�085 (0�177) 1�000 (0�005) 0�134 (0�207)
(4�2) 0�941 (0�015) −0�097 (0�145) 0�921 (0�019) −0�114 (0�156)
(4�3) 0�952 (0�013) −0�345 (0�195) 0�727 (0�028) −0�095 (0�138)
(4�4) 0�871 (0�027) 0�170 (0�166) 0�804 (0�025) 0�007 (0�325)
(4�5) 0�967 (0�009) −0�330 (0�298) 0�811 (0�023) 0�281 (0�182)
(5�1) 0�893 (0�019) −0�378 (0�170) 0�963 (0�012) −0�252 (0�177)
(5�2) 0�942 (0�016) 0�276 (0�164) 0�835 (0�030) 0�313 (0�152)
(5�3) 0�955 (0�012) 0�067 (0�186) 0�999 (0�008) −0�177 (0�264)
(5�4) 0�942 (0�016) −0�056 (0�184) 0�696 (0�038) −0�321 (0�146)
(5�5) 0�952 (0�014) −0�211 (0�163) 0�837 (0�024) −0�117 (0�161)

Average 0�941 (0�016) −0�103 (0�227) 0�804 (0�025) −0�002 (0�161)

Figure 8. Putting things together, the empirical results confirm that our volatility setup
is realistic and properly handled with the random sampling scheme.

5. Reexamination of Fama–French regressions

5.1 Tests of the CAPM

This section examines the CAPM regressions using daily portfolio returns. First two sets
consist of 11 portfolios, 10 of which are sorted out by a firm characteristic (sizes or B/M
ratios) and the 11th of which refers to the hedge portfolio explained in the previous sec-
tion. The next set consists of 30 industry portfolios. Finally, the last data set comprises
the traditional 25 portfolios sorted by sizes and B/M ratios. As discussed in Section 2,
we run regression (9) under the two sampling schemes: fixed time and random time. In
the case of the fixed time sampling, we construct monthly data by integrating portfolio
returns over each month. For the random time sampling scheme, we follow (12) and set
Δ at the level of quadratic variation comparable to the average, monthly excess market
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Figure 8. Realized volatility from excess market return. Notes: The excess market return series
is first demeaned using nonparametric local linear regression before we estimate realized volatil-
ity. The AR coefficients of the realized volatility are 0�6914 under the fixed time and −0�0773 under
the random time scheme.

Table 6. Test of CAPM on size portfolios.

Fixed Time Random Time

Size Alpha Beta Alpha Beta

1 Small 0�0045 (0�0205) 1�0772 (0�0394) 0�0533 (0�0174) 1�0128 (0�0421)
2 0�0047 (0�0170) 1�1564 (0�0326) 0�0273 (0�0142) 1�1302 (0�0343)
3 0�0135 (0�0145) 1�1536 (0�0279) 0�0352 (0�0121) 1�1216 (0�0294)
4 0�0141 (0�0135) 1�1231 (0�0259) 0�0315 (0�0109) 1�1067 (0�0264)
5 0�0185 (0�0113) 1�1048 (0�0218) 0�0335 (0�0095) 1�0969 (0�0229)
6 0�0118 (0�0097) 1�0789 (0�0185) 0�0205 (0�0081) 1�0716 (0�0197)
7 0�0118 (0�0081) 1�0798 (0�0156) 0�0174 (0�0067) 1�0533 (0�0162)
8 0�0098 (0�0070) 1�0695 (0�0134) 0�0091 (0�0058) 1�0476 (0�0140)
9 0�0065 (0�0057) 0�9930 (0�0109) 0�0050 (0�0044) 0�9767 (0�0106)

10 Big −0�0010 (0�0054) 0�9217 (0�0104) −0�0074 (0�0044) 0�9403 (0�0106)

1–10 Size strategy 0�0055 (0�0247) 0�1555 (0�0475) 0�0607 (0�0209) 0�0725 (0�0505)

Wald 12�2747 (0�2671) 68�7681 (0�0000)

return. Tables 6–8 report estimates of alphas and betas with standard errors for each
portfolio, followed by the Wald statistic defined in (29) to test if the model is rejected.

Table 6 reports results for the decile size portfolios and the size strategy (1st–10th
decile) portfolio. Beta estimates in both sampling schemes are close to each other and
MKT mildly captures exposures to taking risks for small firms (i.e., beta is higher for
small firms). However, comparing the alpha estimates, one can clearly see that there is a
huge difference between the fixed time and the random time sampling schemes. There
exists a significant risk component that is not captured by the market factor according
to small firms’ alpha estimates in the random sampling case, whereas the fixed sampling
result is much weaker. Somewhat expected, the Wald test statistic states that the CAPM is
not rejected in the case of the fixed sampling regression, while the p-value of the random
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Table 7. Test of CAPM on book-to-market portfolios.

Fixed Time Random Time

Book-to-Market Alpha Beta Alpha Beta

1 Growth −0�0157 (0�0101) 1�0872 (0�0194) −0�0199 (0�0085) 1�1211 (0�0207)
2 0�0019 (0�0075) 1�0101 (0�0143) −0�0100 (0�0060) 1�0182 (0�0146)
3 0�0091 (0�0079) 0�9677 (0�0152) 0�0001 (0�0063) 0�9800 (0�0152)
4 0�0074 (0�0092) 0�9606 (0�0177) 0�0033 (0�0077) 0�9590 (0�0186)
5 0�0108 (0�0097) 0�8679 (0�0186) 0�0065 (0�0079) 0�8778 (0�0192)
6 0�0176 (0�0094) 0�8873 (0�0181) 0�0257 (0�0078) 0�8723 (0�0188)
7 0�0289 (0�0112) 0�8379 (0�0214) 0�0329 (0�0089) 0�8212 (0�0215)
8 0�0367 (0�0116) 0�8368 (0�0224) 0�0322 (0�0092) 0�8126 (0�0224)
9 0�0423 (0�0122) 0�8850 (0�0235) 0�0496 (0�0101) 0�8610 (0�0245)

10 Value 0�0409 (0�0165) 0�9898 (0�0316) 0�0427 (0�0134) 0�9992 (0�0324)

10–1 Book-to-market strategy 0�0566 (0�0231) −0�0974 (0�0444) 0�0626 (0�0191) −0�1219 (0�0462)

Wald 15�7134 (0�1081) 49�9838 (0�0000)

Table 8. Test of CAPM on (Size, B/M) and industry portfolios.

(Size, B/M) Industry

Fixed Time Random Time Fixed Time Random Time

Wald 121�7332 (0�0000) 344�1042 (0�0000) 44�2420 (0�0453) 79�3523 (0�0000)

Figure 9. Alphas of size portfolios.

sampling case is 0�0000, a clear rejection. Figure 9 displays this finding graphically. Fixed
sampling results show a hump shape of alpha estimates, which is somewhat confusing,
if the size effect does matter. On the contrary, the random sampling result with a proper
treatment of stochastic volatilities shows a nice emergence of monotonically decreasing
size premium.
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Figure 10. Alphas of book-to-market portfolios.

Table 7 reports basically the identical information for the book-to-market portfolios.
However, this case shows other evidence that the conventional method fails in doing
reliable statistical inferences. Unlike Table 6 with size-based portfolios, Table 7 report
that both alphas and betas are similarly estimated, and the estimated amount of value
premium is around 6% per annum. Figure 10 illustrates that the estimated alphas are
similar across the two methods. However, when the Wald statistics are compared, the
fixed sampling scheme cannot reject the CAPM, while the random sampling rejects the
model with p-value of 0�0000. In addition, the estimated market betas dictate that the
growth stocks are riskier than the value stocks, implying that the CAPM is not pricing
these portfolios correctly, as shown by Fama and French (1993).

Based on the results, we suspect that the model is correctly rejected in the random
time regression, and the conventional fixed time regression seems to have difficulty in
doing this. However, at this stage, a natural question arises: Fama and French (1993) and
many authors have used the conventional OLS with the Gibbons, Ross, and Shanken
(GRS) tests to reject the CAPM and even various other Fama–French models. Why do
our fixed sampling results differ from the previous OLS results? Recall that the main dif-
ference between the conventional OLS and our fixed sampling OLS is the way that data
series are constructed. The conventional monthly return data use two data points of
asset prices between two consecutive months, while our data are constructed by inte-
grating the daily data over a month in fixed sampling cases. The two methods would
produce the same monthly data if the instantaneous returns were defined as the differ-
entials of logarithm of prices, namely d log(Pit). However, our instantaneous returns are
constructed as the ratios of the price differentials to previous prices, namely dPit/Pi�t−1,
and under this definition the two data construction methods can substantially differ.

But can we then achieve the same results by directly using the monthly return data
with the conventional OLS machinery instead of using a random sampling scheme on a
higher frequency data, because both will take a look at the data at a frequency compa-
rable to monthly frequency after all? Note that our model is written in continuous time
and then aggregated over time to make the model testable in discrete time environment.
As shown in Section 3, the asymptotics and resultant test statistics of the model are dif-
ferent from those of the discrete time counterparts. If continuous-time diffusion models
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better describe the actual market clearing processes, which we believe, then these differ-
ences are critical in evaluating the empirical asset pricing models. To further investigate
this point, we run the OLS regressions on the conventional monthly returns with the
same decile portfolios. We find two interesting results. First, in both size and B/M-based
decile portfolios, the GRS statistics report p-values around 0�031 and 0�038, respectively.
Therefore, the CAPM is not rejected at 3% despite the prevalent size or value effects. Sec-
ond, as we vary the starting date of the data, p-values vary significantly between 0�002
and 0�208.33 This result may be an indirect evidence of conditional factor models. But
even in conditional models, a final test on whether a model is rejected would be to look
at whether or not the long-run average of alphas is zero.34 Thus, the use of low-frequency
data does not necessarily give reliable and accurate test results. On the contrary, our ran-
dom sampling results are quite robust to such variations. This is a subtle but important
point: Conventional methods may fail to reject a model too easily, and often produce
puzzling results.

Putting things together, the conventional testing procedure is inoperable and fails
to reject a proposed model too often. As emphasized in our earlier discussions, the fail-
ure of the conventional testing procedure is due to the fact that the variance–covariance
matrix of the error terms is very difficult to estimate in the presence of nonstationary
stochastic volatilities. Indeed, existing empirical studies unequivocally show that they
are nonstationary, though their sources may differ. And the models with time-varying
and stochastic volatilities would yield misleading results when they are estimated using
the conventional approach, as we discussed earlier. In addition, the presence of lever-
age effects, also prevalent in stock return data, brings about endogeneity in volatilities,
which further complicates the treatment of the nonstationary volatilities. We also run a
similar exercise for the 25 Fama–French portfolios sorted by size and B/M ratio, and we
report the results in Table 8 under the (Size, B/M) column. Now, even the fixed sampling
scheme rejects the CAPM with a p-value of 0�0000, which contradicts the test results with
the decile portfolios. On the contrary, the random sampling method rejects the model,
compatible with the results from the decile portfolios.

As a final exercise for the CAPM, we examine the unmanaged industry portfolios
consisting of 30 groups and report the results in Table 8 under the Industry column. The
familiar story prevails again. Despite the similar estimates of alphas and betas on av-
erage, Wald test statistics say that the conventional approach cannot reject the CAPM
at 4%, while our approach rejects the model with zero p-value. To analyze what makes
the difference between the two approaches in this case, we plot the alphas connect-
ing each industry that belongs to one of the more broadly defined five groups of indus-
tries in Figure 11. Most conspicuous are the industries in the consumer goods group

33Although not monotonic, CAPM on size portfolios is more difficult to reject when the sample period
gets longer, while the opposite is likely to be true for the CAPM regressions on value portfolios. We do not
report the results as a separate table since similar exercises have been performed in other studies. Never-
theless, our argument here is germane and new in the context of testing factor pricing models with nonsta-
tionary volatilities in a high-frequency setting.

34See Ang and Kristensen (2012) for more details. They test conditional factor pricing models using a
nonparametric method.
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Figure 11. Alphas of industry portfolios. Notes: The graph presents the alphas connecting
each industry that belongs to one of the more broadly defined five groups of industries (Cnsmr,
Manuf, HiTec, Hlth, Other). Most conspicuous are the alphas of the industries in the consumer
goods group (illustrated by the circles on the line for consumer industry) featuring consistently
positive values in our random time regression (right), while the fixed time regression (left) pro-
duces a mixed bag of results.

featuring consistently positive alphas in our random time regression, while the fixed
time regression produces a mixed bag of results. This suggests that consumption growth
may be a valid pricing factor together with the financial market factor, which is reminis-
cent of consumption-based pricing models employing more flexible preferences such
as Epstein and Zin (1989). Summing up, the random sampling method works reliably in
a high-frequency environment, contrary to its fixed sampling counterpart. More impor-
tantly, all the test results for the CAPM based on the random sampling provide a strong
case for multifactor models.

5.2 Tests of the Fama–French models

In this section, we investigate multifactor models of asset returns. Continued from the
previous section, we begin with two-factor models, incorporating the size or B/M fac-
tor into the CAPM on each of the corresponding decile portfolio data sets. In Tables 9
and 10, like the CAPM, the fixed time OLS regressions cannot reject the two-factor mod-
els ((MKT, SMB), (MKT, HML)) with even higher p-values, stating that the size and
B/M factors are relevant pricing factors, despite that the CAPM is not rejected on the
same data sets. This is a contradicting result caused by the imprecise statistical method.
Meanwhile, the random sampling result shows that the two-factor model with the B/M
is not rejected at 11% of p-value for the 10 B/M-based portfolios, though the model with
the size factor fails to explain the 10 size-based portfolios. That is, our method suggests
that the B/M factor can be viewed as a valid pricing factor for explaining the variations
of stock returns over the cross section of B/M ratio groups, while the size factor may be
insufficient to account for the spectrum of asset returns in light of the firm sizes. In ad-
dition, we want to note that this is consistent and plausible with the random sampling
CAPM results on size groups that are decisive rejections.
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Table 9. Test of two-factor model on size portfolios.

Fixed Time Random Time

Size Alpha Beta_MKT Beta_SMB Alpha Beta_MKT Beta_SMB

1 Small −0�0038 (0�0095) 0�8466 (0�0189) 1�1876 (0�0272) 0�0123 (0�0075) 0�8096 (0�0185) 1�2391 (0�0277)
2 −0�0026 (0�0060) 0�9551 (0�0121) 1�0362 (0�0174) −0�0074 (0�0050) 0�9586 (0�0123) 1�0465 (0�0185)
3 0�0074 (0�0056) 0�9832 (0�0112) 0�8771 (0�0161) 0�0056 (0�0044) 0�9751 (0�0108) 0�8932 (0�0163)
4 0�0086 (0�0057) 0�9682 (0�0114) 0�7975 (0�0164) 0�0052 (0�0042) 0�9765 (0�0104) 0�7942 (0�0156)
5 0�0139 (0�0056) 0�9799 (0�0112) 0�6434 (0�0162) 0�0116 (0�0044) 0�9881 (0�0109) 0�6634 (0�0163)
6 0�0085 (0�0064) 0�9872 (0�0128) 0�4718 (0�0184) 0�0038 (0�0051) 0�9890 (0�0126) 0�5039 (0�0189)
7 0�0093 (0�0061) 1�0119 (0�0122) 0�3494 (0�0175) 0�0051 (0�0048) 0�9927 (0�0119) 0�3697 (0�0179)
8 0�0082 (0�0060) 1�0249 (0�0120) 0�2296 (0�0173) 0�0016 (0�0051) 1�0104 (0�0125) 0�2266 (0�0188)
9 0�0063 (0�0057) 0�9852 (0�0113) 0�0402 (0�0163) 0�0041 (0�0044) 0�9724 (0�0109) 0�0262 (0�0164)

10 Big 0�0010 (0�0030) 0�9788 (0�0060) −0�2942 (0�0087) 0�0021 (0�0025) 0�9872 (0�0061) −0�2860 (0�0091)

1–10 Size −0�0049 (0�0099) −0�1323 (0�0198) 1�4818 (0�0285) 0�0102 (0�0079) −0�1776 (0�0195) 1�5251 (0�0293)
strategy

Wald 12�0613 (0�2810) 38�4651 (0�0000)
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One common feature in both of the two-factor models we consider here is that the
abnormal returns of the hedged portfolios are not statistically different from zero, sug-
gesting that pricing errors are small. What then drives the rejections of the model ac-
cording to the Wald statistics in the random sampling case? A closer look at the Tables 9
and 10 reveals that portfolios other than those used to form the hedged portfolios, such
as size 5, turn out to have significantly nonzero abnormal returns. Thus, the Wald test
for all assets, compared to the test on a hedged portfolio alone, is a more stringent test
verifying if a factor model can explain all the returns considered rather than just the
ones specifically aimed at matching certain characteristics. Therefore, if the results be-
tween the two tests in a factor pricing model clearly disagree, then the proposed model
may need new factors because it is likely to have difficulty in fitting the returns sorted by
other characteristics. Consistent with this view, Table 10 shows that the medium value
stocks as well as the hedged portfolio do not have significantly nonzero abnormal re-
turns; hence the model is not rejected.

Based on this observation and following the tradition, now we estimate and test the
three-factor Fama–French model on the data set with 25 portfolios. Table 11 shows that
both fixed and random time regressions reject the model. This result is somewhat an-
ticipated from the random sampling results on the two-factor model (MKT, SMB) in Ta-
ble 9, where the size factor fails to explain the 10 size-based portfolios. Compared to the
CAPM results on the 25 portfolios, the extent to which the model misbehaves appears
to be smaller, yet the p-values based on the Wald statistic imply a clear rejection of the
Fama–French model, which requires careful scrutiny. The upper panels for the fixed and
random time regressions in Figure 12 display the deviations of alpha estimates from
zero for the 25 portfolios. The first group consisting of the smallest stocks has the largest
magnitude of deviations, which is a common feature in both the fixed sampling and the
random sampling cases. Compared to the corresponding graphs for the CAPM (which
we do not report to save space), the lines are much closer to the horizontal axis of zero
value and even the slope is obviously reversed in some cases. However, one observation,
corresponding to (size, B/M) = (1�1) distinctively deviates from zero value, which seems
to drive the rejection of the model. Note that this refers to small cap, growth stocks with
low book-to-market ratios. To be more precise, we plot the average excess returns for
each portfolio and the predicted returns from the Fama–French regressions in the lower
panels of Figure 12 following Cochrane (2001, p. 441). It is easy to observe that the (1�1)
portfolio is quite off from the 45 degree line compared to other portfolios and it displays
a significant premium within the smallest B/M group.35 This is a part of the size pre-
mium, yet we must note that the graphs in the lower panel of Figure 12 display that the
small growth stocks show a stark contrast to the typical pattern of the size premium,
hinting that the conventional size factor may be not enough to capture this behavior.36

35This effect also appears in Cochrane (2001), but with a much weaker pattern. We suspect that the dif-
ference comes from the data period, which is between 1947 and 1996 in his case.

36There may be a common economic fundamental that affects both size and B/M portfolio returns in
a different fashion than the conventional size and B/M factors do. Fama and French (1995) report that
both the size and B/M premia are related to the earnings of the firms. They find that the small firms have
persistently lower earnings and the growth stocks have persistently high earnings, though the former link
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Table 10. Test of two-factor model on book-to-market portfolios.

Fixed Time Random Time

Book-to-Market Alpha Beta_MKT Beta_HML Alpha Beta_MKT Beta_HML

1 Growth 0�0157 (0�0075) 0�9528 (0�0156) −0�5052 (0�0239) 0�0122 (0�0061) 0�9684 (0�0160) −0�5393 (0�0248)
2 0�0069 (0�0075) 0�9885 (0�0155) −0�0811 (0�0239) −0�0036 (0�0061) 0�9874 (0�0159) −0�1085 (0�0246)
3 0�0052 (0�0080) 0�9845 (0�0165) 0�0631 (0�0254) −0�0010 (0�0065) 0�9849 (0�0169) 0�0175 (0�0262)
4 −0�0084 (0�0087) 1�0281 (0�0180) 0�2538 (0�0276) −0�0117 (0�0073) 1�0303 (0�0192) 0�2515 (0�0297)
5 −0�0092 (0�0088) 0�9537 (0�0181) 0�3224 (0�0279) −0�0134 (0�0072) 0�9728 (0�0188) 0�3354 (0�0291)
6 −0�0063 (0�0080) 0�9894 (0�0165) 0�3837 (0�0254) 0�0024 (0�0066) 0�9831 (0�0172) 0�3912 (0�0266)
7 −0�0049 (0�0085) 0�9827 (0�0176) 0�5443 (0�0271) 0�0007 (0�0066) 0�9740 (0�0173) 0�5400 (0�0268)
8 −0�0061 (0�0070) 1�0201 (0�0145) 0�6890 (0�0223) −0�0067 (0�0056) 0�9974 (0�0147) 0�6528 (0�0228)
9 −0�0001 (0�0081) 1�0665 (0�0168) 0�6825 (0�0258) 0�0095 (0�0068) 1�0517 (0�0178) 0�6733 (0�0275)

10 Value −0�0126 (0�0118) 1�2189 (0�0243) 0�8612 (0�0374) −0�0063 (0�0099) 1�2320 (0�0258) 0�8224 (0�0400)

10–1 Book-to- −0�0284 (0�0141) 0�2661 (0�0290) 1�3663 (0�0446) −0�0186 (0�0115) 0�2636 (0�0300) 1�3617 (0�0464)
market strategy

Wald 9�8776 (0�4513) 15�6828 (0�1091)
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Table 11. Test of Fama–French three-factor model.

Fixed Time Random Time

Wald 95�5585 (0�0000) 161�2924 (0�0000)

Figure 12. Fama–French alphas and betas of (size, B/M) portfolios. Notes: The left panels dis-
play alphas (top) and betas (bottom) estimated from the fixed time regression, while the right
panels present those from our random time regression. The betas here represent the predicted
returns from Fama–French regressions and are plotted along with the average excess returns for
each portfolio, following Cochrane (2001, p. 441).

This suggests that either an additional factor or a replacement factor may be needed to
justify the premium related to buying large cap stocks and selling small cap stocks in the
group of firms with small distress.37

We recall that the portfolio returns from the consumer goods industry feature signif-
icant abnormal returns when CAPM is used. Admittedly, there is no direct connection
between the small growth stocks and the consumer goods industry. However, given the
signifying role of consumption goods as a foundational link between a discount factor
and asset prices, we believe that including the consumption sector returns as a factor is
a worthy trial. Related, Lettau and Ludvigson (2001) found that a macroeconomic fac-

is weak. If persistent high earnings imply low cash flow risk and the small firm effect is dominated by the
value effect, this story may justify why a small, growth stock is a good asset to short sell. However, it still
does not explain why the large cap within the smallest B/M ratio is a risky bet as illustrated in the graphs in
Figure 12.

37As one of the usual suspects, we try the momentum factor, making a four-factor model. However, we
find that the momentum factor is orthogonal to the size effect within low book-to-market ratios.
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tor that captures the consumption wealth ratio can substantially improve the perfor-
mance of the consumption CAPM. Motivated by those findings, we form a consumer
goods industry factor, called the CMR factor, as the excess returns on the portfolio of
the firms producing consumer goods. Regarding the definition of the consumer goods
sector, we simply use the returns from the consumer goods sector out of the data with
the five-industry category available in the French’s data library. Then we run regressions
of multifactor models incorporating the consumer goods industry factor (CMR) on the
10 size-based and B/M-based portfolios, and the 25 portfolios to see if a model with the
CMR factor can help explain the behaviors of asset returns, especially the small growth
stocks. We report the results from three-factor models, which include the market, the
CMR, and either the size or B/M factor.38

Table 12 displays the results from the three-factor models with the CMR factor on
the portfolios sorted by sizes and B/M ratios.39 In comparison with the results in Ta-
bles 9 and 10, we observe that p-values increase in each case and the beta coefficients
for the CMR are mostly significant. Thus, it is inferred that the CMR factor helps explain
both the value-based and size-based portfolios. Especially, the model with the market,
B/M, and CMR factors is not rejected at 14%.40 Figure 13 shows that the overall fit is
good for both of the three-factor models. Based on this positive result, we select the
three-factor model with the market, B/M, and CMR factors to investigate the 25 port-
folios. Unfortunately, the model is rejected at 0�0000 of p-value, but we find that in the
model with the market, B/M, and CMR factors, the pricing error for the (1�1) portfolio
gets significantly reduced and the overall fit appears to be generally comparable to that
of the Fama–French model. This is summarized in Table 13 and Figure 14. For the model
with the market, size, and CMR, overall fit is worse and the Wald statistic is higher; hence
it is clearly inferior to the model with the market, B/M, and CMR, as well as the tradi-
tional Fama–French model. The results suggest that the size factor is not entirely satis-
factory in terms of capturing the cross sectional behaviors of asset returns and that the
returns from the consumer goods industry are useful in complementing this deficiency.
However, further investigation and justification are necessary to incorporate industry-
specific return factors such as CMR into multifactor models, which we leave as future
work.

6. Conclusion

This paper develops a new econometric framework and tools to analyze multifactor as-
set pricing models. We consider a continuous-time factor model with a specific error
component structure consistent with an underlying asset pricing theory. We show that
our error structure is empirically supported as well. It is well known that asset returns

38We also tried the two-factor model consisting only of the market and the CMR. To conserve space we
do not report the results here, but it appears that the CMR factor captures some of the size premia, but not
the value premia.

39From now on, we only report the random sampling results, because the fixed sampling results on the
industry portfolio do not pick up the CMR factor as shown in Table 8 and Figure 11.

40When we estimated a four-factor model, that is, the Fama–French three-factor model with the CMR
factor, we find that the p-values get lower to 0�0000 and 0�0003 for the B/M and size portfolios, respectively.
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Table 12. Tests of three-factor models with consumer industry factor.

Alpha Beta_MKT Beta_HML Beta_CMR

Panel A: On B/M Portfolios (Random Time)
1 Growth 0�0099 (0�0057) 0�7365 (0�0323) −0�5706 (0�0235) 0�2412 (0�0298)
2 −0�0064 (0�0055) 0�7104 (0�0309) −0�1459 (0�0225) 0�2882 (0�0285)
3 −0�0036 (0�0060) 0�7274 (0�0339) −0�0172 (0�0246) 0�2678 (0�0312)
4 −0�0127 (0�0073) 0�9340 (0�0411) 0�2386 (0�0299) 0�1001 (0�0379)
5 −0�0133 (0�0072) 0�9866 (0�0405) 0�3372 (0�0295) −0�0143 (0�0374)
6 0�0027 (0�0066) 1�0079 (0�0371) 0�3945 (0�0270) −0�0258 (0�0342)
7 −0�0001 (0�0066) 0�8941 (0�0371) 0�5292 (0�0270) 0�0832 (0�0342)
8 −0�0074 (0�0056) 0�9312 (0�0316) 0�6438 (0�0230) 0�0688 (0�0292)
9 0�0085 (0�0068) 0�9570 (0�0380) 0�6605 (0�0277) 0�0985 (0�0351)

10 Value −0�0073 (0�0098) 1�1371 (0�0555) 0�8096 (0�0404) 0�0988 (0�0511)

10–1 Book-to-market strategy −0�0172 (0�0114) 0�4006 (0�0643) 1�3801 (0�0468) −0�1424 (0�0593)

Wald 14�6978 (0�1435)

Panel B: On Size Portfolios (Random Time)
1 0�0115 (0�0075) 0�7676 (0�0406) 1�2394 (0�0277) 0�0454 (0�0391)
2 −0�0092 (0�0049) 0�8656 (0�0266) 1�0472 (0�0182) 0�1004 (0�0256)
3 0�0037 (0�0043) 0�8785 (0�0233) 0�8939 (0�0159) 0�1044 (0�0224)
4 0�0031 (0�0041) 0�8686 (0�0222) 0�7950 (0�0151) 0�1164 (0�0213)
5 0�0098 (0�0043) 0�8962 (0�0235) 0�6641 (0�0160) 0�0992 (0�0226)
6 0�0016 (0�0050) 0�8726 (0�0270) 0�5047 (0�0184) 0�1258 (0�0260)
7 0�0033 (0�0047) 0�8966 (0�0257) 0�3704 (0�0175) 0�1038 (0�0247)
8 0�0004 (0�0051) 0�9504 (0�0274) 0�2271 (0�0187) 0�0648 (0�0264)
9 0�0022 (0�0043) 0�8719 (0�0234) 0�0270 (0�0160) 0�1086 (0�0225)

10 0�0016 (0�0024) 0�9604 (0�0133) −0�2858 (0�0091) 0�0290 (0�0128)

1–10 Size strategy 0�0099 (0�0079) −0�1928 (0�0430) 1�5252 (0�0293) 0�0165 (0�0413)

Wald 33�6686 (0�0002)

Figure 13. Betas of three-factor models with the consumer industry factor. Notes: The left
panel plots the predicted returns estimated from our random time regression with the market,
size, and CMR factors run on 10 size portfolios along with average excess returns for each portfo-
lio. On the other hand, the graph on the right presents those returns obtained from our random
time regression with the market, B/M, and CMR factors run on 10 B/M portfolios.
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Table 13. Tests of three-factor models with consumer industry and B/M factors on (Size, B/M)
portfolios: random time.

(Size, B/M) Alpha Beta_MKT Beta_HML Beta_CMR

(1�1) 0�001 (0�021) 1�354 (0�117) −0�544 (0�085) −0�122 (0�108)
(1�2) 0�036 (0�017) 1�058 (0�098) −0�148 (0�071) 0�063 (0�090)
(1�3) 0�042 (0�016) 0�854 (0�089) 0�076 (0�065) 0�186 (0�082)
(1�4) 0�059 (0�014) 0�834 (0�081) 0�212 (0�059) 0�163 (0�075)
(1�5) 0�062 (0�015) 0�918 (0�086) 0�446 (0�063) 0�175 (0�079)
(2�1) 0�012 (0�015) 1�166 (0�083) −0�574 (0�061) 0�060 (0�077)
(2�2) 0�024 (0�013) 0�905 (0�073) −0�064 (0�053) 0�204 (0�067)
(2�3) 0�054 (0�012) 0�898 (0�065) 0�200 (0�047) 0�162 (0�060)
(2�4) 0�044 (0�010) 0�874 (0�058) 0�407 (0�042) 0�173 (0�053)
(2�5) 0�029 (0�012) 0�991 (0�068) 0�563 (0�050) 0�177 (0�063)
(3�1) 0�020 (0�012) 1�162 (0�066) −0�577 (0�048) 0�019 (0�061)
(3�2) 0�031 (0�010) 0�815 (0�057) −0�017 (0�042) 0�271 (0�053)
(3�3) 0�023 (0�009) 0�813 (0�050) 0�314 (0�036) 0�218 (0�046)
(3�4) 0�023 (0�008) 0�832 (0�047) 0�466 (0�034) 0�199 (0�044)
(3�5) 0�018 (0�010) 0�945 (0�057) 0�662 (0�041) 0�208 (0�053)
(4�1) 0�017 (0�008) 1�066 (0�044) −0�507 (0�032) 0�018 (0�040)
(4�2) −0�012 (0�008) 0�845 (0�044) 0�117 (0�032) 0�238 (0�041)
(4�3) 0�001 (0�007) 0�835 (0�042) 0�359 (0�030) 0�213 (0�039)
(4�4) 0�021 (0�007) 0�900 (0�041) 0�504 (0�030) 0�142 (0�038)
(4�5) −0�011 (0�009) 1�017 (0�052) 0�740 (0�038) 0�182 (0�048)
(5�1) 0�006 (0�006) 0�653 (0�033) −0�393 (0�024) 0�290 (0�030)
(5�2) −0�015 (0�007) 0�803 (0�039) 0�116 (0�028) 0�174 (0�036)
(5�3) −0�016 (0�008) 1�058 (0�045) 0�397 (0�033) −0�106 (0�041)
(5�4) −0�025 (0�007) 0�884 (0�039) 0�640 (0�028) 0�075 (0�036)
(5�5) −0�024 (0�009) 0�986 (0�050) 0�744 (0�037) 0�078 (0�046)

Wald 177�2876 (0�0000)

Figure 14. Betas of three-factor models with consumer industry and B/M factors. Notes: The
graph displays the average excess returns for each portfolio and their predicted returns from the
random time regression with the market, B/M, and CMR factors run on 25 portfolios sorted by 5
size and book-to-market ratio groups.
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have highly persistent, time-varying, and stochastic volatilities that can substantially
harm the reliability of estimation and testing of asset pricing models, especially when a
higher sampling frequency is chosen. We overcome this difficulty by using samples col-
lected at random intervals instead of those sampled at calendar time. Specifically, the
clock is running inversely proportional to the market volatility. That is, a time interval
is short when volatilities are high and vice versa. Under our random sampling scheme,
Fama–French regressions may simply be regarded as the classical regressions having
normal errors with variance given by the averaged quadratic variation of the martingale
differential errors. Our method is quite simple: We run the usual OLS regressions on the
time-changed data so that potential complexities from handling high-frequency data
and nonstationary volatilities do not arise.

We apply our methods to various portfolios sorted by certain characteristics used to
identify pricing factors. We find that the tests based on conventional regression models
on fixed time intervals often produce invalid and contradicting results. These issues do
not prevail in the random time regressions. Even in comparison with the conventional
regressions on lower frequency data, our tests appear to yield more reliable results. Our
additional empirical findings can be highlighted as follows. First, size premium is still
an important part of cross sectional return variations. According to the fixed sampling
scheme, size strategy produces around 0�6% annually, while our random sampling re-
gression states around 6�1% per annum. In addition, even after including the size fac-
tor, the size-based portfolios are not fully explained. This problem is less severe for the
value-based portfolios. Second, we also find that the three-factor Fama–French models
cannot fully account for the size and value premia, and the rejection of the three-factor
model appears to mainly come from the small firms with low book-to-market ratios in
the case of the 25 portfolios sorted by the size and book-to-market ratios. Of course,
this is well documented in Fama and French (1993, 1996). However, we point out that
although Fama and French argue that their model still explains cross sectional varia-
tions very well despite this puzzling behavior, this effect not only survives over time, but
appears to get even stronger according to our empirical results. Third, our CAPM and
multifactor results on industry portfolios suggest some potential role to be played by an
additional factor based on consumer goods industry sector. It is noteworthy that this
anomaly does not prevail in the fixed sampling case.

In an attempt to find a better factor pricing model, we form a consumer industry
factor using the returns from the consumer goods industry sector and test the model
on the portfolios we consider. Interestingly, we find that this consumer factor has some
explanatory power on the returns of the small growth stocks. This suggests that factors
motivated by economic theories can shed light on the issue of explaining the cross sec-
tions of stock returns, because these factors are likely to be robust to alternative sets of
portfolios to be explained. Related, a recent work by Fama and French (2008) shows that
there are many other asset pricing anomalies related to net stock issues, accruals, asset
growth, and profitability. Some of them are even robust across all size groups, and the
conventional Fama–French model is not able to deliver satisfying performance. In this
vein, a quest for valid pricing factors, and thereby a new and better asset pricing model,
is still an important task to sharpen our understanding of how financial markets reward
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taking systematic risks and uncertainties. We hope that our newly developed tool is a
useful addition to this enterprise.
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