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Abstract: A state space model with an unobserved multivariate random walk and a linear observation
equation is studied. The purpose is to find out when the extracted trend cointegrates with its estimator,
in the sense that a linear combination is asymptotically stationary. It is found that this result holds for
the linear combination of the trend that appears in the observation equation. If identifying restrictions
are imposed on either the trend or its coefficients in the linear observation equation, it is shown that
there is cointegration between the identified trend and its estimator, if and only if the estimators of the
coefficients in the observation equations are consistent at a faster rate than the square root of sample
size. The same results are found if the observations from the state space model are analysed using a
cointegrated vector autoregressive model. The findings are illustrated by a small simulation study.
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1. Introduction and Summary

This paper is inspired by a study on long-run causality, see Hoover et al. (2014). Causality is
usually studied for a sequence of multivariate i.i.d. variables using conditional independence,
see Spirtes et al. (2000) or Pearl (2009). For stationary autoregressive processes, causality is discussed
in terms of the variance of the shocks, that is, the variance of the i.i.d. error term. For nonstationary
cointegrated variables, the common trends play an important role for long-run causality.
In Hoover et al. (2014), the concept is formulated in terms of independent common trends and their causal
impact coefficients on the nonstationary observations. Thus, the emphasis is on independent trends, and
how they enter the observation equations, rather than on the variance of the measurement errors.

The trend is modelled as an m−dimensional Gaussian random walk, starting at T0,

Tt+1 = Tt + ηt+1, t = 0, . . . , n− 1, (1)

where ηt are i.i.d. Nm(0, Ωη), that is, Gaussian in m dimensions with mean zero and m×m variance
Ωη > 0. This trend has an impact on future values of the p−dimensional observation yt modelled by

yt+1 = BTt + εt+1, t = 0, . . . , n− 1, (2)

where εt are i.i.d. Np(0, Ωε) and Ωε > 0. It is also assumed that the εs and ηt are independent for all s
and t. In the following the joint distribution of T1, . . . , Tn, y1, . . . , yn conditional on a given value of T0

is considered.
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The observations are collected in the matrices Yn, p× n, and ∆Yn, p× (n− 1), which are defined as

Yn = (y1, . . . , yn), and ∆Yn = (y2 − y1, . . . , yn − yn−1).

The processes yt and Tt are obviously nonstationary, but the conditional distribution of Yn given
T0 is well defined. We define

EtTt = E(Tt|Yt, T0),

Vt = Vart(Tt) = Var(Tt|Yt, T0).

Then the density of Yn conditional on T0 is given by the prediction error decomposition

p(Yn|T0) = p(y1|T0)
n−1

∏
t=1

p(yt+1|Yt, T0),

where yt+1 given (Yt, T0) is p dimensional Gaussian with mean and variance

Etyt+1 = BEtTt,

Vart(yt+1) = BVtB′ + Ωε.

In this model it is clear that yt and Tt cointegrate, that is, yt+1 − BTt+1 = εt+1 − Bηt+1 is stationary,
and the same holds for Tt and the extracted trend EtTt = E(Tt|y1, . . . , yt, T0). Note that in the statistical
model defined by (1) and (2) with parameters B, Ωη , and Ωε, only the matrices BΩη B′ and Ωε are
identified because for any m × m matrix ξ of full rank, Bξ−1 and ξΩηξ ′ give the same likelihood,
by redefining the trend as ξTt.

Let ÊtTt be an estimator of EtTt. The paper investigates whether there is cointegration between
EtTt and ÊtTt given two different estimation methods: A simple cointegrating regression and the
maximum likelihood estimator in an autoregressive representation of the state space model.

Section 2, on the probability analysis of the data generating process, formulates the model as a
common trend state space model, and summarizes some results in three Lemmas. Lemma 1 contains the
Kalman filter equations and the convergence of Var(Tt|y1, . . . , yt, T0), see Durbin and Koopman (2012),
and shows how its limit can be calculated by solving an eigenvalue problem. Lemma 1 also shows how
yt can be represented in terms of its prediction errors vj = yj − Ej−1yj, j = 1, . . . , t. This result is used in
Lemma 2 to represent yt in steady state as an infinite order cointegrated vector autoregressive model,
see (Harvey 2006, p. 373). Section 3 discusses the statistical analysis of the data and the identification of
the trends and their loadings. Two examples are discussed. In the first example, only B is restricted
and the trends are allowed to be correlated. In the second example, B is restricted but the trends are
uncorrelated, so that also the variance matrix is restricted. Lemma 3 analyses the data from (1) and (2)
using a simple cointegrating regression, see Harvey and Koopman (1997), and shows that the estimator
of the coefficient B suitably normalized is n-consistent.

Section 4 shows in Theorem 1 that the spread between BEtTt and its estimator B̂ÊtTt is
asymptotically stationary irrespective of the identification of B and Tt. Then Theorem 2 shows that
the spread between EtTt and its estimator ÊtTt is asymptotically stationary if and only if B has been
identified so that the estimator of B is superconsistent, that is, consistent at a rate faster than n1/2.

The findings are illustrated with a small simulation study in Section 5. Data are generated from (1)
and (2) with T0 = 0, and the observations are analysed using the cointegrating regression discussed in
Lemma 3. If the trends and their coefficients are identified by the trends being independent, the trend
extracted by the state space model does not cointegrate with its estimator. If, however, the trends are
identified by restrictions on the coefficients alone, they do cointegrate.
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2. Probability Analysis of the Data Generating Model

This section contains first two examples, which illustrate the problem to be solved. Then a special
parametrization of the common trends model is defined and some, mostly known, results are given in
Lemmas 1 concerning the Kalman filter recursions. Lemma 2 is about the representation of the steady
state solution as an autoregressive process. All proofs are given in the Appendix.

2.1. Two Examples

Two examples are given which illustrate the problem investigated. The examples are analysed
further by a simulation study in Section 5.

Example 1. In the first example the two random walks T1t and T2t are allowed to be dependent, so Ωη

is unrestricted, and identifying restrictions are imposed only on their coefficients B. The equations are

y1,t+1 = T1t + ε1,t+1,
y2,t+1 = T2t + ε2,t+1,
y3,t+1 = b31T1t + b32T2t + ε3,t+1.

(3)

for t = 0, . . . , n− 1. Thus, yt = (y1t, y2t, y3t)
′, Tt = (T1t, T2t)

′, and

B =

 1 0
0 1

b31 b32

 . (4)

Moreover, Ωη > 0 is 2× 2, Ωε > 0 is 3× 3, and both are unrestricted positive definite. Simulations
indicate that Etyt+1 − Êtyt+1 = BEtTt − B̂ÊtTt is stationary, and this obviously implies that the same
holds for the first two coordinates EtT1t − ÊtT1t and EtT2t − ÊtT2t.

Example 2. The second example concerns two independent random walks T1t and T2t, and the three
observation equations

y1,t+1 = T1t + ε1,t+1,
y2,t+1 = b21T1t + T2t + ε2,t+1,
y3,t+1 = b31T1t + b32T2t + ε3,t+1.

(5)

In this example

B =

 1 0
b21 1
b31 b32

 , Ωη = diag(σ2
1 , σ2

2 ), (6)

and Ωε > 0 is 3× 3 and unrestricted positive definite. Thus the nonstationarity is caused by two
independent trends. The first, T1t, is the cause of the nonstationarity of y1t, whereas both trends are
causes of the nonstationarity of (y2t, y3t). From the first equation it is seen that y1t and T1t cointegrate. It
is to be expected that also the extracted trend EtT1t cointegrates with T1t, and also that EtT1t cointegrates
with its estimator ÊtT1t. This is all supported by the simulations. Similarly, it turns out that

Ety2,t+1 − Êty2,t+1 = b21EtT1t − b̂21ÊtT1t + EtT2t − ÊtT2t,

is asymptotically stationary. In this case, however, EtT2t − ÊtT2t is not asymptotically stationary,
and the paper provides an answer to why this is the case.

The problem to be solved is why in the first example cointegration was found between the
extracted trends and their estimators, and in the second example they do not cointegrate. The solution
to the problem is that it depends on the way the trends and their coefficients are identified. For
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some identification schemes the estimator of B is n-consistent, and then stationarity of EtTt − ÊtTt

can be proved. But if identification is achieved by imposing restrictions also on the covariance of the
trends, as in Example 2, then the estimator for B is only n1/2-consistent, and that is not enough to get
asymptotic stationarity of EtTt − ÊtTt.

2.2. Formulation of the Model as a Common Trend State Space Model

The common trend state space model with constant coefficients is defined by

αt+1 = αt + ηt,
yt = Bαt + εt,

(7)

t = 1, . . . , n, see Durbin and Koopman (2012) or Harvey (1989), with initial state α1. Here αt is the
unobserved m−dimensional state variable and yt the p−dimensional observation and B is p×m of
rank m < p. The errors εt and ηt are as specified in the discussion of the model given by (1) and (2).

Defining Tt = αt+1, t = 0, . . . , n, gives the model (1) and (2). Note that in this notation EtTt = Etαt+1

is the predicted value of the trend αt+1, which means that it is easy to formulate the Kalman filter.
The Kalman filter calculates the prediction at+1 = Etαt+1 and its conditional variance Pt+1 =

Vart(αt+1) by the equations

at+1 = at + PtB′(BPtB′ + Ωε)
−1(yt − Et−1(yt)), (8)

Pt+1 = Pt + Ωη − PtB′(BPtB′ + Ωε)
−1BPt, (9)

starting with a1 = α1 and P1 = 0.
The recursions (8) and (9) become

Et+1Tt+1 = EtTt + K′t(yt+1 − Etyt+1), (10)

Vt+1 = Ωη + Vt − K′tBVt, (11)

t = 0, . . . , n− 1 starting with E1T1 = T0 and V1 = Ωη , and defining the Kalman gain

K′t = VtB′(BVtB′ + Ωε)
−1. (12)

Lemma 1 contains the result that Vt+1 converges for t→ ∞ to a finite limit V, which can be calculated
by solving an eigenvalue problem. Equation (11) is an algebraic Ricatti equation, see Chan et al. (1984),
where the convergence result can be found. The recursion (10) is used to represent yt+1 in terms of its
cumulated prediction errors vt+1 = yt+1 − Etyt+1, as noted by Harvey (2006, Section 7.3.2).

Lemma 1. Let Vt = Var(Tt|Yt) and EtTt = E(Tt|Yt).
(a) The recursion for Vt, (11), can be expressed as

Vt+1 = Ωη + Vt −Vt(Vt + ΩB)
−1Vt → V, t→ ∞, (13)

where ΩB = Var(B̄′εt|B′⊥εt) for B̄ = B(B′B)−1. Moreover,

Im − K′tB = Im −VtB′(BVtB′ + Ωε)
−1B→ Im − K′B = ΩB(V + ΩB)

−1, t→ ∞, (14)

which has positive eigenvalues less than one, such that Im − K′B is a contraction, that is, (Im − K′B)n → 0,
n→ ∞.

(b) The limit of Vt can be found by solving the eigenvalue problem

|λΩB −Ωη| = 0,
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for eigenvectors W and eigenvalues (λ1, . . . , λm), such that W′ΩBW = Im and W′ΩηW = diag(λ1, . . . , λm).
Hence, W′VW = diag(τ1, . . . , τm) for

τi =
1
2
{λi + (λ2

i + 4λi)
1/2}. (15)

(c) Finally, using the prediction error, vt+1 = yt+1 − Etyt+1, it is found from (10) that

EtTt = T0 +
t

∑
j=1

K′j−1vj, and yt+1 = vt+1 + B(T0 +
t

∑
j=1

K′j−1vj). (16)

The prediction errors are independent Gaussian with mean zero and variances

Var(vt+1) = Vart(yt+1) = Vart(BTt + εt+1) = BVtB′ + Ωε → BVB′ + Ωε, t→ ∞,

such that in steady state the prediction errors are i.i.d. Np(0, BVB′ + Ωε), and (16) shows that yt is
approximately an AR(∞) process, for which the reduced form autoregressive representation can be
found, see (Harvey 2006, Section 7.3.2).

Lemma 2. If the system (7) is in steady state, prediction errors vt are i.i.d. N(0, BVB′ + Ωε) and

∆yt = ∆vt + BK′vt−1. (17)

Applying the Granger Representation Theorem, yt is given by

∆yt = αβ′yt−1 +
∞

∑
i=1

Γi∆yt−i + vt. (18)

Here α = −K⊥(B′⊥K⊥)−1 and β = B⊥.

2.3. Cointegration among the Observations and Trends

In model (1) and (2), the equation yt+1 = BTt + εt+1 shows that yt and Tt are cointegrated. It also
holds that Tt − EtTt is asymptotically stationary because

vt+1 = yt+1 − Etyt+1 = BTt + εt+1 − BEtTt,

which shows that B(Tt− EtTt) = vt+1− εt+1 is asymptotically stationary. Multiplying by B̄′ = (B′B)−1B′,
the same holds for Tt − EtTt.

In model (18) the extracted trend is

T∗t = α′⊥

t

∑
i=1

vi = K′
t

∑
i=1

vi,

and (16) shows that in steady state, yt+1 − BT∗t = vt+1 + BT0 is stationary, so that yt cointegrates with
T∗t . Thus, the process yt and the trends Tt, T∗t , and EtTt all cointegrate, in the sense that suitable linear
combinations are asymptotically stationary. The next section investigates when similar results hold for
the estimated trends.

3. Statistical Analysis of the Data

In this section it is shown how the parameters of (7) can be estimated from the CVAR (18) using
results of Saikkonen (1992) and Saikkonen and Lutkepohl (1996), or using a simple cointegrating
regression, see (Harvey and Koopman 1997, p. 276) as discussed in Lemma 3. For both the state space
model (1)–(2) and for the CVAR in (18) there is an identification problem between Tt and its coefficient B,
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or between β⊥ and T∗t , because for any m×m matrix ξ of full rank, one can use Bξ−1 as parameter and
ξTt as trend and ξΩηξ′ as variance, and similarly for β⊥ and T∗t . In order to estimate B, T, and Ωη, it is
therefore necessary to impose identifying restrictions. Examples of such identification are given next.

Identification 1. Because B has rank m, the rows can be permuted such that B′ = (B′1, B′2), where B1 is
m×m and has full rank. Then the parameters and trend are redefined as

B† =

(
Im

B2B−1
1

)
=

(
Im

γ′

)
, Ω†

η = B1ΩηB′1, T†
t = B1Tt. (19)

Note that B†T†
t = BTt and B†Ω†

ηB†′ = BΩηB′. This parametrization is the simplest which separates
parameters that are n-consistently estimated, γ, from those that are n1/2-consistently estimated,
(Ωη, Ωε), see Lemma 3. Note that the (correlated) trends are redefined by choosing T1t as the trend in
y1t, then T2t as the trend in y2t, as in Example 1.

A more general parametrization, which also gives n-consistency, is defined, as in simultaneous
equations, by imposing linear restrictions on each of the m columns and require the identification
condition to hold, see Fisher (1966).

Identification 2. The normalization with diagonality of Ω†
η is part of the next identification, because

this is the assumption in the discussion of long-run causality. Let Ω†
η = Cηdiag(σ2

1 , . . . , σ2
m)C′η be a

Cholesky decomposition of Ωη . That is, Cη is lower-triangular with one in the diagonal, corresponding
to an ordering of the variables. Using this decomposition the new parameters and the trend are

B# =

(
Cη

γ′Cη

)
, Ω#

η = diag(σ2
1 , . . . , σ2

m), T#
t = C−1

η T#
t , (20)

such that B#T#
t = B†T†

t = BTt and B#Ω#
ηB#′ = B†Ω†

ηB†′ = BΩηB′.
Identification of the trends is achieved in this case by defining the trends to be independent and

constrain how they load into the observations. In Example 2, T1t was defined as the trend in y1t, and T2t
as the trend in y2t, but orthogonalized on T1t, such that the trend in y2t is a combination of T1t and T2t.

3.1. The Vector Autoregressive Model

When the process is in steady state, the infinite order CVAR representation is given in (18).
The model is approximated by a sequence of finite lag models, depending on sample size n,

∆yt = αβ′yt−1 +
kn

∑
i=1

Γi∆yt−i + vt,

where the lag length kn is chosen to depend on n such that kn increases to infinity with n, but so
slowly that k3

n/n converges to zero. Thus one can choose for instance kn = n1/3/ log n or kn = n1/3−ε,
for some ε > 0. With this choice of asymptotics, the parameters α, β, Γ = Ip −∑∞

i=1 Γi, Σ = Var(vt),
and the residuals, vt, can be estimated consistently, see Johansen and Juselius (2014) for this application
of the results of Saikkonen and Lutkepohl (1996).

This defines for each sample size consistent estimators ᾰ, β̆, Γ̆ and Σ̆, as well residuals

v̆t. In particular the estimator of the common trend is T̆∗t = ᾰ′⊥ ∑t
i=1 v̆i. Thus, ᾰβ̆′

P→ αβ′,
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C̆ = β̆⊥(ᾰ
′
⊥Γ̆β̆⊥)

−1
⊥ ᾰ′⊥

P→ C = BK′ and Σ̆ P→ Σ = BVB′ + Ωε. If β⊥ is identified as (Im, γ)′,

then B̆ = β̆⊥
P→ β⊥. In steady state, the relations

Ωη = VB′(BVB′ + Ωε)
−1B′V = VB′Σ−1B′V,

C = BK′ = BVB′(BVB′ + Ωε)
−1 = BVB′Σ−1,

hold, see (11) and Lemma 2. It follows that

B̆Ω̆η B̆′ = C̆Σ̆C̆′ P→ BΩη B′, and Ω̆η = (B̆′B̆)−1B̆′C̆Σ̆C̆′B̆(B̆′B̆)−1 P→ Ωη .

Finally, an estimator for Ωε can be found as

Ω̆ε = Σ̆− 1
2
(C̆Σ̆ + Σ̆C̆′) P→ BVB′ + Ωε −

1
2
(BVB′ + BVB′) = Ωε.

Note that CΣ is not a symmetric matrix in model (18), but its estimator converges in probability
towards the symmetric matrix BVB′.

3.2. The State Space Model

The state space model is defined by (1) and (2). It can be analysed using the Kalman filter to calculate
the diffuse likelihood function, see Durbin and Koopman (2012), and an optimizing algorithm can be
used to find the maximum likelihood estimator for the parameters Ωη, Ωε, and B, once B is identified.

In this paper, an estimator is used which is simpler to analyse and which gives an n-consistent
estimator for B suitably normalized, see (Harvey and Koopman 1997, p. 276).

The estimators are functions of ∆Yn and B′⊥Yn, and therefore do not involve the initial value T0.
Irrespective of the identification, the relations

Var(∆yt) = BΩηB′ + 2Ωε, (21)

Cov(∆yt, ∆yt+1) = −Ωε, (22)

hold, and they gives rise to two moment estimators, which determine Ωη and Ωε, once B has been
identified and estimated.

Consider the identified parametrization (19), where B = (Im, γ)′, and take B⊥ = (γ′,−Ip−m)′.
Then define z1t = (y1t, . . . , ymt)′ and z2t = (ym+1,t, . . . , ypt)′, such that yt = (z′1t, z′2t)

′ and B′⊥yt =

γ′z1t − z2t = B′⊥εt, that is,
z2t = γ′z1t − B′⊥εt. (23)

This equation defines the regression estimator γ̂reg:

γ̂reg = (
n−1

∑
t=0

z1tz′1t)
−1

n−1

∑
t=0

z1tz′2t = γ− (
n−1

∑
t=0

z1tz′1t)
−1

n−1

∑
t=0

z1tε
′
tB⊥. (24)

To describe the asymptotic properties of γ̂reg, two Brownian motions are introduced

n−1/2
[nu]

∑
t=1

εt
D→Wε(u) and n−1/2

[nu]

∑
t=1

ηt
D→Wη(u). (25)

Lemma 3. Let the data be generated by the state space model (1) and (2).
(a) From (21) and (22) it follows that

Sn1 = n−1 ∑n
i=1 ∆yt∆y′t

P→ BΩηB′ + 2Ωε,

Sn2 = n−1 ∑n
i=2(∆yt∆y′t−1 + ∆yt−1∆y′t)

P→ −2Ωε,
(26)
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define n1/2-consistent asymptotically Gaussian estimators for BΩηB′ and Ωε, irrespective of the identification of
B.

(b) If B and B⊥ are identified as B = (Im, γ)′, B′⊥ = (γ′,−Ip−m), and Ωη is adjusted accordingly,
then γ̂reg in (24) is n-consistent with asymptotic Mixed Gaussian distribution

n(γ̂reg − γ) = −n(B̂− B)′B⊥ = nB′(B̂⊥ − B⊥) (27)

D→ −(
∫ 1

0
WηW′ηdu)−1

∫ 1

0
Wη(dWε)

′B⊥.

(c) If B is identified as B = (C′η, C′ηγ)′, B′⊥ = (γ′,−Ip−m), and Ωη = diag(σ2
1 , . . . , σ2

m), then B̂− B =

OP(n−1/2), but (27) still holds for −n(B̂− B)′B⊥ = Ĉ′η(γ̂reg − γ), so that some linear combinations of B̂ are
n−consistent.

Note that the parameters B = (Im, γ)′, Ωη, and Ωε can be estimated consistently from (24) and (26) by

B̂ =

(
Im

γ̂′reg

)
, Ω̂ε = −

1
2

Sn2, and Ω̂η = (B̂′B̂)−1B̂′(Sn1 + Sn2)B̂(B̂′B̂)−1. (28)

In the simulations of Examples 1 and 2 the initial value is T0 = 0, so the Kalman filter with T0 = 0
is used to calculate the extracted trend EtTt using observations and known parameters. Similarly the
estimator of the extracted trend ÊtTt is calculated using observations and estimated parameters based
on Lemma 3. The next section investigates to what extent these estimated trends cointegrate with the
extracted trends, and if they cointegrate with each other.

4. Cointegration between Trends and Their Estimators

This section gives the main results in two theorems with proofs in the Appendix. In Theorem 1 it is
shown, using the state space model to extract the trends and the estimator from Lemma 3, that BEtTt−
B̂ÊtTt is asymptotically stationary. For the CVAR model it holds that BT∗t − B̆T̆∗t

P→ 0, such that this
spread is asymptotically stationary. Finally, the estimated trends in the two models are compared,
and it is shown that B̂ÊtTt− B̆T̆∗t is asymptotically stationary. The conclusion is that in terms of
cointegration of the trends and their estimators, it does not matter which model is used to extract the
trends, as long as the focus is on the identified trends BTt and BT∗t .

Theorem 1. Let yt and Tt be generated by the DGP given in (1) and (2).
(a) If the state space model is used to extract the trends, and Lemma 3 is used for estimation, then BEtTt −

B̂ÊtTt is asymptotically stationary.

(b) If the vector autoregressive model is used to extract the trends and for estimation, then BT∗t − B̆T̆∗t
P→ 0.

(c) Under assumptions of (a) and (b), it holds that B̂ÊtTt− B̆T̆∗t is asymptotically stationary.

In Theorem 2 a necessary and sufficient condition for asymptotic stationarity of T∗t − T̆∗t , EtTt − ÊtTt,
and ÊtTt − T̆∗t is given.

Theorem 2. In the notation of Theorem 1, any of the spreads T∗t − T̆∗t , EtTt− ÊtTt or ÊtTt− T̆∗t is asymptotically
stationary if and only if B and the trend are identified such that the corresponding estimator for B satisfies
n1/2(B̂− B) = oP(1) and n1/2(B̆− B) = oP(1).

The missing cointegration between EtTt and ÊtTt, say, can be explained in terms of the identity

B̂(EtTt − ÊtTt) = (B̂− B)EtTt + (BEtTt − B̂ÊtTt).
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Here the second term, BEtTt − B̂ÊtTt, is asymptotically stationary by Theorem 1(a). But the first term,
(B̂− B)Tt, is not necessarily asymptotically stationary, because in general, that is, depending on the
identification of the trend and B, it holds that B̂− B = OP(n−1/2) and EtTt = OP(n1/2), see (16).

The parametrization B = (Im, γ)′ ensures n-consistency of B̂, so there is asymptotic stationarity of
T∗t − T̆∗t , EtTt − ÊtTt, and ÊtTt− T̆∗t in this case. This is not so surprising because

BEtTt − B̂ÊtTt =

(
EtTt − ÊtTt

γ′EtTt − γ̂′ÊtTt

)
,

is stationary. Another situation where the estimator for B is n-consistent is if B = (B1, . . . , Bm) satisfies
linear restriction of the columns, R′iBi = 0, or equivalently Bi = Ri⊥φi for some φi, and the condition
for identification is satisfied

rank{R′i(R1⊥φ1, . . . , Rm⊥φm)} = r− 1, for i = 1, . . . , m, (29)

see Fisher (1966). For a just-identified system, one can still use γ̂reg, and then solve for the identified
parameters. For overidentified systems, the parameters can be estimated by a nonlinear regression of
z2t on z1t reflecting the overidentified parametrization. In either case the estimator is n-consistent such
that T∗t − T̆∗t , EtTt − ÊtTt, and ÊtTt− T̆∗t are asymptotically stationary.

If the identification involves the variance Ωη , however, the estimator of B is only n1/2-consistent,
and hence no cointegration is found between the trend and estimated trend.

The analogy with the results for the CVAR, where β and α need to be identified, is that if β is
identified using linear restrictions (29) then β̂ is n-consistent, whereas if β is identified by restrictions
on α then β is n1/2-consistent. An example of the latter is if β is identified as the first m rows of the
matrix Π = αβ′, corresponding to α = (Im, φ)′, then β̂ is n1/2-consistent and asymptotically Gaussian,
see (Johansen 2010, Section 4.3).

5. A Small Simulation Study

The two examples introduced in Section 2.1 are analysed by simulation. The equations are given
in (5) and (3). Both examples have p = 3 and m = 2. The parameters B and Ωη contain 6+ 3 parameters,
but the 3× 3 matrix BΩη B′ is of rank 2 and has only 5 estimable parameters. Thus, 4 restrictions must
be imposed to identify the parameters. In both examples the Kalman filter with T0 = 0 is used to extract
the trends, and the cointegrating regression in Lemma 3 is used to estimate the parameters.

Example 1 continued. The parameter B is given in (4), and the parameters are just-identified. Now

EtBT1t − ÊtB̂T1t =

 EtT1t − ÊtT1t
EtT2t − ÊtT2t

b31EtT1t + b32EtT2t − b̂31ÊtT1t − b̂32ÊtT2t

 . (30)

As EtT1t − ÊtT1t and EtT2t − ÊtT2t are the first two rows of EtBT1t − ÊtB̂T1t in (30), they are both
asymptotically stationary by Theorem 1(a).

To illustrate the results, data are simulated with n = 100 observations starting with T0 = 0 and
parameter values b31 = b32 = 0.5, σ2

1 = σ2
2 = 1, and σ12 = 0, such that

B =

 1 0
0 1

0.5 0.5

 , Ωη =

(
1 0
0 1

)
. (31)

The parameters are estimated by (28) and the estimates become b̂31 = 0.48, b̂32 = 0.41, σ̂2
1 = 0.93,

σ̂12 = 0.26, and σ̂2
2 = 1.63. The extracted and estimated trends are plotted in Figure 1. Panels a
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and b show plots of (EtT1t, ÊtT1t) and (EtT2t, ÊtT2t), respectively, and it is seen that they co-move.
In panels c and d the differences ÊtT1t − EtT1t and ÊtT2t − EtT2t both appear to be stationary in this
parametrization of the model.
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−Ê

t
T

1t
 

0 50 100

0.5

0.0

0.5

(c)

E
t
T

1t
−Ê
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Figure 1. The figure shows the extracted and estimated trends for the simulated data in Example 1 with
the identification in (19). Panels a and b show plots of EtT1t and ÊtT1t, and EtT2t and ÊtT2t, respectively.
Note that in both cases, the processes seem to co-move. In panels c and d, EtT1t− ÊtT1t and EtT2t− ÊtT2t

are plotted and appear stationary, because they are both recovered from BEtTt − B̂ÊtTt as the first two
coordinates, see (19).

Example 2 continued. The parameter B in this example is given in (6) such that

EtBTt − Êt B̂Tt =

 EtT1t − ÊtT1t
b21EtT1t + EtT2t − b̂21ÊtT1t − ÊtT2t

b31EtT1t + b32EtT2t − b̂31ÊtT1t − b̂32ÊtT2t

 . (32)

By the results in Theorem 1(a), all three rows are asymptotically stationary, in particular EtT1t − ÊtT1t.
Moreover, the second row of (32), (b21EtT1t − b̂21ÊtT1t) + (EtT2t − ÊtT2t), is asymptotically stationary.
Thus, asymptotic stationarity of EtT2t − ÊtT2t requires asymptotic stationary of the term

b21EtT1t − b̂21ÊtT1t = (b21 − b̂21)EtT1t + b̂21(EtT1t − ÊtT1t). (33)

Here, the second term, b̂21(EtT1t− ÊtT1t), is asymptotically stationary because EtT1t− ÊtT1t is. However,
the first term, (b21 − b̂21)EtT1t, is not asymptotically stationary because b̂21 is n1/2-consistent. In this

case n1/2(b21 − b̂21)
D→ Z, which has a Gaussian distribution, and n−1/2E[nu]T1[nu]

D→ Wη1(u), where
Wη1 is the Brownian motion generated by the sum of η1t. It follows that their product

(b21 − b̂21)E[nu]T1[nu] = {n1/2(b21 − b̂21)}{n−1/2E[nu]T1[nu]}

converges in distribution to the product of Z and Wη1(u), n → ∞, and this limit is nonstationary.
It follows that EtT2t − ÊtT2t is not asymptotically stationary for the identification in this example.
This argument is a special case of the proof of Theorem 2.
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To illustrate the results, data are simulated from the model with n = 100 observations starting with
T0 = 0 and parameter values b21 = 0.0, b31 = b32 = 0.5, and σ2

1 = σ2
2 = 1, which is identical to (31).

The model is written in the form (19) with a transformed B and Ωη , as

B† =

 1 0
0 1

b31 − b32b21 b32

 , Ω†
η =

(
σ2

1 b21σ2
1

b21σ2
1 σ2

2 + b2
21σ2

1

)
.

The parameters are estimed as in Example 1 and we find b̂31− b̂32b̂21 = 0.48, b̂32 = 0.41, σ̂2
1 = 0.93,

b̂21σ̂12 = 0.26, and σ̂2
2 + b̂2

21σ̂2
1 = 1.63, which are solved for b̂21 = 0.28, b̂31 = 0.59, b̂32 = 0.41, σ̂2

1 = 0.93,
and σ̂2

2 = 1.56. The extracted and estimated trends are plotted in Figure 2. The panels a and b show plots
of (EtT1t, ÊtT1t) and (EtT2t, ÊtT2t), respectively. It is seen that EtT1t and ÊtT1t co-move, whereas EtT2t
and ÊtT2t do not co-move. In panels c and d, the differences EtT1t − ÊtT1t and EtT2t − ÊtT2t are plotted.
Note that the first looks stationary, whereas the second is clearly nonstationary. When comparing
with the plot of EtT1t in panel a, it appears that the process ÊtT1t can explain the nonstationarity
of EtT2t − ÊtT2t. This is consistent with Equation (33) with b21 = 0 and b̂21 = 0.28. In panel d,
EtT2t − ÊtT2t − 0.28ÊtT1t is plotted and it is indeed stationary.
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−Ê

t
T

2t
−0.28Ê
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Figure 2. The figure shows the extracted and estimated trends for the simulated data in Example 2
with the identification in (20). Panels a and b show plots of EtT1t and ÊtT1t, and EtT2t and ÊtT2t,
respectively. Note that EtT1t and ÊtT1t seem to co-move, whereas EtT2t and ÊtT2t do not. In panel c,
EtT1t − ÊtT1t is plotted and appears stationary, but in panel d the spread EtT2t − ÊtT2t is nonstationary,
whereas EtT2t − ÊtT2t − 0.28ÊtT1t is stationary.

6. Conclusions

The paper analyses a sample of n observations from a common trend model, where the state is
an unobserved multivariate random walk and the observation is a linear combination of the lagged
state variable and a noise term. For such a model, the trends and their coefficients in the observation
equation need to be identified before they can be estimated separately. The model leads naturally
to cointegration between observations, trends, and the extracted trends. Using simulations it was
discovered, that the extracted trends do not necessarily cointegrate with their estimators. This problem
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is investigated, and it is found to be related to the identification of the trends and their coefficients
in the observation equation. It is shown in Theorem 1, that provided only the linear combinations
of the trends from the observation equation are considered, there is always cointegration between
extracted trends and their estimators. If the trends and their coefficients are defined by identifying
restrictions, the same result holds if and only if the estimated identified coefficients in the observation
equation are consistent at a rate faster than n1/2. For the causality study mentioned in the introduction,
where the components of the unobserved trend are assumed independent, the result has the following
implication: For the individual extracted trends to cointegrate with their estimators, overidentifying
restrictions must be imposed on the trend’s causal impact coefficients on the observations, such that
the estimators of these become super-consistent.
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Appendix A

Proof of Lemma 1 Proof of (a): Let N=(B̄, B⊥), B̄ = B(B′B)−1, such that

K′tB = VtB′[BVtB′ + Ωε]
−1B = VtB′N[(N′BVtB′N + N′ΩεN)]−1N′B

= Vt

(
Im

0

)′ (
Vt + B̄′Ωε B̄ B̄′ΩεB⊥

B′⊥Ωε B̄ B′⊥ΩεB⊥

)−1(
Im

0

)
= Vt(Vt + ΩB)

−1,

where
ΩB = B̄′[Ωε −ΩεB⊥(B′⊥ΩεB⊥)−1B′⊥Ωε]B̄ = Var(B̄′εt|B′⊥εt).

This proves (13) and (14).
Proof of (b): If the recursion starts with V1 = Ωη , then Vt can be diagonalized by W for all t and

the limit satisfies W ′VW = diag(τ1, . . . , τm), where

τi = λi + τi −
τ2

i
1 + τi

.

This has solution given in (15).
Proof of (c): The first result follows by summation from the recursion for EtTt in (10), and the

second from yt+1 = vt+1 + BEtTt.

Proof of Lemma 2 The polynomial Φ(z) = Ip − z(Ip − BK′) describes (17) as

(1− L)yt = Φ(L)vt.

Note that Φ(1) = BK′ is singular and dΦ(z)/dz|z=1 = BK′ − Ip = BVB′(BVB′ + Ωε)−1 − Ip,
satisfies B′⊥(BK′ − Ip)K⊥ = B′⊥ΩεB⊥ is nonsingular, where K⊥ = (BVB′ + Ωε)B⊥. This means that
the Granger Representation Theorem (Johansen 1996, Theorem 4.5) can be applied and gives the
expansion (18) for α = −K⊥(B′⊥K⊥)−1 and β = B′⊥.

Proof of Lemma 3 Proof of (a): Consider first the product moments (21) and (22). The result (26)
follows from the Law of Large Numbers and the asymptotic Gaussian distribution of Ω̂ε = − 1

2 Sn2 and

Ω̂η = ̂̄B′(S1n + Sn2)̂̄B follows from the Central Limit Theorem.
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Proof of (b): It follows from (23), (24), and (25) that the least squares estimator γ̂reg satisfies (27).
Let B⊥ = (γ′,−Ip−m)′, then

−(B̂− B)′B⊥ = γ̂reg − γ = B′(B̂⊥ − B⊥).

Proof of (c): Note that for the other parametrization, (20), where B = (C′η , C′ηγ)′, it holds
that B⊥ = (γ′,−Ip−m)′, such that for both parametrizations (27) holds. The estimator of B, in the
parametrization (20), is B̂′ = (Ĉ′η , Ĉ′ηγ̂), where Ĉη is derived from the n1/2-consistent estimator of Ωη ,
such that for this parametrization, estimation of B is not n-consistent, but only n1/2-consistent and
B̂− B = OP(n−1/2).

Proof of Theorem 1. Proof of (a): Let wt = BTt − B̂ÊtTt, then

BEtTt − B̂ÊtTt = B(EtTt − Tt) + (BTt − B̂ÊtTt) = B(EtTt − Tt) + wt. (A1)

Here B(EtTt − Tt) is stationary, so that it is enough to show that wt is asymptotically stationary.
From the definition of Tt+1 and the Kalman filter recursion (10) calculated for T0 = 0 and for the
estimated parameters, it holds that

BTt+1 = BTt + Bηt+1,

B̂Êt+1Tt+1 = B̂ÊtTt − B̂K̂′t(yt+1 − B̂ÊtTt).

Subtracting the expressions gives

BTt+1 − B̂Êt+1Tt+1 = BTt + Bηt+1 − B̂ÊtTt − B̂K̂′t(yt+1 − BÊtTt)

= BTt − B̂ÊtTt − B̂K̂′t(BTt + εt+1 − B̂ÊtTt) + Bηt+1,

which gives the recursion
wt+1 = (Ip − B̂K̂′t)wt − B̂K̂′tεt+1 + Bηt+1. (A2)

Note that (Ip − B̂K̂′t) is not a contraction, because p−m eigenvalues are one. Hence it is first proved
that B̂′⊥wt is small and then a contraction is found for B̂′wt. From the definition of wt, it follows
from (27), that

B̂′⊥wt = B̂′⊥BTt = B̂′⊥(B− B̂)Tt = −(B⊥ − B̂⊥)′B̂Tt = OP(n−1)OP(n1/2) = OP(n−1/2).

Next define ̂̄B = B̂(B̂′B̂)−1and ̂̄B⊥ = B̂⊥(B̂′⊥B̂⊥)−1, such that Ip = B̂̂̄B′ + B̂⊥ ̂̄B′⊥. From (A2) it follows

by multiplying by ̂̄B′ and using ̂̄B′B = ̂̄B′(B− B̂) + Im = Im +OP(n−1/2), that

̂̄B′wt+1 = (̂̄B− K̂t)
′wt − K̂′tεt+1 +

̂̄B′Bηt+1

= (̂̄B− K̂t)
′(B̂̂̄B′ + B̂⊥ ̂̄B′⊥)wt − K̂′tεt+1 + ηt+1 +

̂̄B′(B− B̂)ηt+1

= (Im − K̂′tB̂)̂̄B′wt − K̂′tεt+1 + ηt+1 +OP(n−1/2),

because ̂̄B′(B− B̂)ηt+1 = OP(n−1/2) and (̂̄B− K̂t)′B̂⊥ ̂̄B′⊥wt = −K̂′tB̂⊥
̂̄B′⊥wt = OP(n−1/2).

From (14) it is seen that Im − K̂′tB̂
P→ ΩB(V + ΩB)

−1 and (Im − K′B)n → 0, n → ∞. This shows

that ̂̄B′wt and hence wt is asymptotically a stationary AR(1) process.
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Proof of (b): The CVAR (18) is expressed as Π(L)yt = vt, and the parameters are estimated using
maximum likelihood with lag length kn → ∞ and k3

n/n→ 0. This gives estimators (ᾰ, β̆, Γ̆, C̆, Σ̆) and
residuals v̆t. The representation of yt in terms of vt is given by

yt = C
t

∑
i=1

vi +
∞

∑
i=0

Civt−i + A,

where β′A = 0. This relation also holds for the estimated parameters and residuals, and subtracting
one finds

BT∗t
t

∑
i=1

vi − B̆T̆∗t
t

∑
i=1

v̆i =
∞

∑
i=0

C̆iv̆t−i −
∞

∑
i=0

Civt−i − A + Ă.

It is seen that the right hand side is oP(1) and hence asymptotically stationary.
Proof of (c): Each estimated trend is compared with the corresponding trend which gives

B̂ÊtTt − B̆T̆∗t = (B̂ÊtTt − BTt) + (BTt − BT∗t ) + (BT∗t − B̆T̆∗t ).

Here the first term is asymptotically stationary using Theorem 2(a), the middle term is asymptotically
stationary, and the last is oP(1) by Theorem 1(b).

Proof of Theorem 2. The proof is the same for all the spreads, so consider EtTt − ÊtTt, and the identity

B̂′(BEtTt − B̂ÊtTt) = B̂′(B− B̂)EtTt + B̂′B̂(EtTt − ÊtTt).

The left hand side is asymptotically stationary by Theorem 1(a) and therefore EtTt − ÊtTt is
asymptotically stationary if and only

B̂′(B− B̂)EtTt = [n1/2B̂′(B− B̂)][n−1/2EtTt],

is asymptotically stationary. Here the second factor converges to a nonstationary process,

n−1/2E[nu]T[nu] = n−1/2E0T0 + n−1/2
[nu]

∑
j=2

K′j−1vj
D→Wv(u),

see (16), so for the term [n1/2B̂′(B− B̂)][n−1/2EtTt] to be asymptotically stationary it is necessary and

sufficient that n1/2B̂′(B− B̂) P→ 0.
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