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A Standard Error Bias as an Alternative Out-

come

In the main article, we focus on the actual coverage rates of two-sided 95% con-

fidence intervals in assessing the inferential accuracy of the different estimators.

An alternative approach, taken, for example, by Schmidt-Catran and Fairbrother

(2015), would be to compare the average estimated standard error with the actual

standard deviation of the corresponding point estimate across the Monte Carlo

replications. Schmidt-Catran and Fairbrother (2015) refer to this as ‘optimism of

the SEs’ (p.27).

However, reporting coverage has a considerable advantage. It is well known

that the standard error is a downward biased estimator of the sampling distri-

bution standard deviation when samples are small. Consider, for instance, the

standard error of the mean: σ(x̄) = SD(x)√
n

. This estimator of the standard error re-

lies on the sample standard deviation (SD(x)). Unfortunately, the latter is known

to be (downward) biased estimator of the population standard deviation in small

samples, even if it is based on an unbiased estimator of the population variance,

as provided by the usual estimator Σ(xi−x̄)2/(N−1) (Gurland and Tripathi, 1971).

The well-established solution to this problem, going back to the work of William

Gossett (1908) is to use a t-distribution with appropriate degrees of freedom for

statistical inference.

Similar issues arise in the context of multilevel mixed effects regression. In

particular, Elff et al. (2016) show that a t-distribution with appropriate degrees of

freedom leads to accurate statistical inference for contextual (cluster-level) vari-

ables in multilevel models with few clusters. The focus on actual coverage rates in

the main article allows us to implement this correction. If we focused on standard

error bias, we would not be able to do this. Specifically, we would find appar-

ent optimism of the standard errors and might misleadingly conclude that infer-
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ence is anti-conservative when accurate inference is actually perfectly possible—

provided that the appropriate t-distribution is used. This concern is obviously

most serious for experimental conditions with few clusters.

A comparison of Tables A1 and A2 with the corresponding tables in the main

article (Table 2 and Table 3) illustrates this point. Tables A1 and A2 report relative

standard error bias, that is, the difference between the average standard error es-

timate ŜE(γ̂) and the actual standard deviation of the coefficient estimates SD(γ̂)

across the R Monte Carlo replications, expressed in % of SD(γ̂), or formally:

ΣŜE(γ̂)
R

− SD(γ̂)

SD(γ̂)
× 100.

Results concerning the relative performance of the two models do not differ

from the main article: standard error estimates for the cross-level interaction and

the main effect of the lower-level variable generally show stronger negative bias

for the model excluding the random slope than for the model including the ran-

dom slope associated with the cross-level interaction. However, even the stan-

dard errors for the latter model appear to suffer from substantial negative bias,

especially in the experimental conditions with only five clusters in Table A2. This

contrasts very markedly with the corresponding results in the main article where

we find confidence interval coverage to be largely accurate (and even slightly

over-conservative in some of the more extreme experimental conditions; see B

above). As discussed above, the reason for these difference is that the use of the

t-distribution corrects for the substantial downward bias of the standard errors

in small (cluster-level) samples.
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Table A1: Standard error bias (%) by variance of lower-level predictor and random
slope term

γ(x) γ(xz) γ(cz)

Random Slope Random Slope Random Slope
SD(xij) Included Omitted Included Omitted Included Omitted

R2(β
(x)
j ) = 0.95 (i.e., SD(u

(x)
j ) ≈ 0.23)

0.5 0.76 -16.72 -0.77 -17.98 -3.91 -3.88
1.0 -2.39 -39.03 -3.67 -39.89 -5.27 -5.06
2.0 -1.44 -63.37 -4.32 -64.42 -3.79 -3.42

R2(β
(x)
j ) = 0.90 (i.e., SD(u

(x)
j ) ≈ 0.33)

0.5 -0.74 -27.12 -2.65 -28.44 -3.64 -3.56
1.0 -1.43 -52.43 -4.67 -53.94 -2.52 -2.19
2.0 -2.02 -73.80 -3.38 -74.17 -3.74 -3.23

R2(β
(x)
j ) = 0.50 (i.e., SD(u

(x)
j ) = 1.00)

0.5 -1.39 -65.97 -2.69 -66.42 -4.32 -4.14
1.0 -2.46 -81.97 -3.77 -82.20 -4.57 -4.21
2.0 -1.11 -90.10 -4.83 -90.47 -4.48 -4.01

R2(β
(x)
j ) = 0.10 (i.e., SD(u

(x)
j ) = 3.00)

0.5 -2.81 -87.57 -4.43 -87.77 -4.68 -4.47
1.0 -0.96 -92.71 -3.41 -92.88 -3.74 -3.15
2.0 -1.83 -94.92 -2.27 -94.95 -5.06 -3.74

Note: Results are based on 10,000 Monte Carlo replications. Note that for reasons of brevity, this
table does not express Monte Carlo error. The number of observations per cluster is 500 with
overall 15 clusters.

Table A2: Standard error bias (%) by number of clusters and lower-level observations

γ(x) γ(xz) γ(cz)

Random Slope Random Slope Random Slope
nj ntotal Included Omitted Included Omitted Included Omitted

m = 5 Clusters
100 500 -8.93 -63.16 -22.94 -68.69 -16.97 -16.24
500 2500 -9.82 -82.54 -15.12 -83.55 -19.93 -18.65

1000 5000 -13.48 -87.93 -21.46 -89.08 -19.03 -18.36
m = 15 Clusters

100 1500 -2.26 -62.20 -4.71 -63.04 -7.90 -3.96
500 7500 -2.46 -81.97 -3.77 -82.20 -4.57 -4.21

1000 15000 -2.30 -87.16 -3.81 -87.36 -3.79 -3.72
m = 25 Clusters

100 2500 -1.73 -62.30 -2.95 -62.69 -5.02 -1.90
500 12500 -1.00 -81.92 -2.33 -82.16 -1.36 -1.33

1000 25000 -1.19 -87.12 -1.66 -87.19 -1.68 -1.68

Note: Results are based on 10,000 Monte Carlo replications. Note that for reasons of brevity, this
table does not express Monte Carlo error. These results are based on experimental conditions for

which R2(β
(x)
j ) = 0.50 (i.e., SD(u

(x)
j ) = 1), and SD(xij) = 1.
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B At the Limit: When R2(β
(x)
j ) is Large and the

Cluster Sample Small

The simulation results in the main article clearly show that models with cross-

level interactions should generally include a random slope on the corresponding

lower-level components. However, Tables 2 and 3 in the main article also suggest

that such models may produce over-conservative inference in extreme situations

when a) the number of clusters is very small (m = 5 in our simulations) or when

b) the random slope exhibits very little unexplained variability (SD(u
(x)
j ) ≈ 0.33,

corresponding to an upper-level R2(β
(x)
j ) of 0.95). In these situations the actual

coverage rates of two-sided 95% confidence intervals exceed their nominal level.

With respect to significance testing, this means that a true null hypothesis will be

rejected less frequently than the nominal level of the test suggests.

Do these results warrant a qualification of the recommendation to always in-

clude a random slope on the lower-level component of a cross-level interaction?

We would argue that the answer is almost always no because overcoverage only

arises under extreme conditions that have little practical relevance. This reas-

suring result notwithstanding, this appendix presents additional analyses that

reduce the variability of the random slope even further, pushing R2(β
(x)
j ) beyond

0.95 and very close to 1. These are situations where the error in the upper-level

model for β(x)
j exhibits very little variation, so there remains very little ‘cluster-

ing’ in the sense of correlated errors for lower-level units belonging to the same

cluster. At least, that is, to the extent that such correlation is due to unobserved

cluster-specific differences in the relationship between yij and xij ; there may still

be cluster-correlated errors due to a random intercept term or to random slope

terms on other lower-level variables. When clustering becomes negligible in this

way, the m − l − 1 rule for approximating the degrees of freedom for confidence

intervals and t-tests may no longer work well because it is based on the idea

4



F
ig

u
re

B
1:

S
ta

ti
st

ic
al

in
fe

re
n
c e

fo
r

a
cr

os
s-

le
ve

l
in

te
ra

ct
io

n
te

rm
at

th
e

li
m

it
s

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

N
um

be
r o

f C
lu

st
er

s 
5

N
um

be
r o

f C
lu

st
er

s 
15

N
um

be
r o

f C
lu

st
er

s 
25

γ(x) γ(xz)

0.
99

0.
98

0.
95

0.
9

0.
5

0.
1

0.
99

0.
98

0.
95

0.
9

0.
5

0.
1

0.
99

0.
98

0.
95

0.
9

0.
5

0.
1

959697989910
0 959697989910
0

E
xt

en
t o

f R
an

do
m

 S
lo

pe
 in

 T
er

m
s 

of
 R

2 (β
j(x

) )

Actual Coverage Rate of Nominal 95% Confidence Interval

D
eg

re
es

 o
f F

re
ed

om
A

pp
ro

xi
m

at
io

n:
●

m
−l

−1

S
at

te
rth

w
ai

te

N
o
te

:
T

h
es

e
re

su
lt

s
ar

e
b

as
ed

on
5
00

ob
se

rv
at

io
n

s
p

er
cl

u
st

er
an

d
th

e
st

an
d

ar
d

d
ev

ia
ti

on
of

th
e

lo
w

er
-l

ev
el

p
re

d
ic

to
r

is
se

t
to

1.

5



that m − l − 1 would be the correct degrees of freedom in the implicit cluster-

/aggregate-level regression (Elff et al., 2016). Therefore, we also consider an

alternative, computationally more intensive approximation, a generalization of

the Satterthwaite (1946) method that was first proposed by Giesbrecht and Burns

(1985; for an overview of degree of freedom approximations in the mixed effects

context, see Schaalje et al. 2002). Elff et al. (2016) find the Satterthwaite method to

perform very similarly to the m− l− 1 rule, but they do not consider the kinds of

extreme situations where the above analysis shows the latter approach to produce

over-conservative inference.1

Figure B1 plots the actual coverage rates of confidence intervals for the cross-

level interaction term and the main effect of its lower-level component. Solid lines

show coverage rates for confidence intervals based on the m− l − 1 rule; dashed

lines show coverage rates for intervals based on the Satterthwaite approximation.

Whereas the most extreme case considered so far was that of an implied upper-

level R2(β
(x)
j ) of 0.95, we now consider two additional cases with R2(β

(x)
j ) values

of .98 and .99, respectively. In these situations, there is almost no unexplained

cross-cluster variation in β
(x)
j and arguably much less than one could expect to

encounter in most social science applications.

Figure B1 confirms the one qualification of our recommendation to always in-

clude a random slope on the lower-level components of cross-level interaction

terms: in cases where the variance of the random slope term is extremely small,

following this recommendation can result in over-conservative inference, espe-

cially if the number of clusters is also very low. The problems seems to at least

partly stem from the inaccuracy of the m − l − 1 approximation to the degrees

of freedom, as confidence intervals based on the Satterthwaite method perform

much better under extreme conditions. However, even the Satterthwaite method

fails in the most extreme scenarios.

One might alternatively suspect that convergence problems are responsible
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for the overcoverage because estimation of a near-zero variance component can

create problems for the optimization process. Yet, disaggregated analysis of Monte

Carlo trials with and without convergence warnings provides no support for this

explanation. These results can be obtained from the replication files which are

part of the online supporting material.

While the findings of this section warrant a note of caution, we would like

to emphasize again that both methods yield accurate statistical inference under

practically relevant conditions (15 or more clusters and R2(β
(x)
j ) ≤ 0.9), whereas

the results presented in the main article show models that omit the crucial ran-

dom slope term to produce overly optimistic results in such situations.
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C Model Selection Criteria are no Remedy

The simulation results in the main article suggest that practitioners who analyze

cross-level interactions using mixed effects models are well-advised to always in-

clude a random slope on the lower-level component. However, instead of opting

for a random slope on a priori grounds, one might take a more data-driven ap-

proach and rely on standard model selection criteria such as likelihood ratio tests

or information measures such as AIC and BIC in choosing a random effects spec-

ification. For example, as noted in the introduction, Raudenbush and Bryk (2002,

p.28) suggest that it might be appropriate to omit the random slope if its variance

is ‘very close to zero’. For want of an exact definition of ‘very close’, established

model selection criteria are obvious candidates when it comes to determining

whether a given slope is small enough to warrant omission.

Perhaps unsurprisingly, we would not recommend to rely on model selec-

tion criteria in determining whether to include the random slope associated with

a cross-level interaction. For reasons given in Section ‘Why Always a Random

Slope’ in the main article, we would argue these random slopes should always be

included in all practically relevant situations. To support this claim, this appendix

summarizes additional Monte Carlo evidence demonstrating that data-driven ap-

proaches based on model selection criteria will lead to substantial undercoverage

in at least some situations. We investigate this issue as follows: for each simu-

lated data set, we determine whether a given model selection criterion favors the

model with or the model without the random slope on the lower-level compo-

nent. To assess the performance of a given selection criterion, we then calculate

the actual coverage rate of the models thus selected.

We consider four model selection criteria. The first two are variants of a likeli-

hood ratio/deviance test (LRT). Both are based on the difference in the deviance

statistic (i.e., -2 times the log likelihood) between the random intercept model

and the model that includes the random slope term as well as its covariance

8



with the random intercept. The first variant compares the difference in the de-

viance against a Chi-Square distribution with two degrees of freedom (one for

the slope variance and one for the covariance). The null hypothesis of the test

is that the variance and covariance parameter are jointly zero, so we choose the

model including the random slope when the test result is significant (p < .05)

and the random intercept model otherwise. It is well-known that this test is over-

conservative (i.e., underrejects the null hypothesis) because the variance parame-

ter cannot be smaller than zero. The second variant therefore uses the average of

the p-values obtained from Chi-square distributions with one and two degrees of

freedom (see, for example, Snijders and Bosker, 2012, 98f.). In addition to the two

variants of the LRT, we consider Akaike’s Information Criterion (AIC) and the

Bayesian Information Criterion (BIC) as alternative selection criteria. We used R’s

anova function to calculate the deviance statistics and information criteria, which

uses the likelihood from maximum likelihood rather than restricted maximum

likelihood estimation. Confidence intervals for the calculation of coverage rates

are based on restricted maximum likelihood estimates, however.

Figure C1 plots the actual coverage rates of the confidence intervals for the

cross-level interaction term and the main effect of the lower-level component be-

cause only these are affected by omitting the random slope term (see Table 2 in the

main article). We focus on a subset of the experimental conditions. In particular,

we show results for 15 clusters and a standard deviation of 1 on the lower-level

predictor. Results for the other experimental conditions do not lead to qualita-

tively different conclusions and can be obtained from the replication files which

are part of the online supporting material.

The overall message emerging from Figure C1 is clear: when the goal is to

achieve correct statistical inference for a cross-level interaction effect, it is not

advisable to rely on model selection criteria in deciding whether to include a ran-

dom slope on the lower-level predictor. For all four selection criteria, we find

9
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settings where reliance on the criterion results in noteworthy levels of under-

coverage. This is not surprising, as we saw above that models that include the

random slope term on the lower-level component generally lead to accurate in-

ference, whereas models that omit the term suffer from undercoverage—with the

extent of undercoverage depending on various aspects of the DGP. The model

selection criteria investigated here will sometimes favor the model including the

random slope, and sometimes the one omitting it. The coverage rate for a given

model selection strategy will thus be a weighted average of the coverage rates

for the correct model (i.e., the one with a random intercept and slope) and for the

misspecified model (i.e., the one with only a random intercept). Thus, taking a

data-driven approach to model selection will generally be better than selecting

the model without a random slope a priori, but only because it sometimes favors

the model including the random slope.

Detailed inspection of Figure C1 reveals some interesting patterns. The first

is that model selection based on BIC performs worst and model selection based

on AIC best, with the two variants of the LRT falling in between. LRTs using a

mixture of Chi-Square distributions with one and two degrees of freedom have

a slight edge over the alternative because they more often reject the random in-

tercept model. The reason why BIC performs more poorly than the other criteria

is that it penalizes additional parameters more harshly, particularly in large sam-

ples, so it more often favors the model omitting the random slope, which is more

parsimonious (BIC uses a penalty of log(n), whereas AIC uses a constant penalty

of 2; Burnham and Anderson, 2004). Another noteworthy pattern is that the per-

formance of all four model selection strategies improves as the (implicit) R2(β
(x)
j )

of the cluster-level regression for the slope of xij declines or, equivalently, as the

standard deviation of the random slope (i.e., SD(u
(x)
j )) in the DGP increases. Intu-

itively, this is because all model selection strategies become more likely to favor

the model that includes the random slope, the more variation the latter shows.
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Finally, the performance of the different model selection strategies depends on

the number of observations per cluster. Model selection based on AIC and the

two variants of the LRT tends to improve as the number of observations per clus-

ter increases (except when the random slope shows very little variation with an

implied cluster-levelR2(β
(x)
j ) of 0.95). This is because both the LRT and AIC more

often favor the model that includes the random slope in larger samples. The rea-

son why BIC performs differently from AIC again is that it penalizes additional

parameters using a factor that depends on the sample size.

Overall, the impact of the cluster-level R2(β
(x)
j ) and the lower-level sample

size on the performance of the different model selection strategies should be

taken as illustrative. Their performance in applied settings will depend on vari-

ous other (and partly unobservable) aspects of a given analysis. The main mes-

sage to take away from Figure C1 is that there are practically relevant situations

where reliance on model selection criteria will lead to anticonservative inference

for the cross-level interaction. These results make very clear that one should

not blindly rely on model selection criteria in determining whether to include

a random slope on the lower-level component of a cross-level interaction. Rather,

as we emphasize in the main article, the default should be to specify a random

slope term, so much so that we would practically recommend to always include

it. There may be a very limited role for model selection criteria in situations char-

acterized by negligible slope variaton (see B above), but the results presented in

this section show that selection criteria must not be the only factor taken into

account, as they can easily lead to severely anti-conservative inference (in partic-

ular, the substantive magnitude of cross-cluster variation in the slope should be

considered as well). Moreover, as also emphasized in the main article, we believe

that situations where variation is so low that omitting the random slope might be

a reasonable choice are rare exceptions in practice, at least for typical sociologi-

cal application. Our empirical examples (see D below) where we generally find

12



substantive variation in the random slopes even after including the cross-level

interactions with HDI support this view (see the final columns of Tables D1 to

D6 below). However, while we strongly suspect that these findings generalize

to most other applications, we do not hesitate to admit that this is ultimately an

empirical question that we cannot answer within the confines of our study.
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D Illustrative Empirical Analyses

To get a sense of how serious the consequences of omitting the random slope term

for a cross-level interaction are in real-world applications, we conduct a series of

illustrative analyses based on European Social Survey data (ESS Round 6, 2016).

We adopt Heisig et al.’s (2017) illustrative analyses of cross-level interactions.

Replication code for the analyses in Heisig et al. (2017) is available at http://

journals.sagepub.com/doi/suppl/10.1177/0003122417717901. Together with

the replication code for the present article, it can be used to replicate all analyses

reported in this section.

Our 30 empirical examples study how the relationships between six lower-

level predictors (having a high education, age, gender, unemployment, being

married, and having a medium education) and five standard outcome variables

(generalized trust, homophobia, xenophobia, fear of crime, and occupational sta-

tus) are moderated by the Human Development Index (HDI). For each of the

30 illustrative cross-level interactions we estimate a specification including and

one omitting the random slope term for the lower-level variable involved in the

respective cross-level interaction. Overall, this results in 60 linear mixed effects

models.

All outcome variables and age are standardized to have a mean of zero and

a standard deviation of one. Education is measured as an individual’s highest

degree, subsumed into three categories: low (highest degree below the upper

secondary level), intermediate (highest degree at the upper secondary or non-

tertiary, post-secondary level), and high (highest degree at the tertiary level). Be-

ing female, being married, and being unemployed (ILO definition) are also indi-

cator variables. Following Heisig et al. (2017), all indicator variables are weighted

effects (rather than dummy) coded. Weighted effects coding of categorical pre-

dictors is akin to grand mean centering of continuous predictors and ensures that

the intercept corresponds to the predicted outcome for the ‘average’ individual

14
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(Grotenhuis et al., 2016). The coefficient of the high education indicator, for in-

stance, captures the (adjusted) difference in the respective outcome variable (e.g.,

fear of crime) between high-educated individuals and individuals whose level

of education equals that of the average European. Its cross-level interaction with

the HDI indicates whether this difference changes with a society’s level of human

development. Due to the presence of the cross-level interaction term the main ef-

fect of the high education indicator must be interpreted as the conditional effect

of having high education for a country with an HDI of zero, that is, for a country

with an average level of human development. In addition to the lower-level pre-

dictor of interest, the HDI, and their cross-level interaction, the models always

contain the other lower-level predictors as control variables. These controls are

not interacted with other (lower- or upper-level) predictors. Further details are

described in Heisig et al. (2017).

Tables D1 to D6 present a summary of the main results, omitting coefficient

estimates for control variables. Results for fear of crime at the top of Table D1

show that the cross-level interaction between the HDI and having high educa-

tion is negative and statistically significant, irrespective of whether we include a

random slope term or not. The same holds for the main effect of being highly

educated. Thus, the high educated tend to be less afraid of crime than Europeans

with average education and their advantage in (perceived) security is particularly

strong in countries with a high degree of human development.

Qualitatively, this conclusion does not depend on the random effects specifi-

cation, but the model that does not contain a random slope for high education

strongly overstates the precision with which we can estimate the cross-level in-

teraction and the main effect of high education. The third column shows that

the estimated standard errors (in parentheses) for these coefficients are substan-

tially larger in the correctly specified model that includes the random slope—by

67.4% for the main effect and by 82.3% for the cross-level interaction. Accord-
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ingly, the absolute t-ratios (in brackets) are much smaller when the model is cor-

rectly specified—by 40.8% for the main effect and by 46.8% for the cross-level

interaction. Over the 30 different models (5 dependent variables × 6 lower-level

predictors), the reduction in the absolute t-ratio for the cross-level interaction ef-

fect due to including the random slope is 42.4% on average. The median reduc-

tion is 48.3% and the 25th and 75th percentiles are 31.3 and 60.9%, respectively.

Figure 2 in the main article provides a compact visual representation of the re-

sults. For all 30 cross-level interactions, it shows how the t-ratio of the interaction

term changes due to the inclusion of associated random slope.

16



Table D1: Cross-level interaction of high education and the HDI for five outcomes
Random Slope ∆

Included Omitted in %
SD(u

(x)
j )

β(x)

Fear of Crime
High education −0.107∗∗∗ −0.108∗∗∗

(0.014) (0.008) 67.429
[7.518] [12.693] −40.775

HDI −0.256∗∗∗ −0.257∗∗∗

(0.042) (0.042) 0.316
[6.087] [6.134] −0.771

HDI*High education −0.071∗∗∗ −0.074∗∗∗

(0.014) (0.008) 82.263
[5.137] [9.657] −46.799 0.556

Generalized Trust
High education 0.209∗∗∗ 0.203∗∗∗

(0.016) (0.008) 88.940
[13.323] [24.501] −45.624

HDI 0.347∗∗∗ 0.349∗∗∗

(0.060) (0.059) 0.638
[5.796] [5.874] −1.319

HDI*High education 0.038∗ 0.033∗∗∗

(0.015) (0.007) 107.557
[2.453] [4.451] −44.894 0.334

Homophobia
High education −0.170∗∗∗ −0.160∗∗∗

(0.019) (0.008) 143.331
[8.966] [20.474] −56.206

HDI −0.453∗∗∗ −0.456∗∗∗

(0.065) (0.065) 0.366
[6.995] [7.061] −0.932

HDI*High education −0.005 −0.002
(0.019) (0.007) 170.710
[0.280] [0.331] −15.401 0.534

Occupational Status (ISEI)
High education 1.033∗∗∗ 1.028∗∗∗

(0.013) (0.007) 80.285
[78.859] [141.441] −44.246

HDI 0.110∗∗∗ 0.114∗∗∗

(0.024) (0.023) 0.769
[4.682] [4.857] −3.598

HDI*High education −0.047∗∗ −0.051∗∗∗

(0.013) (0.007) 97.488
[3.667] [7.883] −53.480 0.055

Xenophobia
High education −0.320∗∗∗ −0.314∗∗∗

(0.021) (0.008) 162.675
[15.403] [39.736] −61.237

HDI −0.126+ −0.132+

(0.069) (0.070) −1.053
[1.819] [1.880] −3.279

HDI*High education −0.072∗∗ −0.071∗∗∗

(0.021) (0.007) 193.021
[3.442] [10.022] −65.652 0.316

Note: Estimates are from linear mixed effects models. All estimates are controlled for: age, marital status, unem-
ployment, intermediate, and high (compared to low) education. Standard errors in parentheses, absolute t-statistics
in brackets. +p < 0.1;∗ p < 0.05;∗∗ p < 0.01;∗∗∗ p < 0.001. The p-values for HDI and in the models including a
random slope also the p-values for high education are based on the t-distribution with degrees of freedom approxi-
mated by the m− l− 1 rule (c.f., Elff et al., 2016). p-value for high education in the model without a random slope
is based on the normal distribution.
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Table D2: Cross-level interaction of gender and the HDI for five outcomes
Random Slope ∆

Included Omitted in %
SD(u

(x)
j )

β(x)

Fear of Crime
Female 0.209∗∗∗ 0.209∗∗∗

(0.013) (0.005) 198.409
[15.465] [46.242] −66.556

HDI −0.259∗∗∗ −0.260∗∗∗

(0.043) (0.043) −0.109
[6.025] [6.030] −0.087

HDI*Female 0.029∗ 0.034∗∗∗

(0.014) (0.005) 185.902
[2.112] [6.987] −69.768 0.321

Generalized Trust
Female 0.020∗∗ 0.021∗∗∗

(0.007) (0.004) 50.947
[3.054] [4.780] −36.115

HDI 0.351∗∗∗ 0.350∗∗∗

(0.059) (0.059) −0.0003
[5.928] [5.919] 0.150

HDI*Female 0.005 0.005
(0.007) (0.005) 47.118
[0.660] [1.019] −35.200 1.285

Homophobia
Female −0.084∗∗∗ −0.085∗∗∗

(0.007) (0.004) 68.905
[12.061] [20.462] −41.058

HDI −0.455∗∗∗ −0.456∗∗∗

(0.065) (0.065) 0.029
[7.052] [7.062] −0.140

HDI*Female −0.012+ −0.013∗∗

(0.007) (0.004) 64.039
[1.712] [2.951] −41.974 0.349

Occupational Status (ISEI)
Female 0.009 0.011∗∗

(0.010) (0.004) 157.683
[0.855] [2.879] −70.293

HDI 0.114∗∗∗ 0.112∗∗∗

(0.023) (0.023) −0.581
[5.010] [4.912] 1.996

HDI*Female −0.015 −0.015∗∗

(0.010) (0.004) 147.440
[1.426] [3.669] −61.142 5.666

Xenophobia
Female 0.002 0.002

(0.008) (0.004) 93.748
[0.239] [0.512] −53.223

HDI −0.136+ −0.134+

(0.070) (0.070) −0.263
[1.937] [1.906] 1.632

HDI*Female −0.004 −0.003
(0.008) (0.005) 87.324
[0.488] [0.579] −15.741 18.702

Note: Estimates are from linear mixed effects models. All estimates are controlled for: age, marital status, unem-
ployment, intermediate, and high (compared to low) education. Standard errors in parentheses, absolute t-statistics
in brackets. +p < 0.1;∗ p < 0.05;∗∗ p < 0.01;∗∗∗ p < 0.001. The p-values for HDI and in the models including a
random slope also the p-values for high education are based on the t-distribution with degrees of freedom approxi-
mated by the m− l− 1 rule (c.f., Elff et al., 2016). p-value for high education in the model without a random slope
is based on the normal distribution.
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Table D3: Cross-level interaction of age and the HDI for five outcomes
Random Slope ∆

Included Omitted in %
SD(u

(x)
j )

β(x)

Fear of Crime
Age 0.070∗∗∗ 0.072∗∗∗

(0.012) (0.005) 134.255
[5.925] [14.264] −58.460

HDI −0.259∗∗∗ −0.259∗∗∗

(0.043) (0.043) 0.290
[6.035] [6.049] −0.234

HDI*Age 0.009 0.006
(0.012) (0.005) 134.058
[0.787] [1.124] −30.026 0.800

Generalized Trust
Age 0.027∗ 0.030∗∗∗

(0.011) (0.005) 132.105
[2.379] [6.030] −60.543

HDI 0.351∗∗∗ 0.351∗∗∗

(0.059) (0.059) 0.137
[5.923] [5.939] −0.269

HDI*Age 0.022+ 0.022∗∗∗

(0.012) (0.005) 131.911
[1.864] [4.310] −56.755 1.987

Homophobia
Age 0.141∗∗∗ 0.141∗∗∗

(0.013) (0.005) 184.520
[10.705] [30.549] −64.960

HDI −0.456∗∗∗ −0.457∗∗∗

(0.064) (0.065) −0.585
[7.088] [7.053] 0.488

HDI*Age −0.032∗ −0.034∗∗∗

(0.013) (0.005) 184.332
[2.424] [7.229] −66.468 0.460

Occupational Status (ISEI)
Age 0.083∗∗∗ 0.082∗∗∗

(0.010) (0.004) 122.890
[8.601] [18.987] −54.701

HDI 0.111∗∗∗ 0.112∗∗∗

(0.023) (0.023) 0.400
[4.881] [4.946] −1.299

HDI*Age 0.003 0.005
(0.010) (0.004) 122.678
[0.265] [1.027] −74.200 0.544

Xenophobia
Age 0.087∗∗∗ 0.088∗∗∗

(0.014) (0.005) 189.628
[6.428] [18.767] −65.747

HDI −0.135+ −0.135+

(0.069) (0.070) −1.507
[1.943] [1.911] 1.656

HDI*Age −0.011 −0.013∗

(0.014) (0.005) 189.452
[0.816] [2.715] −69.936 0.768

Note: Estimates are from linear mixed effects models. All estimates are controlled for: age, marital status, unem-
ployment, intermediate, and high (compared to low) education. Standard errors in parentheses, absolute t-statistics
in brackets. +p < 0.1;∗ p < 0.05;∗∗ p < 0.01;∗∗∗ p < 0.001. The p-values for HDI and in the models including a
random slope also the p-values for high education are based on the t-distribution with degrees of freedom approxi-
mated by the m− l− 1 rule (c.f., Elff et al., 2016). p-value for high education in the model without a random slope
is based on the normal distribution.
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Table D4: Cross-level interaction of marital status and the HDI for five outcomes
Random Slope ∆

Included Omitted in %
SD(u

(x)
j )

β(x)

Fear of Crime
Married −0.018∗ −0.019∗∗∗

(0.008) (0.004) 68.128
[2.443] [4.247] −42.479

HDI −0.260∗∗∗ −0.259∗∗∗

(0.043) (0.043) −0.573
[6.098] [6.029] 1.132

HDI*Married −0.004 −0.007
(0.008) (0.005) 65.587
[0.566] [1.585] −64.286 1.713

Generalized Trust
Married 0.022∗∗∗ 0.023∗∗∗

(0.005) (0.004) 13.491
[4.533] [5.177] −12.434

HDI 0.350∗∗∗ 0.350∗∗∗

(0.059) (0.059) −0.082
[5.915] [5.913] 0.037

HDI*Married 0.013∗ 0.013∗∗

(0.005) (0.005) 12.963
[2.484] [2.787] −10.900 0.538

Homophobia
Married 0.016∗∗ 0.016∗∗∗

(0.005) (0.004) 23.272
[3.221] [3.991] −19.288

HDI −0.456∗∗∗ −0.456∗∗∗

(0.065) (0.065) 0.024
[7.060] [7.062] −0.018

HDI*Married 0.001 0.002
(0.005) (0.004) 22.412
[0.176] [0.358] −50.913 0.936

Occupational Status (ISEI)
Married 0.027∗∗∗ 0.026∗∗∗

(0.006) (0.004) 53.269
[4.552] [6.892] −33.954

HDI 0.112∗∗∗ 0.112∗∗∗

(0.023) (0.023) 0.085
[4.927] [4.914] 0.278

HDI*Married 0.004 0.004
(0.006) (0.004) 51.331
[0.604] [0.938] −35.540 0.863

Xenophobia
Married 0.002 0.001

(0.006) (0.004) 35.386
[0.277] [0.348] −20.481

HDI −0.133+ −0.134+

(0.070) (0.070) −0.016
[1.893] [1.898] −0.283

HDI*Married −0.007 −0.007
(0.006) (0.004) 34.175
[1.133] [1.527] −25.793 12.559

Note: Estimates are from linear mixed effects models. All estimates are controlled for: age, marital status, unem-
ployment, intermediate, and high (compared to low) education. Standard errors in parentheses, absolute t-statistics
in brackets. +p < 0.1;∗ p < 0.05;∗∗ p < 0.01;∗∗∗ p < 0.001. The p-values for HDI and in the models including a
random slope also the p-values for high education are based on the t-distribution with degrees of freedom approxi-
mated by the m− l− 1 rule (c.f., Elff et al., 2016). p-value for high education in the model without a random slope
is based on the normal distribution.
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Table D5: Cross-level interaction of being unemployed and the HDI for five outcomes
Random Slope ∆

Included Omitted in %
SD(u

(x)
j )

β(x)

Fear of Crime
Unemployed 0.064∗ 0.052∗∗

(0.025) (0.019) 32.738
[2.531] [2.700] −6.262

HDI −0.259∗∗∗ −0.259∗∗∗

(0.043) (0.043) 0.078
[6.031] [6.050] −0.311

HDI*Unemployed 0.002 −0.005
(0.026) (0.020) 32.217
[0.069] [0.247] −72.198 1.265

Generalized Trust
Unemployed −0.133∗∗∗ −0.135∗∗∗

(0.019) (0.019) 0.416
[7.105] [7.192] −1.206

HDI 0.351∗∗∗ 0.351∗∗∗

(0.059) (0.059) 0.019
[5.925] [5.926] −0.013

HDI*Unemployed −0.024 −0.023
(0.020) (0.019) 0.417
[1.220] [1.208] 0.948 0.064

Homophobia
Unemployed 0.025 0.025

(0.018) (0.018) 0.817
[1.399] [1.398] 0.103

HDI −0.456∗∗∗ −0.456∗∗∗

(0.064) (0.064) 0.001
[7.077] [7.077] −0.001

HDI*Unemployed 0.040∗ 0.040∗

(0.018) (0.018) 0.802
[2.183] [2.214] −1.364 0.415

Occupational Status (ISEI)
Unemployed −0.215∗∗∗ −0.206∗∗∗

(0.023) (0.016) 39.448
[9.400] [12.582] −25.290

HDI 0.111∗∗∗ 0.112∗∗∗

(0.023) (0.023) 0.299
[4.900] [4.943] −0.887

HDI*Unemployed −0.011 −0.006
(0.024) (0.017) 38.842
[0.462] [0.345] 33.847 0.364

Xenophobia
Unemployed 0.077∗∗ 0.080∗∗∗

(0.025) (0.018) 39.156
[3.085] [4.504] −31.516

HDI −0.135+ −0.135+

(0.070) (0.070) −0.206
[1.923] [1.915] 0.396

HDI*Unemployed 0.027 0.033+

(0.026) (0.019) 38.488
[1.041] [1.756] −40.694 1.112

Note: Estimates are from linear mixed effects models. All estimates are controlled for: age, marital status, unem-
ployment, intermediate, and high (compared to low) education. Standard errors in parentheses, absolute t-statistics
in brackets. +p < 0.1;∗ p < 0.05;∗∗ p < 0.01;∗∗∗ p < 0.001. The p-values for HDI and in the models including a
random slope also the p-values for high education are based on the t-distribution with degrees of freedom approxi-
mated by the m− l− 1 rule (c.f., Elff et al., 2016). p-value for high education in the model without a random slope
is based on the normal distribution.
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Table D6: Cross-level interaction of intermediate education and the HDI for five
outcomes

Random Slope ∆

Included Omitted in %
SD(u

(x)
j )

β(x)

Fear of Crime
Intermediate education 0.011 0.010∗

(0.007) (0.005) 53.577
[1.540] [2.012] −23.440

HDI −0.261∗∗∗ −0.259∗∗∗

(0.043) (0.042) 0.187
[6.146] [6.102] 0.714

HDI*Intermediate education −0.014+ −0.018∗∗∗

(0.007) (0.004) 64.316
[1.902] [4.202] −54.731 2.560

Generalized Trust
Intermediate education −0.017+ −0.019∗∗∗

(0.008) (0.005) 79.647
[2.020] [4.147] −51.285

HDI 0.351∗∗∗ 0.350∗∗∗

(0.060) (0.059) 0.314
[5.889] [5.895] −0.114

HDI*Intermediate education 0.010 0.010∗

(0.008) (0.004) 94.332
[1.188] [2.368] −49.827 2.148

Homophobia
Intermediate education 0.008 0.009∗

(0.006) (0.004) 36.273
[1.378] [1.985] −30.562

HDI −0.455∗∗∗ −0.456∗∗∗

(0.065) (0.065) 0.215
[7.018] [7.051] −0.456

HDI*Intermediate education 0.004 0.005
(0.006) (0.004) 44.062
[0.731] [1.270] −42.450 2.546

Occupational Status (ISEI)
Intermediate education −0.135∗∗∗ −0.137∗∗∗

(0.007) (0.004) 74.316
[19.081] [33.593] −43.201

HDI 0.110∗∗∗ 0.112∗∗∗

(0.023) (0.023) 1.505
[4.700] [4.875] −3.573

HDI*Intermediate education −0.010 −0.014∗∗∗

(0.007) (0.004) 88.203
[1.473] [3.714] −60.327 0.224

Xenophobia
Intermediate education 0.037∗∗∗ 0.038∗∗∗

(0.009) (0.004) 98.740
[4.222] [8.561] −50.687

HDI −0.134+ −0.134+

(0.071) (0.070) 0.395
[1.894] [1.905] −0.610

HDI*Intermediate education −0.005 −0.005
(0.009) (0.004) 116.128
[0.619] [1.258] −50.842 1.071

Note: Estimates are from linear mixed effects models. All estimates are controlled for: age, marital status, unem-
ployment, intermediate, and high (compared to low) education. Standard errors in parentheses, absolute t-statistics
in brackets. +p < 0.1;∗ p < 0.05;∗∗ p < 0.01;∗∗∗ p < 0.001. The p-values for HDI and in the models including a
random slope also the p-values for high education are based on the t-distribution with degrees of freedom approxi-
mated by the m− l− 1 rule (c.f., Elff et al., 2016). p-value for high education in the model without a random slope
is based on the normal distribution.
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E P -Curve Analysis

In this section, we provide a more detailed analysis of the possibility that cross-

level interaction estimates published in the ESR are subject to selective reporting

due to publication bias and/or p-hacking. By publication bias we mean a ten-

dency that statistically significant results with p < .05 are more likely to be pub-

lished than ‘null results’ with p ≥ .05. Publication bias could arise because editors

and referees have a preference for publishing significant results. The findings of

Franco et al. (2014), however, suggest that the primary reason for publication

bias is that authors do not even submit insignificant results for publication, po-

tentially because they anticipate that chances of eventual acceptance are slim. By

p-hacking we mean that researchers may (consciously or unconsciously) engage

in behaviors that ‘push’ p below .05. For example, a researcher might decide to

collect additional data when findings are not (yet) significant or he/she might

change regression specifications in order to obtain significant results. Both publi-

cation bias and p-hacking can artificially inflate the apparent strength of empirical

support for a hypothesis.

Our analysis draws on work by Simonsohn et al. (2014, 2015), who propose

p-curve analysis as a method for detecting publication bias and p-hacking on the

aggregate level. The Simonsohn et al. (2014) article gives a very good overview,

which is why we only give a brief summary of the approach. The p-curve ap-

proach circumvents the problem that insignificant results remain unpublished by

assessing the evidential value of a collection of studies on the basis of statistically

significant (published) results only. The p-curve describes the relative frequency

of different p-values below the .05 threshold. On the aggregate level, a collec-

tion of studies that has evidential value (i.e., that at least partly reports results

on effects or associations that really exist) will produce a right-skewed distribu-

tion. That is, smaller p-values should be more likely to occur than higher ones.

In other words, ‘highly significant’ results with, say, p < .01 should be observed
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more often than ‘just-significant’ results with a p-value of, say, .49. By contrast,

if an effect does not really exist (i.e., if the null-hypothesis is correct), the p-curve

will be uniform. A uniform p-curve hence indicates publication bias: the pub-

lished significant studies lack evidential basis. The fact that there seems to be

positive empirical support for an effect is due to the fact that insignificant results

are rarely published.

The practice of p-hacking should have a different effect on the shape of the

p-curve: authors who have successfully broken (hacked) the .05 threshold should

not care much to further reduce the p-value (to, say, p < 0.01 or even p < 0.001).

Thus, p-hacking should introduce a clustering of p-values just below .5 and intro-

duce left skew into the p-curve.

In summary, p-curves come in three principal shapes, each of which (more

or less directly and convincingly) supports different conclusions concerning the

evidential basis as well as the research and publication processes underlying a

given collection of studies:

1. a right-skewed shape indicates evidential basis for a true effect;

2. a uniform shape indicates no evidential basis for a true effect and therefore

also indicates (the potential for) publication bias;

3. a left-skewed shape is indicative of p-hacking and the lack of evidential basis

for a true effect.

Empirical p-curves can combine these fundamental shapes. For example, a

(left-skewed) p-curve with clustering of p-values below .5 and a near-uniform

distribution otherwise would signal that both publication bias and p-hacking are

at work. We return to this issue below.

Figure E1 displays p-curves for the cross-level interactions published in the

ESR, 2011-2016. The left-hand panels show p-curves for studies that correctly

include random slope terms for cross-level interactions. The right-hand panels
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Figure E1: P -curves for cross-level interactions
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Note: Results are based on 86/150 cross-level interaction terms from two-level mixed effects models
for which the authors reported exact inference statistics. These were reported in 20/28 articles
published in the ESR 2011-2016.

focus on studies that omitted them. The top panels show the curve for studies

that allowed us to get a reasonably precise figure for the p-value, while the bot-

tom panels also include findings for which we had to derive the p-value from an

indicator, such as *. Fortunately, the shapes of the p-curves are rather robust to

the in- or exclusion of studies that did not report exact inferential statistics. We

will therefore focus on the top panels. The red dotted line indicates the (uniform)

p-curve that we would expect to find if the results of the studies were pure arti-

facts of publication bias without any underlying empirical basis; it serves as the

reference point for potentially right- and left-skewed p-curves. The black solid

line shows the p-curve for the cross-level interaction terms and the green dashed

line shows the p-curve for the main effects of the lower level variables involved

in the cross-level interactions.

25



The four p-curves of the two top panels clearly show signs of right-skew, with

the majority of p-values being smaller than 0.01. This would indicate a healthy

debate based on evidential basis of truly existing associations. But the p-curves

for the cross-level interaction terms also shows some indication of inflated p-

values that just surpassed the threshold of the conventional level of significance

(p < 0.05), especially for the models that omitted the random slope term in the

top right panel. Simonsohn et al. (2014) suggest to test such patterns of right

and left skew against the null of the uniform distribution (i.e., the red dotted

line). Following their proposed method (which relies on pp-values and the Stouf-

fer method), we learn that all four p−curves of the two panels are significantly

right (and hence not uniform or left) skewed (all at p < 0.0001) and hence indicate

evidential basis for real associations. If we applied the algorithm of Simonsohn

et al. (2014) without further reflection, we would thus conclude that the reported

findings have evidential basis and that there is no evidence of p-hacking, because

all p-curves are significantly right skewed.

But in the present context such a narrow application of p-curve analysis runs

into the problem that the p-curves could be both right and left skewed, that is,

they could be u-shaped. This is for two reasons: first, as we do not review studies

on a specific debate—but rather collections of studies that use the same model-

ing approach—there could be evidential basis among some and p-hacking among

others, both at the same time. Second, and more importantly, a narrow interpre-

tation of p-curve analysis has come under attack by Bruns and Ioannidis (2016),

who argue that in observational studies omitted variable biases may create right

skewed p-curves even in the absence of an underlying causal effect. We acknowl-

edge that many of the ESR findings are not causal but associational. However,

the results presented in the main article raise another serious concern. The right-

hand side p-curves in Figure E1 may be right skewed simply because the omitted

random slopes result in deflated p-values.
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Our solution to these two problems is to exploit the following two assump-

tions: First, we assume that there is no systematic difference in power between

studies that include and studies that omit the random slope term. Power differ-

ences might arise if one type of study investigated systematically stronger effects

or worked with systematically larger samples than the other, a possibility that

seems rather implausible. Second, we assume that authors potentially try to p-

hack cross-level interaction terms but not the main effects of the lower-level vari-

ables. Studies that investigate cross-level interactions virtually always put the

primary focus on the cross-level interaction term. The main effect of the lower-

level variable, by contrast, is usually not of substantive interest. It is a conditional

effect that depends on the scaling of the upper-level predictor involved in the in-

teraction. The ‘success’ of an investigation of a cross-level interaction therefore

primarily depends on the significance of the cross-level interaction term. At the

same time, p-values for the main effects of the lower-level variable are affected

by the omission of the random slope term in exactly the same way as p-values for

the cross-level interaction terms. These two assumptions allow us to investigate

whether the p-curves of studies that omit the random slope term are significantly

more right skewed (i.e., by focusing on the lower-level main effects which are

not affected by p-hacking but are similarly affected by omitting the slope term),

and whether there is evidence of p-hacking (i.e., by comparing the p-curves of

cross-level interaction terms against those of lower-level main effects).

Looking back at Figure E1, we can see that nearly 100% of the lower-level main

effects estimated from models omitting the random slope term reach the highest

levels of significance (p < 0.01). By contrast, among studies that correctly esti-

mate random intercept and slope models, it is only 70%. To test whether the two

p-curves are indeed significantly different from another, we employ simple di-

chotomous test proposed by Simonsohn et al. (2014). We transform the p-curves

to a binary variable (p < 0.025 vs p > 0.025) and use a χ2-test to investigate
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whether there are statistically significant more p < 0.025 among studies omitting

the random slope term as compared to those that include it. In principle, we could

also conduct this comparison for the cross-level interaction effects. However, this

comparison would be complicated by the peak of p-values near .05 for the models

omitting the random slope (which is evidence of p-hacking, as discussed below).

The χ2-test comparing the p-curves for the lower-level main effects shows that the

curve for models without a random slope term is significantly more right-skewed

(upper panels: p = 0.0036; lower panels: p = 0.0218). This either means that these

studies are better powered; as noted above, this possibility that appears quite

unrealistic. An alternative—and much more likely—explanation again is that

omitting the random slope term significantly deflates p-values, thus misleadingly

amplifying the right skew of the p-curve. This second interpretation bolsters our

claim from the main article: ‘potential publication bias against insignificant find-

ings [...] hits correctly specified cross-level interactions more often because their

standard errors are not deflated’.

A final look at Figure E1 reveals another interesting comparison. In the right-

hand panel (i.e., among studies that omitted the random slope term) the differ-

ence between the black solid and the green dashed p-curves (i.e., cross-level inter-

action terms and lower-level mains effects) shows a distinct left skew and thus in-

dication of p-hacking. In the left-hand panel (i.e., among studies that include the

random slope term), by contrast, the difference between the two p-curves seems

negligible. We again use the dichotomous χ2-test to investigate, whether this pat-

tern is indeed statistically significant. The results are telling and unaffected by the

in- or exclusion of studies that did not report exact inference statistics. Among

studies that correctly specified random intercept and slope models to investigate

cross-level interactions there is no significant indication of p-hacking (top panel:

p = 0.4028; lower panel: p = 1). By contrast, among studies of authors who spec-

ify their models incorrectly by omitting the random slope term, we also observe
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a statistically significant indication of p-hacking (top panel: p = 0.0054; lower

panel: p < 0.0001). In other words: for models that omit the random slope term,

there is statistically significant evidence for a higher proportion of just-significant

p-values and a lower proportion of highly significant results in the cross-level in-

teraction case than in the lower-level main effect case. We consider this as rather

strong evidence for p-hacking because, as noted above, researchers usually have

considerable incentive to hack the p-value for the cross-level interaction but not

to hack the one for the main effect.
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F Additional Monte Carlo Simulation Results

Table F1: Actual coverage rates (%) of nominal 95% confidence interval by number
of clusters and lower-level observations

γ(x)

Random Slope
nj ntotal Included Omitted

m = 5 Clusters
100 500 97.01 76.60
500 2500 96.64 43.60

1000 5000 96.59 31.81

m = 15 Clusters
100 1500 95.15 58.38
500 7500 94.89 30.52

1000 15000 95.09 21.58

m = 25 Clusters
100 2500 95.23 57.33
500 12500 94.93 29.52

1000 25000 95.01 21.03

Note: Results are based on 10,000 Monte Carlo replications. Because of Monte Carlo sampling
error, the 95% test interval is 95± 0.427. Values smaller or larger than that are statistically signif-
icant deviations and indicate biased inference. These results are based on experimental conditions

for which R2(β
(x)
j ) = 0.50 (i.e., SD(u

(x)
j ) = 1), and SD(xij) = 1.
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