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Grade retention and unobserved heterogeneity
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Jean-Marc Robin
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We study the treatment effect of grade retention using a panel of French junior
high-school students, taking unobserved heterogeneity and the endogeneity of
grade repetitions into account. We specify a multistage model of human-capital
accumulation with a finite number of types representing unobserved individual
characteristics. Class-size and latent student-performance indices are assumed
to follow finite mixtures of normal distributions. Grade retention may increase or
decrease the student’s knowledge capital in a type-dependent way. Our estimation
results show that the average treatment effect on the treated (ATT) of grade reten-
tion on test scores is positive but small at the end of grade 9. Treatment effects
are heterogeneous: we find that the ATT of grade retention is higher for the weak-
est students. We also show that class size is endogenous and tends to increase with
unobserved student ability. The average treatment effect of grade retention is neg-
ative, again with the exception of the weakest group of students. Grade repetitions
reduce the probability of access to grade 9 of all student types.

Keywords. Secondary education, grade retention, unobserved heterogeneity, fi-
nite mixtures of normal distributions, treatment effects, class-size effects.

JEL classification. C23, C36, C38, I2.

1. Introduction

Grade-retention practices are common in the schools of some countries but absent from
others. Some educational systems have been designed to play the role of public certifica-
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tion agencies. If this is the case, students are promoted to the next grade only if their test
scores are sufficiently high, and the students who cannot pass are tracked or retained.
France and Germany are good instances of such systems, in which grade retention is
familiar. In contrast, social promotion, that is, the practice of passing students to the
next grade, regardless of school performance, seems to prevail in more egalitarian soci-
eties or in countries promoting mass education. Scandinavian countries and the United
Kingdom are good instances of the latter system. At the same time, grade retention is a
form of second-best remedial education; in some countries it is the main if not the only
form of remedial education, but it entails substantial costs. Grade repetitions consume
resources, since they permanently increase the stock of enrolled students. There are op-
portunity costs, since grade repeaters could become productive sooner or have a longer
productive life. There also exist substantial costs in the long run, since grade repeaters
tend to obtain lower wages on the labor market, conditional on their highest credential.1

Grade retention may also entail some benefits. The mere presence of grade repetitions
acts as an incentive device and may increase study effort.2 Finally, the distribution of
skills in a given cohort of outgoing students may be improved if grade repeaters benefit
from a longer period of schooling. Yet, many important aspects of a cost–benefit anal-
ysis are imperfectly known. As a consequence, in spite of its widespread use, it is hard
to tell if grade retention dominates social promotion, or which of the two systems has
the highest value as a social policy. As is well known, the question is hotly debated and
international comparisons show trends in both directions. For instance, in recent years,
France has relied less often on grade repetitions, while in the United States, grade reten-
tion has made a certain comeback, as an ingredient of school accountability policies.

The consequences of grade retention are not easy to estimate. This is essentially due
to the endogenous character of the decision to hold a student back and to unobserv-
able heterogeneity. Many studies in the past may have found a negative impact of grade
retention on various outcomes because grade repeaters are a selected population with
abilities below the average. In the sequel, we propose a way to evaluate the treatment
effects of grade repetition in French junior high schools (grades 6–9), using a rich set
of microdata, and taking the endogeneity of retention decisions and class size into ac-
count. We do not observe the students’ wages and focus on educational outcomes.

In a preliminary study of the data, we find that the local average treatment effect (i.e.,
the LATE3) of grade retention on value-added, defined here as the difference between
grade-9 and grade-6 scores, is significant and positive, using the quarter of birth as an
instrument for retention. But the result does not seem to be very robust. We know that
when treatment effects are heterogeneous, the linear instrumental variable (IV) estima-
tor is a weighted average of marginal treatment effects (see the work of Heckman and
Vytlacil (2005); see also Heckman (2010)). It follows that the IV estimates obtained with
a particular instrument may not correctly identify the relevant effects. Indeed, in the
following discussion, we show that the treatment effect of grade repetition varies with

1On this question, see Brodaty, Gary-Bobo, and Prieto (2012).
2On study effort, see De Fraja, Oliveira, and Zanchi (2010).
3On this concept, see Imbens and Angrist (1994).



Quantitative Economics 7 (2016) Grade retention and unobserved heterogeneity 783

unobserved characteristics of students, being positive for some individuals and nega-
tive for others.

Taking our inspiration from the work of Heckman and his co-authors, we propose
a tractable model in which treatment effects are heterogeneous (see, e.g., Carneiro,
Hansen, and Heckman (2003)). We assume the existence of a finite number of latent
student types and that the effects of retention may vary from one type of individual to
the next. Our approach is parametric: the observed outcomes and the latent variables,
such as unobserved test scores, are modeled as finite mixtures of normal distributions.
The model can then be used to compute counterfactuals and treatment effects.

We take dynamics into account, exploiting the data’s panel structure. Our approach
is similar in spirit to that of Cunha and Heckman (2007, 2008) and Cunha, Heckman,
and Schennach (2010), but different (and somewhat simpler) in a number of techni-
cal details. The educational outcomes of the same individuals are observed recursively
through time, either completely (quantitative test scores) or partially (qualitative pro-
motion decisions). The successive observations are used to identify the model parame-
ters and the latent student types. In particular, the coefficients of student types, that is,
their impact on the different outcomes, are identified under a limited set of reasonable
assumptions.

To be more precise, we specify a structural model of knowledge-capital accumula-
tion in junior high school. The model explains grade retention, class size, promotion
decisions, and test scores. It is estimated using panel data, on scores in grades 6 and 9,
information on class sizes, and on student transitions (promotion to next grade, reten-
tion, and redirection toward vocational education). The panel provides a rich set of con-
trol variables describing family background and the environment of students. Repeated
grades contribute to the accumulation (or destruction) of human capital (or skills) in
a specific and type-dependent way. We present estimation results for a variant of our
model with four unobserved student types or groups. Groups are clearly distinct and a
clear hierarchy appears in terms of student ability. Groups are ranked in the same way
if we use test scores in math or in French, or at the beginning of grade 6 or at the end
of grade 9. The ranking of groups explains a similar ranking in the students’ probabili-
ties of grade retention (or promotion to the next grade). In a parallel fashion, the weaker
the group, the smaller the class size, in every grade. This result shows the endogeneity
of class size, which is used as a remediation instrument. Finally, to assess the impact
of grade repetition on test scores at the end of grade 9, we compute the average treat-
ment effect on the treated (ATT) and the average treatment effect (ATE) of the grade-
repetition treatment. To this end, with the help of the model, we compute the counter-
factual class size and test scores of grade repeaters (resp. nonrepeaters) that would be
observed if they had not repeated a grade (resp. if they had repeated a grade), averaging
over students and all possible types of each student, using their posterior probabilities
of belonging to a group. We find that the ATE is negative, while the ATT is positive, but
small and barely significant. The ATE and ATT are also computed within each of the
four groups separately. This confirms that treatment effects are heterogeneous: grade
retention is detrimental to able students but has some positive effects on the weakest
students’ final test scores. It is also shown that grade repetition has a negative impact on



784 Gary-Bobo, Goussé, and Robin Quantitative Economics 7 (2016)

the student’s probabilities of access to grade 9. We conclude that grade retention should
be replaced by some other form of remediation.

There is a substantial literature on grade retention, but many early contributions did
not address endogeneity or selection problems in a convincing way (see, e.g., Holmes
and Matthews (1984), Holmes (1989)). Few contributions have managed to propose a
causal econometric evaluation. An early attempt, providing IV estimates on U.S. high-
school data, is due to Eide and Showalter (2001). Also in the United States, Jacob and
Lefgren (2004, 2009) use regression discontinuity methods to evaluate grade repeti-
tions in the Chicago public-sector schools. Jacob and Lefgren (2004) find some positive
short-term effects of grade retention on test scores for primary school children. Neal
and Whitmore-Schanzenbach (2010) also propose an evaluation of the 1996 reforms
that ended social promotion in Chicago public schools. Dong (2010) studies grade re-
tention in kindergarten and finds positive effects. Closer to our approach, also using
kindergarten data, Cooley-Fruehwirth, Navarro, and Takahashi (2011) estimated a mul-
tiperiod structural model with time-varying treatment effects. They find that the effect
of grade retention depends on the timing of the treatment. Recently, Baert, Cockx, and
Picchio (2013) used a structural dynamic choice model, estimated with Belgian data,
and found that grade retention has a positive impact on the next evaluation, and persis-
tent effects. On Latin American countries, see, for example, Gomes-Neto and Hanushek
(1994). Manacorda (2012) applies a regression discontinuity approach to Uruguayan ju-
nior high-school data and finds negative effects on the dropout rate. In France, contribu-
tions on this topic (with a causal approach) are due to Mahjoub (2007), d’Haultfoeuille
(2010), Brodaty, Gary-Bobo, and Prieto (2012, 2014), and Alet, Bonnal, and Favard (2013).
Among these authors, d’Haultfoeuille (2010) applies a new nonparametric method for
the estimation of treatment effects to French primary education data and also finds pos-
itive effects. Finally, Brodaty, Gary-Bobo, and Prieto (2012) find negative signaling effects
of grade retention on wages. None of the quoted papers uses the methods and the data
employed in the present article.

In the following discourse, Section 2 describes the data, Section 3 presents a prelim-
inary analysis of grade retention using linear IV methods, and Section 4 presents our
multistage skill accumulation model. The estimation strategy is exposed in Section 5.
Sections 6 and 7 present the estimation results and the average treatment effects. Con-
cluding remarks are given in Section 8.

2. Data

The data set used in this study is the 1995 secondary education panel of the French
Ministry of Education (DEPP4 Panel 1995), which follows 17,830 students in junior high-
school (i.e., collège) from grade 6 to grade 9 (grade 6 is the equivalent of the French classe
de sixième) during the years 1995–2001. The principals of a sample of junior high schools
were asked to collect data on all pupils born on the 17th day of each month, with the ex-
ception of March, July, and October, and entering grade 6 in September 1995—about

4Département de l’Evaluation, de la Prospective et de la Performance.
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1/40th of the whole cohort. A recruitment survey was conducted at the beginning of the
first school year (1995–1996). Then a number of followup questionnaires were filled out
by the principals in every subsequent year until 2001, and a questionnaire was filled out
by the families in 1998 (with a response rate of 80%). Each student’s junior high-school
history was recorded without interruption, even when the student moved to another
school. For each pupil and each year, we know the attended grade (6–9), the size of the
class, and the promotion decision made by the teachers at the end of the year. In fact
there are three possible decisions: promotion to next grade, grade retention, or redirec-
tion to vocational education (i.e., “steering”). These transition decisions are made dur-
ing the last staff meeting (i.e., the conseil de classe), at the end of every school year, on
the basis of test scores and other more or less objective assessments of the pupil’s abil-
ity and potential in the next grade. Test scores in mathematics and French are available
at the beginning of grade 6 and at the end of grade 9. Grade 9 test scores are missing
for the individuals who dropped out of general education for apprenticeship or voca-
tional training, and therefore never reached grade 9 in the general (nonvocational) mid-
dle schools. In addition, matching these data with another source from the Ministry of
Education, the Base Scolarité, we obtain further information on school characteristics.
In particular, total school enrollment and total grade enrollment (in each grade) for each
year during the 1995–2001 period. These data will allow us to compute instruments for
class size, based on local variations of enrollment. There are some missing data, but the
quality of the panel is very good. For example, initial test scores are known for 95% of
the sampled individuals. Discarding observations with obvious coding errors and miss-
ing data, and slightly more than 450 histories of pupils registered in special education
programs (for mentally retarded children), we finally ended up with a sample of more
than 13,000 individuals: 9403 of them are in grade 9 in 1999, 2594 are in grade 8, and 250
are in grade 7. The last subset contains the few individuals who repeated a grade twice.
We chose to discard these observations to reduce the number of cases. The final sam-
ple has 13,136 students, which amounts to almost 75% of the individuals in the initial
survey.

In the following discussion, grades are denoted by g, and g ∈ {1�2�3�4}, where g = 1
corresponds to grade 6 and so on. The year is denoted t with t ∈ {1�2�3�4�5}, where t = 1
corresponds to year 1995 and so forth. Individuals are indexed by i. Let git denote the
grade of individual i in year t. With this notation system, a student i who does not repeat
any grade is such that git = t. A grade repeater is such that git = t − 1. Table 1 gives the
observed distribution of grade histories (in junior high school). Each row corresponds to
a different type of trajectory. The letter V stands for vocational education. For example,
the sequence 11234 means that grade 6 was repeated and, therefore, that the student
is observed in grade g = 4 in year t = 5. The sequence 123V indicates that the student
was steered toward vocational education after grade 8. In total, about 30% of the pupils
do not complete junior high school in 4 years: 18% are retained in one grade; 11% are
redirected.

Individual histories are described by Table 2 and Figure 1. Table 2 presents two rows
per year, except in year t = 1. During the first year, all students are in grade 6. Out of
the 13,136 students initially enrolled in grade g = 1, 12,045 are promoted and 1091 are



786 Gary-Bobo, Goussé, and Robin Quantitative Economics 7 (2016)

Table 1. Individual grade histories.

Grade History Count

1234 9403 71�58%

12334 732
12234 910
11234 684

Subtotal 2326 17�71%

1233V 33
1223V 114
1123V 154
123V 147
122V 146
112V 246
11V 7
12V 560

Subtotal 1407 10�71%

Total 13,136

Table 2. Students promoted, retained, or redirected in each grade and year.

Year t Grade Initial Stock Promoted (P) Retained (R) Redirected (V)

t = 1 Grade 6 13,136 12,045 1091 0

t = 2 Grade 6 1091 1084 0 7
Grade 7 12,045 10,315 1170 560

t = 3 Grade 7 2254 1862 0 392
Grade 8 10,315 9403 765 147

t = 4 Grade 8 2627 2326 0 301
Grade 9 9403

Figure 1. Number of repeaters in each grade.
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retained. In year t = 2, we see that 1084 repeaters in grade g = 1 are promoted and only
7 students have been redirected. In year t = 3 there are 2254 = 1170 + 1084 students in
grade 7; 1170 students repeating grade 7 and 1084 students who were in grade 6 the year
before. Figure 1 shows that the 9403 nonrepeaters constitute a majority of more than
70% of the students. Repeaters amount to less than 9% of the latter cohort each year.

3. Preliminary analysis: IV estimates

We start our study of the causal effect of grade retention on educational achievement,
using the student’s quarter of birth as an instrument for grade retention, in a linear
model. The quarter or the month of birth has been used by various authors as an in-
strument (see, e.g., Angrist and Krueger (1991)). Recent work has shown that the month
of birth can have long-lasting effects (see, e.g., Bedard and Dhuey (2006), Grenet (2010)).
In his dissertation and a recent paper, Mahjoub (2007, 2009) used the quarter of birth as
an instrument for grade retention. This approach yields a positive impact of grade reten-
tion on value-added scores. We follow the same approach here, as a preliminary step.

Value added (hereafter VA) is defined as the difference between standardized grade-
9 and grade-6 scores, in mathematics and in French, respectively. This difference in test
scores is higher for repeaters than for nonrepeaters. This is true in both French and
mathematics. There exists a strong link between the age of a child, as measured by the
month of birth or quarter of birth, and the probability of grade repetition (for details, see
Appendix A). The probability of grade retention is clearly higher for children born later
in the year. In principle, children must be 6 years old on September 1st of year t to be
admitted in primary school, grade 1, year t. First-quarter students tend to be relatively
older in their class, with an age difference that can reach 11 months, and relatively older
children tend to perform better. At the same time, teachers are reluctant to retain older
children in a grade, as retention may change a difference—being older—into a stigma—
being too old.

It follows that the month, quarter, or season of birth is a candidate instrument for
the grade-retention treatment, because it has good chances of being independent of the
error term in an outcome equation with many controls. Note, in addition, as empha-
sized by Mahjoub (2007), that the value-added outcome being the difference of two test
scores, possible specific and persistent effects of the birth quarter are “differenced out.”

We now estimate the effect of grade retention on value-added by two-stage least
squares (2SLS), using the quarter of birth as an instrument for grade retention. Some
descriptive statistics on value-added, as well as further details on this IV approach, are
relegated to Appendix A. Scores are standardized to have a mean of 50 and a standard de-
viation of 10 in grade 6 and in the whole sample (including all redirected pupils). Scores
in grade 9 are standardized in the same way, using the subsample of individuals who
reached grade 9. The first stage is a linear regression of the grade-retention dummy on
birth quarter dummies and controls (the linear probability model). Results are displayed
in Table 3. The fourth quarter being the reference in the regressions, we see that relatively
older students have a significantly lower probability of being held back.
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Table 3. Grade-retention probability.

Dependent Variable Grade Retention

First quarter −0�0513***
(0�0110)

Second quarter −0�0459***
(0�00991)

Third quarter −0�0133
(0�0109)

R2 0�054
F statistic for instruments 31�74

Note: Estimated by ordinary least squares (OLS). The dependent
variable is the grade-retention dummy here. The control variables in-
cluded in the regressions are gender, parental occupation, parental ed-
ucation, more than three children, indicator of grade repetition in pri-
mary school, and total school enrollment. Standard errors are given in
parentheses. The asterisks ***, **, and * indicate significance at the 1,
5, and 10% levels, respectively.

Table 4. The OLS and IV estimates of grade-retention effects.

OLS 2SLS

Dependent Variable Math VA French VA Math VA French VA

Grade repetition 1�757*** 1�899*** 21�94*** 14�79***
(0�200) (0�196) (5�391) (4�510)

R2 0�035 0�043

Note: The table reports the estimated coefficient of the retention dummy in different regres-
sions. VA, that is, value-added, the difference between test scores in grade 9 and grade 6, is the
dependent variable. Gender is included as a control in all regressions in addition to parental oc-
cupation, parental education, more than three children in family indicator, indicator of grade
repetition in primary school, and total school enrollment. Standard errors are given in paren-
theses. The asterisks ***, ** and * indicate significance at the 1, 5, and 10% levels, respectively.

Table 4 presents OLS and 2SLS estimates of the effect of grade retention on value-
added scores using the same set of controls. Instrumenting grade retention by the quar-
ter of birth has a dramatic impact: grade retention increases the score by about twice the
standard deviation of value-added. These results confirm that the retention decision is
endogenous.

Now, trying to estimate the impact of grade repetition in variants of this model,
we found that the 2SLS results of Table 4 were not very robust. It is well known that
IV estimates can be difficult to interpret when treatment effects vary with unobserv-
able characteristics of individuals. To see this, we estimated several variants of a lin-
ear model with robust linear techniques. Table 5 shows the OLS and 2SLS estimates
of a model in which standardized grade-9 scores are regressed on grade-6 entry test
scores, the retention dummy, and controls, with the same first stage as in Table 4. In Ap-
pendix B (available in a supplementary file on the journal website, http://qeconomics.
org/supp/524/supplement.pdf; also http://qeconomics.org/supp/524/code_and_data.
zip), we present the three-stage least squares (3SLS) estimates obtained with an ex-

http://qeconomics.org/supp/524/supplement.pdf
http://qeconomics.org/supp/524/code_and_data.zip
http://qeconomics.org/supp/524/supplement.pdf
http://qeconomics.org/supp/524/code_and_data.zip
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Table 5. The OLS and IV estimates of grade-retention effects.

OLS 2SLS

Dependent Variable Math Grade 9 French Grade 9 Math Grade 9 French Grade 9

Grade repetition −1�629*** −0�862*** 19�93 −0�221
(0�200) (0�190) (12�86) (8�667)

Initial test score math 0�496*** 0�237*** 0�731*** 0�244**
(0�0109) (0�0104) (0�141) (0�0951)

Initial test score French 0�108*** 0�413*** 0�314** 0�419***
(0�0110) (0�0105) (0�124) (0�0833)

R2 0�418 0�472

Note: The table reports the estimated coefficient of the retention dummy in different regressions. Gender is included as a
control in all regressions in addition to parental occupation, parental education, more than three children in family indicator,
indicator of grade repetition in primary school, and total school enrollment. There are N = 11,694 observations. Standard errors
are given in parentheses. The asterisks ***, **, and * indicate significance at the 1, 5, and 10% levels, respectively.

tended, simultaneous equations version of the model. This more elaborate version is
used below as a point of comparison for our model with unobserved heterogeneity. Re-
turning to Table 5, we immediately see that the sign of the OLS estimates of the grade-
retention coefficient has changed. In addition, the corresponding IV estimates have lost
their precision and significance.

There are several likely reasons for the nonrobustness of results. First, we do not
know if the appropriate expression of value-added, say, in mathematics, is exactly Vm =
Ym1 − Ym0, that is, the difference between the final score Ym1 and the initial score Ym0.
The appropriate expression might well be Vm = Ym1 − cYm0 with c < 1. Imposing c = 1,
as in the model of Table 4, is too strong since Table 5 seems to indicate that c � 0�5. It is
also unclear that the chosen standardization is appropriate. This is why, in the model of
Table 5, we treat initial scores as controls that may reduce the importance of endogene-
ity problems. But then, are error terms really independent from Ym0? Is the IV strategy
appropriate here and what are its shortcomings?

To see this, assume that the data are generated by a simple model in which the initial
and final test scores, denoted Y0 and Y1, respectively, can be either the grades in math
or in French, or an average of the two, for the sake of simplicity. Let θ be a random factor
that represents unobserved “talent”; let R denote the grade-retention dummy and let
Q be the semester-of-birth instrument (also a dummy), to simplify the exposition. We
assume

Y0 = θ+ u�

R= α+βQ+ γθ+ v�

Y1 = a+ (b+ hθ)R+ cθ+w�

where (a�b� c�h�α�β�γ) are parameters, and (u�v�w�θ) are random variables with zero
means and finite variances, assumed to be stochastically independent of each other. The
first equation says that the entry test score is a measure of θ: it is just talent plus noise.
The second equation is the auxiliary equation, that is, the first stage. The third equation
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is the equation of interest, with a heterogeneous treatment effect of grade retention if
h �= 0.

Consider first the regression Y1 = a+ bR+ ε. Since ε = cθ + hRθ+w, retention R is
endogenous, and we can try the quarter of birth Q as an instrument. Assume that Q has
the desirable properties E(θ|Q) = 0, E(u|Q) = E(v|Q) = E(w|Q) = 0, and E(θ2|Q) = σ2

θ

(i.e., talent has a constant variance). These assumptions are reasonable. If we now write
the normal estimating equations for the IV estimates of (a�b) and take probability limits
as the number of observations N goes to infinity, we find

Cov(Y1�Q)= bCov(R�Q)+ Cov(ε�Q)�

Given our assumptions, it is easy to check that E(ε)= hE(Rθ)= hγσ2
θ . We also have

E(Qε)= E
[
QE(ε|Q)

] = E
[
QhE(Rθ|Q)

]
�

but, again, it is easy to see that E(Rθ|Q) = γσ2
θ . We then find that E(Qε) = hγσ2

θE(Q)

and, therefore, Cov(Q�ε)= E(Qε)−E(Q)E(ε) = 0. From this we derive that

b = Cov(Y1�Q)

Cov(R�Q)

and we conclude that b̂IV, the IV estimator of b, is consistent. So the IV approach is jus-
tified, but we have learned nothing about the heterogeneity of treatment effects.

Next, if we now try to estimate the model

Y1 = a+ bR+ cY0 + ξ�

since ξ = −cu + w + hRθ, the random disturbance ξ is correlated with R and Y0. An IV
approach is again needed. Note that if treatment effects were homogeneous, that is, if
we had h = 0, the model could be estimated by OLS, since Y0 would be an appropriate
control. Assume now h �= 0 and use Q as an instrument for R to estimate b and c. More
precisely, we use (Q�Y0) as a vector of instruments for (R�Y0). Writing the normal equa-
tions and taking limits under standard assumptions about the instruments, we find the
linear system

Cov(Q�Y1) = bCov(Q�R)+ cCov(Q�Y0)+ Cov(Q�ξ)�

Cov(Y0�Y1) = bCov(Y0�R)+ cVar(Y0)+ Cov(Y0� ξ)�

As before, it is easy to see that E(Qξ) = E(Q)E(ξ) = E(Q)hγσ2
θ . Hence, Cov(Q�ξ) = 0. In

addition, under our assumptions, we must have Cov(Q�Y0)= Cov(Q�u)+Cov(Q�θ)= 0.
It follows that b̂IV is consistent. But, on the other hand, Cov(Y0� ξ) �= 0, implying that ĉIV,
the IV estimator of c, is biased.5

5To see this, using the fact that covariance is linear with respect to each of its arguments, we derive
Cov(Y0� ξ)= hCov(θ�Rθ)− cσ2

u . Since E(θ) = 0, we easily find that

Cov(θ�Rθ) = E
(
θ2R

) = E
[
θ2(α+βQ+ γθ+ v)

] = (
α+βE(Q)

)
σ2
θ + γE

(
θ3)�
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Ideally, to solve this problem, we would need instruments for the entry test scores
themselves. Yet, the IV strategy is a legitimate approach since it leads to consistent es-
timation of b. But this property holds only if it is true that Cov(Q�Y0) = 0. Given our
data set, this seems to be false: if we look at Figure 6, in Appendix A, we see that Y0 is a
decreasing function of the quarter of birth. It follows that Cov(Q�Y0) �= 0 and both IV es-
timators, b̂IV and ĉIV, may be asymptotically biased. In practice, the arithmetic mean of
Y0 among individuals such that Q = 1 (i.e., students born during the second semester) is
50�41 in French and 50�39 in math, and the mean of Y0 knowing Q = 0 (i.e., born during
the first semester) is 51�8 in French and 51�62 in math, while the overall averages are, re-
spectively, 51�20 and 51�09. The differences between these numbers are relatively small,
so that Cov(Q�Y0) � −0�3 in French (this is approximately one-half of the difference be-
tween the average of Y0 knowing Q = 1 and the overall average). The correlation of Y0
with Q is about −0�06, showing that this source of bias is small, in practice.

Finally, note in passing that if c = 1 (i.e., if value-added is the appropriate outcome),
then an expression of the LATE estimator of b is the empirical counterpart of

b= Cov(Q�Y1 −Y0)

Cov(Q�R)
= E(Y1 −Y0|Q = 1)

P(R = 1|Q = 1)− P(R = 1)
�

To sum up, the IV identification strategies based on the quarter of birth are legiti-
mate methods and provide us with an estimation of the LATE, in principle, but (i) they
do not allow for a study of heterogeneity in treatment effects, (ii) the quarter of birth
poses problems as an instrument, in particular if it happens to be correlated with entry
tests scores, leading to potential (but probably limited) biases, and (iii) in practice, the
estimates of the treatment effect of grade retention obtained with the quarter of birth
do not seem to be robust. Another distinct problem with the above IV estimates is that
they are obtained with the subsample of the students who reached grade 9. This may
obviously lead to a bias in the average treatment effect. The values that we find with the
above IV strategy must be understood as conditional on the fact that students did not
quit junior high school for vocational programs before grade 9. For these reasons, we
propose to study the effects of grade retention with a different approach.

Following Cunha, Heckman, and Schennach (2010), we will model Y1, Y0, and R as
explained by a common latent factor. Kotlarski’s theorem (see, e.g., Kotlarski (1967))
says, in essence, that if Y0 = θ + u and Y1 = θ + v, if we observe the distribution of
(Y1�Y0), and if u, v, and θ are independent random variables, then the distribution of
the latent factor θ is nonparametrically identified. In the absence of appropriate instru-
ments, the latent factor’s distribution can be identified with the help of several random
measures, Y0, Y1, and R: the initial grades, the final grades, and the promotion or re-
tention decisions. We obtain this in a relatively simple way at the cost of specifying
structural equations. A consequence of this alternative approach is that the entry test
scores Y0 will be considered as endogenous, dependent variables, instead of possible
control variables. Another important difference is that we no longer need the disap-
pointing quarter-of-birth instrument (we may use it anyway, but this is not crucial). The
key intuition here is that repeated noisy observations of a student’s performance (i.e.,
the availability of several measures of the student’s latent talent factor) are in a certain
sense a substitute for the use of instruments in identification strategies.
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4. A model of knowledge-capital accumulation

To uncover the mechanism of grade repetition and its impact on educational attain-
ment, we construct a model of knowledge-capital accumulation with unobserved het-
erogeneity. We found a source of inspiration in a series of influential papers by Heckman
and his co-authors, in which heterogeneity is captured by means of dynamic fac-
tor models. See, for example, Cunha and Heckman (2008) and Cunha, Heckman, and
Schennach (2010). Although close in spirit, the present approach relies on a somewhat
simpler model. We use a multiperiod setting. We rely on the idea that in the educa-
tional process, inputs are imperfectly observed and outputs are imperfectly measured
by means of test scores and teacher’s decisions. Unobserved heterogeneity is modeled
by means of a discrete set of unobserved individual types, generating finite mixtures of
normal distributions.

The model is designed to match the following data features. We observe test scores in
French and mathematics, but only at the beginning of grade 6 and at the end of grade 9.
Promotion decisions (promotion to the next grade, grade retention, or redirection to
vocational training) are observed in all years. In addition to these test scores and transi-
tions, we also observe class size and total school enrollment. The students who do not
drop off into vocational education at some point reach the terminal grade after 4 or 5
years, depending on retention, during the period 1995–2000. For children who never re-
peat a grade, we have observations in years t = 1�2�3�4. For those who repeat a grade
once and are not redirected to a vocational track, t can take all five values 1, 2, 3, 4, 5.
Redirected children are the cause of attrition. Pupils are indexed by i = 1� � � � �N . Let
git ∈ {1�2�3�4} denote the grade of student i in year t, and let Sit ∈ {P�R�V } denote the
promotion decision (i.e., promotion, retention, and redirection) at the last staff meet-
ing of year t. The term gi�t+1 is missing if Sit = V . All students start in grade 6 in year 1
(gi1 = 1), so we set Si0 = P for all i. There is no redirection of children toward vocational
education in grade 6, so Si1 ∈ {P�R}.

4.1 Initial conditions

Initial scores in mathematics and French measure initial knowledge capital in mathe-
matics and in French, denoted hm0 and hf0, respectively. We assume that individuals
have four possible unobservable types or, equivalently, belong to one of four possible
groups. Let Gik denote the dummy that is equal to 1 if i belongs to group k and equal to
0 otherwise. Let pk denote the unconditional probability of belonging to group k and,
of course, p1 + p2 + p3 + p4 = 1. Knowledge-capital levels at the beginning of grade 6,
that is, hm0 and hf0, have the form

hmi0 = cm01 + cm02Gi2 + cm03Gi3 + cm04Gi4� (1)

hfi0 = cf01 + cf02Gi2 + cf03Gi3 + cf04Gi4� (2)

In this formulation, group 1 is the reference group. It follows that cm01 and cf01 are
the average initial levels of knowledge capital in mathematics, and French, respectively,
for group 1 individuals. Subscript m (resp. f ) indicates a coefficient related to the initial
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mathematics capital (resp., the French language capital) equation. The average initial
mathematics capital of group k is thus cm01 + cm0k for k= 2�3�4� � � � .

Human capital is therefore discrete, but this should not be taken literally. We could
add a random term with a continuous distribution, representing other unobserved in-
puts to the expressions of hmi0 and hfi0, but the distribution of this term would not be
identifiable, because it could not be distinguished from the teachers’ “grading error,”
defined below. We suppose that the test scores in French, denoted yf , and in math, de-
noted ym, at the beginning of grade 6 are two different measures of the same knowledge
capital, that is,

ymi = hmi0 + εmi0� (3)

yf i = hfi0 + εf i0� (4)

where εm0 and εf0 are random variables with a normal distribution and a zero mean,
representing “grading” errors. The latter regression functions will identify the variance
of εm0 and εf0.

During the schooling of each student, we observe different variables that we regroup
in different categories. There are time-invariant characteristics of the individual, such
as family background observations, denoted X0, time-varying characteristics of the in-
dividual, denoted Xt , t = 1� � � � �5, and time-varying characteristics of the school, used
as instruments for class size, denoted Zt . The variables used in regressions are listed in
Table 6.

At this stage, we could also have added the list of controls X0, including indicators of
family-background characteristics, explaining the initial human capital hmi0 and hfi0, in
equations (1) and (2). By definition, the X0 variables do not vary with time. To introduce
a linear combination of the form X0b0 in equations (1) and (2), we would have to assume
that X0 and the group indicators Gk are independent, which is a strong assumption. It
follows from the adopted specification that the groups may capture some of the effects
of family background. As a consequence, we will later use separate regressions to explain
the impact of family-background variables and other controls on the probability of be-
longing to a given group. Another advantage of this formulation is to reduce the number

Table 6. Sets of variables.

Time-Invariant Time-Varying Time-Varying
Characteristics Characteristics Instruments
X0 X1, X2, X3, X4, X5 Z1, Z2, Z3, Z4, Z5

Gender Foreign language studied Theoretical class size
Father’s occupation Special education zone (i.e., Maimonides’ rule)
Mother’s education Number of foreigners in school
Number of siblings Class size
Grade retention in primary school Total school enrollment
Private sector in primary school Size of the urban area

Private sector
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of parameters to be estimated. There is a small and finite number of groups k, while
the number of possible family types may be very large. This is why the impact of family
background would be modeled by means of a linear combination X0b0, which can also
be restrictive. Given this point of view, it may seem that there should be more than four
groups. But such a parsimonious representation may, on the contrary, be appropriate,
given the practical policy problem posed here, which is to classify students for the need
of a pedagogical policy.6 To assess the importance of these choices and their possible
impact on our results, we present in Appendix C (in the supplementary file) a variant of
our model in which some family background is added in the equations, and show that
our main results are robust to these changes (see further comments below).

We treat class size as an endogenous variable and use an instrumental variable in
the class-size equation (defined below), as in Angrist and Lavy (1999) and Hoxby (2000).
The instrument for class size exploits discontinuities induced by the application of a
class-opening threshold. Let Nit denote total grade enrollment in i’s school in year t.
The theoretical class size in year t, denoted Zit , is the class size that would obtain if the
headmaster’s rule was to open a new class, as soon as total grade enrollment in grade
git became greater than τq and to minimize class-size differences, where τ is the class-
opening threshold and q is an integer. Given these definitions, the theoretical number
of classes in grade git , denoted κit , is by definition

κit = int
[
Nit − 1

τ

]
+ 1�

where int[x] is the largest integer q such that q ≤ x. The theoretical number of students
per class in grade git is simply

Zit = Nit

κit
�

Piketty and Valdenaire (2006) and Gary-Bobo and Mahjoub (2013) show how this func-
tion of total grade enrollment fits the observed data in the French educational system.
We set the threshold value τ = 25 because it seems to provide the best fit with DEPP
Panel 1995. We will see below that Zit has a strong effect in class-size regressions.

4.2 Knowledge-capital accumulation

Knowledge, or human capital, accumulates according to the equation

hi1 = a1ni1 + b1Xi1 + c11 + c12Gi2 + c13Gi3 + c14Gi4� (5)

where ni1 denotes class size in individual i’s class, grade gi1 = 1. Again, in equation (5),
group 1 is the reference, so that c11 is the impact of group 1 on hi1, and the impact of
group k is c11 + c1k for all k> 1.

Many studies have established that class size is an endogenous variable. In particu-
lar, available evidence for France shows that class size is positively correlated with stu-
dent performance because smaller classes are typically used to redistribute resources in

6Eckstein and Wolpin (1999) used the same modeling strategy.
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favor of weaker students or in favor of schools located in areas targeted for special help
in education (see Piketty and Valdenaire (2006), Gary-Bobo and Mahjoub (2013)). We
therefore model class size ni1 separately, as follows. Using group 1 as the reference, we
have

ni1 = α11Xi1 + α12Zi1 +β11 +β12Gi2 +β13Gi3 +β14Gi4 + ζi1� (6)

The random term ζi1 is an independent, normally distributed error.
Since we do not have any quantitative measure of performance at the end of grades

g ∈ {1�2�3}, repeated or not, we define a single, latent education score for those years. In
grade 6 (i.e., if git = 1), we define the latent variable

yi1 = hi1 + εi1� (7)

where ε1 is an independent normal error with a zero mean.
An individual is promoted to grade 7 (i.e., gi�2 = 2) if his (her) human capital is high

enough, and repeats a grade otherwise. The promotion decision is modeled as a simple
Probit. Let C11 be a human-capital threshold above which students are promoted. We
have

Si1 =
{
P if y1i ≥ C11�

R if y1i < C11�
(8)

The distribution of ε1 is assumed to be standard normal, as usual in such a case, to
identify the coefficients of the latent index. Our specification of h1 being given by (5)
above, we see that the model will only identify the constant

δ11 = C11 − c11�

This is of course technically equivalent to normalizing C11, but, in principle, C11 is the
human-capital level above which students pass, while c11 is the specific mean level
reached by group 1 students in the hypothetical situation n1 = X1 = 0. In essence, our
model identifies differences between groups, not the absolute mean level of a group.

4.3 From second to fifth year

Similarly, still using group 1 as the reference, in the second and third years, the human
capital has the following representation:

If git = t (nonrepeaters), we have

hit = atnit + btXit + ct1 + ct2Gi2 + ct3Gi3 + ct4Gi4� (9)

If git < t (repeaters), we have

hit = atrnit + btrXit + ct1r + ct2rGi2 + ct3rGi3 + ct4rGi4� (10)

The class-size equations are specified as follows:
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If git = t (nonrepeaters), we have

nit = αt1Xit + αt2Zit +βt1 +βt2Gi2 +βt3Gi3 +βt4Gi4 + ζit� (11)

where ζit is an independent normal random variable.
If git < t (repeaters), we have

nit = αt1rXti + αt2rZit +βt1r +βt1rGi2 +βt3rGi3 +βt4rGi4 + ζitr� (12)

where ζitr is an independent normal random variable. Therefore, the models for hit

(resp. nit ) have the same structure, but all the coefficients are free to vary with the stu-
dent’s status: repeater or nonrepeater.

At the end of the second and third years, if the student has not repeated a grade
before, he or she can either pass to the next grade (P), repeat the year (R), or be redi-
rected toward a vocational track (V). We model these three different transitions with an
ordered Probit. Promotion or retention decisions are made by the teachers’ staff meet-
ings (i.e., the conseils de classe), at the end of every school year. In essence, these staff
meetings base decisions on the student’s grade-point average (hereafter GPA) at the end
of the year, and decide whether to promote, to hold back, or to “steer” the student to-
ward vocational education. Students with a GPA above a certain threshold are promoted;
students with a low record are “steered”; students with a mediocre, below-the-average
record repeat the grade if the teachers’ committee thinks that they can benefit from the
repetition. It seems reasonable to assume that the promotion decision is based on some
average of the teachers’ assessments of the student’s cognitive capital plus an unob-
served individual effect, reflecting other unobservable factors that the members of the
teaching staff take into consideration. We have in mind that the student’s unobservable
GPA in year t is highly correlated with the latent capital hit , or to fix ideas, that hit is the
GPA in year t plus some random factor. We then model the unobservable capital hit as
an educational output, which is the result of some educational inputs: class size, time-
varying variables, and individual ability, as captured by the group indicator Gik. Given
this and given the clear hierarchy of the three possible decisions, it seems reasonable to
use an ordered Probit structure.

Define first the latent variable

yit = hit + εit�

where εt is an independent normal error. The decision Sit is then specified as

Sit =

⎧⎪⎪⎨
⎪⎪⎩
V if yit < Ct�

R if Ct ≤ yit < Dt�

P if yit ≥ Dt�

(13)

where Ct and Dt are the Probit cuts. We assume that εt has a standard normal distribu-
tion. As above, the model in fact identifies only the differences,

δt1 =Ct − ct1 and δt2 =Dt − ct1�
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In the sample, a student never repeats a grade twice. Thus, the model embodies the fact
that if the student has already repeated a grade, he or she cannot repeat a second time.
For repeaters, the possible decisions are promotion to the next grade or redirection. We
model the two different transitions with a simple Probit. We first define the latent vari-
able

yitr = hit + εitr�

where εtr is an independent normal error. The decision Sitr is then specified as

Sitr =
{
P if yitr ≥ Ctr�

V if yitr < Ctr�
(14)

where Ctr is a threshold, and we assume that εtr has a standard normal distribution. The
model identifies only the difference, δtr = Ctr − ct1r .

It follows from these assumptions that the latent human capital hit is affected by
the promotion and retention decisions, because all the coefficients are free to vary in
expressions (9) and (10), as well as in the auxiliary class-size equations (11) and (12), to
describe a different productivity of inputs for students who repeated a grade.

The test scores in French, denoted yf4, and in math, denoted ym4, are two different
measures of the final human capital. For nonrepeaters, with obvious notations for the
random error terms, we have

ymi4 = hmi4 + εmi4� (15)

yf i4 = hfi4 + εf i4� (16)

where εm4 and εf4 are independent normal random variables. For repeaters, at the end
of grade 9, test scores in French are observed in year t = 5 and denoted yf5. Similarly, test
scores in mathematics are denoted ym5. We have two different measures of the repeaters’
final human capital, with obvious notations for the independent random error terms:

ymi5 = hmi5 + εmi5� (17)

yf i5 = hfi5 + εf i5� (18)

The functions hmit and hfit , with t = 4�5, have the same specification as hit (as given
by (9) above), with coefficients amt , bmt , cmt and af t , bf t , cf t , and so forth, that may be
different for mathematics and French.

Our model is now fully specified. This model represents trajectories ht that de-
pend on the hidden type k, on time-varying covariates, and on the observable grade-
repetition status. The value of hit may depend on k in a different way at each period t

through coefficients ctk. There are no restrictions placed on the latter coefficients.

4.4 Discussion

The model presented above is flexible and quite general but has some limitations. First,
we consider the issue of study-effort incentives. The very fact that grade repetitions have
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a nonzero probability would act as a threat and the effort of students would on average
be higher when the rate of grade repetition increases. This type of effect is very difficult
to identify (see De Fraja, Oliveira, and Zanchi (2010)). In addition the effect could be
weak. Indeed, incentives are provided by many other things: the parents, the labor mar-
ket, and so forth. As noted by a referee, to estimate the effect, we would need data on
schools where grade retention has been abolished. With our data, we did not find an im-
portant source of variability of the rate of grade repetition if we put aside the variability
in the socioeconomic background of the students.

We ran regressions of the retention dummy, in each year t, on a long list of controls.
A few variables have a significant impact, in addition to the obvious effect of the mother’s
education and the father’s occupation. Students enrolled in schools with special subsi-
dies (zones d’éducation prioritaire (ZEP) schools) are more (resp. less) likely to repeat a
higher (resp. lower) grade; the size of the urban zone does not play a role; the rate of
retention is not different in the private sector except in grade 9, where it is lower. We do
take the predictable variations in grade-retention practices into account, since the vari-
ables that have an impact on the probability of retention in the linear probability model
are used as controls is the promotion–retention Probits.7

Another interesting issue is school choice. Could it be that the model captures types
that are matching types, reflecting a student-to-school matching, rather than latent stu-
dent ability types? Latent types could indeed capture a typical matching effect, in addi-
tion to the student’s unobservable ability, if we did not control for time-varying school
and environmental characteristics. To a certain extent, we do control for the student’s
environment by means of Xt . Yet, it may be that our control variables miss an impor-
tant aspect. This being said, our method is still valid if types also capture, to a certain
extent, the fact that some categories of students are matched to certain kinds of schools,
but the interpretation is more delicate, of course. If the proposed method is to be use-
ful to policy makers, it should certainly be parsimonious in the sense that it would rely
on a small number of relevant student groups. The study of “fixed effects” attached to
school–student interactions would probably require many more groups and thus more
parameters to estimate. This would go against the desire to summarize the most im-
portant effects with a parsimonious model, and such an attempt might fail because the
data might not support the estimation of these parameters. But a study of the matching
of students to schools could in principle become an interesting avenue of research—in
the framework of the present paper, it is essentially out of reach, apart from controlling
for observable school characteristics.

With the help of the model, we observe a given allocation of students to schools and
we try to classify students rigorously. In practice, France is a country in which public
schools are dominant, and private sector high schools are strictly regulated and highly
subsidized by the government. In our sample, 18% of the students are enrolled in the
private sector. In France, the private sector attracts only a slightly greater share of stu-
dents from well-to-do families, but the social stratification is not extreme as in other

7Table S1, column (4), in Appendix B in the supplementary material, shows the estimated impact of
family background on the probability of repeating a grade.
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countries because tuition and fees are low. This is because free access is the legal coun-
terpart of state subsidies for the bulk of French private schools. The educational system
is therefore very homogeneous (or much less stratified) as compared to, say, the United
States. For these reasons, it is very likely that our latent types are not reflecting school
characteristics, since the private–public division would be the main source of such an
effect, but the empirical basis is lacking. We could also consider different latent groups
in French and mathematics, but that would go against parsimony, and we will see that
groups explain the same ranking of scores in both disciplines.

Finally, we should pose the question of the external validity of our results. If samples
with the same structure did exist in other countries, a variant of the model could be rees-
timated. But it would be asking too much to extrapolate on the basis of our results and
to predict that grade retention has, say, a negative treatment effect of nearly the same
magnitude in Germany. It seems reasonable to suggest, however, that qualitatively sim-
ilar results would be obtained in Germany, like weak and/or heterogeneous treatment
effects.

5. Identification and estimation method

The model can be viewed as a collection of finite normal mixture models. Under the
normality assumption, these models are identified parametrically.8 In addition, there
are cross-equation restrictions since the latent groups k appearing in each equation are
the same, with the same probability distribution. Without normality, the nonparametric
identification of the distribution of groups k is a much more delicate question. A number
of technical results can be proved; see Allman, Matias, and Rhodes (2009) and Kasahara
and Shimotsu (2009). If we observe at least three conditionally independent random
measures of an outcome, knowing the number of groups k, it is possible to identify a
discrete mixture of probability distributions nonparametrically, provided that a number
of technical conditions that bear on covariates hold true. We can certainly use the test
scores in math and French in grade 6 as the first two measures. The final, grade 9 scores
provide additional measures, but they are not independent conditional on the group.
We may not be far from finding a few additional conditions under which a model such
as ours would be identified without the normality assumption, but this difficult research
question is beyond the scope of the present paper.

Intuitively, the proposed model performs an automatic classification of students
based on a number of observations: test scores, promotion, and retention decisions.
As the number of observations of the same student increases, an individual’s posterior
probability of belonging to a given group becomes closer to 0 or 1. To remove the risk
of classification error completely we would need a large number of observations of the
same student, related to the student’s latent group (i.e., a long panel). The parametric
normality assumption helps to identify a posterior distribution for the unknown group
of each individual, knowing observed characteristics and observed outcomes, and thus
helps to identify the individual’s most likely group.

8See McLachlan and Peel (2000) and Geweke and Keane (1997).
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The estimation method is a variation on the expectation-maximization (EM) algo-
rithm. Let Yi be the set of outcomes observed for individual i: Yi = (ymi0� yf i0� Si1� � � � � Si4�

ymi4� yf i4). Let X = (X1�X2�X3�X4�X5) and Z = (Z1�Z2�Z3�Z4�Z5). Then we denote
θ the vector of all model parameters, namely, θ = (p1�p2�p3�p4� ai� bi� cij�αi� � � � ). We
replicate each individual i in the sample to create four different artificial observations
of i. Student i’s replicas differ by the unobserved type, or group k only, but the values
of Xi, Yi, and Zi are the same for each replica. We arbitrarily choose initial values for
the unconditional prior probabilities of the groups pk, k= 1� � � � �4, and for the posterior
probabilities of belonging to a certain group knowing the observed characteristics of i,
that is, pik = P(Gik = 1|Y�X�Z). They will be updated after each iteration.

The estimation algorithm can be described as follows.

Step 1. We first run 20 weighted regressions and ordered Probits.

(a) Two regressions for the initial test scores in math and French.

(b) Two regressions of class size by grade: one for the repeaters and one for the non-
repeaters (except for the first year, because there are only nonrepeaters in year t = 1, and
for year t = 5, because there are only repeaters). This amounts to eight regressions.

(c) One simple Probit to model the transition at the end of grade 6 in year t = 1. Two
ordered Probits to model the decision at the end of grades 7 and 8 for nonrepeaters.
Three simple Probits to model steering decisions relative to repeaters in grades 6, 7,
and 8. There are four Probits and two ordered Probits in total.

(d) Two final test-score regressions in math and French, for repeaters and nonre-
peaters (four regressions).

Step 2. We obtain an estimation of θ by means of our system of weighted regressions
and weighted Probits.

Step 3. The residuals of regressions and the probabilities of passing to the next grade
are collected to compute the individual contributions to likelihood, that is, by definition,

li(X�Z�Y�θ) =
K∑

k=1

pkli(Y�X�Z�θ|Gik = 1)� (19)

Step 4. Individual posterior probabilities pik of belonging to a group are then up-
dated, using Bayes’ rule and the likelihood as

pik = P(Gik = 1|Y�X�Z�θ)= pkli(Y�X�Z�θ|Gik = 1)
K∑
j=1

pjli(Y�X�Z�θ|Gjk = 1)

� (20)

These individual probabilities are then averaged to update the prior probabilities pk as

pk = P(Gk = 1)= 1
N

N∑
i=1

pik� (21)
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Step 5. A new iteration begins until convergence of the estimated unconditional
probabilities.

All standard deviations have been bootstrapped, using 50 drawings with replace-
ment in the sample.

The estimation method used here has been advocated and justified by various au-
thors (see, e.g., Arcidiacono and Jones (2003) and Bonhomme and Robin (2009)).

6. Estimation results

6.1 Distribution of groups

The results of the algorithm, using K = 4 groups, are given by Table 7. We chose to use
only four groups because for K > 4 some groups become difficult to distinguish from
each other. In Table 8, we compare the most likely groups of individuals, estimated with
the full model, called classification 1, with the results of a limited submodel, based on
grade-6 entry scores only, called classification 2. Both models have four unobserved
types or groups. This has been done to try to assess the impact of initial test scores on the
individual’s posterior probabilities of belonging to a group. In other words, are students
fully predetermined by their initial stock of knowledge? We observe that, according to
classification 2, 75% of group 1 individuals are also most likely to become members of
group 1, according to classification 1 (the full model). Observing the grade-6 scores in
math and French only allows us to assign the student to the first group, to a large extent.
But group 4 students are not predetermined by their entry test scores, since less than
2% of the students assigned to group 4 on the basis of the latter scores end up being
members of group 4 in the full model. The corresponding percentages are 59% and 48%

Table 7. Estimated group probabilities.

Group 1 Group 2 Group 3 Group 4

Probabilities 15�54% 31�16% 33�56% 19�74%
(0�69) (0�64) (0�58) (0�82)

Table 8. Comparison of two classifications.

Classification 2

Classification 1 Group 1 Group 2 Group 3 Group 4 Total

Group 1 74% 1% 0% 3% 2021
Group 2 24% 59% 2% 61% 4076
Group 3 0% 38% 48% 34% 4383
Group 4 2% 2% 50% 2% 2656

100% 100% 100% 100%

Total 2547 2883 4967 2739 13,136
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for groups 2 and 3, respectively. We conclude that, with the exception of group 1, unob-

served types are far from being perfectly predicted in year t = 1 (i.e., in grade 6). It seems

that the weakest students are easily detected from the beginning, but the brightest stu-

dents are not. We will come back to this point in the general discussion of estimation

results below.

Table 9 presents the parameters obtained when we regress the individual posterior

probabilities of belonging to a certain group k, defined as pik above, on the sociode-

mographic and family-background variables X0. We find that the probabilities of be-

longing to the two extreme groups, group 1 and group 4, are significantly influenced by

the social background. The results show, among other things, that when the mother is

educated and the father is an executive, the probability of belonging to group 4 is sig-

nificantly increased. Group 2 and group 3 are not so easy to distinguish on the basis of

observed student characteristics. But the R2 of these regressions—around 19% for group

1 and 14% for group 4—shows that the probabilities of belonging to a group are at best

incompletely determined by observable family-background characteristics.

6.2 Group effects on test scores

We present here the estimated parameters of group effects and class size. Table 10 shows

the estimated coefficients for the initial test scores (at the beginning of grade 6) and

the final test scores (at the end of grade 9). Group 1 is the reference. We see how well the

four groups are defined. Scores in French and math increase with group index k and the

estimated coefficients yield the same ranking of ability groups in all columns, except the

rightmost column of Table 10. More precisely, group 4 has everywhere the highest scores,

with the exception of group 4 repeaters, in French, but the latter coefficient is estimated

with less precision than the others. Intuitively, this is because group 4 students have a

low probability of repeating a grade. Apart from this exception, group 4 is above group

3, which in turn dominates group 2, and group 1 is unambiguously the lowest ability

group.

If we now focus on final scores, it is easy to see that group 1 gets higher scores on av-

erage when a grade was repeated (i.e., this is because the constant is higher). In contrast

with group 1, individuals in groups 3 and 4 who did not repeat a grade obtain higher

scores than the repeaters of these two groups. Take group 3 for instance. To obtain the

final score in math of the average group 3 student who repeated a grade, we add the

constant in the column (i.e., 43�31) to the differential impact of group 3 (i.e., 9�07). The

total is 52�38. But if we compute the corresponding term for group 3 nonrepeaters, in

math, we obtain, 15�80 + 41�88 = 57�68. Grade repetition seems detrimental to group 3.

The same is true with group 4. For the latter group, the corresponding additions yield

68�06 in the nonrepeaters’ column and 59�36 in the repeaters’ column. However, individ-

uals in group 2 get approximately the same increase in their score, whether they repeat

or not.
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Table 9. Individual group probabilities and family background.

Group 1 Group 2 Group 3 Group 4

Female 0�0493*** 0�0388*** −0�00773 −0�0804***
(0�00565) (0�00766) (0�00779) (0�00638)

Mother education: −0�0126 −0�0167 0�0234** 0�00594
Junior high school (0�00873) (0�0118) (0�0120) (0�00985)

Mother education: −0�0521*** −0�0175 0�0531*** 0�0165
Vocational certificate (0�00937) (0�0127) (0�0129) (0�0106)

Mother education: −0�0901*** −0�103*** 0�0550*** 0�138***
High-school graduate (0�0109) (0�0147) (0�0150) (0�0123)

Mother education: −0�0864*** −0�154*** 0�0832*** 0�157***
2 years of college (0�0118) (0�0160) (0�0162) (0�0133)

Mother education: −0�103*** −0�174*** 0�0240 0�253***
4 years of college and more (0�0142) (0�0192) (0�0195) (0�0160)

Father occupation: −0�0514*** −0�0373 0�0100 0�0786***
Executive, professional (0�0181) (0�0245) (0�0250) (0�0204)

Father occupation: −0�00141 0�0674*** −0�0314 −0�0346*
White collar (0�0184) (0�0249) (0�0253) (0�0207)

Father occupation: 0�0557*** 0�0777*** −0�0696*** −0�0638***
Blue collar (0�0169) (0�0229) (0�0233) (0�0191)

More than three children in family 0�0845*** 0�0004 −0�0432*** −0�0418***
(0�00840) (0�0114) (0�0116) (0�00949)

Retention in primary school 0�206*** 0�0412*** −0�169*** −0�0781***
(0�00731) (0�00990) (0�0101) (0�00825)

Quarter of birth
Q2 0�0000 0�0144 −0�0193* 0�0049

(0�0077) (0�0105) (0�0107) (0�0087)
Q3 0�0198** 0�0256** −0�0331*** −0�0123

(0�0085) (0�0115) (0�0117) (0�0096)
Q4 0�0145* 0�0463*** −0�0260** −0�0349***

(0�0087) (0�0117) (0�0119) (0�0098)

R2 0�187 0�059 0�060 0�143

Note: Linear regressions of probabilities pik on controls X0 . Standard errors are given in parentheses. The asterisks ***, **,
and * indicate significance at the 1, 5, and 10% levels, respectively. There are 12,937 observations.

6.3 Promotion decision model and effects of class size

If we now look at the top rows in Table 10, we find that increasing class size has a nega-
tive impact in grade 9 for all students. The standard deviation of class size is around 3.9

It follows that the estimated impact of a standard deviation of class size is around three-
quarters of a normalized test-score point for nonrepeaters, or 7�5% of the standard de-
viation of test scores. The significant negative coefficient on class size appears because
we control for unobserved heterogeneity and, therefore, for the endogeneity of this vari-
able. Otherwise, the coefficient on class size would be positive (we return to this ques-
tion below, when we discuss the class-size regressions). This being said, we do not find

9To be precise, the standard deviation of class size in year t, denoted σnt , has the values σn1 = 2�99, σn2 =
2�90, σn3 = 3�32, and σn4 = 3�38.
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Table 10. Estimated impact of groups and class size on test scores.

Score in Math Score in French

Final Final

Initial Nonrepeaters Repeaters Initial Nonrepeaters Repeaters

Class size t = 4 −0�25*** −0�25***
(0�03) (0�04)

Class size t = 5 −0�19*** −0�25***
(0�07) (0�05)

Group 2 10�44*** 8�14*** 5�32*** 10�82*** 9�10*** 5�80***
(0�27) (0�57) (0�67) (0�23) (0�65) (0�69)

Group 3 19�17*** 15�80*** 9�07*** 19�16*** 16�65*** 10�13***
(0�22) (0�62) (0�91) (0�30) (0�61) (0�73)

Group 4 25�42*** 26�18*** 16�05*** 25�60*** 27�50*** 9�22**
(0�25) (0�62) (5�24) (0�28) (0�68) (5�18)

Constant 35�34*** 41�88*** 43�31*** 35�20*** 40�87*** 44�29***
(0�24) (0�92) (1�71) (0�26) (0�94) (1�20)

R2 0�68 0�60 0�18 0�68 0�63 0�21

Note: Standard errors are given in parentheses. The asterisks ***, **, and * indicate significance at the 1, 5, and 10% levels,
respectively.

Table 11. Estimated impact of groups and class size on promotion decisions.

Dependent Cut 1 Cut 2 Cut R
Variable ↓ Class Size Group 2 Group 3 Group 4 δt1 δt2 δtr

S1 −0�025*** 0�67*** 2�24*** 2�45*** −1�13***
(0�007) (0�04) (0�12) (0�72) (0�16)

S2 repeaters 0�010** 4�29*** 4�22*** 3�17*** −1�80∗
(0�04) (0�42) (0�61) (1�3) (1�12)

S2 −0�004 0�63*** 1�62*** 2�72*** −0�85*** −0�08
(0�006) (0�044) (0�057) (0�64) (0�14) (0�14)

S3 repeaters −0�016∗ 0�38*** 0�92*** 4�43*** −0�93***
(0�012) (0�017) (0�24) (1�37) (0�29)

S3 0�045*** 0�33*** 0�92*** 1�67*** −0�64*** 0�34**
(0�006) (0�05) (0�06) (0�17) (0�18) (0�16)

S4 repeaters 0�035*** 0�33*** 0�65*** 0�55 −0�002
(0�01) (0�07) (0�12) (1�91) (0�24)

Note: The promotion decisions St are modeled with the help of an ordered Probit. They take the value 0 for redirection, 1
for retention, and 2 for pass. Standard errors are given in parentheses. The asterisks ***, **, and * indicate significance at the 1,
5, and 10% levels, respectively.

a very strong class-size effect on final scores (a quarter of a point or 1/40th of the stan-
dard deviation of test scores for a one student reduction in class size). Table 11 shows
the main parameters of the promotion decision model. Dependent variables determine
rows, while the coefficients of a given explanatory variable in equations are displayed in
the same column. A higher group label means a higher average knowledge capital. As
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a consequence, the greater the group label, the greater the probability of passing to the
next grade, for nonrepeaters as well as for repeaters, in each grade. The estimated coeffi-
cients reflect this ranking of groups very clearly, again, with the exception of the impact
of group 4 in the Probit concerning grade-8 repeaters (i.e., S4 repeaters). The latter coef-
ficient is not estimated with precision because group 4 students have a small probability
of repeating a grade. Apart from this exception, all other coefficients are estimated with
good precision. The first column of Table 11 shows that increasing class size decreases
the probability of promotion to grade 7, but has a nonsignificant (or even a positive im-
pact) on pass rates in later grades.

6.4 Endogeneity of class size

Table 12 finally gives the coefficients of group dummies and of instruments in class-
size equations. Each row in the table corresponds to a dependent variable. One of the
class-size instruments is theoretical class size (i.e., Maimonides’ rule), that is, the class
size that would be experienced by the student if a class-opening threshold of 25 was ap-
plied, given total grade enrollment. The coefficient of this variable is significant and pos-
itive, as expected. We also find that class size increases with the ability (i.e., the group)
of students. The only exceptions are the coefficients on group 4 dummies, that cannot
be estimated with precision among grade repeaters. These results prove that class size
is strongly endogenous and that it is used as a remediation instrument by school princi-
pals.

Table 12. Estimates of class-size equation parameters.

Dependent
Variable ↓ Maimonides’ Rule Constant Group 2 Group 3 Group 4 R2

Class size t = 1 0�32*** 16�09*** 1�12*** 1�75*** 1�78*** 0�20
(0�02) (0�36) (0�18) (0�15) (0�16)

Class size t = 2 0�49*** 14�81*** 0�68*** −5�75*** 3�15* 0�25
(repeaters) (0�05) (1�09) (0�27) (1�51) (2�35)

Class size t = 2 0�37*** 15�17*** 1�07*** 1�85*** 1�96*** 0�21
(0�02) (0�17) (0�30) (0�14) (0�16)

Class size t = 3 0�36*** 16�06*** 0�53*** 1�13*** −1�96* 0�18
(repeaters) (0�05) (0�91) (0�17) (0�32) (1�27)

Class size t = 3 0�35*** 13�66*** 1�87*** 2�90*** 3�10*** 0�24
(0�05) (0�40) (0�22) (0�20) (0�26)

Class size t = 4 0�33*** 15�61*** 0�95*** 2�00*** 1�85 0�19
(repeaters) (0�05) (0�90) (0�22) (0�29) (2�16)

Class size t = 4 0�35*** 14�05*** 1�62*** 2�62*** 2�94*** 0�26
(0�02) (0�46) (0�34) (0�26) (0�29)

Class size t = 5 0�26*** 16�34*** 0�91*** 2�67*** 0�32 0�22
(repeaters) (0�04) (0�73) (0�32) (0�31) (2�92)

Note: Standard errors are given in parentheses. The asterisks ***, **, and * indicate significance at the 1, 5, and 10% levels,
respectively.
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Our estimates are robust if the group dummies are exogenous variables in each year.
To check this, we regressed the posterior probabilities of belonging to a group over a set
of permanent individual characteristics X0 and the time-varying characteristics X1, X2,
X3, X4, X5. The results of these latter regressions are not presented here, but they show
that if the coefficients on X0 are strongly significant, in contrast, time-varying char-
acteristics are not significant. Thus, our model seems well specified (and we found a
confirmation of well known results). A better social background (that is, more educated
and more qualified parents) significantly increases the initial capital and, therefore, the
probability of belonging to high-ability groups.

6.5 Robustness

Our first goal is to compare the results of the approach developed above with a stan-
dard approach, to make sure that our mode of treatment of unobserved heterogene-
ity is not yielding unreasonable results. To this end, using the same sample, we esti-
mated a relatively easy to handle system of five simultaneous linear equations by means
of three-stage least squares (3SLS). The system explains final test scores in math and
French, grade retention, and class size in grades 6 and 9. As is well known, the consis-
tency of 3SLS estimates does not depend on a normality assumption. The instrumen-
tal variables used are, as above, the semester of birth (to instrument grade retention),
the theoretical class size, defined above, and total grade enrollment (to instrument class
size). We add a long list of variables including controls for family background. The model
and results are presented in Appendix B, available in the supplementary material. It is
reassuring to find that this standard approach yields good results, and confirms a num-
ber of things that we learned with our more sophisticated model—if we put aside the
treatment effects of grade retention themselves! We find reasonable effects of family-
background variables (parental occupation, education, etc.) with the expected signs; we
find significant and negative class-size effects; lower initial test scores are associated
with a significantly higher probability of grade retention and a significantly lower class
size, showing that class size is used as a remedial education tool in France. But the co-
efficients of the grade-retention dummy in the outcome equations are not particularly
credible, as explained in Section 3. It is interesting to note that the impact of family-
background variables is in essence the same in the 3SLS-estimated system and in the re-
gression of probabilities of belonging to a latent group over the same controls, as shown
by Table 9.

We then try a more ambitious robustness check, namely, to reestimate the whole
model with unobserved heterogeneity, while adding controls in all equations. We added
only a limited number of controls that we expect to be important: dummies indicating
(i) if the mother has a college degree, (ii) if the father is an executive or professional,
(iii) student gender, and (iv) if the student repeated a grade in primary school. In ad-
dition, we introduce quarter-of-birth indicators in all the Probit equations describing
promotion to the next grade or retention. The results of the EM algorithm for this vari-
ant are presented and discussed in Appendix C, available in the supplementary ma-
terial. In a nutshell, we find that if the weakest and the strongest groups (groups 1
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and 4) are still well identified, groups 2 and 3 become difficult to distinguish. In Ap-
pendix C, we compare the groups in the two variants of the model. But it is reassur-
ing to find that the main conclusions do not change. Computing the ATTs and ATEs
with the variant, we reach, in essence, the same conclusions as in Section 7 below:
ATT is small and barely significant; ATE is unambiguously negative; the treatment effect
by groups shows that grade retention would have positive effects only in the weakest
group.

7. The treatment effects of grade retention

We now turn to the key question of the present paper: the treatment effects of grade
repetition. The model will be used to compute counterfactuals.

7.1 Effect of grade retention on grade-9 scores

Each individual i has a posterior conditional probability pik of belonging to each of the
four groups k = 1� � � � �4. For each individual and each of his (her) possible types, we
compute a counterfactual class size and a counterfactual final test score. Each individual
has four counterfactual final scores and four counterfactual final class sizes. Using the
posterior probabilities, we can then compute expected counterfactual grades.

For each group and for each student who has not repeated a grade, we perform the
following operations:

(i) We compute the class size he or she would have experienced in grade 9 if he or she
had repeated a grade. To do this, we assume that the student does not move to a different
school and that his or her class environment has the same characteristics (same size of
the urban area, same sector (private or public), same classification as priority education
zone, . . . ). However, we use the information that we have on total school enrollment and
total grade enrollment in the same school 1 year later.

(ii) We compute the score predicted in grade 9 if the student had repeated a grade
(this counterfactual is denoted Yc

r ).

For each grade repeater and each group, we perform the following operations:

1. We compute the class size predicted in grade 9 if the student had not repeated a
grade.

2. We compute the student’s predicted score in grade 9 if he or she had not repeated
a grade (this counterfactual is denoted Yc).

Let Nr denote the number of individuals who repeated a grade and let Np denote the
number of individuals who did not repeat a grade. Of course, we have N = Np +Nr . Let
yri be the observed final grade of i if i is a repeater. Let yi be the observed final grade of i
if i never repeated a grade. We can now compute the following treatment effects.
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The average treatment effect (i.e., ATE) is defined as

ATE = 1
N

( ∑
i∈Np

4∑
k=1

(
E

(
Yc
ri|Gik = 1

) − yi
)
pik

(22)

+
∑
i∈Nr

4∑
k=1

(
yri −E

(
Yc
i |Gik = 1

))
pik

)
�

where pik = P(Gki = 1|X�Z�Y) is i’s posterior probability of belonging to group k. In the
above expression, E(Y c

ri|Gik = 1) and E(Y c
i |Gik = 1) are the predictions of i’s final grades

in the counterfactual situations of grade repetition and not repeating, respectively, using
the estimated regression functions and conditional on belonging to group k.

The average treatment effect on the treated (i.e., ATT) is then

ATT = 1
Nr

4∑
k=1

∑
i∈Nr

(
yri −E

(
Yc
i |Gik = 1

))
pik� (23)

We also compute an ATE by group. For group k, the average treatment effect ATEk is
defined as

ATEk = 1
Npk

( ∑
i∈Np

(
E

(
Yc
ri|Gik = 1

)−yi
)
pik+

∑
i∈Nr

(
yri−E

(
Yc
i |Gik = 1

))
pik

)
� (24)

where pk = (1/N)
∑

i pik. The ATT within group k, denoted ATTk, can be defined in a
similar way:

ATTk = 1∑
i∈Nr

pik

∑
i∈Nr

(
yri −E

(
Yc
i |Gik = 1

))
pik� (25)

7.2 Effect of grade retention on the probability of access to grade 9

Individual i’s estimated probability of access to grade 9, knowing group k, is denoted
P9ik and can be decomposed in the manner

P9ik =Pr(Si1 = P|k)Pr(Si2 = P|k)Pr(Si3 = P|k) (does not repeat)

+ Pr(Si1 = P|k)Pr(Si2 = P|k)Pr(Si3 =R|k)Pr(Si4r = P|k)
(repeats grade 8)

+ Pr(Si1 = P|k)Pr(Si2 = R|k)Pr(Si3r = P|k)Pr(Si4r = P|k)
(repeats grade 7)

+ Pr(Si1 =R|k)Pr(Si2r = P|k)Pr(Si3r = P|k)Pr(Si4r = P|k)
(repeats grade 6)�
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where, to simplify notation, we denote Pr(Sit = X|k) = Pr(Sit = X|Gik = 1) for all X =
P�R�V . If the government decides to abolish grade retention (but keeps the possibility
of steering students toward the vocational track), then the only way to reach grade 9 is
to pass the three grades directly. Let Pc

9ik be the counterfactual probability of accessing
grade 9 when grade retention is abolished. Given that no student is redirected to the
vocational track at the end of grade 6, this probability can be expressed as

Pc
9ik = Pr(Si2 = P|k)Pr(Si3 = P|k)�

To find the average treatment effect of grade retention, we need to compute the indi-
vidual probabilities P9ik and Pc

9ik for all the students in the sample, including those who
have actually been redirected. This requires the computation of many counterfactuals.
For those who repeated grade 6 and then passed or were redirected, we need counterfac-
tual class sizes and counterfactual school-environment characteristics for years 2 and 3
that they would have experienced had they not repeated a grade. For those who repeated
grade 5 or have been redirected at the end of grade 5, we need their counterfactual class
size and counterfactual characteristics for year 3, as if they had not repeated this grade.
Finally, for those who were never held back, we need the counterfactual class size and
characteristics that they would have experienced had they repeated a grade. Table 13
summarizes the counterfactual probabilities and the counterfactual class size we com-
puted for each different grade history. Then we can compute the following treatment
effects. The average treatment effect is

ATE = 1
N

4∑
k=1

(∑
i∈Nr

(
P9ik − Pc

9ik
)
pik +

∑
i∈Np

(
P9ik − Pc

9ik
)
pik

)
�

Table 13. Counterfactuals required to compute the probabilities of accessing grade 9.

Grade 7 Grade 6R Grade 8 Grade 7R Grade 8R

History Pr(S2) n2 Pr(S2r ) n2r Pr(S3) n3 Pr(S3r ) n3r Pr(S4r ) n4r

1234 C C C C C C
12334 C C C C
12234 C C C C
11234 C C C C
1233V C C C C
1223V C C C C
1123V C C C C
123V C C C C C C
122V C C C C C C
112V C C C C C C
12V C C C C C C C C
11V C C C C C C C C

Note: The letter C indicates that a counterfactual value has been computed. The letter R indicates that a grade-repeater
model is used. The term Pr(St ) means the probability distribution of decision St ∈ {P�V �R}. nt denotes class size in year t. The
subscript r indicates the specific model for grade repeaters, Str ∈ {P�V }.
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The average treatment effect on the treated is then

ATT = 1
Nr

4∑
k=1

∑
i∈Nr

(
P9ik − Pc

9ik
)
pik�

7.3 Results and discussion

Table 14 displays the results of the various computations. The last row in this table shows
the overall results. If we consider the final tests scores in math and French (at the end of
grade 9), the ATT is positive, but small. Given that the mean value of the scores is 50 with
a standard deviation of 10, the effects are smaller than a tenth of a standard deviation
and barely significant. The ATE is clearly negative in math and in French. As we will
see, this is mainly due to the fact that the most able students would suffer from grade
repetitions. If we now look at the values of ATEk and ATTk, the treatment effects within
group k, it is easy to see that only group 1 students benefit for grade repetitions. The
effect of grade repetitions is not significantly different from zero for group 2 students.
In contrast, in the case of group 3 and group 4, both the ATE and the ATT are negative
in math and in French. This shows that grade repetition hurts the students belonging to
top groups.10 We conclude that grade repetitions have some usefulness for the weakest
students, with an effect on the order of a quarter of a standard deviation on the final
grades.

We now discuss the effect on the probability of access to grade 9. The treatment ef-
fects of grade repetition on final scores rely essentially on the regression equations that

Table 14. Average treatment effects of grade retention.

Probability of
Mathematics French Access to Grade 9

ATE ATT ATE ATT ATE ATT

Group 1 2�43 2�45 3�09 3�20 −0�11 −0�11
(0�76) (0�76) (0�81) (0�80) (0�014) (0�014)

Group 2 0�12 0�36 0�18 0�47 −0�12 −0�12
(0�42) (0�42) (0�41) (0�42) (0�012) (0�012)

Group 3 −3�79 −2�92 −3�66 −2�77 −0�09 −0�10
(0�76) (0�75) (0�60) (0�59) (0�022) (0�023)

Group 4 −6�68 −14�08 −6�86 −14�22 −0�06 −0�06
(4�61) (4�53) (4�54) (4�52) (0�07) (0�07)

All −2�56 0�27 −3�73 0�71 −0�09 −0�11
(0�85) (0�31) (0�94) (0�33) (0�017) (0�008)

Note: Standard deviations are given in parentheses.

10Note that ATTk and ATEk should be equal for each k if group k was the only variable used to predict
counterfactual scores. But other control variables are used to predict these scores, such as class size and
family background characteristics. This determines the differences between ATTk and ATEk in Table 14.
However, the differences are neither large nor significant.
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Figure 2. Histogram of individual probabilities of access to grade 9.

determine the final test scores, and the latter equations are estimated with the subset of
individuals who reached grade 9. The fact that this population is selected is taken into
account by the posterior individual probabilities pik. But it is reassuring to derive results
for an outcome that depends on the entire structure of the model. This is the case of ac-
cess to grade 9, because the probabilities P9ik, defined above, depend on all the decision
and class-size equations.

It is striking to see that in Table 14, the ATTs and ATEs of grade retention are all neg-
ative, even if we consider within-group treatment effects. This means that introducing
grade retention, if grade retention does not already exists, will be detrimental to stu-
dents, on average, and detrimental to students of each group, taken separately. The ef-
fects are particularly strong for groups 1 and 2. To see this, we computed the distribution
of the individual probabilities P9ik and individual counterfactual probabilities Pc

9ik in the
student population. The histograms of these distributions are displayed on Figure 2.

On Figure 2 it is easy to see that the counterfactual probabilities have a mass near
1, meaning that the abolition of grade repetitions would help many students to reach
grade 9. Yet, there are clearly subgroups of individuals that keep a low probability of
access: these individuals bear a high risk of being tracked in vocational programs. We will
understand the effect of grade repetition on access to grade 9 more fully if we compute
the histograms of P9ik and Pc

9ik separately for each group. This is done in the following
figures. Figure 3 gives the distributions of P9ik, while Figure 4 displays the distributions
of the counterfactual Pc

9ik.
Comparing the histograms, it immediately comes to mind that when grade repeti-

tions are abolished, access to grade 9 becomes certain for group 3 and group 4 students.
The effect of abolition is less obvious for the weakest groups, 1 and 2, but in fact, these
probabilities increase and become more favorable. To sum up, these effects explain why
the treatment effects of grade repetitions on access to grade 9 are unambiguously nega-
tive. We see also that these effects are very strong, since a drop of 11 or 12 points of prob-
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Figure 3. Histograms of probabilities of access to grade 9, by group.

Figure 4. Histograms of counterfactual access probabilities, by group.

ability, very roughly, amounts to 50% of the best chances of access to grade 9 among
group 1 and group 2 students.

The treatment effects are positive only for the weakest students, and these effects are
weak when they are positive. Given these results, and the results of Table 14 in general,
it seems that we can only recommend the abolition of grade retention. The results of
Table 8 suggests a path for reform. Coming back to this table, we see that the weakest
(i.e., the group 1) students are more easily detected in grade 6 than other types. In cases
of grade retention, forcing weaker students to follow the same teaching twice is only a



Quantitative Economics 7 (2016) Grade retention and unobserved heterogeneity 813

rough second best. It would be more efficient to track these students from the start of ju-
nior high school, with additional remediation resources. One could imagine a slow track
and a fast track, with, say, a year of difference in duration to reach the certification exams
at the end of grade 9, and with flexible possibilities of track changes in both directions.
To avoid the stigma of tracking, the slow track should probably be the norm, and stu-
dents who seem promising would be steered toward the fast track. A system of that sort
would lead to a more efficient use of resources than grade repetitions. It would clearly
give weak students better chances of reaching the end of grade 9 with the required stock
of knowledge and skills.

8. Conclusion

Grade retention is difficult to evaluate because grade repeaters have been selected on
the basis of many characteristics that the econometrician does not observe. The difficult
problem is to find a reasonable model to compute what would be the counterfactual per-
formance of a student who has repeated a grade, if instead of being held back, he or she
had been promoted to the next grade. To this end, we have assumed that the distribution
of student test scores can be represented by a finite mixture of normal distributions, con-
ditional on observed covariates, during each year of the observation period. The class
size experienced by a student is also assumed to be distributed as a mixture of normals.
All such mixtures are relying on the same finite number of latent student classes, called
groups. In a flexible formulation, we show that class size, probabilities of grade retention,
and test scores all depend on the unobserved group in a nontrivial and consistent way.
We estimated a model with four groups and found that the four groups are unambigu-
ously ranked. The higher the group index, the greater the student’s ability and the larger
his/her class size. This proves that class size is endogenous, smaller classes being used
by school principals to redistribute resources toward weaker students. With the help of
our model, we computed counterfactual test scores to evaluate the average treatment
effect and the average treatment effect on the treated of grade retention. We found that
the ATE is negative, while the ATT is generally positive, but small. We computed treat-
ment effects in each student group separately, and found that the ATE is positive for less
able students and negative for more able students. Finally we computed the ATT and
ATE of grade retention on the probability of access to grade 9, and found that this effect
is significant and negative. Grade retention is a form of remedial education and seems
to help the weakest students insofar as it tends to increase their test scores at the end
of grade 9. But these effects are weak. It follows that grade retention could probably be
replaced by a form of tracking or by different forms of remediation. Other studies have
shown that grade retention is a stigma and that repeated years are interpreted as a neg-
ative signal by employers (on this point, see Brodaty, Gary-Bobo, and Prieto (2012)). The
long-run effects of grade retention seem to be detrimental. We can only conclude that
grade retention is unlikely to be an efficient public policy, because its impact on student
performance—when positive—is weak.
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Appendix A: Details on quarter of birth as an instrument for

grade retention

Table 15 gives summary statistics relative to the main variables of our sample. Table 16
displays descriptive statistics on value-added. Scores in grade 6, ranging between 0 and
20, as is usual in French schools, are standardized to have a mean of 50 and a standard
deviation of 10 in the whole sample in grade 6 (including all redirected pupils). Scores

Table 15. Summary statistics.

Variable Mean Std. Dev.

Female 0�501 0�5
Age at grade-6 entry 11�158 0�492
Retention in primary school 0�204 0�403

Education of mother

No education 0�176 0�381
Junior high-school certificate (i.e., BEPC) 0�312 0�463
Secondary vocational certificate (i.e., CAP, BEP) 0�222 0�415
High-school degree (i.e., Baccalauréat) 0�126 0�332
Associate’s degree 0�101 0�302
Bachelor and more 0�064 0�244

Father’s occupation

Farmer 0�032 0�176
Self-employed, owner of a business 0�099 0�298
Executive, professional, higher education 0�163 0�369
Intermediate profession, technician, middle manager 0�18 0�384
White collar employee 0�109 0�312
Blue collar worker 0�366 0�482
Unemployed 0�051 0�22

Class size 1 25�567 2�993
Total grade enrollment 150�95 57�573
Total school enrollment 564�557 214�467

Rural area 0�097 0�296
Less than 5000 inhabitants 0�107 0�309
5000–9999 inhabitants 0�099 0�299
10,000–19,999 inhabitants 0�077 0�267
20,000–49,999 inhabitants 0�104 0�306
50,000–99,999 inhabitants 0�082 0�274
100,000–199,999 inhabitants 0�081 0�272
200,000–1,999,999 inhabitants 0�212 0�409
Paris 0�141 0�348
Special subsidies (ZEP school) 0�105 0�307

Number of observations 13,036

Note: The BEPC (brevet d’études du premier cycle) is the French junior high-school diploma; CAP (Certificat d’aptitude
professionnelle) and BEP (brevet d’études professionelles) are vocational degrees. The high-school degree is the baccalau-
réat. Class size 1 is the number of students per class in year t = 1; statistics for years 2–5 are very similar. ZEP schools (zones
d’éducation prioritaire) receive special subsidies and more teachers per pupil.
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Table 16. Descriptive statistics for value-added.

Math French

Standardized Score Balanced Samplea Repeaters Balanced Samplea Repeaters

Grade 6 51�10 43�25 51�21 43�38
(9�55) (8�48) (9�47) (8�44)

Grade 9 50 43�37 50 43�46
(10) (8�23) (10) (7�87)

VA = grade 9 − grade 6 −1�10 0�11 −1�21 0�08
(8�55) (9�63) (8�39) (9�18)

Note: aSample of all pupils for whom a test score is available both in grade 6 and in grade 9.

Figure 5. Probability of grade retention by quarter of birth.

in grade 9 are standardized in the same way in the sample of individuals who reached
grade 9. Table 16 shows that value-added, the sign of which is irrelevant because scores
are measures of performance relative to each grade, is nevertheless higher for repeaters
than for nonrepeaters. This is true both in French and mathematics.

There exists a strong link between the age of a child, as measured by the month of
birth or quarter of birth, and the probability of grade repetition. A look at Figure 5 shows
the frequency of grade retention by quarter of birth. The probability of grade retention is
clearly higher for children born later in the year. In principle, children must be 6 years old
on September 1st of year t to be admitted in primary school, grade 1, year t. In practice,
many 5-year-old children born between October and December are admitted, but the
5-year-old children born in the first quarter typically have to wait until the next year. It
follows that first-quarter students tend to be relatively older in their class, with an age
difference that can reach 11 months. Older children being more mature, they tend to
perform better, and at the same time, teachers are reluctant to retain them because they
are older, everything else being equal.

Figure 6 shows that initial (grade-6 entry) scores decrease with quarter of birth. The
decreasing trend also exists for final scores but is less pronounced. Figure 7 shows that
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Figure 6. Scores by quarter of birth.

Figure 7. Value-added by quarter of birth.

value-added scores tend to be higher for relatively younger students, who seem to be
catching up during their junior high-school years. In a first attempt to check if this is
attributable to grade retention, we plot value-added by quarter of birth separately for
repeaters and nonrepeaters. Figure 8 clearly shows that value-added age profiles are
steeper for repeaters than for nonrepeaters. To understand the kind of effect captured
by Figure 8, suppose that the underlying model has the following structure, as discussed
above. Let V = Y1 −Y0 denote value-added, where Y1 is the final test score and Y0 is the
entry test score. Assume that we have the two equations

V = a+ bR+ cθ+η� (26)

R= α+βQ+ γθ+ v� (27)

where the retention dummy is R, the semester of birth is Q, the variables η, v, and θ are
normal, independent random shocks with variances σ2

η, σ2
v , and σ2

θ , and a, b, c, α, β,
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Figure 8. Value-added by quarter of birth for repeaters and nonrepeaters.

and γ are parameters.11 The expectation of value-added, conditional on (R�Q) can be
expressed as

E(V |R�Q) = a+ bR+E(cθ+η|R�Q)

= a+ bR+E(cθ+η|γθ+ v)

= a+ bR+ δ(γθ+ v)

= a+ bR+ δ(R− α−βQ)�

where

δ= Cov(cθ+η�γθ+ v)

Var(γθ+ v)
= γcσ2

θ

γ2σ2
θ + σ2

v

�

Now clearly, we have

E(V |R�Q)= a+ (b+ δ)R−βδQ− αδ�

It follows that, on Figure 8, the gap between repeaters (R = 1) and nonrepeaters (R = 0),
knowing Q, is b + δ. The LATE of grade repetitions is the IV estimator of b, that is, bIV,
given by Table 4, and the fact that the OLS estimator of b (also given by Table 4) is smaller
than bIV implies that δ < 0 and hence cγ < 0, δβ< 0, a very natural result.
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