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Estimation of games with ordered actions: An application to
chain-store entry

Andres Aradillas-López
Department of Economics, Pennsylvania State University

Amit Gandhi
Department of Economics, University of Wisconsin–Madison

We study the estimation of static games where players are allowed to have ordered
actions, such as the number of stores to enter into a market. Assuming that pay-
off functions satisfy general shape restrictions, we show that equilibrium of the
game implies a covariance restriction between each player’s action and a compo-
nent of the player’s payoff function that we call the strategic index. The strategic
index captures the direction of strategic interaction (i.e., patterns of substitutabil-
ity or complementarity) as well as the relative effects of opponents’ decisions on
players’ payoffs. The covariance restriction we derive is robust to the presence of
multiple equilibria, and provides a basis for identification and estimation of the
strategic index. We introduce an econometric method for inference in our model
that exploits the information in moment inequalities in a computationally simple
way. We analyze its properties through Monte Carlo experiments and then apply
our approach to study entry behavior by chain stores where there is both an in-
tensive margin of entry (how many stores to open in a market) as well as the usual
extensive margin of entry (whether to enter a market or not). Using data from re-
tail pharmacies we find evidence of asymmetries in strategic effects among firms
in the industry that has implications for merger policy. We also find that busi-
ness stealing effects are less pronounced in larger markets, which helps explain
the large positive correlation in entry behavior observed in the data.

Keywords. Static games, multiple equilibria, partial identification, conditional
moment inequalities, entry decisions.

JEL classification. C01, C14, C57.

1. Introduction

The econometric analysis and applications of static games has been an increas-
ingly active area of research in the recent past. A partial list of papers would in-
clude Bjorn and Vuong (1984), Bresnahan and Reiss (1991b), Bresnahan and Reiss
(1991a), Berry (1992), Tamer (2003), Seim (2006), Davis (2006), Berry and Tamer (2006),
Pesendorfer and Schmidt-Dengler (2008), Sweeting (2009), Aradillas-Lopez (2010),
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Galichon and Henry (2011), Beresteanu, Molchanov, and Molinari (2011), Bajari, Hong,
Kreiner, and Nekipelov (2009), Bajari, Hong, and Ryan (2005), Ciliberto and Tamer
(2009), Kline and Tamer (2010), Gowrisankaran and Krainer (2011), Aradillas-Lopez
(2011), De Paula and Tang (2012), Lewbel and Tang (2012), and Grieco (2012). Most of
the existing econometric work on static games has been characterized by at least one of
two features: (i) a full parameterization of payoff functions with fairly limited forms of
strategic effects (e.g., constant strategic effects), and (ii) a limited strategy space, with bi-
nary choice games being the most common example. One of the major difficulties with
using richer models of strategic interaction in empirical work is that the multiplicity
of equilibria can complicate the use of methods that require computing the equilib-
ria in the game. Furthermore, even inferential approaches that rely solely on necessary
conditions in equilibrium could also become impractical because characterizing such
conditions can be difficult if the game has a rich strategy space.

In this paper we study static games with a rich, possibly unbounded, strategy space
that is only required to be ordered in nature (and can be discrete or continuous). Players’
payoffs are left nonparametrically specified except for a component that summarizes
the strategic interaction effect. This “strategic index” captures the direction of strategic
interaction (i.e., patterns of substitutability or complementarity) as well as the relative
effects of opponents’ strategies on players’ payoffs and the potentially continuous vari-
ation in these effects with observable covariates (i.e., market size, demographics, etc.)
in an empirically flexible way. Instead of fully parameterizing payoff functions we only
impose weak shape restrictions on payoffs that are motivated by economic theory. Our
main result is showing that these shape restrictions alone are sufficient for doing in-
ference on the strategic index in a way that is fully robust to the presence of multiple
equilibria.

Our paper is motivated by the work in De Paula and Tang (2012), who show how to
exploit the presence of multiple equilibria1 to identify the direction of strategic interac-
tion in binary choice games in incomplete information games. Like De Paula and Tang
(2012), the object of interest here is an aggregate index that summarizes the strategic
interaction effect for each player. We extend the seminal results in De Paula and Tang
(2012) in several important ways. First, we go beyond binary choice games and consider
games with rich—possibly unbounded—strategy spaces, as long as such spaces satisfy
an ordinal property. Second, we impose much fewer restrictions on our strategic interac-
tion functions (indices). For example, we allow for asymmetries in strategic interaction
effects across opponents in a more general way. While De Paula and Tang (2012) allow
for differential effects, these have to be mediated through a known function; in contrast,
our results allow differential effects that depend on functions that are not exactly known;
in fact our goal is to do inference on such functions. Third, our econometric method ex-
plicitly allows for observable payoff shifters with continuous and/or discrete support,
whereas De Paula and Tang (2012) require categorical or discrete covariates. Our strate-
gic interaction indices are allowed to depend on observable payoff covariates in a very
flexible way.

1Multiple equilibria as a source of identification power is also studied in Sweeting (2009) in a fully para-
metric model.
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Our model’s testable implications takes the form of a sign restriction on a condi-
tional covariance. By the definition of a covariance, this restriction can be expressed as
an inequality involving a nonlinear transformation of conditional moments. Among ex-
isting methods for inference with conditional moment inequalities, those that avoid the
use of nonparametrically estimated conditional moments and rely instead on spaces
of “instrument functions” (Andrews and Shi (2011a, 2011b), Armstrong (2011a, 2011b))
are not directly applicable to our case since they are not designed to handle, in general,
nonlinear transformations of a collection of conditional moments. In general a prob-
lem like ours requires the use of plug-in nonparametric estimators for the conditional
moments involved. Along these lines, the methodology proposed in Chernozhukov, Lee,
and Rosen (2011) could potentially be adapted and applied to our problem. Its imple-
mentation would require the computation of a supremum of a particular test statistic
over a target testing range of the conditioning variables. However, when these include a
large number of elements with rich support, approximating this supremum with a rea-
sonable degree of precision would pose a computational challenge. This is the case of
our empirical application, where the vector of conditioning covariates includes eight
continuously distributed elements. To be able to conduct inference in a setting like ours
we propose an inferential approach based on a particular type of one-sided expectation2

whose construction uses plug-in nonparametric estimators. Unlike existing methods
that also rely on one-sided Lp functionals in related problems (Lee, Song, and Whang
(2013)), our approach is not based on a least favorable configuration and is therefore less
conservative when used to construct confidence sets. By design, our method is compu-
tationally easy to implement even in the presence of a rich model with multiple condi-
tioning covariates with continuous support. We describe our approach in the main body
of the paper and we establish its asymptotic properties in Appendix B.

We apply our approach to study the pattern of entry by the three major national
drug store chains (CVS, Walgreens, and Rite Aid) competing in local geographic markets.
Our model allows us to study both the extensive-margin decision of whether to enter a
market or not, as well as the intensive-margin decision of how many establishments to
open in a market. Most papers (see, e.g., Bresnahan and Reiss (1991b), Berry (1992), Seim
(2006), and Ciliberto and Tamer (2009)) have modeled entry exclusively as an extensive-
margin binary decision and have therefore abstracted away from the intensive margin.
Some exceptions to this include Davis (2006) and Gowrisankaran and Krainer (2011)
but these papers rely on very strong parametric assumptions and equilibrium selection
restrictions.3 Our application shows that this intensive margin reveals many important
features of competition that are obscured by the extensive margin alone. In particular,
we find important evidence of asymmetries in the competition among these players that
suggests that the least anticompetitive takeover of Rite Aid by one of the competitors (a
policy currently under consideration) would be CVS rather than Walgreens. We also find
evidence that the strength of strategic interactions diminishes with market size, which

2A one-sided expectation refers to an expectation of the form E[max{Z�0}].
3Aradillas-Lopez (2011) also focuses on rich strategy spaces but the goal there is to answer a different

question than the one posed here.
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plays a central role in explaining the large positive correlation of entry behavior found
in the data.

The rest of the paper proceeds as follows. Section 2 describes our general assump-
tions along with the resulting properties of our model. The observable implications
that result from our model are studied in Section 3. Section 4 describes our econo-
metric inferential procedure in semiparametric models and characterizes its asymp-
totic properties. Section 5 analyzes the properties of our procedure through Monte
Carlo experiments. Section 6 applies our approach to entry decisions in the U.S drug-
store industry, modeling entry strategies as involving not only a binary choice of en-
try but also a capacity (number of stores) choice. Section 7 concludes. The proof of
our main identification result and a description of the asymptotic properties of our
econometric approach are included in the Appendix. An in-depth econometric analy-
sis and several extensions are included in the Supplement, available in a supplemen-
tary file on the journal website, http://qeconomics.org/supp/465/supplement.pdf and
http://qeconomics.org/supp/465/code_and_data.zip.

2. A static game with a rich strategy space

We now present a nonparametric game with incomplete information and derive its
testable implications. Our model nonparametrically generalizes three main features of
existing models. First, we allow for a rich action space, which includes binary choice
games as a special case. This expands the scope of real world problems that can be stud-
ied through our approach. Second, we place no restrictions on the dimension and the
“magnitude” of private information or the manner in which private information shifts
the payoff function. Third, we isolate a fundamental feature of the game that aggregates
the effect that rivals’ strategies have on a player’s own payoff. However, instead of im-
posing a full functional form on payoffs, we only place general restrictions regarding the
way this index enters a player’s payoffs. These restrictions formalize the idea that a larger
value of the strategic index, by definition, decreases a player’s marginal payoff from in-
creasing its own action. Our main questions would then include how the strategic index
changes with the actions of players’ rivals (which would determine patterns of strategic
substitutability or complementarity as well as the relative impact of rivals’ strategies on
a given player), as well as how these features depend on observable characteristics of the
environment. In the context of entry models the strategic index would capture the com-
petition effect, summarizing how a firm’s marginal payoff from increasing its presence in
a market is affected by the entry decisions of others. It can also help us learn how these
features change from one market to another given the observable market characteristics
available to the researcher.

2.1 Players and actions

We have p= 1� � � � �P players (−p denotes the collection of all players except p); each p
has a real-valued decision variable Yp, which is either binary (i.e., Yp ∈ {0�1}) or (if it
can take on more than two values) ordinal in nature, with Yp ∈ Ap. The strategy space

http://qeconomics.org/supp/465/supplement.pdf
http://qeconomics.org/supp/465/code_and_data.zip
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Ap can be unbounded, it can be discrete or continuous (or it can consist of the union
of discrete and continuous sets in R), and its ordered elements do not have to be evenly
spaced. In fact, our identification results do not require that the econometrician know
the exact structure of Ap. The only restriction is that it must possess a natural order. We
let A−p = ∏q �=pAq denote the action space ofp’s opponents. We use lowercase yp to de-
note a potential action (in Ap) for p and use y−p ≡ (yq)q �=p to denote a potential action
profile (in A−p) for p’s opponents. We use uppercase letters (Yp and Y−p ≡ (Yq)q �=p) to
denote the actions (profiles of actions) actually chosen by players. The game is simulta-
neous.

2.2 Payoff functions

Each playerp has a payoff function that indicates the (von Neumann–Morgenstern) util-
ity associated with its choices. The payoff for p if Yp = yp and Y−p = y−p is given by

νp
(
yp� y−p;ξp)

� (1)

where ξp denotes p’s payoff shifters (other than opponents’ choices). For convenience
and in accordance with the boundaries of Ap, for any y−p ∈ A−p we decree νp(yp� ·; ·)=
−∞ for any yp /∈ Ap. We will partition p’s payoff shifters as

ξp = (
X�εp

)
�

whereX is observed by the econometrician and εp is not. The dimension of εp is left un-
specified and we allow εp and X to be correlated in an arbitrary way. We will not make
assumptions here about the direction in which payoffs shift in response to particular ele-
ments ofX . Furthermore we will not assume the existence of player-specific observable
payoff shifters. Throughout, X will denote the collection of all covariates observable by
the researcher.

2.2.1 Basic restrictions on payoff functions We assume that payoff functions can be ex-
pressed in the following way.

Assumption 1 (Generic expression of payoff functions). The term νp can be expressed
as

νp
(
yp� y−p;ξp) = νp�a(yp;ξp) − νp�b(yp;ξp) ·ηp(

y−p;X)
� (2)

where νp�b andηp are real-valued functions or “indices” whose product captures the entire
strategic effect of p’s opponents on his payoff function.

The key feature about ηp is that it depends on ξp solely through X . While strate-
gic interaction effects are allowed to depend on unobservable components of payoff
shifters, this dependence must be fully captured by νp�b.
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Expected payoff functions and Assumption 1 We assume Bayesian Nash equilibrium
(BNE) behavior here. As a result, we can focus on beliefs for p that can be expressed as
probability functions defined over A−p. For any set of beliefs σ−p : A−p −→ [0�1], the
associated expected utility for p of choosing Yp = yp is

ν
p
σ
(
yp;ξp) =

∑
y−p∈A−p

σ−p(
y−p) · νp(

yp� y−p;ξp)
= νp�a(yp;ξp) − νp�b(yp;ξp) ·ηpσ(X)� where

η
p
σ(X)=

∑
y−p∈A−p

σ−p(
y−p) ·ηp(

y−p;X)
�

(3)

A key feature of p’s beliefs is that they do not depend on p’s own action. This indepen-
dence is the defining feature of Nash equilibrium as opposed, for example, to correlated
equilibrium.

Our model will normalize the “strategic meaning” of the indexηp(y−p;X) by assum-
ing that νp�b(·;ξp) is nondecreasing with probability 1 (w.p.1). This in turn will imply that
the marginal gain for p of increasing its own strategy is nonincreasing in the expected
value of the strategic index ηp.

Assumption 2 (Marginal benefit of Yp is nonincreasing in ηp). With probability 1 in
ξp, the function νp�b(·;ξp) is nondecreasing over Ap. That is, for any v > u in Ap we have
νp�b(v;ξp)≥ νp�b(u;ξp) w.p.1.

Take any pair of actions v > u in Ap. Take any pair of beliefs σ−p and σ−p′
. Then[

ν
p
σ
(
v;ξp) − νpσ

(
u;ξp)] − [

ν
p
σ ′

(
v;ξp) − νpσ ′

(
u;ξp)]

= [
η
p
σ ′(X)−ηpσ(X)

] · [νp�b(v;ξp) − νp�b(u;ξp)]
�

Therefore by Assumption 2,

η
p
σ(X)≥ ηpσ ′(X)

=⇒ ν
p
σ
(
v;ξp) − νpσ

(
u;ξp) ≤ νpσ ′

(
v;ξp) − νpσ ′

(
u;ξp) ∀u < v ∈ Ap�

(4)

The “shape” restriction described in Assumption 2 will be the key to our identification
results. It is reminiscent of conditions found in the supermodular game literature (more
precisely, it amounts to a supermodularity property for −νp�b; see Topkis (1998) and
Vives (1999)) but our setup extends beyond supermodularity since it allows for very gen-
eral patterns of pairwise complementarity or substitutability. In this paper we will not
make any assumptions4 regarding how payoffs shift with specific elements in ξp.

Observe that given Assumption 2, Yq is a strategic substitute (complement) for Yp

if ηp(y−p;ξp) is increasing (decreasing) in yq. Cournot competition (where firms com-
pete in quantities with each other) is a classic case of a game of strategic substitutes. In

4If economic theory provides ex ante information about how payoffs should shift with some specific
elements in ξp, this information could potentially be used to refine the results that follow.
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that case ηp(y−p;X) would be increasing in each element of y−p. Conversely, if an in-
crease in player q’s action Yq lowers ηp, then by Assumption 2 it increases the marginal
gain to player p from increasing its actions and thus Yq would be a strategic comple-
ment for Yp. Bertrand competition (where firms compete in prices with each other) is
a classic case of a game of strategic complements. Note that Assumption 2 allows for
any pattern of pairwise complementarity or substitutability between players’ strategies.
Whether player q’s strategy is a complement or a substitute for player p’s will be deter-
mined by whether the index ηp is decreasing or increasing in yq.

2.3 Example: A structural model of imperfect competition

It is useful to contextualize our setup within a well known structural economic model.
Consider a model of Cournot competition between P firms with differentiated products.
To avoid confusion with our notation (where we have used p to denote each player and
P as the total number of players) let us use script typeface letters to denote prices P and
quantities Q. Suppose the model is described by a linear demand system where

Qp =
P∑
q=1

dp�q
(
ξp

) ·Pq + fp(
ξp

)
for p= 1� � � � �P�

Suppose
∑P
q=1 d

p�q(ξp) �= 0 w.p.1 (an assumption grounded on economic theory). De-

fine ζp(ξp) ≡ fp(ξp)/
∑P
q=1 d

p�q(ξp). Our assumptions will imply restrictions on the
structure of the coefficients dp�q(ξp). Specifically, suppose we can express dp�q(ξp) =
φp(εp) · ap�q(X). The demand system can be expressed as

Qp =φp(
εp

) ·
P∑
q=1

ap�q(X) · (Pq + ζp(
ξp

))
for p= 1� � � � �P�

Let A(X) denote a P × P matrix where [A(X)]p�q = ap�q(X) and let D(φ(ε)) denote a
P × P diagonal matrix where [D(φ(ε))]p�p = φp(εp). By our above assumption the last
matrix is invertible w.p.1. Suppose this is also true for A(X) and denote [A(X)−1]p�q ≡
bp�q(X). Then inverse demands are of the form

Pp = 1
φp

(
εp

) P∑
q=1

bp�q(X) ·Qq − ζp(
ξp

)
for p= 1� � � � �P�

Denote firm p’s cost function as Cp(Qp;ξp), which can be entirely unrestricted (e.g., it
can include a fixed cost and it need not have to display increasing marginal costs). Profit
functions are of the form

πp
(
Qp�Q−p;ξ) =

(
1

φp
(
εp

) P∑
q=1

bp�q(X) ·Qq − ζp(
ξp

)) ·Qp −Cp(
Qp;ξp)

�

In a Cournot model firms compete in quantities, so Yp = Qp. This model fits our rep-
resentation of payoffs (profits) in (2). We have νp(yp� y−p;ξ)= νp�a(yp;ξ)− νp�b(yp;ξ) ·



734 Aradillas-López and Gandhi Quantitative Economics 7 (2016)

ηp(y−p;X), where

νp�a
(
yp;ξ) =

(
1

φp
(
εp

)bp�p(X) · yp − ζp(
ξp

)) · yp −Cp(
yp;ξp)

�

νp�b
(
yp;ξ) = yp

φp
(
εp

) �
So as to satisfy Assumption 2 it suffices that the function φp(εp) be of constant sign.
Given our structural model, it is natural to assume that φp(εp) ≥ 0 w.p.1. (φp(εp) > 0
w.p.1. given our invertibility assumptions). In this case the strategic index would be

ηp
(
y−p;ξ) = −

∑
q �=p

bp�q(X) · yq;

the qth good will be a substitute for the pth good if bp�q(X) ≤ 0; otherwise it will be a
complement. Note that, since [A(X)−1]p�q = bp�q(X), the strategic indices ηp allow us
to recoverA(X), a key structural component of the model.

Suppose instead that we have a log-linear system of demand,

log
(
Qp

) =
P∑
q=1

dp�q
(
ξp

) · log
(
Pq

) + fp(
ξp

)
for p= 1� � � � �P�

Now the coefficients dp�q(ξp) directly measure elasticities of demand. In this case our
assumptions imply a different set of restrictions. We now need dp�q(ξp)= dp�q(X) (pri-
vately observed shocks εp should now be excluded from these elasticities). Suppose∑P
q=1 d

p�q(X) �= 0 w.p.1 for each p (a reasonable assumption given the homogeneity

properties of demand). Define λp(ξp) = fp(ξp)/
∑P
q=1 d

p�q(X). Then the demand sys-
tem can be rewritten as

log
(
Qp

) =
P∑
q=1

dp�q(X) · (log
(
Pq

) + λp(
ξp

))
for p= 1� � � � �P�

Let us maintain that the P × P matrix D(X), where [D(X)]p�q = dp�q(X) is invertible
w.p.1, and denote [D(X)−1]p�q ≡ rp�q(X). Inverting the demand system we obtain the
inverse demands

Pp = e−λp(ξp) ·
P∏
q=1

(
Qq

)rp�q(X)
for p= 1� � � � �P�

Profit functions are now of the form

πp
(
Qp�Q−p;ξp) = e−λp(ξp) · (Qp)rp�p(X)+1 ·

∏
q �=p

(
Qq

)rp�q(X) −Cp(
Qp;ξp)

�

Define νp�a(yp;ξp)= −Cp(yp;ξp). For νp�b and ηp we can proceed as follows. Satisfying
the condition in Assumption 2 depends on the sign of rp�p(X)+ 1. It is easy to see that
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our payoff representation in (2) and the condition in Assumption 2 will be satisfied if we
define

νp�b
(
yp;ξp) = e−λp(ξp) · (1{

rp�p(X)≥ −1
} − 1

{
rp�p(X) <−1

}) · (yp)rp�p(X)
�

ηp
(
y−p;X) = (

1
{
rp�p(X)≥ −1

} − 1
{
rp�p(X) <−1

}) ·
∏
q �=p

(
yq

)rp�q(X)
�

Suppose rp�p(X) ≥ −1. Then the qth good is a substitute for the pth good if rp�q(X) >
0 and it is a complement otherwise. If rp�p(X) < −1, then this holds with the reverse
the inequalities. Once again the index ηp(y−p;X) has a structural interpretation as it
contains information about the relative price elasticities in the demand system.

Using the demand systems described above we could also study competition in
prices instead of quantities. In that case our assumptions would place restrictions on
firms’ cost functions while allowing more flexibility in the specification of demand func-
tions compared to the Cournot case (which placed no restrictions on firms’ cost func-
tions as we showed above).

2.4 Strategic interaction features captured by the index ηp

Given our payoff representation, the overall scale of the strategic effect would be ab-
sorbed into the term νp�b. While the index ηp would not capture the overall scale
of strategic interaction it would nevertheless summarize the following key features of
strategic interaction in the model.

(i) The directional patterns of strategic interaction between any subset of players:
This is captured by the direction in which the strategic indices move in response to rivals’
actions.

(ii) The relative magnitude of the effects of strategic interaction between one player
and each one of his/her opponents: This is captured by the relative magnitude in which
the strategic indices shift in response to each rival’s action.

As we illustrated in the previous section, different conjectures involving these strategic
features can be incorporated directly into the structure of ηp.

2.5 Information and behavior

An incomplete information setting allows us to focus on pure strategy equilibria in
which players strictly best respond to each other in equilibrium. Such an equilibrium
restriction is natural for empirical work because equilibria can then be interpreted as
a steady state outcome, which mixed strategy equilibria do not allow.5 The empirical
appeal of pure strategy equilibria is the key motivation for Harsanyi’s well known purifi-
cation theorem (Harsanyi (1973)). His result showed that when there exists (potentially

5Mixed strategies force one to question why it is the case that when a player is indifferent among several
strategies, he or she mixes over these strategies in exactly such a way that makes the other player indifferent.
For a further discussion see Morris (2008).
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small) private information about own payoffs in a normal form game, then this ensures
that all equilibria generically take this pure strategy form.6 He modeled private infor-
mation shocks to be idiosyncratic and hence independent across players. We follow in
this approach and assume that the private payoff shocks to firms are independent con-
ditional on publicly observable payoff shifters, but we analyze what happens when this
assumption is violated in our Monte Carlo experiment section.

Assumption 3 (Independent private shocks). The term X is perfectly observed by all
players, but εp is only privately observed by p. We assume that each εp is independent of
ε−p conditional onX . The true distribution of (X� (εp)Pp=1) is common knowledge among

the players, as are the functional forms of payoff functions (νp)Pp=1. Thus, the only source
of incomplete information for p is the realization of ε−p.

The dimension of εp is left unspecified and we allow εp andX to be correlated in an
arbitrary way. A special case of Assumption 3 is one where some player p possesses no
private information and ξp =X (recall that ξp = (X�εp)). Thus, a game of complete in-
formation would be a special case of our setting as long as ξp =X for eachp. In this case
the only source of unobserved heterogeneity for the econometrician would be the equi-
librium selection mechanism. The case ξp =X is a very limited, special case of complete
information games where the econometrician happens to observe all the payoff shifters
in the game. Because this case is not of general interest, our relevant setting should be
viewed as that of an incomplete information game.

Independent private shocks (Assumption 3) is a type of condition widely imposed
in econometric work on incomplete information games (it is imposed, for example, in
De Paula and Tang (2012)). Nevertheless it is an important restriction, leaving out, for ex-
ample, the presence of market-level unobserved (to the econometrician) payoff shocks.
The extent to which Assumption 3 is realistic depends on the richness of the collection
of covariates available in X , which would be application-specific. We study the impli-
cations of violations to Assumption 3 in two ways. First, using our Monte Carlo exper-
iments we study the properties of our procedure under the presence of correlation be-
tween players’ private shocks (this is done in the Supplement). Also in the Supplement
we briefly model the presence of an unobserved common shock to all players (meant
to approximate, e.g., market-level unobserved shocks) and we study conditions under
which this may lead to inconsistency of our results. Our arguments there suggest that
consistency is more likely to be preserved if actions are strategic complements rather
than substitutes. We also briefly outline what it would take to mitigate the influence of
an unobserved common shock. With these caveats in mind, Assumption 3 will be main-
tained for our results.

6The second part of his result, the so-called approachability party, showed that the set of pure strategy
equilibria in the perturbed private information game is arbitrarily close to the set of all mixed strategy equi-
libria of the corresponding unperturbed complete information game.



Quantitative Economics 7 (2016) Estimation of games with ordered actions 737

2.5.1 Bayesian Nash equilibrium behavior We maintain that the outcome observed is
the result of a BNE of the underlying game. Given the independent private shock restric-
tion in Assumption 3, any BNE can be characterized as a collection of conditional (onX)
probability functions {σp∗ (·|X) : Ap −→ [0�1]}Pp=1 ≡ σ∗(X)with corresponding expected
utility functions

ν
p
σ∗

(·;ξp) =
∑

y−p∈A−p
σ

−p
∗

(
y−p|X) · νp(·� y−p;ξp)

�

where, for each y−p ≡ (yq)q �=p ∈ A−p and yp ∈ Ap,

σ
−p
∗

(
y−p|X) =

∏
q �=p

σ
p
∗
(
yq|X)

and

σ
p
∗
(
yp|X)

> 0 only if yp ∈ argmax
y∈Ap

ν
p
σ∗

(
y;ξp)

�

Assumption 4. The outcome observed is the realization of a BNE, that is,

Yp ∈ argmax
y∈Ap

ν
p
σ∗

(
y;ξp)

for some BNE σ∗(X)�

For a given realization of payoff shifters, multiple BNE may exist and we leave the under-
lying selection mechanism S unspecified except for the assumption that it always picks a
BNE σ∗(X) such that the resulting expected payoff function νpσ∗(·;ξp) has a unique opti-
mal choice.

Assuming pure strategy play in games of incomplete information is not a very restric-
tive assumption. Recall the above discussion that Harsanyi’s purification theorem en-
sures that the restriction to pure strategy equilibria with unique best responses is generi-
cally without loss of generality in (finite) incomplete information games. In more general
games of incomplete information where player types are conditionally independent—
the type of setting we assume here—Milgrom and Weber (1985) show that every mixed
strategy equilibrium has a nearby “purification” pure strategy such that the distribu-
tions of players’ observed behavior and expected payoffs are identical.7 The setup de-
scribed in Assumptions 1–4 encompasses many existing static models of incomplete
information as special cases. The two key restrictions are either binary or an otherwise
ordinal nature of the strategy space, and conditional independence of players’ private
information. Examples include, among others, Seim (2006), the binary choice (i.e., two-
time period) model in Sweeting (2009), the general setup in De Paula and Tang (2012),
binary choice or ordinal choice versions of the incomplete information games studied
in Bajari et al. (2009), and of the quantal response equilibrium (QRE) model proposed in
McKelvey and Palfrey (1995) and studied further in Haile, Hortacsu, and Kosenok (2008).
Our setup can also encompass complete-information games under the restriction ξp =

7Note that Assumption 4 implicitly imposes an additional restriction on payoff functions; namely, the
existence of equilibria where each player has a unique best response. Sufficient conditions can be made
precise in the context of specific structural models (see our examples in Section 2.3).
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X in which case it would encompass, for example, the binary choice games in Bresnahan
and Reiss (1990) and Tamer (2003). Beyond the existing literature, our assumptions can
handle models under unprecedentedly general assumptions regarding players’ payoffs,
which include discrete or continuous strategy spaces. While our results may retain some
of their validity if there is relatively small correlation in players’ private shocks (see our
experimental results in Section 5), static games where the strategy space does not have
a natural order (e.g., truly multinomial choice games) are entirely outside the scope of
our paper.

3. Implications of Assumptions 1–4

3.1 Properties of players’ best responses

As we stated above, we focus on equilibrium beliefs that yield a unique optimal choice
to players. For any such set of beliefs our payoff shape restrictions imply a monotonicity
property between optimal actions and the expected value of the strategic index induced
by each player’s beliefs. We describe this next.

Result 1. Let σ−p and σ−p′
denote any pair of beliefs that produce unique expected-

payoff-maximizing choices for p given the realization of ξp, and let ypσ (ξp) and ypσ ′(ξp)
denote the corresponding optimal choices. If Assumptions 1 and 2 hold, then w.p.1 we
have

If ηpσ(X)≥ ηpσ ′(X)� then 1
{
y
p
σ
(
ξp

) ≤ yp} ≥ 1
{
y
p
σ ′

(
ξp

) ≤ yp} ∀yp ∈ Ap�

The proof is given in Appendix A.

3.2 Main result

Let σ∗j and σ∗k denote any pair of existing BNE that the selection mechanism S could
choose with positive probability. By Result 1, w.p.1 we must have

If ηpσ∗j (X)≥ ηpσ∗k(X)� then 1
{
y
p
σ∗j

(
ξp

) ≤ yp} ≥ 1
{
y
p
σ∗k

(
ξp

) ≤ yp} ∀yp ∈ Ap�

Our main result will follow from here and the independence condition in Assumption 3.

Theorem 1. Let yp be given. If Assumptions 1–4 hold, then w.p.1 inX we have

E
[
1
{
Yp ≤ yp} ·ηp(

Y−p;X)|X]
≥E[

1
{
Yp ≤ yp}|X] ·E[

ηp
(
Y−p;X)|X] ∀yp�

(5)

A step-by-step proof of Theorem 1 is included in Appendix A, but we can summa-
rize it as follows. Given X , let J denote the number of BNE {σ∗j(X)}j that the selection
mechanism S can choose with positive probability, and let PS

j (X) denote the proba-
bility that S selects the jth BNE (σ∗j(X)), conditional on X . Our assumptions maintain
that S concentrates on BNE that have a unique optimal choice. Denote it as ypσ∗j (ξ

p) for
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the jth BNE. Using iterated expectations, our assumptions (independent private shocks
is key) yield

E
[
1
{
Yp ≤ yp} ·ηp(

Y−p;X)|X] −E[
1
{
Yp ≤ yp}|X] ·E[

ηp
(
Y−p;X)|X]

=Eξp|X

[
J∑
j=1

PS
j (X) · 1{

y
p
σ∗j

(
ξp

) ≤ yp} ·ηpσ∗j (X)

−
(

J∑
j=1

PS
j (X) · 1{

y
p
σ∗j

(
ξp

) ≤ yp}) ×
(

J∑
j=1

PS
j (X) ·ηpσ∗j (X)

)∣∣∣X]
�

The result in Theorem 1 follows because, under our assumptions, the expression inside
the expectation operator above is nonnegative w.p.1. To see why, note that this expres-
sion can be rewritten as

J∑
j=1

PS
j (X) · 1{

y
p
σ∗j

(
ξp

) ≤ yp} ·ηpσ∗j (X)

−
(

J∑
j=1

PS
j (X) · 1{

y
p
σ∗j

(
ξp

) ≤ yp}) ×
(

J∑
j=1

PS
j (X) ·ηpσ∗j (X)

)

=
J∑
=1

J∑
j=1

PS
 (X)P

S
j (X) · 1{

y
p
σ∗j

(
ξp

) ≤ yp} · (1 − 1
{
y
p
σ∗

(
ξp

) ≤ yp})︸ ︷︷ ︸
always ≥ 0

· (ηpσ∗j (X)−ηpσ∗(X)
)

≥ 0�

The last inequality follows from Result 1. To see why, note that this inequality can be
violated if and only if 1{ypσ∗j (ξ

p)≤ yp}·(1−1{ypσ∗ (ξ
p)≤ yp})= 1 andηpσ∗j (X)−ηpσ∗(X) <

0, which would violate Result 1.
If the underlying game has a unique equilibrium w.p.1—or more generally if it has a

degenerate equilibrium selection mechanism–we would haveYp⊥Y−p|X and therefore
any measurable function g(Y−p;X) should satisfy Theorem 1 as an equality. Therefore
Theorem 1 provides identification power forηp only if the underlying game has multiple
equilibria for at least a subset of realizations of payoff shifters and if players randomize
across such equilibria.

Remark 1. De Paula and Tang (2012) derived the conditions in Theorem 1 for the case of
binary choice games. Their result relies essentially on the same conditions as Assump-
tions 1 and 3, along with Nash equilibrium behavior (Assumption 4 in our case). Our
primary contribution is introducing Assumption 2 and showing that it is sufficient to
extend the results from binary choice games to richer strategy spaces.

Remark 2. A few relevant results follow immediately from Theorem 1.
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(i) No strategic interaction. Our assumptions cannot rule out that there is no strate-
gic interaction effect at all, since ηp(Y−p;X) = g(X) would satisfy Theorem 1 as an
equality (a fact that is also true in De Paula and Tang (2012)). The value of Theorem 1
is its ability to help us test many different conjectures about strategic interaction under
the assumption that some interaction effect exists.

(ii) Rejecting unique equilibria. As we pointed out above, if the underlying game has a
unique equilibrium w.p.1—or more generally if it has a degenerate equilibrium selection
mechanism—then any measurable function g(Y−p;X) should satisfy Theorem 1 as an
equality. Therefore, if we maintain the assumptions in our model, the existence of some
function g(Y−p;X) that violates the result in Theorem 1 would immediately reject the
notion that the game has a unique equilibrium w.p.1. In particular, this would reject the
assertion that there is no strategic interaction in the model.

(iii) Rejecting our model when strategic interaction exists. Suppose we maintain that
some form of strategic interaction exists in the model, ruling out the scenario in part
(i) of this remark. Then, under the assumptions of our model, there must exist a func-
tion ηp(Y−p;X) that satisfies the result in Theorem 1. Thus, ruling out the existence of
such a function would immediately reject our model. Therefore, under the maintained
hypothesis that strategic interaction is present, our model is falsifiable and could be re-
jected nonparametrically.

The rest of our paper will be devoted to using Theorem 1 to do inference on the
strategic index ηp in a context where this index is assumed to belong to a parametric
family of functions while leaving every other aspect of the model nonparametric.

3.2.1 Unconditional covariance It is important to note that the result in Theorem 1
only restricts the sign of the conditional (on X) covariance between 1{Yp ≤ yp} and the
strategic index ηp(Y−p;X). The sign of the unconditional covariance is unrestricted by
our assumptions. To see this, note that by the so-called law of total covariance we have

Cov
(
1
{
Yp ≤ yp}

�ηp
(
Y−p;X))

=E[
Cov

(
1
{
Yp ≤ yp}

�ηp
(
Y−p;X)|X)]︸ ︷︷ ︸

≥0 by Theorem 1

+ Cov
(
E

[
1
{
Yp ≤ yp}|X]

�E
[
ηp

(
Y−p;X)|X])︸ ︷︷ ︸

sign is unrestricted by our assumptions

�

Thus, depending on how payoffs shift withX (our assumptions are completely silent on
this), the unconditional covariance could be positive or negative even if the conditional
covariance is nonnegative w.p.1.

4. Inference of strategic interactions in a semiparametric model

The result in Theorem 1 does not rely on a parametric specification for the strate-
gic interaction index ηp. If we assume symmetry of interaction effects so that players
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care equally about the actions of each opponent, the strategic index could simply be
ηp(Y−p;X|θp)= ∑

q �=p±Yq, where the sign ± would indicate whether actions are sub-
stitutes or complements and this in turn would be identified through the restriction in
Theorem 1. The model then would remain fully nonparametric throughout. If we want
to allow for asymmetries and more complexity in the interaction effects we need a more
flexible characterization of the strategic index. We will focus now on the case where the
strategic interaction index ηp is assumed to belong to a parametric family of functions
of the form

ηp
(
Y−p;X|θp)

�

with all other elements of the model left nonparametrically specified. In the examples
of Section 2.3, this could be done by specifying a parameterization for the matrix A(X)
in the case of linear demands, and for the matrix D(X) in the log-linear case. All other
components of the structural models would be left unspecified in both cases. Let θ =
(θp)Pp=1 and letΘ denote the parameter space. The true value of θwill be denoted by θ0.
For given yp, x, and θp define

FYp
(
yp|x) =EYp|X

[
1
{
Yp ≤ yp}|X = x]�

λp
(
x;θp) =EY−p|X

[
ηp

(
Y−p;x|θp)|X = x]�

μp
(
yp|x;θp) =EY |X

[
1
{
Yp ≤ yp} ·ηp(

Y−p;x|θp)|X = x]�
τp

(
yp|x;θp) = FYp

(
yp|x) · λp(

x;θp) −μp(
yp|x;θp)

�

Theorem 1 predicts that for each p,

τp
(
yp|X;θp0

) ≤ 0 w.p.1 inX ∀yp ∈ Ap.

The econometrician is not required to know the exact structure of Ap. Since Supp(Yp)⊆
Ap, it is natural to focus on testing the above inequality over yp ∈ Supp(Yp). For this
reason, we choose to test whether the inequality holds over Supp(Yp�X). Therefore, our
inferential approach is based on the fact that our model predicts

Pr
(
τp

(
Yp|X;θp0

) ≤ 0
) = 1� (6)

We will propose an inferential method based on the restriction in (6) and refer to the
identified setΘI as the collection of parameter values that satisfy (6); that is,

ΘI = {
θ ∈Θ : Pr

(
τp

(
Yp|X;θp) ≤ 0

) = 1 ∀p= 1� � � � �P
}
� (7)

Note that the restriction in (6) involves inequalities of nonlinear transformations of con-
ditional moments (the conditional covariance involves the product of two conditional
expectations). Developing methods for inference with conditional moment inequalities
has been an area of active research in the recent past. There are generically speaking two
types of methods. The first type avoids having to estimate the conditional expectations
involved and relies instead on instrument functions. Examples of this approach include
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Armstrong (2011a, 2011b) and Andrews and Shi (2011a, 2011b). Suppose m(W ;θ) is a
vector of known functions such that E[m(W ;θ0)|X] ≤ 0 w.p.1. Let G be a space of mea-
surable, nonnegative functions ofX . Then the previous inequality implies that we must
have E[m(W ;θ0) · g(X)] ≤ 0 for all g ∈ G. Thus, for a given choice of G the conditional
moment inequality implies unconditional moment inequality restrictions everywhere
on G. Cramer–von Mises or Kolmogorov–Smirnov test statistics can be constructed from
here. This approach has the great advantage of not having to rely on smoothness as-
sumptions about the conditional moments. However, it is not applicable here since our
problem involves a nonlinear transformation of conditional moments and therefore it
cannot be written as E[m(W ;θ0)|X] ≤ 0 for a known functionm(·).

The second type of approach relies on plug-in estimators of the conditional mo-
ments involved. Most of the existing work in this area has been devoted to testing non-
parametric restrictions rather than doing inference on a finite dimensional parame-
ter. One notable exception is Chernozhukov, Lee, and Rosen (2011). Based on their ap-
proach, we would test whether θp satisfies our restrictions for player p over a range
(yp�x) ∈ W by using a test statistic of the form ν̂

p
α (θ

p) = inf(yp�x)∈W [(−τ̂p(yp|x;θp)) +
k̂(α) · σ̂p(yp|x;θp)], where σ̂p is an estimator of the standard error of τ̂p and k̂(α) is
a critical value based on the αth quantile of a particular process. We would reject the
inequalities for θp if ν̂pα (θp) < 0 and fail to reject them otherwise.

While this method works in principle, in practice being able to compute the statistic
with precision can be a computational challenge when X includes a large number of
covariates with rich support. This will be the case in our empirical application where
X includes eight such covariates. In this case it is not clear how to do a grid search in
eight dimensions so as to compute the test statistic (and approximate the critical value)
with a reasonable degree of precision, especially if the parameterization of our strategic
index ηp is such that τp(y|x;θp) is nonseparable in θp. In such cases the critical value
k̂(α) would also depend on θp, further complicating its use for the construction of a
confidence set.

Since the instrument-function approach does not apply to our setting and since pro-
cedures that rely on computing the supremum over X of a semiparametric test statistic
can pose significant computational challenges when X is large (as in our empirical ex-
ample), we propose a different approach. Our method will be based on an unconditional
mean-zero restriction implied by our inequalities. We describe it next.

4.1 Expressing our inequalities using unconditional mean-zero restrictions

For a given θp consider the one-sided expectation

Tp
(
θp

) =EYp�X
[
max

{
τp

(
Yp|X;θp)

�0
}]
�

Note that Tp(θp)≥ 0 for any θp. For a given θ= (θp)Pp=1 let

T(θ)=
P∑
p=1

Tp
(
θp

)
�
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Note that T(θ)≥ 0 ∀θ and T(θ)= 0 if and only if θ ∈ΘI . Therefore we can reexpress the
identified set as

ΘI = {
θ ∈Θ : T(θ)= 0

}
�

Our method will rely on nonparametric plug-in estimators, focusing on the expecta-
tions defined above taken over an inference range where our estimators satisfy uniform
asymptotic properties. Let X ⊂ Supp(X) denote a prespecified set such that

xc ∈ int
(
Supp

(
Xc|Xd = xd)) ∀(

xc�xd
) ∈ X �

We maintain the assumption that fX(x) ≥ f > 0 for all x ∈ X . Let IX (x) denote a “trim-
ming” function such that IX (x)= 0 if x /∈X and IX (x) > 0 otherwise. Let

T
p
X

(
θp

) =EYp�X
[
max

{
τp

(
Yp|X;θp)

�0
} · IX (X)

]
� TX (θ)=

P∑
p=1

T
p
X

(
θp

)
� (8)

The inference range X will be assumed to be such that the nonparametric estimators
involved in our construction have appropriate asymptotic properties uniformly over it.
Given our choice of X , we focus attention on the superset of the identified set ΘI :

ΘIX = {
θ ∈Θ : TpX

(
θp

) = 0 for p= 1� � � � �P
}
�

Note that ΘI ⊆ΘIX . Also note that choosing a very limited inference range X may result
in a loss of identification power if we preclude realizations of X that lead to multiple
equilibria (see Remark 2). Under some conditions (e.g., compactness and density uni-
formly bounded away from zero) we could allow for the inference range X to correspond
to the entire support of X , or we could allow X to grow with the sample size and cover
the entire support ofX asymptotically.

4.2 Summary of econometric methodology

The details of our econometric methodology are given in Appendix B but we provide
a summary here. Our basic setting is one where the researcher observes an iid sample
((Y

p
i )

P
p=1�Xi)

n
i=1 produced by a model satisfying our assumptions. We replace the ob-

jects in (8) with estimators of the form

T̂
p
X

(
θp

) = 1
n

n∑
i=1

τ̂p
(
Y
p
i |Xi;θp

) · 1{̂
τp

(
Y
p
i |Xi;θp

) ≥ −bn
} · IX (Xi)�

T̂X (θ)=
P∑
p=1

T̂
p
X

(
θp

)
�

where bn −→ 0 is a nonnegative sequence going to zero at an appropriate rate. The use of
bn will allow us to deal with the “kink” of the max{0� z} function at z = 0 while producing
asymptotically pivotal properties. To construct τ̂p we use kernel-based estimators.
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In Appendix B we describe conditions under which

T̂X (θ)= TX (θ)+ 1
n

n∑
i=1

ψ(Yi�Xi;θ)+ εn(θ)� where

sup
θ∈Θ

∣∣εn(θ)∣∣ =Op
(
n−1/2−ε) for some ε > 0.

The “influence function” ψ can be expressed as

ψ(Yi�Xi;θ) =
P∑
p=1

(
max

{
τp

(
Y
p
i |Xi;θp

)
�0

} · IX (Xi)− TX
(
θp

))

+
P∑
p=1

ψ
p
U

(
Yi�Xi;θp

)
�

where ψpU is the leading term in the Hoeffding decomposition of a U-statistic, and it
is a function of conditional expectations (projections) and is therefore identified. The
function ψ(Yi�Xi;θ) is identified and has two key properties:

(i) We have E[ψ(Yi�Xi;θ)] = 0 ∀θ ∈Θ.

(ii) Let

Θ
I
X = {

θ ∈Θ : τp(
Yp|X;θp)

< 0 w.p.1. over X ,∀p= 1� � � � �P
}
�

Then ψ(Yi�Xi;θ)= 0 w.p.1, ∀θ ∈ΘIX .

The term Θ
I
X is the collection of parameter values that satisfy our inequalities as strict

inequalities w.p.1 over our inference range. Let σ2(θ) = Var(ψ(Yi�Xi;θ)). Based on the
properties outlined above, we have

√
nT̂X (θ)= √

nTX (θ)+ Vn(θ)+ ξn(θ)�

where Vn(θ)
d−→ N (0�σ2(θ)) and supθ∈Θ |ξn(θ)| = op(n

−ε) for some ε > 0. Given these
features, our statistic will be of the form

t̂n(θ)=
√
nT̂X (θ)

max
{
κn� σ̂(θ)

} �
where σ̂2(θ) is an estimator of σ2(θ) and κn is a sequence converging to zero at a suf-
ficiently slow rate (it must satisfy κn · nε −→ ∞ for any ε > 0). Recall from our results
described above that sup

θ∈ΘIX
|T̂X (θ)| =Op(n−1/2−ε) for some ε > 0. The use of κn allows

our statistic to satisfy sup
θ∈ΘIX

|√n · t̂n(θ)| = op(1).
For a desired coverage probability 1 −α, our confidence set (CS) for θ0 is of the form

CSn(1 − α)= {
θ ∈Θ : t̂n(θ)≤ c1−α

}
�
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where c1−α is the standard Normal critical value for 1 −α. By the features outlined above
our CS will have correct pointwise coverage properties; namely,

inf
θ∈Θ:θ=θ0

lim inf
n→∞ P

(
θ ∈ CSn(1 − α)) ≥ 1 − α�

Suppose we generalize our basic setting and assume that {((Ypi )Pp=1�Xi) : 1 ≤ i ≤ n} is
a triangular array that is rowwise iid with distribution Fn ∈ F . For our CS to possess
correct coverage properties uniformly over (F�Θ)we need to equip F with integrability
conditions such that the following statements hold:

(i) A central limit theorem for triangular arrays holds for

1√
n

n∑
i=1

ψ(Yi�Xi;θn�Fn)
σ(θn�Fn)

for any sequence Fn ∈ F and θn ∈Θ \ΘIX (Fn).
(ii) The necessary laws of large numbers for triangular arrays hold to ensure that

|σ̂2(θn)− σ2(θn�Fn)| = op(1) over any sequence Fn ∈ F and θn ∈Θ.

We describe such conditions in the Appendix. If they hold, then

lim inf
n→∞ inf

θ∈Θ:θ=θ0
F∈F

PF
(
θ ∈ CSn(1 − α)) ≥ 1 − α�

In Appendix B we also study the power properties of our approach. Unlike methods that
rely on one-sided Lp functionals (e.g., Lee, Song, and Whang (2011)) our approach is
not guided by a least favorable configuration. In such settings test statistics are normal-
ized by looking at the largest possible variance that would still be consistent with the
inequalities. In our context this would amount to using a test statistic of the form

t̃n(θ)=
√
nT̂X (θ)

Ω̂(θ)
�

where Ω̂(θ) is the estimator of σ̂(θ) that would result if the inequalities were bind-
ing almist surely (a.s.). To construct it we would replace each indicator function
1{τp(Yp|X;θp) ≥ 0} with 1. By breaking away from least favorable configurations our
procedure is, by construction, less conservative. The cost is having to introduce the tun-
ing parameter κn. By design, our methodology is computationally simple to implement
even in the presence of a rich parameterization and a large collection of conditioning co-
variates X . This computational simplicity also enables us to study the sensitivity of our
results to various choices of the tuning (bandwidth) parameters involved. Computing
the confidence set for different values of these parameters is a computationally costless
exercise.
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4.3 On a nonparametric treatment of ηp

As we stated previously, under assumptions such as symmetry of interaction effects,
the strategic index ηp(Y−p;X) can be characterized simply as an aggregate function of
Y−p without the need for any parameterization. In a more general setting, the computa-
tional simplicity of our approach can allow us to handle a very rich and flexible param-
eterization of the strategic index. However, the use of a parametric approximation may
shrink the identified set for ηp in ways that could be difficult to predict (see Ponomareva
and Tamer (2011) for a discussion of related issues). To avoid these issues, a fully non-
parametric treatment for ηp can be considered, and a sieves approximation (see Chen
(2007)) seems appropriate since it allows us to impose shape or sign restrictions in ad-
dition to the conditional moment inequalities from Theorem 1. Due to its complexity,
a complete characterization of its asymptotic properties is beyond the scope of this pa-
per and is the current focus of ongoing work on a separate, more general paper on the
subject of sieves-based nonparametric inference with conditional moment inequalities.

5. Monte Carlo experiments

In this section we apply our inferential approach to a Monte Carlo design described as
follows. We consider a model of imperfect competition between three firms.

5.1 Demand system

We consider a model of imperfect competition with differentiated products. The system
of (inverse) demand functions is of the form

P1 = ζ1 ·Xa − (
λ1 + δ1 ·Xb

) ·Y 1 − (
β12 + γ12 ·Xb

) ·Y 2 − (
β13 + γ13 ·Xb

) ·Y 3�

P2 = ζ2 ·Xa − (
λ2 + δ2 ·Xb

) ·Y 2 − (
β21 + γ21 ·Xb

) ·Y 1 − (
β23 + γ23 ·Xb

) ·Y 3�

P3 = ζ3 ·Xa − (
λ3 + δ3 ·Xb

) ·Y 3 − (
β31 + γ31 ·Xb

) ·Y 1 − (
β32 + γ32 ·Xb

) ·Y 2�

The term Yp refers to the quantity produced by firm p and Xa and Xb are demand
shifters assumed to be observed by the econometrician and the firms. The rest of the
terms are parameters that for the purposes of our experiment were chosen to be

ζ1 = ζ2 = ζ3 = 2� λ1 = λ2 = λ3 = 0� δ1 = δ2 = δ3 = 1�

β12 = β21 = 0� β13 = β31 = β23 = β32 = 1�

γ12 = γ21 = γ23 = γ32 = 1� γ13 = γ31 = −5�

The demand shiftersXa andXb are independently drawn from the distributions

Xa = exp{Za}� where Za ∼ N (0�1)� and Xb ∼U[0�1]�
5.1.1 Strategy space The strategy space is given by

Yp = {0�1�2� � � � �10}�
Using our previous notation this meansMp = 10 for each p.
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5.2 Cost functions

Cost functions are of the form

Cp
(
Yp

) = Fp · 1{
Yp > 0

} +μp · (Xmc + ςp) ·Yp�

where Xmc , Fp, and ςp are random cost shifters and μp is a parameter. Here Xmc is ob-
served by the econometrician, but both Fp and ςp are only privately observed by firm p.
The marginal cost parameter μp was set to μp = 1/10 for each p. The cost shifters Fp

and ςp are independently drawn from the distributions

Fp ∼U[1�2]� ςp ∼U[0�1]�

These private shocks are independent across p= 1�2�3. The observable cost shifterXmc

is drawn from a U[0�1] distribution, independent of (Fp� ςp)p=1�2�3.

5.3 Payoff functions

Firms compete in quantities produced. Given our previous description of demand and
costs, firms’ profit (payoff) functions are given by

ν1(y1� y2� y3;X�ε1)
= 2Xa −Xb · (y1)2 − F1 · 1{

y1 > 0
}

− 1
10

· (Xmc + ς1) · y1 − [
Xb · y2 + (1 − 5Xb) · y3]︸ ︷︷ ︸

=η1(y2�y3;X)

·y1�

ν2(y2� y1� y3;X�ε2)
= 2Xa −Xb · (y2)2 − F2 · 1{

y2 > 0
}

− 1
10

· (Xmc + ς2) · y2 − [
Xb · y1 + (1 +Xb) · y3]︸ ︷︷ ︸

=η2(y1�y3;X)

·y2�

ν3(y3� y1� y2;X�ε3)
= 2Xa −Xb · (y3)2 − F3 · 1{

y3 > 0
}

− 1
10

· (Xmc + ς3) · y3 − [
(1 − 5Xb) · y1 + (1 +Xb) · y2]︸ ︷︷ ︸

=η3(y1�y2;X)

·y3�

(9)

The game is played simultaneously and, in accordance with the assumptions in previous
sections, the outcome is a Bayesian Nash equilibrium induced by degenerate beliefs.

5.3.1 Strategic indices, substitutability, and complementarity It is easy to verify that
the payoff functions described in (9) satisfy our Assumption 1. The strategic indices are
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given by

η1(y2� y3;X) =Xb · y2 + (1 − 5Xb) · y3�

η2(y1� y3;X) =Xb · y1 + (1 +Xb) · y3�

η3(y1� y2;X) = (1 − 5Xb) · y1 + (1 +Xb) · y2�

(10)

The patterns of substitutability/complementarity that emerge from (10) can be summa-
rized as follows:

(i) The (Y 1�Y 3) are strategic complements whenever Xb >
1
5 , which occurs with

probability 80% sinceXb ∼U[0�1].
(ii) The (Y 1�Y 2) and (Y 2�Y 3) are always strategic substitutes.

5.4 Equilibrium selection rule

The nature of the strategy space (discrete and bounded at Mp = 10) induces the exis-
tence of multiple equilibria. Whenever multiple equilibria exist we impose the following
equilibrium selection rule.

(i) An equilibrium selection device ξ is randomly drawn from a [0�1] distribution.
This draw is independent from all payoff shifters in the model.

(ii) If ξ < 1
3 , the equilibrium is selected completely at random from the existing equi-

libria.

(iii) If 1
3 ≤ ξ < 2

3 , the equilibrium selected is the one that yields the largest combined
profits for firms 1 and 3.

(iv) If ξ≥ 2
3 , the equilibrium selected is the one that yields the largest profits for firm 2.

As we remarked in the paragraph immediately following Theorem 1, the identification
power of our procedure requires a nondegenerate equilibrium selected mechanism. The
one described above is a particular instance of a nondegenerate selection mechanism.

In summary, the researcher observes (Y 1�Y 2�Y 3). In addition, the collection of co-
variates observed by the researcher is

X ≡ (Xa�Xb�Xmc)�

and the unobserved payoff shifters are

εp ≡ (
Fp� ςp

)
� p= 1�2�3�

Also in adherence to the assumptions of our model, εp is only privately observed by p.

5.5 Summary of equilibrium features of the experimental data

The existence of multiple equilibria was prevalent within our designs. Table 1 summa-
rizes the number of equilibria observed in 500,000 simulations.
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Table 1. Summary statistics for the cardinality of equilibria in our designs.

% of Games % of Games % of Games % of Games
With One BNE With Two BNE With Three BNE With Four or More BNE

24�7% 63�5% 7�7% 3�9%

Note: Results from 500,000 simulations.

Table 2. Average value of Corr(Yp�ηp(Y−p;X)|X).

Firm 1 Firm 2 Firm 3

−0�716 −0�384 −0�743

Note: Results from 500,000 simulations.

Our design also allows us to corroborate the negative association, conditional onX ,
between Yp and the strategic index ηp(Y−p :X), which is at the center of our inference
and identification results. Table 2 illustrates this important feature.

As a quick gauge of the identification power of our main result we can compare
the correlations in Table 2 with those that would result from a function other than the
true strategic index ηp. For example, take firm 1 and consider the (incorrect) index
g1(Y−1;X) = Y 2 + Y 3. For this function, the average value of Corr(Y 1� g1(Y−1;X)|X)
is 0�32, which would lead us to reject g1 as the strategic index η1. It is also useful here
to show that looking at unconditional correlations, or at pairwise correlations between
actions, can obscure the true strategic interaction features of the model. Note that in our
designs, both Y 1 and Y 3 are always strategic substitutes for Y 2. However, the uncondi-
tional correlations are given by

Corr
(
Y 2�Y 1) = 0�048� Corr

(
Y 2�Y 3) = −0�412�

The fact that one of these correlations is positive could seem “counterintuitive,” but as
the results in this paper demonstrate, this “intuition” is incorrect, as mere pairwise com-
parisons between strategies and/or unconditional correlations are not the right objects
to look at. It is easy to show that slightly different values of the parameters in our Monte
Carlo (MC) designs, which would render all actions pairwise substitutes, can also lead
to positive pairwise unconditional correlations between all actions.8 Intuitively, the sim-

8Take our MC designs and change the signs of γ13 and γ31 to γ13 = γ31 = 5. This ensures that all ac-
tions are pairwise strategic substitutes. Now reduce (but do not eliminate) the magnitude of the strategic
effects by setting β13 = β31 = β23 = β32 = 0, and leave everything else unchanged. Even with the relatively
smaller strategic effects, multiple equilibria would still be prevalent in the game, with an average number
of equilibria per game being around 2�03. As our results predict, the conditional (onX) covariance between
Yp and ηp(Y−p :X) would be largely negative, with the average value of Corr(Yp�ηp(Y−p;X)|X) being
equal to −0�455 for player 1, −0�309 for player 2, and −0�455 for player 3. Due to the smaller strategic in-
teraction effect, these figures are smaller (in absolute value) than those in Table 2, but they are still clearly
negative, reflecting the fact that multiple equilibria are still prevalent. The stronger relative effect of non-
strategic shifters in X as determinants of payoffs produces pairwise unconditional correlations that are
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plest scenario where this may occur is when the magnitude of the strategic interaction
effect is relatively minor compared to the effect of nonstrategic payoff shifters.

5.6 Inference in Monte Carlo experiments

Next we describe the econometric analysis of our Monte Carlo data.

5.6.1 Parametric family for strategic interaction indices We focus on a parameteriza-
tion that is compatible with our true strategic indices, described in (10). Specifically we
focus on a parametric family of the form

ηp
(
yq� yr;X) = (

βpq + γpq ·Xb
) · yq + (

βpr + γpr ·Xb
) · yr� (p�q� r) ∈ {1�2�3}�

Let us group the parameters of the strategic indices as

θp ≡ (
βpq�γpq�βpr�γpr

)
� and θ≡ (

θ1� θ2� θ3)�
Their true values are given by

θ1
0 = (0�1�1�−5)� θ2

0 = (0�1�1�1)�

θ3
0 = (1�−5�1�1)� θ0 ≡ (

θ1
0� θ

2
0� θ

3
0
)
�

(11)

Parameter space Some of our inference experiments (and choice of tuning parameters)
involved searches over a parameter spaceΘ. The parameter space used throughout was
the Cartesian product given by the interval [0�4] for each βpq, the interval [−10�0] for
γ13 and γ31, and the interval [0�4] for every other γpq.

5.6.2 Kernels and bandwidths To study their finite-sample properties, we employed
kernels and bandwidths identical to those that we will use in our empirical applica-
tion in Section 6. These are described in exact detail in the Supplement. As we describe
there,9 the kernel employed is of order M = 18, which is of higher order than needed
given that the experimental data include three continuously distributed observable co-
variates X ≡ (Xa�Xb�Xmc). We opted to utilize this specific kernel because it is the one
employed in our empirical application in Section 6, and we want to study its finite-
sample properties in the context of our Monte Carlo experiments. Our target inference
range included the entire data.

positive across all actions:

Corr
(
Y 1�Y 2) = 0�668� Corr

(
Y 1�Y 3) = 0�231� Corr

(
Y 2�Y 3) = 0�668�

Furthermore, Corr(Yp�ηp(Y−p;X)), the unconditional correlation between Yp and ηp(Y−p;X), is equal
to −0�052 for player 1, 0�477 for player 2, and −0�052 for player 3. The fact that this value is positive for
player 2 highlights that, as we discussed in Section 3.2.1, while our results imply restrictions on the sign of
the conditional covariance between Yp and ηp(Y−p;X), they do not restrict the sign of the unconditional
covariance between these variables.

9Some of the tuning parameters described in the Supplement involve searches over the parameter space
Θ, which was described above for our Monte Carlo experiments.
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Table 3. Observed frequency with which θ0 was INCLUDED in our CS.

95th Percentile Maximum
Target Target Observed Observed

Coverage: 95% Coverage: 99% Value of Value of
Sample Size (c1−α = 1�645) (c1−α = 2�33) Test Statistic Test Statistic

n= 500 99�9% 100% 1�074 1�344
n= 1000 99% 100% 1�291 2�163
n= 1500 98% 100% 1�485 2�162
n= 2000 94�9% 99�9% 1�647 2�352

5.6.3 Inference exercises Next we describe the specific features of our confidence sets
(CS) that were studied in our experiments.

(A) Inclusion of the true parameter value θ0 in our CS Our first exercise is to evaluate
the ability of our procedure to include the true parameter value θ0 in the CS. Given that
our Monte Carlo experiments are designed to satisfy the assumptions underlying our
econometric procedure, we know that asymptotically θ0 will be included in our CS with
probability at least 1−α, where the latter represents our target coverage probability. Our
first goal is to determine the ability of our procedure to accomplish this in finite samples.
To this end we generated 1000 simulations of the Monte Carlo design described above
for sample sizes n= 500, n= 1000, n= 1500, and n= 2000 (1000 simulations in each case)
and computed the proportion of samples for which θ0 was accepted into our CS. The
results are shown in Table 3.

(B) Exclusion of false parameter values from our CS Our next exercise is aimed at study-
ing the power of our econometric approach to reject false conjectures about strategic
interaction. Suppose we maintain the (incorrect) assumption that the goods produced
by the three firms are always strategic substitutes. Under this maintained assumption
we test the power of our approach to reject the following three conjectures:

(i) Symmetric and constant strategic interaction effects. Our first false parameter
value is aimed at testing the conjecture that strategic effects are symmetric and con-
stant across markets and across players. Under the maintained assumption of strategic
substitutes, this is equivalent to testing whether the parameter value belongs in our CS:

θ
p
a ≡ (

β
pq
a �γ

pq
a �β

pr
a �γ

pr
a

) = (1�0�1�0)� with θa ≡ (
θ1
a�θ

2
a�θ

3
a

)
�

(ii) Symmetric interaction effects equal to zero if Xb = 0. Our next false tests the con-
jecture that strategic effects are once again symmetric across players, but they depend
onXb in a way such that ifXb = 0, then there is no strategic effect. Under the maintained
assumption of strategic substitutes, this is equivalent to testing whether the parameter
value belongs in our CS:

θ
p
b ≡ (

β
pq
b �γ

pq
b �β

pr
b �γ

pr
b

) = (0�1�0�1)� with θb ≡ (
θ1
b�θ

2
b�θ

3
b

)
�
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Table 4. Observed frequency with which false parameter values were EXCLUDED from our CS.

95th Percentile Maximum
Target Target Observed Observed

Coverage: 95% Coverage: 99% Value of Value of
Sample Size (c1−α = 1�645) (c1−α = 2�33) Test Statistic Test Statistic

Observed frequency with which θa was EXCLUDED from our CS
n= 500 54�3% 45�2% 7�324 11�811
n= 1000 66�3% 57�7% 16�537 15�598
n= 1500 77�6% 70�0% 13�977 21�931
n= 2000 81�4% 76�4% 17�410 22�769

Observed frequency with which θb was EXCLUDED from our CS
n= 500 57�5% 48�3% 7�746 11�498
n= 1000 69�2% 61�1% 11�652 15�088
n= 1500 79�7% 73�3% 15�113 19�838
n= 2000 84�6% 79�1% 18�199 22�386

Observed frequency with which θc was EXCLUDED from our CS
n= 500 54�6% 46�2% 7�488 9�431
n= 1000 67�4% 59�7% 11�056 15�718
n= 1500 78�8% 71�7% 14�653 20�546
n= 2000 83�0% 77�3% 17�774 20�966

(iii) Symmetric interaction effects with βpq = γpq. As a third case we aim to test the
conjecture that strategic effects are symmetric across players and they satisfy βpq =
γpq for each p and q. Under the maintained assumption of strategic substitutes, this
amounts to testing whether the parameter value belongs in our CS:

θ
p
c ≡ (

β
pq
c �γ

pq
c �β

pr
c �γ

pr
c

) = (1�1�1�1)� with θc ≡ (
θ1
c� θ

2
c� θ

3
c

)
�

Asymptotically each one of these parameter values will be excluded from our CS
with probability 1. Our goal here is to study the ability of our econometric procedure
to reject these false conjectures by excluding the corresponding parameter values from
our CS in finite samples. To this end we generated 1000 simulations of the Monte Carlo
design described above for sample sizes n= 500, n= 1000, n= 1500, and n= 2000 (1000
simulations in each case) and computed the proportion of samples for which θa, θb, and
θc were rejected from our CS. The results are summarized in Table 4.

(C) Exploring other features and conjectures of our CS Suppose we maintain the follow-
ing (correct) conjectures about θ0:

(i) We have βpq = βqp and γpq = γqp for each p, q. We impose this restriction on the
parameter spaceΘ.

(ii) We have that (Y 1�Y 2) and (Y 2�Y 3) are always strategic substitutes. This can be
captured by imposing the following restrictions onΘ:

β12 ≥ 0�γ12 ≥ 0� β23 ≥ 0�γ23 ≥ 0� with
∣∣β12∣∣ + ∣∣γ12∣∣> 0�

∣∣β23∣∣ + ∣∣γ23∣∣> 0�
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(iii) We have that (Y 1�Y 3) are strategic substitutes for “small” values of Xb but they
are strategic complements for “large” values of Xb. However, we do not know the cor-
responding threshold for Xb that induces complementarity. This can be captured by
imposing the following restrictions onΘ:

β13 > 0� γ13 < 0�

Given these maintained assumptions, suppose we want to study the following two
strategic interaction features:

• The relative effects of firms 1 and 3 on firm 2.

• How large Xb has to be to induce strategic complementarities between firms 1
and 3.

Both features will be analyzed by estimating a CS after imposing the restrictions on Θ
described above. Our construction involved a grid search over two million points in Θ.
The results described below represent the results for a randomly drawn sample gener-
ated according to our previous description. Our target coverage probability was 95%.

Relative effects of firms 1 and 3 on firm 2 We have maintained that both Y 1 and Y 3

are always strategic substitutes for Y 2. We want to explore which one of the two rivals
of firm 2 has a larger strategic effect on firm 2’s payoff. In this sense, we want to study
which one of firm 2’s rivals is a closer competitor to firm 2. Given our parameterization
of the strategic indices, this question involves a comparison between β21 + γ21 ·Xb and
β23 + γ23 ·Xb. So as to aggregateXb, we will compare10

EXb
[
β21 + γ21 ·Xb

] = β21 + γ21 · 1
2

and

EXb
[
β23 + γ23 ·Xb

] = β23 + γ23 · 1
2
�

Note that the true values of these quantities are

EXb
[
β21 + γ21 ·Xb

] = 1
2

and EXb
[
β23 + γ23 ·Xb

] = 3
2

and therefore firm 3 is the true closest competitor to firm 2. Figure 1 shows that our CS
overwhelmingly reflects this key property. It also illustrates how our CS contains the true
value of these parameters.

Strategic complementarities between firms 1 and 3 We have maintained the conjecture
that Y 1 and Y 3 are strategic complements for “large” values of Xb. Let x∗ denote the
value such that Y 1 and Y 3 are strategic complements wheneverXb > x∗ and are substi-
tutes otherwise. This threshold is given by

x∗ = −β
13

γ13 �

10Recall thatXb ∼U[0�1].
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Figure 1. Relative effects of firms 1 and 3 on firm 2: 95% joint CS for EXb [β21 + γ21 ·Xb] and
EXb [β23 + γ23 ·Xb].

Note that x∗ = 0�20 given the parameters of our Monte Carlo design. We can use our 95%
CS to construct a corresponding confidence interval (CI) for x∗. This is given by

95% CI for x∗ : [0�003�0�384]�
The true value x∗ = 0�2 is practically the midpoint of our CI.

Violations to our assumptions The Supplement continues our Monte Carlo analysis by
describing the performance of our method under certain violations to our assumptions.
Specifically, we introduce correlation in players’ privately observed shocks and we also
allow the strategic index to be a function of unobserved payoff shifters (and not only of
X). For our designs, we find that our method still performs relatively well (i.e., the true
parameter value is still contained in our CS with a frequency not too far from our target
coverage probability) as long as the magnitude of correlation between these privately
observed shocks remains relatively small, but that our results break down (i.e., the true
parameter value is excluded from our CS with greater probability) as the magnitude of
this correlation increases.

6. Application: Entry in the U.S. drugstore industry

Next we include an illustration of our results in the analysis of empirical data. One of the
most important econometric applications of games has been the study of entry deci-
sions by competing firms. Our model allows us to approach this problem by combining
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the usual extensive-margin enter/not enter dimension with an intensive-margin deci-
sion regarding the intensity of entry. In our application, this intensive margin is cap-
tured by the number of stores that a chain store decides to open in a market. The key
advantage of taking the intensive margin into account is that it will give us a structural
interpretation of the strategic index in terms of an underlying model of supply and de-
mand (see Section 2.3). This stands in contrast to the “reduced form” profit function
that dominates applied work on the binary entry margin. As we show below, the inten-
sive margin provides new insights into the nature of competition in the market we study.
It is important to note that our assumptions are compatible with the existence of fixed
costs of entry and thus our model strictly nests the binary entry case (see Section 2.3).

Our application focuses on the U.S. retail drugstore industry, which we study be-
cause of three different considerations. First, it is an industry with three clearly iden-
tifiable main competitors: Walgreen’s, CVS, and Rite Aid. According to IBISWorld, their
market shares in 2011 were approximately 31%, 26%, and 12%, respectively.11 Second,
there has been a recent discussion among industry watchers of a takeover of Rite Aid
by one of its competitors. This is a natural policy application for us since our approach
can help us identify, for example, which is the closest competitor to Rite Aid. Third, we
believe it is a case of an industry without an obvious, compelling demand side unobserv-
able at the market level (i.e., an unexplained taste for health) that cannot be conditioned
out with observables (such as the number of doctors in the market).

Naturally, entry takes place at different points in time but these dates are largely
unobserved in our data set. Our justification for modeling this as a static game is the
commonly made assumption that the choices observed are the realization of a long-run
equilibrium whereby firms precommitted to their strategies before observing the strate-
gies of others. According to this view, the fact that entry decisions take place at different
points in time is incidental.

Throughout our exercise we identify these three players as

player 1: CVS, player 2: Rite Aid, player 3: Walgreens.

The termp denotes generically any one of the three players in the model, and q, r denote
the two opponents of p. Let Yp denote the number of stores opened by p in a market.
Please note that we have abstracted away the competition effect these firms may face
from supermarket and big-box stores (see Ellickson and Grieco (2013)), which is likely
to be significant in items such as beauty products, personal care items, and over the
counter medications, but less so in prescription medications and walk-in health ser-
vices, although this may change in the future as Walmart and other supermarkets are
added to increasingly more preferred pharmacy networks and expand their clinic ser-
vices. We do this for simplicity of our empirical illustration and because we wanted to
focus on the three closest competitors within the drugstore industry.

11Source: http://clients1.ibisworld.com/reports/us/industry/default.aspx?entid=1054.

http://clients1.ibisworld.com/reports/us/industry/default.aspx?entid=1054
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Table 5. Summary statistics for Yp.

Y 1 Y 2 Y 3

Total† 7004 4318 7283
Mean 7�34 4�52 7�63
Stdev 21�95 15�57 23�88
25th Percentile 0 0 1
Median 1 0 1
75th Percentile 4 3 4
90th Percentile 16 10 17
95th Percentile 39 21 41
99th Percentile 112 71 106

Note: † Total number of stores in all markets. All other statistics
shown are at the market level.

Table 6. Correlations observed for Y 1, Y 2, and Y 3.

Y 1 Y 2 Y 3 Y 2 +Y 3 Y 1 +Y 3 Y 1 +Y 2

Y 1 – 0�70 0�79 0�86 – –
Y 2 0�70 – 0�49 – 0�62 –
Y 3 0�79 0�49 – – – 0�72

6.1 Data overview

6.1.1 Units of observation The decision variable Ypi denotes the total number of stores
by p in market i in the year 2011. We define a market as a CBSA (core-based statistical
area) in the continental United States. Metropolitan12 CBSAs were split into the divi-
sions determined by Office of Budget and Management and each division was consid-
ered a market. We exclude CBSAs with more than 5 million people because such large
markets will likely consist of smaller submarkets. Our final sample consists of N = 954
observations.

6.1.2 Choices and outcomes observed in the data Table 5 summarizes some descrip-
tive features of choices observed. It highlights the richness of the action space in this
application. Table 6 shows the correlations observed across Y 1, Y 2, and Y 3. As we see
there, a persistently positive association was observed across markets in the number of
stores opened by each competitor. What is remarkable is that this pattern of positive
correlation remains the same order of magnitude even after we condition on market ob-
servables such as market size aqnd so forth (we describe the market covariates in further
depth in the next subsection).

12The Office of Budget and Management defines a CBSA as an area that consists of one or more counties
and includes the counties containing the core urban area, as well as any adjacent counties that have a
high degree of social and economic integration (as measured by commuting to work) with the urban core.
Metropolitan CBSAs are those with a population of 50,000 or more. Under certain conditions, metropolitan
CBSAs with 2�5 million people or more are split into divisions.
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Table 7. Correlations if the game is reduced to bi-
nary choice.

1{Y 1 > 0} 1{Y 2 > 0} 1{Y 3 > 0}

1{Y 1 > 0} – 0�23 0�07
1{Y 2 > 0} 0�23 – 0�04
1{Y 3 > 0} 0�07 0�04 –

By their nature, the drugstores of each of these competitors provide the same type
of services and can be rightly deemed, in general, as demand substitutes of each other.
Given this observation and recalling the underlying Cournot model discussed in Sec-
tion 2.3, basic economic theory would predict that, all else equal, more aggressive entry
by a competitor would reduce a firm’s marginal benefit to entry, leading us ex ante to
consider entry decisions as strategic substitutes. Strategic substitution is assumed in
numerous empirical applications of entry games (e.g., Bresnahan and Reiss (1991b),
Bresnahan and Reiss (1991a), Berry (1992), Davis (2006)). Even though strategic sub-
stitutability is justified as the prediction of economic theory in our setting, the correla-
tion pattern in Table 6 seems to fly in the face of it. This is especially true if we believe
that there is no obvious, compelling demand side unobservable at the market level (i.e.,
an unexplained taste for medical drugs). Our framework can help us explore whether a
model of strategic substitutes can produce this pattern of positive correlation in entry
behavior. In our Monte Carlo experiments in Section 5, we learned that it is not hard
to characterize multiplayer structural models, satisfying all our assumptions, where the
underlying game is one of strategic substitutes and nevertheless all actions are pairwise
correlated. See in particular the design described in footnote 8.

Ignoring the intensive-margin dimension of entry and focusing only on the binary
choice decision of entry immediately obscures key features of the data. For example as
Table 7 shows, it wipes out much of the positive association observed in the data.

By eliminating much of the positive association observed in the intensive margin,
reconciling the data with an underlying game of strategic substitutes should be easier in
a binary choice representation of the game compared to one that explicitly considers the
intensive-margin decisions. A consequence of this would be that the inferential results
for ηp in the latter case would be more precise. Our results will confirm this.

6.1.3 Covariates included in X Markets are defined as CBSAs with less than 5 million
people. We included in our analysis the following market and player characteristics:

POP = population� INC = average income per household�

DENS = population density� AGE = median age in the population�

BUS = total number of business establishments�

DISTp = distance to the nearest distribution center of p�
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Table 8. A statistical summary of covariates and market structure.

Median Value Median Value Median Value
in Markets With in Markets With in Markets With

Zero Stores at Least One Store at Least Two Stores

POP 26,924 79,792 109,393
INC† 31,089 35,516 36,282
DENS‡ 29�23 96�65 120�87
AGE 36�15 36�90 36�80
BUS§ 621 1934 2607
DIST1 381�87 151�19 124�78
DIST2 669�65 186�09 150�02
DIST3 280�93 141�94 124�14

Note: † Average income per household at the market level. Measured in 2000 U.S. dollars. ‡ Population per square mile.
§ Total number of business establishments in the market. All distances are measured in miles.

and we used

X = (
POP� INC�DENS�AGE�BUS�DIST1�DIST2�DIST3)�

Population density was computed as the ratio of population/land area;X was treated as
jointly continuously distributed.

Most of these covariates are fairly standard in empirical work. We do note that our in-
clusion of the number of business establishments (which we could empirically refine to
be the number of retail establishments) is designed to control for supply side unobserv-
ables in a market. If it is just costly to locate a store in a market (because of say zoning
restrictions), then this should affect the entry of stores in all industries, not just phar-
macies. Table 8 presents summary statistics for our covariates and makes a comparison
across different markets depending on the number of total stores. The table highlights
the importance in particular of market size and density, as well as distance to distribu-
tion centers, as determinants of entry. To the extent that the covariates included in X
may fail to fully control for unobservable market-level (demand or entry-cost) shocks
and therefore leave some correlation in firms’ unobserved payoff shocks, our results in
Section 5 suggest that as long as the remaining correlation is relatively small, the prop-
erties of our inferential procedure can remain approximately valid in finite samples.

6.2 Specifications for the strategic index ηp

We refer generically to the three players as p, q, and r, and we consider specifications for
the index of the form

ηp
(
y−p;X|θp) = (

X ′θp�q
) · yq + (

X ′θp�r
) · yr�

As we discussed above, we will maintain that actions are strategic substitutes. To this
end we will choose theΘ such that strategic substitutability is ensured, that is,

X ′
iθ
p�q ≥ 0� X ′

iθ
p�r ≥ 0 ∀i= 1� � � � � n ∀θ ∈Θ�
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We want to focus on simple specifications for the indices X ′
iθ
p�q and X ′

iθ
p�r . Since θ

can only be (partially) identified up to scale and location normalizations, these are also
introduced in the parameter space in ways that will be described below.

Specification 1. Symmetry of opponents’ strategic interaction effects First we study the
special case where each p weighs the actions of his two opponents equally (a main-
tained, key assumption in De Paula and Tang (2012)) in every market. Given our assump-
tions, this is observationally equivalent to a strategic index of the form

ηp
(
y−p;X|θp) = θp · (yq + yr)� where θp = 1�

In this case our inferential problem simply reduces to a specification test where we eval-
uate whether

E
[
1
{
Yp ≤ yp} · (Yq +Yr)|X = x]

≥E[
1
{
Yp ≤ yp}|X = x] ·E[(

Yq +Yr)|X = x] (12)

for almost every (x� yp) in our inferential range (to be described below).

Specification 2. Constant, possibly asymmetric relative strategic interaction effects Next
we focus on the case where p may assign different weights to each opponent, but the
relative effects remain constant across all markets. Letting θp = (θp�q�θp�r), the strategic
index is now of the form

ηp
(
y−p;X|θp) = θp�q · yq + θp�r · yr� where θ≥ 0 ∀θ ∈Θ� (13)

We normalizeΘ so that ‖θp‖ = 1 for each p since our identified set is closed under non-
negative rescaling of θp (if θ satisfies (5), then so will c ·θ for any c ≥ 0). This specification
is of particular interest because strategic interaction effects have been typically modeled
through constant coefficients in existing work that uses “reduced form” profit functions
(e.g., Berry (1992), Tamer (2003) and many others).

Specification 3. A more flexible parameterization Here we allow for asymmetry and
for covariate-dependent relative interaction effects. In our specification we express ηp

solely as a function of market size (POP) and its distance to the nearest distribution cen-
ter of each player (DIST1�DIST2�DIST3). We wish to explore two conjectures through
our parameterization:

(i) The difference in distance to the market (DISTp − DISTq) is a determinant of the
strategic interaction effect of q onp. The basis for this effect is that if firm q’s distribution
center is located much closer than p’s, then this will give q a cost side advantage relative
to p in the market and thus make competition more intense with firm q’s entry into the
market.

(ii) Strategic interaction effects change with market size. One strand of the entry lit-
erature has modeled firm profits using “per capita” variable profits (see, e.g., Bresnahan
and Reiss (1991a, 1991b)) , which would imply that the sensitivity of a firm’s profits to
another firm’s entry is increasing with market size all else equal. However one can also
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imagine that larger markets offer more “room” for entry not just because there exist more
people, but also because opportunities for market expansion relative to business steal-
ing are larger, which would decrease the sensitivity of profit to a rival firm’s entry in larger
markets.

To explore both conjectures simultaneously we use the following parameterization
of ηp. Denote θp = (θp1 � θp2 � θp3 � θp4 )′ andDp�q ≡ DISTp − DISTq for every p �= q. Define

φp�q
(
X|θp)

=
(
θ
p
1 + θp2 · 1

POP
+ θp3 · (Dp�q − 200

) · 1{
Dp�q ≥ 200

}
+ θp4 ·

(
Dp�q − 200

) · 1{
Dp�q ≥ 200

}
POP

)
�

(14)

Population is measured in units of 500,000 inhabitants in (14). The strategic index for p
is specified as

ηp
(
y−p;X|θp) =φp�q(X|θp) · yq +φp�r(X|θp) · yr� (15)

Strategic substitutability is imposed by forcing the parameter spaceΘ to satisfyφp�q(Xi|
θp) ≥ 0 for each p, q and every market i = 1� � � � � n. The individual signs of each co-
efficient were otherwise unrestricted. For the same reason given above we normalize
‖θp‖ = 1 for p= 1�2�3 in our parameter space.

6.3 Results

Our target coverage probability is 95% throughout. Our parameter space Θ consisted
of 1 million grid points with the scale normalization described above. An empty confi-
dence set (CS) amounts to a rejection of the specification in question. The kernels and
bandwidths used are described in detail in the Supplement. The kernel employed was
bias-reducing of order 18, similar to the one used in Aradillas-López, Gandhi, and Quint
(2013). Our bandwidths were of the form hn = c · σ̂(X) · n−αh (we used individual band-
widths for eachX , each proportional to σ̂(X)), bn = cb ·Ω ·n−αb , and κn = cκ ·Ω · log(n)−1,
whereΩ= maxθ∈Θ |σ̂(θ)|. We chose these tuning parameters proportional toΩ to ensure
our procedure has a scale-invariant property. The choice of the constants c, cb, cκ, αh,
and αb is described in the Supplement. For our sample size n = 954 the values of these
tuning parameters were hn ≈ 0�16 · σ̂(X), bn ≈ 10−5, and κn ≈ 10−7. The inference range
used was

X = {
x : f̂X(x)≥ f̂ (0�15)

X �POP< 5 million
}
�

where f̂ (0�15)
X denotes the estimated 15th percentile of the density f̂X . All of our main

findings were robust to moderate changes in the tuning parameters used.
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6.3.1 Rejection of symmetry and of constant strategic interaction effects Symmetry in
the effects of opponents’ actions on payoffs was rejected by our results. The value of
our test statistic for testing (12) was 10�44, well above the critical value (1�645) for a 95%
significance level. We conclude that if strategic substitutability is maintained across all
markets, at least one player must assign different weights to the actions of his opponents
in a subset of markets. Our results also rejected Specification 2 which assumed constant
strategic effects. The smallest value of the test statistic across our parameter space Θ
was 8�38, leading to an empty confidence set. Rejection of constant strategic effects is
a relevant empirical finding because this is the type of specification used in the vast
majority of existing parametric models. By Remark 2, rejecting any specification leads
us to reject the assertion that the underlying game has a unique equilibrium w.p.1. In
particular we reject the notion that there is no strategic interaction effect between the
firms.

6.3.2 Results for Specification 3 Our third specification produced a nonempty CS. Our
first finding was a rejection of the assertion that θp = θq for each p �= q (symmetry in
parameters for all players). When we imposed this restriction we obtained an empty CS,
with the smallest value of the test statistic being 2�01. Thus there is evidence of structural
differences in payoff functions across these three players. We describe next the main
features of the CS obtained.

6.3.3 Evidence of asymmetric weights to opponents’ strategies Asymmetry of oppo-
nents’ interaction effects is captured by the parameters θp3 and θp4 . Symmetry would
hold for p in every market only if these parameters are jointly equal to zero. Figure 2
depicts the 95% joint CS for these parameters for each of the three players. As we can
see, our results showed evidence of asymmetry for player 2 (Rite Aid).

We can study the asymmetry of strategic effects for specific markets. For example,
Figure 3 depicts our confidence region forφ2�1(Xi|θ2) (the effect of CVS on Rite Aid) and
φ2�3(Xi|θ2) (the effect of Walgreens on Rite Aid) corresponding to CBSA 29404 (Lake
County–Kenosha County, IL–WI), where POP = 820K, DIST1 = 191, DIST2 = 226, and
DIST3 = 21. Our results show that, from the perspective of Rite Aid, the competition ef-
fect from Walgreens is stronger than the competition effect from CVS in that market.

We wanted to learn more about what the data revealed regarding the closeness of
competition between rival firms. Since symmetry could only be rejected for Rite Aid we
focused only on this firm. We say that the competition effect from CVS is stronger than
that of Walgreens in market i if minθ2∈CSn(1−α)(φ2�1(Xi|θ2)) > maxθ2∈CSn(1−α)(φ2�3(Xi|
θ2)). The opposite would be true if the inequality holds with the superscripts 1 and 3
interchanged. We found that while the competition effect from CVS was stronger than
that of Walgreens only in 9 markets, the opposite was true in 160 markets. Overall, our
results provide evidence that Walgreens is a closer competitor to Rite Aid than CVS is.
For policy purposes this closeness in competition could suggest that a merger between
Rite Aid and Walgreens could potentially have a more significant anticompetitive effect
than a merger between Rite Aid and CVS.13

13Rite Aid shares jumped sharply on March 14, 2012 following speculation from a Credit Suisse analyst
about a potential merger with Walgreens (source: New York Times).
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Figure 2. Asymmetry of strategic interaction effects; 95% joint CS for θp3 and θp4 .

Figure 3. The CS for φ2�1(Xi|θ2) and φ2�3(Xi|θ2), for market i = CBSA 29404 (Lake Coun-
ty–Kenosha County, IL–WI).

6.3.4 Market size and strategic interaction One of the goals of Specification 3 was to
study the relationship between strategic interaction and market size. Positive signs for
θ
p
2 and θp4 would be consistent with interaction effects that decrease with the size of

the market. Figure 4 depicts the 95% joint CS for these parameters for each firm. As we
see there most of the values included in our CS for both coefficients are positive. Some
negative values (except for θ4

2) are included, but these are relatively small in absolute
value.
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Figure 4. Market size and strategic interaction; 95% joint CS for θp2 and θp4 .

Let us focus on cases where relative distance is not significant (i.e., less than 200
miles) and the only determinant of strategic interaction is market size. In any such mar-
ket the strategic coefficients are φp�q(X|θp) = θ

p
1 + θ

p
2 · 1

POP . Figure 5 shows how these
strategic coefficients change with the size of the market. As we can see there, our results
suggest that the strategic effect of opponents’ strategies does not increase with market
size and in fact could be less significant in larger markets.

6.3.5 Evidence of multiple equilibria and nondegenerate equilibrium selection By the
arguments in Remark 2, the rejection of our first two specifications along with the pa-
rameter values that were rejected in our third specification are findings that are consis-
tent with the existence of multiple equilibria in the underlying game and with an equi-
librium selection mechanism that randomizes across these equilibria.

6.3.6 Potential impact of unobserved market-level shocks As our Monte Carlo results
suggested (see in particular footnote 8), positive correlation between observed choices
in a game that is assumed to be of strategic substitutes should not be automatically at-
tributed to the presence of correlation in players’ unobserved payoff shifters. In our em-
pirical application we have tried to include multiple market-level relevant covariates
in X . If there were to remain unobserved market-level heterogeneity that is publicly
known to firms this would violate our independent private shocks assumption. How-
ever, consistent with the Monte Carlo findings included in the Supplement, our conjec-
ture is that the asymptotic predictions in our model would remain approximately valid
in the sample observed provided that the degree of correlation induced in firms’ pri-
vate shocks is relatively minor once we control forX . By the arguments in Remark 2, the
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Figure 5. The θp1 + θp2 · 1
POP for a range of POP values (measured in 500K). The solid black line

depicts the results for the largest value of θp2 in our CS. The solid horizontal line depicts the
results for the smallest value of θp2 in our CS. Dotted lines correspond to five randomly drawn
parameter values within our CS.

fact that Specification 3 was not rejected implies, in turn, that the independent private
shocks assumption is not rejected by the data in this case. While this is not a definitive
proof of the validity of this assumption, it does suggest that it is a reasonable approxi-
mation in this example.

6.4 Results from modeling entry as a binary decision

As Table 7 shows, much of the positive correlation in the intensive margin goes away
when we look only at extensive margin decisions. This led us to conjecture that the range
of models that would be consistent with strategic substitutes and with the choices ob-
served would be larger if we limited attention to a binary choice representation of entry
decisions. This intuition was confirmed by our methodology. While symmetry of weights
to opponents (Specification 1) and constant relative interaction effects (Specification 2)
were still rejected, modeling entry as a binary choice decision resulted in larger confi-
dence sets in Specification 3. Furthermore, the closeness in competition between Rite
Aid and Walgreens that our results uncovered was no longer evident. Specifically, as Fig-
ure 6 shows we now failed to reject that θp3 = θ

p
4 = 0 for Rite Aid. Thus, we failed to re-

ject that Rite Aid gives equal weights to both opponents across all markets. Hence, we
conclude that key features of strategic interaction that are captured by intensive margin
strategies are obscured if we focus attention solely on binary entry/no entry decisions.
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Figure 6. Comparing our previous results (shown in clear gray) with the CS from a binary
choice entry model (shown in dark gray). Player 2 (Rite Aid).

7. Concluding remarks

We studied static games with very general strategy spaces. Making some general shape
restriction assumptions on the underlying payoff functions we were able to characterize
observable implications that allow us to do inference on the strategic interaction com-
ponent that captures economically relevant features of strategic interaction. We showed
how our assumptions can arise naturally in well known structural economic models.
Our testable implications involve inequalities of nonlinear transformations of condi-
tional moments. We introduced an econometric approach to do inference in this setting
that is computationally easy to implement even in richly parameterized models with a
large collection of conditioning covariates with a rich support. We described the asymp-
totic properties of our approach and we applied it to a model of entry in the pharmacy
store industry where entry decisions are not merely binary choices but rather strate-
gies about the number of stores that firms will open in a market. Our results uncovered
economically relevant features of the underlying structural model such as a closeness in
competition between two rivals: Rite Aid and Walgreens. While the very general assump-
tions we make about payoffs limit the extent to which we can perform policy analysis
(such as constructing a formal measure of welfare or conducting detailed counterfac-
tual analysis), the patterns of competition that can be revealed by our results can be
policy-relevant in many cases. Furthermore, we can start with our assumptions and add
more structure on the model, using our results to guide the specification of the strategic
interaction component. If we choose to add more structure to payoffs, equilibrium se-
lection, or any other component of the model, we can take our first-step confidence sets
and refine them by keeping those elements that are consistent with the additional struc-
ture we may impose. In any case, our first-step results would guide the specification of
any additional structure. In the case of our empirical application, for instance, we know
that any model that assumes constant (and/or symmetric) strategic interaction effects
would be misspecified. Even though inference in this paper focused on cases where the
strategic index is parameterized (being nonparametric about all other components of
the model), our identification result holds nonparametrically and thus can be the basis
for nonparametric inference of the strategic interaction index. In that case, a fully non-
parametric inferential approach such as sieves could be employed to approximate the
strategic index, and the resulting asymptotic properties in the context of our conditional
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covariance inequalities would have to be characterized. Specific conjectures about the
model (e.g., substitutability, symmetry, etc.) could be incorporated into the nonpara-
metric estimator for the index. This is the subject of ongoing work in a more general
context.

Appendix A: Proofs of our identification results

A.1 Proof of Result 1

Recall from (4) that

η
p
σ(X)≥ η′p

σ(X)

=⇒ ν
p
σ
(
v;ξp) − νpσ

(
u;ξp) ≤ νpσ ′

(
v;ξp) − νpσ ′

(
u;ξp) ∀u < v ∈ Ap�

Fix any yp ∈ Ap and define the indicator function

I
p
σ
(
yp;ξp) = max

u≤yp
(

min
v≥yp+1

(
1
{
ν
p
σ
(
v;ξp) − νpσ

(
u;ξp) ≤ 0

}))
�

By (4), we have

η
p
σ(X)≥ ηpσ ′(X) =⇒ I

p
σ
(
yp;ξp) ≥ I

p
σ ′

(
yp;ξp)

�

Now suppose σ−p and σ−p′
are any pair of beliefs that produce unique expected-payof-

maximizing choices for p given the realization of ξp, and let ypσ (ξp) and ypσ ′(ξp) denote
the corresponding optimal choices. Then for any yp ∈ Ap,

1
{
y
p
σ
(
ξp

) ≤ yp} = I
p
σ
(
yp;ξp)

and 1
{
y
p
σ ′

(
ξp

) ≤ yp} = I
p
σ ′

(
yp;ξp)

�

Therefore, for any such pair of beliefs, if ηpσ(X) ≥ η
p
σ ′(X), then 1{ypσ (ξp) ≤ yp} ≥

1{ypσ ′(ξp)≤ yp}, which proves the statement in Result 1.

A.2 Proof of Theorem 1

Denote ξ ≡ (ξp)Pp=1 and ξ−p ≡ (ξq)q �=p. Given X , let J denote the number of BNE
{σ∗j(X)}j that the selection mechanism S can choose with positive probability, and let
PS
j (X) denote the probability that S selects the jth BNE (σ∗j(X)), conditional onX . Our

assumptions maintain that S concentrates on BNE that have a unique optimal choice.
Denote it as ypσ∗j (ξ

p) for the jth BNE. First, consider

Eξ−p|X
[
ηp

(
y

−p
σ∗j

(
ξ−p);X)|X]

�

This is the expected value of ηp, conditional on X , in the jth BNE. By definition, this is
equal to ηpσ∗j (X), which was defined previously as

η
p
σ∗j (X)=

∑
y−p∈A−p

σ
−p
∗j

(
y−p|X) ·ηp(

y−p;X)
�
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Now fix any yp ∈ Ap. By iterated expectations we have

E
[
1
{
Yp ≤ yp} ·ηp(

Y−p;X)|X]
=

J∑
j=1
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j (X) ·Eξ|X

[
1
{
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p
σ∗j

(
ξp

) ≤ yp} ·ηp(
y

−p
σ∗j

(
ξ−p);X)|X]

�

Assumption 3 (independent private shocks, i.e., ξp⊥ξ−p|X) yields

E
[
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Therefore, by Assumption 3 we can express

E
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(A.1)

Next note that
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Combining (A.1) and (A.2) we then have
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(A.3)



768 Aradillas-López and Gandhi Quantitative Economics 7 (2016)

By Result 1, w.p.1 in (ξp) we have
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To see why, simple algebra can be used to show that
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where the last inequality follows from Result 1, which implies that, w.p.1 in ξp and ∀yp,
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From (A.3) and (A.4) it follows that, w.p.1 inX we must have
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This concludes the proof.

Appendix B: Econometric appendix

We focus on settings where the researcher observes an iid sample ((Ypi )
P
p=1�Xi)

n
i=1,

with14 ((Y
p
i )

P
p=1�Xi) ∼ F . We assume that X can be split as X = (Xc�Xd), where Xc

have absolutely continuous distribution with respect to Lebesgue measure andXd have
a discrete distribution. We denote the dimension ofXc by q. We begin by describing the
preliminary conditions needed for our construction.

14In the Supplement, we generalize our assumptions to a setting where ((Ypi )
P
p=1�Xi)

n
i=1 is a triangular

array.
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B.1 Specifying an “inference range”

Let X ⊂ Supp(X) denote a prespecified set such that

X ∩ Supp
(
Xc

) ⊂ int
(
Supp

(
Xc

))
�

We maintain the assumption that fX(x)≥ f > 0 for all x ∈ X . Let15
IX (x)= 1{x ∈ X }. Let

T
p
X

(
θp

) =EYp�X
[
max

{
τp

(
Yp|X;θp)

�0
} · IX (X)

]
� (B.1)

By construction, TpX (θ
p) ≥ 0, and T

p
X (θ

p) = 0 if and only if Pr(τp(Yp|X;θp) ≤ 0|X ∈
X )= 1. We aggregate these one-sided expectations as

TX (θ)=
P∑
p=1

T
p
X

(
θp

)
�

Note that TX (θ) ≥ 0, and TX (θ) = 0 if and only if Pr(τp(Yp|X;θp) ≤ 0|X ∈ X ) = 1 for
p = 1� � � � �P . The inference range X will be assumed to be such that the nonparamet-
ric estimators involved in our construction have appropriate asymptotic properties uni-
formly over it. Given our choice of X , we focus attention on the superset of the identified
setΘI :

ΘIX = {
θ ∈Θ : TpX

(
θp

) = 0 for p= 1� � � � �P
}
�

Note thatΘI ⊆ΘIX , whereΘI = {θ ∈Θ : Pr(τp(Yp|X;θp)≤ 0)= 1 for p= 1� � � � �P}.

B.2 Estimators involved in our construction

We employ kernel-based nonparametric estimators. The term K : Rq → R will denote
our kernel function. For a given x≡ (xc�xd) and h> 0 define

H(Xi − x;h)=K
(
Xc
i − xc
h

)
· 1{

Xd
i − xd = 0

}
�

Let hn −→ 0 be a nonnegative bandwidth sequence. For a given x≡ (xc�xd), yp, and θp

our estimators are of the form

f̂X(x)= (
nh

q
n

)−1
n∑
i=1

H(Xi − x;hn)�

F̂Yp
(
yp|x) = (

nh
q
n · f̂X(x)

)−1
n∑
i=1

1
{
Y
p
i ≤ yp} ·H(Xi − x;hn)�

λ̂p
(
x;θp) = (

nh
q
n · f̂X(x)

)−1
n∑
i=1

ηp
(
Y

−p
i ;x|θp) ·H(Xi − x;hn)�

15The indicator function IX could be replaced with a smooth “trimming” function.
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μ̂p
(
yp|x;θp) = (

nh
q
n · f̂X(x)

)−1
n∑
i=1

1
{
Y
p
i ≤ yp} ·ηp(

Y
−p
i ;x|θp) ·H(Xi − x;hn)�

τ̂p
(
yp|x;θp) = F̂Yp

(
yp|x) · λ̂p(

x;θp) − μ̂p(
x;θp)

�

Our estimators for TpX (θ
p) and TX (θ) are

T̂
p
X

(
θp

) = 1
n

n∑
i=1

τ̂p
(
Y
p
i |Xi;θp

) · 1{̂
τp

(
Y
p
i |Xi;θp

) ≥ −bn
} · IX (Xi)�

T̂X (θ)=
P∑
p=1

T̂
p
X

(
θp

)
�

(B.2)

where bn −→ 0 is a nonnegative sequence whose properties will be described below.

B.3 Basic assumptions

Assumption B1 (Smoothness). As before, express any x ∈ Supp(X) generically as x ≡
(xc�xd) with xc corresponding to the continuously distributed elements inX . Denote

W = {
(x� y) ∈ Supp(X�Y) : x ∈ X

}
�

Recall that we defined before

FYp
(
yp|x) =EYp|X

[
1
{
Yp ≤ yp}|X = x]�

λp
(
x;θp) =EY−p|X

[
ηp

(
Y−p;x|θp)|X = x]�

μp
(
yp|x;θp) =EY |X

[
1
{
Yp ≤ yp} ·ηp(

Y−p;x|θp)|X = x]�
τp

(
yp|x;θp) = FYp

(
yp|x) · λp(

x;θp) −μp(
yp|x;θp)

�

For almost every (x� yp) ∈ W , x′ ∈ X , and every θp ∈Θ, the following objects are M times
differentiable with respect to xc with bounded derivatives:

FYp
(
yp|x)� fX(x)� EY−p|X

[
ηp

(
Y−p;x′|θp)|X = x]�

EY |X
[
1
{
Yp ≤ yp} ·ηp(

Y−p;x′|θp)|X = x]�
Now let

γIp
(
yp�x;θp) =EYp|X

[
1
{
yp ≤ Yp} · 1{

τp
(
Yp|x;θp) ≥ 0

}|X = x]�
γII
p

(
x;θp) =EYp|X

[
FYp

(
Yp|x) · 1{

τp
(
Yp|x;θp) ≥ 0

}|X = x]�
γIII
p

(
x;θp) =EYp|X

[
μp

(
Yp|x;θp) · 1{

τp
(
Yp|x;θp) ≥ 0

}|X = x]�
For almost every (x� yp) ∈ W and every θp ∈Θ, the three objects defined above areM times
differentiable with respect to xc with bounded derivatives, and this is also satisfied by the
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trimming function I(x). For given yp, x, and θp define

Q
p
FYp

(
yp|x) = FYp

(
yp|x) · fX(x)� Qλp

(
x;θp) = λp(

x;θp) · fX(x)�
Qμp

(
yp|x;θp) = μp(

yp|x;θp) · fX(x)�

Then for someQ<∞,

sup(
x�yp

)
∈W

∣∣QFYp (
yp|x)∣∣ ≤Q� sup

x∈X �θp∈Θ

∣∣Qλp(x;θp)∣∣ ≤Q�

sup(
x�yp

)
∈W�θp∈Θ

∣∣Qμp(yp|x;θp)∣∣ ≤Q�

Note that the restrictions in Assumption B1 would likely rule out equilibrium selec-
tion rules that generate nonsmoothness. Following the analysis in Bajari et al. (2009), the
smoothness conditions with respect to continuous state variables in the equilibrium se-
lection mechanism require that the equilibrium paths not bifurcate for almost all values
of the continuous state variable, or that a smooth path is chosen at the points of bifur-
cation.

Assumption B2 (Kernels and bandwidths). LetM be as described in Assumption B1. We
use a bias-reducing kernelK of orderM with bounded support. The kernel is a function of
bounded variation, is symmetric around zero, and satisfies supv∈Rq |K(v)| ≤K <∞. The
bandwidth sequences bn and hn are such that, for a small enough ε1 > 0,

n1/2−ε1 · hqn · bn −→ ∞� n1/2+ε1 · b2
n −→ 0� n1/2+ε1 · hMn −→ 0�

Focus on bandwidths of the type hn ∝ n−αh and bn ∝ n−αb . Let ε > 0 be an arbitrarily
small, but strictly positive constant, and let αh = 1

2M + ε and αb = 1
4 + ε. The conditions

in Assumption B2 will be satisfied if

M ≥
⌈

2 · q
1 − 4 · ε(2 + q)

⌉
�

For example, suppose q = 8 (as in our empirical application). Then we need M ≥ 17.
Recall thatM is the number of derivatives assumed to exist in Assumption B1 and it also
corresponds to the order of the kernel employed.

Our framework must allow for the existence of parameter values θp ∈ Θ such that
τp(Yp|X;θp) has a point mass at zero. While we allow for that, the following assumption
restricts the way in which the distribution of τp(Yp|X;θp) approaches zero from the
left. In essence the condition assumes that the density of τp(Yp|X;θp) is bounded in a
neighborhood of the type [−b�0), where b > 0.

Assumption B3 (A regularity condition). There exist constants b > 0 and A > 0 such
that, for each p and each θp ∈Θ,

Pr
(−b≤ τp(

Yp|X;θp)
< 0|X ∈ X

) ≤ b ·A ∀0< b≤ b�
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For a given θp, the functional τp(Yp|X;θp) is a random variable in its own right. Our
setting allows for this random variable to have a point-mass at zero (which would occur
if the inequalities are binding with positive probability at θp). Assumption B3 allows for
this but simply requires that this random variable have a finite density in a neighbor-
hood of the type [−b�0) (that is, in a neighborhood to the left of zero), and that this be
true uniformly over θp ∈Θ.

Assumption B4 (Empirical process and manageability conditions). For each p the fol-
lowing conditions are satisfied. Let

ηp
(
y−p) = sup

x∈X �θp∈Θ

∣∣ηp(
y−p;x|θp)∣∣�

Then E[exp{(ηp(Y−p))2 · ε}] ≤ C <∞ for some ε > 0, that is, (ηp(Y−p))2 possesses a mo-
ment generating function.

(i) The classes of functions

F = {
f : f (y−p) = ηp(

y−p;x|θp)
for some

(
x�θp

) ∈ X ×Θ}
�

F ′ = {
f : f (x)= λp(

x;θp)
for some θp ∈Θ}

�

F ′′ = {
f : f (yp�x) = μp(

yp|x;θp)
for some θp ∈Θ}

are Euclidean (see Definition 2.7 in Pakes and Pollard (1989)) with respect to en-
velopes ηp(·), F ′

(·), and F
′′
(·), respectively, where ηp(Y−p) satisfies the existence-of-

moments conditions described above, and F
′
(·) and F

′′
(·) satisfy E[F ′

(X)2] < ∞ and
E[F ′′

(Yp�X)2]<∞.

(ii) Let b > 0 be as described in Assumption B3. The class of functions

G = {
g : g(x� y)= 1

{−b≤ τp(
x� y;θp)

< 0
} · IX (x) for some θp ∈Θ, 0< b≤ b}

is Euclidean with respect to envelope 1.

Sufficient conditions for a class of functions to be Euclidean can be found,for exam-
ple, in Nolan and Pollard (1987) and Pakes and Pollard (1989). Once a parametric family
is chosen for ηp, those conditions can be used to verify part (i) of Assumption B4. In
particular, ηp does not have to be smooth (or even continuous) to satisfy the Euclidean
property. For part (ii) fix b ∈ R and let N (x� y;b) denote the number of points inΘwhere
τ(x� y;θp)− b changes sign. Suppose sup(x�y)∈X×AN (x� y;b) ≤ N <∞ for all 0< b ≤ b.
By Lemma 1 in Asparouhova et al. (2002) this ensures that the class of sets indexed by
the indicator functions in part (ii) of our assumption is a Vapnik–Chervonenkis (VC)
class of sets (see Definition 2.2 in Pakes and Pollard (1989)). The Euclidean property for
said class of functions follows from here by the results in Pakes and Pollard (1989).

B.4 Asymptotic properties of T̂ pX (θ
p)

The following theorem summarizes the key asymptotic properties of T̂ pX (θ
p) under our

assumptions.
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Theorem 2. Let

ψ
p
U

(
Y�X;θp)

= [(
γIp

(
Yp�X;θp) − γII

p

(
X;θp)) · λp(

X;θp)
+ (
ηp

(
Y−p;X|θp) − λp(

X;θp)) · γII
p

(
X;θp)

+ (
γIp

(
Yp�X;θp) ·ηp(

Y−p;X|θp) − γIII
p

(
X;θp))] · IX (X)

and

ψp
(
Yi�Xi;θp

) = (
max

{
τp

(
Y
p
i |Xi;θp

)
�0

} · IX (Xi)− TpX
(
θp

)) +ψpU
(
Yi�Xi;θp

)
�

If Assumptions B1–B4 hold, then

T̂
p
X

(
θp

) = TpX
(
θp

) + 1
n

n∑
i=1

ψp
(
Yi�Xi;θp

) + εp�n
(
θp

)
�

where

ψp
(
Yi�Xi;θp

) = (
max

{
τp

(
Y
p
i |Xi;θp

)
�0

} · IX (Xi)− TpX
(
θp

)) +ψpU
(
Yi�Xi;θp

)
and

sup
θp∈Θ

∣∣εp�n(θp)∣∣ =Op
(
n−1/2−ε) for some ε > 0.

The “influence function” ψp has two key properties:

(i) We have E[ψp(Yi�Xi;θp)] = 0 ∀θp ∈Θ.

(ii) We have ψp(Yi�Xi;θp)= 0 ∀θp : τp(Yp|X;θp) < 0 w.p.1.

Property (ii) can be verified immediately by inspection. Property (i) can be verified us-
ing iterated expectations and we prove it in Appendix B.4.2 below. Let ψ(Yi�Xi;θ) =∑P
p=1ψ

p(Yi�Xi;θp). By Theorem 2,

T̂X (θ)= TX (θ)+ 1
n

n∑
i=1

ψ(Yi�Xi;θ)+ εn(θ)� where

sup
θ∈Θ

∣∣εn(θ)∣∣ =Op
(
n−1/2−ε) for some ε > 0.

(B.3)

Additionally, the function ψ(Yi�Xi;θ) is identified and has the two key properties:

(i) We have E[ψ(Yi�Xi;θ)] = 0 ∀θ ∈Θ.

(ii) Let

Θ
I
X = {

θ ∈Θ : τp(
Yp|X;θp)

< 0 w.p.1. ∀p= 1� � � � �P
}
�

Then ψ(Yi�Xi;θ)= 0 w.p.1 ∀θ ∈ΘIX .
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B.4.1 Proof of Theorem 2 A step-by-step, detailed proof is included in the Supplement.

Here we present only a condensed version that summarizes the key steps. In Assump-

tion B1 we described W as

W = {
(x� y) ∈ Supp(X�Y) : x ∈ X

}
�

where X ⊂ Supp(X) is a prespecified set such that X ∩ Supp(Xc) ⊂ int(Supp(Xc)). We

maintain the assumption that fX(x) ≥ f > 0 for all x ∈ X . The proof is split into three

main steps.

Step 1 In our first step, we show that under the assumptions of Theorem 2, there exist

D1 > 0,D2 > 0, andD3 > 0 such that

Pr
(

sup
(x�yp)∈W�θp∈Θ

∣∣̂τp(
yp|x;θp) − τp(

yp|x;θp)∣∣ ≥ bn
)

≤D1 exp
{−√

nh
q
n

(
D2 · bn −D3 · hMn

)}
�

Step 2 In the second step, we take the result from Step 1 and show that, combined with

the assumptions of Theorem 2, it yields

T̂
p
X

(
θp

) = 1
n

n∑
i=1

τ̂p
(
Y
p
i |Xi;θp

) · 1{
τp

(
Y
p
i |Xi;θp

) ≥ 0
} · IX (Xi)+ϕpn

(
θp

)
�

where

sup
θp∈Θ

∣∣ϕpn (
θp

)∣∣ =Op
(
n−1/2−ε) for some ε > 0.

Step 3 This is the last step in the proof. Note first that

1
n

n∑
i=1

τ̂p
(
Y
p
i |Xi;θp

) · 1{
τp

(
Y
p
i |Xi;θp

) ≥ 0
} · IX (Xi)

= 1
n

n∑
i=1

max
{
τp

(
Y
p
i |Xi;θp

)
�0

} · IX (Xi)

+ 1
n

n∑
i=1

(̂
τp

(
Y
p
i |Xi;θp

) − τp(
Y
p
i |Xi;θp

))
· 1{

τp
(
Y
p
i |Xi;θp

) ≥ 0
} · IX (Xi)�

(B.4)
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The focus of Step 3 is on the properties of the second term. Take the objects defined in

Assumption B1. For h> 0 and any x such that fX(x) > 0 define

ψFYp
(
Y
p
i �Xi� y

p�x;h) =
(
1
{
Y
p
i ≤ yp} − FYp

(
yp|x))

fX(x)
·H(Xi − x;h)�

ψλp
(
Y

−p
i �Xi�x�θ

p;h) =
(
ηp

(
Y

−p
i ;x|θp) − λp(

x;θp))
fX(x)

·H(Xi − x;h)�

ψμp
(
Yi�Xi� y

p�x�θp;h)
=

(
1
{
Y
p
i ≤ yp} ·ηp(

Y
−p
i ;x|θp) −μp(

yp|x;θp))
fX(x)

·H(Xi − x;h)

(B.5)

and define

ψτp
(
Yi�Xi� y

p�x�θp;h)
= λp(

x;θp) ·ψFYp
(
Y
p
i �Xi� y

p�x;h)
+ FYp

(
yp|x) ·ψλp

(
Y

−p
i �Xi�x�θ

p;h) −ψμp
(
Yi�Xi� y

p�x�θp;h)
= [
λp

(
x;θp) · (1{

Y
p
i ≤ yp} − FYp

(
yp|x))

+ FYp
(
yp|x) · (ηp(

Y
p
i ;x|θp) − λp(

x;θp))
− (

1
{
Y
p
i ≤ yp} ·ηp(

Y
p
i ;x|θp) −μp(

yp|x;θp))] · H(Xi − x;h)
fX(x)

�

(B.6)

From here, for any pair of observations i� j in 1� � � � � n and h> 0 denote

gτp
(
Xi�Yi�Xj�Yj;θp�h

)
= 1
hq

·ψτp
(
Yj�Xj�Y

p
i �Xi�θ

p;h) · 1{
τp

(
Y
p
i |Xi;θp

) ≥ 0
} · IX (Xi)�

(B.7)

Using the results from Steps 1 and 2, we first show that

1
n

n∑
i=1

(̂
τp

(
Y
p
i |Xi;θp

) − τp(
Y
p
i |Xi;θp

)) · 1{
τp

(
Y
p
i |Xi;θp

) ≥ 0
} · IX (Xi)

= 1

n2

∑
j �=i

n∑
i=1

gτp
(
Xi�Yi�Xj�Yj;θp�hn

) +�p�1n

(
θp

)
� where

sup
θp∈Θ

∣∣�p�1n

(
θp

)∣∣ =Op
(
n−1/2−ε) for some ε > 0.

(B.8)
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From here we examine the Hoeffding decomposition (Serfling (1980)) of the U-statistic
that appears in (B.8). Go back to the objects defined in Assumption B1 and let

ψ
p
U

(
Y�X;θp)

= [(
γIp

(
Yp�X;θp) − γII

p

(
X;θp)) · λp(

X;θp)
+ (
ηp

(
Y−p;X|θp) − λp(

X;θp)) · γII
p

(
X;θp)

+ (
γIp

(
Yp�X;θp) ·ηp(

Y−p;X|θp) − γIII
p

(
X;θp))] · IX (X)�

(B.9)

We show that, under the assumptions of Theorem 2, the Hoeffding decomposition of the
U-statistic in (B.8) yields

1
n

n∑
i=1

(̂
τp

(
Y
p
i |Xi;θp

) − τp(
Y
p
i |Xi;θp

)) · 1{
τp

(
Y
p
i |Xi;θp

) ≥ 0
} · IX (Xi)

= 1
n

n∑
i=1

ψ
p
U

(
Yi�Xi;θp

) +ϑp�n
(
θp

)
�

where supθp∈Θ |ϑp�n(θp)| =Op(n−1/2−ε) for some ε > 0. Combined with the result in Step
2 and with (B.4) we obtain

T̂
p
X

(
θp

) = TpX
(
θp

) + 1
n

n∑
i=1

ψp
(
Yi�Xi;θp

) + εp�n
(
θp

)
� where

ψp
(
Yi�Xi;θp

) = (
max

{
τp

(
Y
p
i |Xi;θp

)
�0

} · IX (Xi)− TpX
(
θp

))
+ψpU

(
Yi�Xi;θp

)
and

sup
θp∈Θ

∣∣εp�n(θp)∣∣ =Op
(
n−1/2−ε) for some ε > 0.

(B.10)

This concludes Step 3 and finishes the proof of Theorem 2.

B.4.2 Two key properties of ψp The “influence function” ψp has two key properties:

(i) We have E[ψp(Yi�Xi;θp)] = 0 ∀θp ∈Θ.

(ii) We have ψp(Yi�Xi;θp)= 0 ∀θp : τp(Yp|X;θp) < 0 w.p.1.

Part (ii) is obvious by inspection. To see why (i) is true we can show how it holds for each
one of the summands that comprise ψp. Note first that by definition,

E
[
max

{
τp

(
Y
p
i |Xi;θp

)
�0

} · IX (X)− TpX
(
θp

)] = 0�

We will show how each of the three summands that comprise ψpU has mean zero. We
begin with the first term. Exchanging the order of integration, we have

E
[(
γIp

(
Y
p
i �Xi;θp

) − γII
p

(
Xi;θp

)) · λp(
Xi;θp

) · IX (Xi)
]

=EXi
[
EYj |Xj

[
EYi|Xi

[(
1
{
Y
p
i ≤ Ypj

} − FYp
(
Y
p
j |Xi

))|Xi�Yj�Xj]
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· 1{
τp

(
Y
p
j |Xi;θp

) ≥ 0
}|Xj =Xi�Xi

] × λp(
Xi;θp

) · IX (Xi)
]

=EXi
[
EYj |Xj

[
EYi|Xi

[(
FYp

(
Y
p
j |Xi

) − FYp
(
Y
p
j |Xi

))|Xi�Yj�Xj]
· 1{

τp
(
Y
p
j |Xi;θp

) ≥ 0
}|Xj =Xi�Xi

] × λp(
Xi;θp

) · IX (Xi)
]

= 0�

For the second term we have

E
[(
ηp

(
Y

−p
i ;Xi|θp

) − λp(
Xi;θp

)) · γII
p

(
Xi;θp

) · IX (Xi)
]

=EXi
[(
λp

(
Xi;θp

) − λp(
Xi;θp

)) · γII
p

(
Xi;θp

) · IX (Xi)
] = 0�

where we simply used the fact that λp(Xi;θp) = EY−p|X [ηp(Y−p
i ;Xi|θp)|Xi]. For the

third term, by exchanging the order of integration we have

E
[(
γIp

(
Y
p
i �Xi;θp

) ·ηp(
Y

−p
i ;Xi|θp

) − γIII
p

(
Xi;θp

)) · IX (Xi)
]

=EXi
[
EYj |Xj

[
EYi|Xi

[(
1
{
Y
p
i ≤ Ypj

} ·ηp(
Y

−p
i ;Xi|θp

)
−μp(

Yj|Xi;θp
))|Xi�Yj�Xj]

× 1
{
τp

(
Y
p
j |Xi;θp

) ≥ 0
}|Xj =Xi�Xi

] × IX (Xi)
]

=EXi
[
EYj |Xj

[(
μp

(
Yj|Xi;θp

) −μp(
Yj|Xi;θp

))
× 1

{
τp

(
Y
p
j |Xi;θp

) ≥ 0
}|Xj =Xi�Xi

] × IX (Xi)
]

= 0�

Combining these results we have E[ψp(Yi�Xi;θp)] = 0 ∀θp ∈Θ, as claimed.

The supplement

The accompanying Supplement to this paper includes a step-by-step proof of Theo-
rem 2, a description of the construction of our confidence sets (CS) based on Theorem 2,
an analysis of the uniform asymptotic properties of our CS, a description of the kernels
and bandwidths used in our empirical application, a detailed discussion on identifica-
tion and nontrivial CS, a discussion of identification when there exists correlation across
players’ unobserved payoff shocks (i.e., when our assumption of independent private
shocks fails), and additional Monte Carlo experiment results when our assumptions are
violated.
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