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Abstract: Likelihood ratio tests of over-identifying restrictions on the common trends loading matrices
in I(2) VAR systems are discussed. It is shown how hypotheses on the common trends loading matrices
can be translated into hypotheses on the cointegration parameters. Algorithms for (constrained)
maximum likelihood estimation are presented, and asymptotic properties sketched. The techniques
are illustrated using the analysis of the PPP and UIP between Switzerland and the US.
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1. Introduction

The duality between the common trends representation and the vector equilibrium-correction
model-form (VECM) in cointegrated systems allows researchers to formulate hypotheses of
economic interest on any of the two. The VECM is centered on the adjustment with respect to
disequilibria in the system; in this way it facilitates the interpretation of cointegrating relations as
(deviations from) equilibria.

The common trends representation instead highlights how variables in the system as pushed
around by common stochastic trends, which are often interpreted as the main persistent economic
factors influencing the long-term. Both representations provide economic insights on the economic
system under scrutiny. Examples of both perspectives are given in Juselius (2017a, 2017b)

The common trends and VECM representations are connected through representation results such
as the Granger Representation Theorem, in the case of I(1) systems, see Engle and Granger (1987)
and Johansen (1991), and the Johansen Representation Theorem, for the case of I(2) systems,
see Johansen (1992). In particular, both representation theorems show that the loading matrix of
the common stochastic trends of highest order is a basis of the orthogonal complement of the matrix of
cointegrating relations. Because of this property, these two matrices are linked, and any one of them
can be written as a function of the other one.

This paper focuses on I(2) vector autoregressive (VAR) systems, and it considers the situation
where (possibly over-identifying) economic hypotheses are entertained for the factor loading matrix
of the I(2) trends. It is shown how they can then be translated into hypotheses on the cointegrating
relations, which appear in the VECM representation; the latter forms the basis for maximum likelihood
(ML) estimation of I(2) VAR models. In this way, constrained ML estimators are obtained and the
associated likelihood ratio (LR) tests of these hypotheses can be defined. These tests are discussed in
the present paper; Wald tests on just-identified loading matrices of the I(1) and I(2) common trends
have already been proposed by Paruolo (1997, 2002).
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The running example of the paper is taken from Juselius and Assenmacher (2015), which is the
working paper version of Juselius and Assenmacher (2017). The following notation is used: for a
full column-rank matrix a, col a denotes the space spanned by the columns of a and a⊥ indicates a
basis of the orthogonal complement of col a. For a matrix b of the same dimensions of a, and for
which b′a is full rank, let ba := b(a′b)−1; a special case is when a = b, for which ā := aa = a(a′a)−1.
Let also Pa := a(a′a)−1a′ indicate the orthogonal projection matrix onto col a, and let the matrix
Pa⊥ = I − Pa denote the orthogonal projection matrix on its orthogonal complement. Finally ej is used
to indicate the j-th column of an identity matrix of appropriate dimension.

The rest of this paper is organized as follows: Section 2 contains the motivation and the definition
of the problem considered in the paper. The identification of the I(2) common trends loading
matrix under linear restrictions is analysed in Section 3. The relationship between the identified
parametrization of I(2) common trends loading matrix and an identified version of the cointegration
matrix is also discussed. Section 4 considers a parametrization of the VECM, and discusses its
identification. ML estimation of this model is discussed in Section 5; the asymptotic distributions
of the resulting ML estimator of the I(2) loading matrix and the LR statistic of the over-identifying
restrictions are sketched in Section 6. Section 7 reports an illustration of the techniques developed in
the paper on a system of US and Swiss prices, interest rates and exchange rate. Section 8 concludes,
while two appendices report additional technical material.

2. Common Trends Representation for I(2) Systems

This section introduces quantities of interest and presents the motivation of the paper. Consider a
p-variate VAR(k) process Xt:

Xt = A1Xt−1 + . . . + AkXt−k + µ0 + µ1t + εt, (1)

where Ai, i = 1, . . . , k are p× p matrices, µ0 and µ1 are p× 1 vectors, and εt is a p× 1 i.i.d. N(0, Ω)

vector, with Ω positive definite. Under the conditions of the Johansen Representation Theorem,
see Appendix A, called the I(2) conditions, Xt admits a common trends I(2) representation of the form

Xt = C2S2t + C1S1t + Yt + v0 + v1t, (2)

where S2t := ∑t
i=1 ∑i

s=1 εs are the I(2) stochastic trends (cumulated random walks), S1t := ∆S2t =

∑t
i=1 εi is a random walk component, and Yt is an I(0) linear process.

Cointegration occurs when the matrix C2 has reduced rank r2 < p, such that C2 = ab′, where a
and b are p× r2 and of full column rank. This observation lends itself to the following interpretation:
b′S2t defines the r2 common I(2) trends, while a acts as the loading matrix of Xt on the I(2) trends.
The reduced rank of C2 implies that there exist m := p− r2 linearly independent cointegrating vectors,
collected in a p×m matrix τ, satisfying τ′C2 = 0; hence τ′Xt is I(1). Combining this with C2 = ab′,
it is clear that a = τ⊥, i.e., the columns of the loading matrix span the orthogonal complement of the
cointegration space col τ. Interest in this paper is on hypotheses on a = τ⊥

1.
Observe that C2 = ab′ is invariant to the choice of basis of either col a and col b. In fact, (a, b) can

be replaced by (aQ, bQ′−1) with Q square and nonsingular without affecting C2. One way to resolve
this identification problem is to impose restrictions on the entries of a = τ⊥; enough restrictions of
this kind would make the choice of τ⊥ unique. Such an approach to identification is common in
confirmatory factor analysis in the statistics literature, see Jöreskog et al. (2016).

If more restrictions are imposed than needed for identification, they are over-identifying.
Such over-identifying restrictions on τ⊥ usually correspond to (similarly over-identifying) restrictions

1 In the I(2) cointegration literature, τ⊥ is also referred to as β2, see the Johansen Representation Theorem in Appendix A.
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on τ, see Section 3 below. Although economic hypotheses may directly imply restrictions on the
cointegrating vectors in τ, in some cases it is more natural to formulate restrictions on the I(2) loading
matrix τ⊥. This is illustrated by the two following examples.

2.1. Example 1

Kongsted (2005) considers a model for Xt = (mt : yn
t : pt)′, where mt, yn

t and pt denote the
nominal money stock, nominal income and the price level, respectively (all variables in logs); here ‘:’
indicates horizontal concatenation. He assumes that the system is I(2), with r2 = 1. Given the definition
of the variables, Kongsted (2005) considers the natural question of whether real money mt − pt and
real income yn

t − pt are at most I(1). This corresponds to an (over-identified) cointegrating matrix τ

and loading vector τ⊥ of the form

τ =

 1 0
0 1
−1 −1

 , τ⊥ =

 1
1
1

 .

The form of τ corresponds to the fact that the I(1) linear combinations τ′Xt are (linear combinations
of) ((mt − pt) : (yn

t − pt))′, as required. On the other hand, the restriction on τ⊥ says that each of
the three series have exactly the same I(2) trend, with the same scale factor. Both formulations are
easily interpretable.

Note that the hypothesis on τ⊥ involves two over-identifying restrictions (the second and third
component are equal to the first component), in addition to a normalization (the first component
equals 1). Similarly, the restriction that the matrix consisting of the first two rows of τ equals I2 is a
normalization; the two over-identifying restrictions are that the entries in both columns sum to 0.

As this first example shows, knowing τ is the same as knowing τ⊥ and vice versa2.

2.2. Example 2

Juselius and Assenmacher (2015) consider a 7-dimensional VAR with Xt = (p1t : p2t : e12t : b1t :
b2t : s1t : s2t)

′ with r2 = 2, where pit, bit, sit are the (log of) the price index, the long and the short
interest rate of country i at time t respectively, and e12t is the log of the exchange rate between country 1
(Switzerland) and 2 (the US) at time t. They expect the common trends representation to have a loading
matrix τ⊥ of the form:

τ⊥ =



φ11 0
φ21 φ22

φ31 φ32

0 φ42

0 φ52

0 φ62

0 φ72


. (3)

where φij indicates an entry not restricted to 0.
The second I(2) trend is loaded on the interest rates b1t, b2t, s1t, s2t, as well as on US prices p2t and

the exchange rate e12t; this can be interpreted as a financial (or ‘speculative’) trend affecting world
prices. The first I(2) trend, instead, is only loaded on p1t, p2t, e12t and embodies a ‘relative price’ I(2)
trend; it can be interpreted as the Swiss contribution to the trend in prices.

The cointegrating matrix τ in this example is of dimension 7× 5. It is not obvious what type
of restrictions on τ correspond to the structure in (3). However, it is τ rather than τ⊥ that enters the
likelihood function (as will be analyzed in Section 4). The rest of the paper shows that the restrictions

2 Up to normalizations, see below.



Econometrics 2017, 5, 28 4 of 17

in (3) are over-identifying, how they can be translated into hypotheses on τ, and how they can be
tested via LR tests.

3. Hypothesis on the Common Trends Loadings

This section discusses linear hypotheses on τ⊥ and their relation to τ. First, attention is focused
on the case of linear hypotheses on the normalized version τ⊥c⊥ := τ⊥

(
c′⊥τ⊥

)−1 of τ⊥. Here c⊥ is
a full-column-rank matrix of the same dimension of τ⊥ such that c′⊥τ⊥ is square and nonsingular3.
This normalization was introduced by Johansen (1991) in the context of the I(1) model in order to
isolate the (just-) identified parameters in the cointegration matrix.

Later, linear hypotheses formulated directly on τ⊥ are discussed. The main result of this section is
the fact that the parameters of interest appears linearly both in τ⊥c⊥ and in τc in the first case; this is
not necessarily true in the second case.

The central relation employed in this section (for both cases), is the following identity:

τc := τ
(
c′τ
)−1

= (I − c⊥
(
τ′⊥c⊥

)−1
τ′⊥)c̄ = (I − c⊥τ′⊥c⊥)c̄, (4)

where c̄ := c(c′c)−1. This identity readily follows from the oblique projections identity

I = τ
(
c′τ
)−1 c′ + c⊥

(
τ′⊥c⊥

)−1
τ′⊥,

see e.g. Srivastava and Kathri (1979, p. 19), by post-multiplication by c̄.

3.1. Linear hypotheses on τ⊥c⊥

Johansen (1991) noted that the function ab := a(b′a)−1 is invariant with respect to the choice of
basis of the space spanned by a. in fact, consider in the present context any alternative basis τ?

⊥ of the
space spanned by τ⊥; this has representation τ?

⊥ = τ⊥Q for Q square and full rank. Inserting τ?
⊥ in

place of τ⊥ in the definition of τ⊥c⊥ := τ⊥
(
c′⊥τ⊥

)−1, one finds

τ?
⊥c⊥ = τ?

⊥
(
c′⊥τ?
⊥
)−1

= τ⊥Q
(
c′⊥τ⊥Q

)−1
= τ⊥c⊥ .

Hence τ⊥c⊥ , similarly to the cointegration matrix in the I(1) model in Johansen (1991), is (just-)identified.
To facilitate stating hypotheses on the unconstrained elements of τ⊥c⊥ , the following

representation of τ⊥c⊥ appears useful:

τ⊥c⊥ = c̄⊥ + c ϑ (5)

where ϑ is an m× r2 matrix of free coefficients in τ⊥
4. For example, one may have

c⊥ =

(
03×2

I2

)
, c =

(
I3

02×3

)
, τ⊥c⊥ = c̄⊥ + c

 ϑ11 ϑ12

ϑ21 ϑ22

ϑ31 ϑ32

 =


ϑ11 ϑ12

ϑ21 ϑ22

ϑ31 ϑ32

1 0
0 1

 (6)

with p = 5, m = 3, r2 = 2.

3 When c′⊥τ⊥ is square and nonsingular, then one can prove that also c′τ is square and nonsingular, see e.g., Johansen (1996,
Exercise 3.7).

4 This equation is obtained by using orthogonal projection of τ⊥c⊥ on the columns spaces of c and c⊥, and applying the
equality c′⊥τ⊥c⊥ = Ir2 which follows by definition.
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Consider over-identifying linear restrictions on the columns of ϑ in (5). Typically, such restrictions
will come in the form of zero (exclusion) restrictions or unit restrictions, where the latter would indicate
equal loadings of a specific variable and the variable on which the column of τ⊥c⊥ has been normalized.
The general formulation of such restrictions is

ϑi = ki + Kiφi, i = 1, . . . , r2, (7)

where ϑi is the i-th column vector of ϑ, ki and Ki are conformable vectors and matrices, and φi contains
the remaining unknown parameters in ϑi. If only zero restrictions are imposed, then ki = 0m.

The formulation in (7) includes several notable special cases. For instance, if all Ki = K
and ki = 0m, one obtains the hypothesis that ϑ is contained in a given linear space, ϑ = Kφ.
Another example is given by the case where one column ϑ1 is known, ϑ = (k1 : φ); this corresponds to
the choice ϑ1 = k1 with K1 and φ1 void and k2 = . . . = kr2 = 0, K2 = . . . = Kr2 = I.

The restrictions in (7) may be summarized as

vec ϑ = k + Kφ, (8)

where k = (k′1 : . . . : k′r2
)′, K = blkdiag(K1, . . . , Kr2) and φ = (φ′1 : . . . : φ′r2

)′.
Here blkdiag(B1, B2, . . . , Bn) indicates a matrix with the (not necessarily square) blocks B1, B2, . . . , Bn

along the main diagonal. Formulation (8) generalises (7).
The main result of this section is stated in the next theorem.

Theorem 1 (Hypotheses on τ⊥c⊥ ). Assume that ϑ satisfies linear restrictions of the type (8); then these
restrictions are translated into a linear hypothesis on vec τc via

vec τc = (vec c̄− (Im ⊗ c⊥)Km,r2 k)− (Im ⊗ c⊥)Km,r2 Kφ, (9)

where Km,n is the commutation matrix satisfying Km,n vec A = vec A′, with A of dimensions m × n,
see Magnus and Neudecker (2007).

Proof. Substitute (8) into (4) and vectorize using standard properties of the vec operator, see Magnus
and Neudecker (2007).

The previous theorem shows that, when one can express a linear hypothesis on the coefficients in
ϑ that are unrestricted in τ⊥c⊥ , then the same linear hypothesis is translated into a restriction on vec τc.
Note that the proof simply exploits (4).

Identification of the restricted coefficients φ under these hypothesis can be addressed in a
straightforward way. In fact, the parameters in ϑ are identified; hence φ is identified provided
that the matrix K is of full column rank, which in turn will imply that the Jacobian matrix
∂ vec τc/∂φ′ = −(Im ⊗ c⊥)Km,r2 K in (9) has full column rank.

Because, in practice, econometricians may explore the form of τ⊥ via unrestricted estimates of
τ⊥c⊥ , see Paruolo (2002), before formulating restrictions on τ⊥, using hypothesis on the unrestricted
coefficients in τ⊥c⊥ appears a natural sequential step.

The next subsection discusses the alternative approach of specifying hypotheses directly on τ⊥.

3.2. Linear Hypotheses on τ⊥

In case placing restrictions on the unrestricted coefficients in τ⊥c⊥ is not what the econometrician
wants, this subsection considers linear hypothesis on τ⊥ directly. It is shown that sometimes it is
possible to translate linear hypothesis on τ⊥ into linear hypothesis on τ⊥c⊥ for some c⊥. It is also
shown that this is always possible for r2 = 2, for which a constructive proof is provided.
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Analogously to (7), consider linear hypotheses on the columns of τ⊥, of the following type:

τ⊥,i = hi + Hiφi, i = 1, . . . , r2, (10)

summarized as
vec τ⊥ = h + Hφ. (11)

In this case, non-zero vectors hi represent normalizations of the columns of the loading matrix, and as
before, φi collects the unknown parameters in τ⊥,i.

Theorem 2 (Hypotheses on τ⊥). Assume that τ⊥ = τ⊥(φ) satisfies linear restrictions of the type (11),
then these restrictions are translated in general into a non-linear hypothesis on vec τc via

τc = (I − c⊥
(
τ⊥(φ)

′c⊥
)−1

τ⊥(φ)
′)c̄ (12)

and the Jacobian of the transformation from φ to vec τc is

J (·) :=
∂ vec τc (·)

∂φ′
= −(τc(·)′ ⊗ c⊥(τ⊥(·)′c⊥)−1)Kp,r2 H. (13)

This parametrization is smooth on an open set in the parameter space Φ of φ where c′⊥τ⊥ is of full rank.

Proof. Equation (12) is a re-statement of (4). Differentiation of (12) delivers (13).

One can note that the Jacobian matrix in (13) can be used to check local identification using the
results in Rothenberg (1971).

The result of Theorem 2 is in contrast with the result of Theorem 1, because the latter delivers a
linear hypothesis for τc while Theorem 2 gives in general non-linear restrictions on τc. One may hence
ask the following question: when is it possible to reduce the more general linear hypothesis on τ⊥
given in (11) to the simpler linear hypothesis on ϑ given in (8)?

In the special case of r2 = 2, the following theorem states that this can be always obtained.
This applies for instance to the motivating example (3), where one can choose some c⊥ so that τ′⊥c⊥
is equal to the identity, as shown below. Consider the formulation (10) with r2 = 2, and assume
that no normalizations have been imposed yet, such that h1 = h2 = 0. It is assumed that τ⊥,
under the equation-by-equation restrictions, satisfies the usual rank conditions for identification,
see Johansen (1995, Theorem 1) :

rank R′iτ⊥ = 1 for i = 1, 2, (14)

where Ri = Hi,⊥.

Theorem 3 (Case r2 = 2). Let τ⊥ obey the restrictions τ⊥ = (H1φ1 : H2φ2) satisfying the rank conditions
(14); then one can choose normalization conditions on φ1 and φ2 so that there exists a matrix c⊥ such that
c′⊥τ⊥ = I. This implies that a hypotheses on τ⊥ can be stated in terms of ϑ in (5), and, by Theorem 1, a linear
hypotheses on vec ϑ corresponds to linear hypothesis on vec τc.

Proof. Because R′1τ⊥ = (0 : R′1H2φ2) has rank 1, one can select (at least) one linear combination of
R1, R1a1 say, so that φ2 is normalized to be one in the direction b′2 := a′1R′1H2, i.e., b′2φ2 = 1. Similarly,
R′2τ⊥ = (R′2H1φ1 : 0) has rank 1, and one can select (at least) one linear combination of R2, R2a2

say, so that φ1 is normalized to be one in the direction b′1 := a′2R′2H1, i.e., b′1φ1 = 1. Next define
c⊥ = (R2a2 : R1a1) which by construction satisfies c′⊥τ⊥ = I2.
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The proof of the previous theorem provides a way to construct c⊥ when r2 = 2 and the usual
rank condition for identification (14) holds. The rest of the paper focuses attention on the case of linear
restrictions on ϑ in (8), which can be translated linearly into restrictions on τc as shown in Theorem 1.

3.3. Example 2 Continued

Consider (3); this hypothesis is of type τ⊥ = (H1φ1 : H2φ2) with

H1 =

(
I3

04×3

)
, H2 =

(
01×6

I6

)
,

and hence R′1 = (I4 : 04×3) and R′2 = (I6 : 06×1). In this case one can define c = (e2 : e3 : e5 : e6 : e7)

and c⊥ = (e1 : e4) where ej is the j-th column of I7.
It is simple to verify that, under the additional normalization restrictions φ11 = 1 and φ42 = 1, τ⊥

in (3) satisfies c′⊥τ⊥ = I2. Therefore, define τ⊥c⊥ as (3) under these normalization restrictions. Using
formula (4) one can see that

τc = (I − c⊥τ′⊥c⊥)c̄ =



−φ21 −φ31 0 0 0
1 0 0 0 0
0 1 0 0 0
−φ22 −φ32 −φ52 −φ62 −φ72

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


, (15)

so that vec τc is linear in φ, as predicted by Theorem 3.

4. The VECM Parametrization

This section describes the I(2) parametrization employed in the statistical analysis of the
paper. Consider the following τ-parametrization (τ-par) of the VECM for I(2) VAR systems5.
See Mosconi and Paruolo (2017):

∆2Xt = α
(
ρ′τ′Xt−1 + ψ′∆Xt−1

)
+ λτ′∆Xt−1 + Υ∆2Xt−1 + εt, (16)

with Υ∆2Xt−1 = ∑k−2
j=1 Υj∆2Xt−j. Recall that m = p− r2 is the total number of cointegrating relations,

i.e., the number of I(1) linear combinations τ′Xt. The number of linear combinations of τ′Xt that
cointegrate with ∆Xt to I(0), i.e., the number of I(0) linear combinations ρ′τ′Xt + ψ′∆Xt, is indicated6

by r ≤ m. Here α is p× r, τ is p×m and the other parameter matrices are conformable; the parameters
are α, ρ, τ, ψ, λ, Υ, Ω, all freely varying, and Ω is assumed to be positive definite. When λ is restricted
as λ = Ωα⊥(α

′
⊥Ωα⊥)

−1κ′ with κ′ a (p− r)×m matrix of freely varying parameters, the τ-par reduces
to the parametrization of Johansen (1997); this restriction on λ is not imposed here.

4.1. Identification of τ

The parameters in the τ-par (16) are not identified; in particular τ′ can be replaced by Bτ′ with B
square and nonsingular, provided ρ and λ are simultaneously replaced by B−1′ρ and λB−1. This is
because τ enters the likelihood only via (16) in the products ρ′τ′ = ρ′B−1Bτ′ and λτ′ = (λB−1)(Bτ′).
The transformation that generates observationally equivalent parameters, i.e., the post multiplication
of τ by a square and invertible matrix B′, is the same type of transformation that induces observational

5 In the general VAR(k) model (1), εt in (16) is replaced by µ0 + µ1t + εt; see Section 4.3 below.
6 The difference m− r = p− r− r2 is referred to as either s or r1 in the I(2) cointegration literature, see Appendix A.
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equivalence in the classical system of simultaneous equations, see Sargan (1988), or to the set of
cointegrating equations in I(1) systems, see Johansen (1995). This leads to the following result.

Theorem 4 (Identification of τ in the τ-par). Assume that τc is specified as the restricted τc in (9), which is
implied by the general linear hypothesis (8) on τ⊥c⊥ ; then the restricted τc is identified within the τ-par if and
only if

rank
(

R′τ(Im ⊗ τ)
)
= m2, Rτ

mp×mτ

= G⊥, G := −(Im ⊗ c⊥)Km,r2 K (17)

(rank condition), where mτ = mp− dim φ. The corresponding order condition is mτ ≥ m2, or equivalently
mr2 ≥ dim φ.

Alternatively, consider the general linear hypothesis (11) on τ⊥; then the constrained τc in (12) is identified
in a neighborhood of the point φ = φ? provided the Jacobian J (φ?) := ∂ vec τc(φ?)/∂φ′ in (13) is of full rank.

Proof. The rank condition follows from Sargan (1988), given that the class of transformation that
induce observational equivalence is the same as the classical one for systems of simultaneous equations.
The local identification condition follows from Rothenberg (1971).

4.2. The Identification of Remaining Parameters

This subsection discusses conditions for remaining parameters of the τ-par to be identified, when
τ is identified as in Theorem 4. These additional conditions are used in the discussion of the ML
algorithms of the next section.

The VECM can be rewritten as

∆2Xt = νς′
(

τ′Xt−1

∆Xt−1

)
+ Υ∆2Xt−1 + εt, with ς′ :=

(
ρ′ ψ′

0 τ′

)
, ν := (α : λ) .

One can see that the equilibrium correction terms νς′
(
(τ′Xt−1)

′ : ∆X′t−1
)′ may be replaced by

ν◦ς′◦
(
(τ◦′Xt−1)

′ : ∆X′t−1
)′ without changing the likelihood, where ν◦ := νQ−1 = (αA−1 : λB−1 −

αA−1C), ς′◦ := Qς′W−1 and

Q :=

(
A CB
0 B

)
, W :=

(
B 0
0 Ip

)
, ς′◦ := Qς′W−1 =

(
Aρ′B−1 Aψ′ + CBτ′

0 Bτ′

)
;

here A and B are square nonsingular matrices, and C is a generic matrix. Hence one observes that
(α, ρ, τ, ψ, λ, Υ, Ω) is observationally equivalent to (α◦, ρ◦, τ◦, ψ◦, λ◦, Υ, Ω). A, B and C define the
class of observationally equivalent transformations in the τ-par for all parameters, including τ. When
τ is identified one has B = Im in the above formulae.

Consider additional restrictions on ϕ of the type:

R′ϕ
mϕ× fϕ

vec ϕ′ = qϕ, ϕ′ :=
(
ρ′ : ψ′

)
. (18)

where fϕ = r(p + m). The next theorem states rank conditions for these restrictions to identify the
remaining parameters.

Theorem 5 (Identification of other parameters in the τ-par). Assume that τ is identified as in Theorem 4;
the restrictions (18) identify ϕ and all other parameters in the τ-par if and only if (rank condition)

rank R′ϕ (ς⊗ Ir) = r(r + m). (19)
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A necessary but not sufficient condition (order condition) for this is that

mϕ ≥ r(r + m). (20)

Proof. Because τ is identified, one has B = Im in Q. For the identification of ϕ, observe that ς− ς◦ =

ς(I − Q′). One finds ϕ − ϕ◦ = (ς − ς◦)(Ir : 0)′ = ς(Im+r − Q′)(Ir : 0)′. Because both ϕ and ϕ◦

satisfy (18), one has 0 = R′ϕ vec (ϕ′ − ϕ◦′) = R′ϕ(ς⊗ Ir) vec ((Ir : 0)(Ir+m − Q)). This implies that
(Ir : 0)(Im+r − Q) = 0, i.e., that both A = Ir and C = 0r×m, and that ϕ is identified, if and only if
rank R′ϕ(ς⊗ Ir) = r(r + m). This completes the proof.

Observe that the identification properties of the τ-par differ from the ones of the parametrization
of Johansen (1997), where λ = Ωα⊥(α

′
⊥Ωα⊥)

−1κ′ is restricted, and hence the adding-and-subtracting
associated with C above is not permitted.

4.3. Deterministic Terms

The τ-par in (16) does not involve deterministic terms. Allowing a constant and a trend to enter
the VAR Equation (1) in a way that rules out quadratic trends, one obtains the following equilibrium
correction I(2) model—for simplicity still called the τ-par below:

∆2Xt = α
(
ρ′τ?′X?

t−1 + ψ?′∆X?
t−1
)
+ λτ?′∆X?

t−1 + Υ∆2Xt−1 + εt. (21)

Here X?
t−1 = (X′t−1 : t)′ so that ∆X?

t−1 = (∆X′t−1 : 1)′; and τ? = (τ′ : τ1) and ψ? = (ψ′ : ψ0)
′.

This parametrization satisfies the conditions of the Johansen Representation Theorem and it
generates deterministic trends up to first order, as shown in Appendix A. This is the I(2) model used in
the application, with the addition of unrestricted dummy variables.

5. Likelihood Maximization

This section discusses likelihood maximization of the τ-par of the I(2) model (16) under linear,
possibly over-identifying, restrictions on τ⊥c⊥ , i.e., on ϑ in (5). The same treatment applies to (21)
replacing (Xt−1, ∆Xt−1) with (X?

t−1, ∆X?
t−1), and (τ, ψ), with (τ?, ψ?). The formulation (16) is preferred

here for simplicity in exposition.
The alternating maximization procedure proposed here is closely related, but not identical, to the

algorithms proposed by Doornik (2017b); related algorithms were discussed in Paruolo (2000b).
Restricted ML estimation in the I(1) model was discussed in Boswijk and Doornik (2004).

5.1. Normalizations

Consider restrictions (8), which are translated into linear hypotheses on τc in (9) as follows

vec τc = (vec c̄− (Im ⊗ c⊥)Km,r2 k)− (Im ⊗ c⊥)Km,r2 Kφ =: g + Gφ,

where by construction g and G satisfy (Im ⊗ c′)g = vec Irm and (Im ⊗ c′)G = 0 such that c′τc = Im.
Next, consider just-identifying restrictions on the remaining parameters. For ψ, the linear

combinations of first differences entering the multicointegration relations, one can consider

c′ψ = 0 ⇐⇒ ψ = c⊥δ′, (22)

where δ is the r× r2 matrix of multicointegration parameters. This restriction differs from the restriction
ψ = τ⊥δ′ which is considered e.g., in Juselius (2017a, 2017b), and it was proposed and analysed
by Boswijk (2000).

Furthermore, the m× r matrix ρ can be normalized as follows

d′ρ = Ir ⇐⇒ ρ = d̄ + d⊥$, (23)
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where d is some known m × r matrix, and where $, of dimension (m − r) × r, contains freely
varying parameters.

It can be shown that restrictions (22) and (23) identify the remaining parameters using Theorem 5.
In fact, (22) and (23) can be written as ϕ′V = v where V := blkdiag(d, c) and v := (Ir : 0r×m).
Vectorizing, one obtains an equation R′ϕ vec ϕ′ = qϕ of the form (18) with Rϕ = (V ⊗ Ir) and
qϕ = vec v. The rank condition (19) is satisfied, since R′ϕ (ς⊗ Ir) = (V′ς⊗ Ir) = Ir(m+r) because

V′ς =

(
d′ρ 0
c′ψ c′τ

)
=

(
Ir 0
0 Im

)
,

where the last equality follows from (22) and (23) and τ = τc.

5.2. The Concentrated Likelihood Function

The model (16), after concentrating out the unrestricted parameter matrix Υ, can be represented
by the equations

Z0t = α(ρ′τ′Z2t + ψ′Z1t) + λτ′Z1t + εt (ξ) , (24)

where ξ indicates the vector of free parameters in (α, $, φ, δ, λ), Z0t, Z1t and Z2t are residual vectors
of regressions of ∆2Xt, ∆Xt−1 and Xt−1, respectively, on Xt−1;7 this derivation follows similarly to
Chapter 6.1 in Johansen (1996). The associated log-likelihood function, concentrated with respect to Υ,
is given by

`(ξ, Ω) = −T
2

log |Ω| − 1
2

T

∑
t=1

εt (ξ)
′Ω−1εt (ξ) ,

In the rest of this section, εt is used as shorthand for εt (ξ).
Algorithms for the maximization of the concentrated log-likelihood function `(ξ, Ω) are proposed

below. The first one, called AL1, considers the alternative maximization of `(ξ, Ω) over (α, $, δ, λ, Ω) for
a fixed value of φ (called the α-step), and over (φ, δ) for a given value of (α, $, λ, Ω) (called the τ-step).

A variant of this algorithm, called AL2, can be defined fixing δ in the τ-step to the value of δ

obtained in the α-step. It can be shown that the increase in `(ξ, Ω) obtained in one combination of
α-step and τ-step of AL1 is greater or equal to the one obtained by AL2. The proof of this result is
reported in Proposition A1 in Appendix B. Because of this property, and because AL2 may display
very slow convergence properties in practice, AL1 is implemented in the illustration below.

The rest of this section presents algorithms AL1 and AL2, defining first the τ-step, then the α-step
and finally discussing the starting values, a line search and normalizations.

5.2.1. τ Step

Taking differentials, one has d` = −∑T
t=1 ε′tΩ

−1dεt. Keeping (α, $, λ) fixed, one finds

−dεt = d
(
αρ′τ′Z2t + αψ′Z1t + λτ′Z1t

)
=
(
(Z′2t ⊗ αρ′) + (Z′1t ⊗ λ)

)
d vec τ′ + (Z′1t ⊗ α)d vec ψ′

=
(
(Z′2t ⊗ αρ′) + (Z′1t ⊗ λ)

)
Km,r1 Gdφ + (Z′1tc⊥ ⊗ α)d vec δ.

Writing εt in terms of φ and vec δ, i.e., εt = Z0t − (
(
Z′2t ⊗ αρ′) + (Z′1t ⊗ λ)

)
Km,r1(Gφ + g) −

(Z′1tc⊥ ⊗ α) vec δ, the first-order conditions ∂`/∂φ = 0 and ∂`/∂ vec δ = 0 are solved by

7 If a restricted constant and linear trend are included in the model, as in (21), then Z1t and Z2t are defined as the residual
vectors of regressions of ∆X?

t−1 and X?
t−1, respectively, on Xt−1.
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(
φ̂

vec δ̂′

)
=

(
G′U′1

(
Ω−1 ⊗ IT

)
U1G G′U′1

(
Ω−1 ⊗ IT

)
U2

U′2
(
Ω−1 ⊗ IT

)
U1G U′2

(
Ω−1 ⊗ IT

)
U2

)−1

·

·
(

G′U′1
(
Ω−1 ⊗ IT

)
U′2
(
Ω−1 ⊗ IT

) )
(vec Z0 −U1g) , (25)

where Zj =
(
Zj1 : . . . : ZjT

)′, j = 0, 1, 2, and where U1 = (αρ′ ⊗ Z2) + (λ⊗ Z1), and U2 = (α⊗ Z1c⊥).
Note that (25) is the GLS estimator in a regression of vec Z0 −U1g on (U1G : U2). This defines the
τ-step for AL1.

The τ-step for AL2 is defined similarly, but keeping δ fixed. In this case it is simple to see that

φ̂ =
(

G′U′1
(

Ω−1 ⊗ IT

)
U1G

)−1
G′U′1

(
Ω−1 ⊗ IT

) (
vec Z0 −U1g− vec

(
Z1ψα′

))
.

5.2.2. α Step

When φ is fixed (and hence τ is fixed), one can construct Z3t = τ′Z1t and

Z4t =

 d̄′τ′Z2t
d′⊥τ′Z2t
c′⊥Z1t

 , γ =

 Ir

$

δ′

 .

The concentrated model (24) can then be written as a reduced rank regression:

Z0t = αγ′Z4t + λZ3t + εt,

for which the Guassian ML estimator for α, γ, λ has a closed-form solution, see Johansen (1996).
Specifically, let Mij := T−1 ∑T

t=1 ZitZ′jt, i, j = 0, 3, 4 and Sij := Mij − Mi3M−1
33 M3j, i, j = 0, 4. If vi,

i = 1, . . . , r, are the eigenvectors corresponding to the largest r eigenvalues of the problem

(µS44 − S40S−1
00 S04)v = 0,

and v = (vi, . . . , vr) is the matrix of the corresponding eigenvectors, then the optimal solutions for $, δ,
α, λ is given by

γ̂ =

 Ir0

$̂

δ̂′

 = v(e′v)−1, α̂ = S04γ̂(γ̂′S44γ̂)−1, λ̂ = (M03 − α̂γ̂′M43)M−1
33 ,

where e′ = (Ir : 0). Optimization with respect to Ω̂ is performed using Ω (ξ) = T−1 ∑T
t=1 εt(ξ)εt(ξ)′

replacing ξ with ξ̂ formed from the previous expressions, namely taking (α, $, δ, λ) equal to (α̂, $̂, δ̂, λ̂)

in the above display and φ = φ̂ from the τ-step. Using the Sij matrices, one can also compute Ω̂
directly as Ω̂ = S00 − S04γ̂(γ̂′S44γ̂)−1γ̂′S40. This completes the definition of the α-step.

5.2.3. Starting Values and Line Search

If the system is just-identified, consistent starting values for all parameters can be obtained
by imposing the identifying restrictions on the two-stage estimator for the I(2) model (2SI2),
see Johansen (1995) and Paruolo (2000a). In case of over-identification, this method may be used to
produce starting values for (α, $, λ), which may then be used as input for the first τ-step to obtain
starting values for φ and δ.

Let η be the vector containing all free parameters in (α, $, δ, λ), and let ξ := (φ′ : η′)′. Denote by
ξ j−1 = (φ′j−1 : η′j−1)

′ the value of ξ in iteration (j− 1) of algorithms. Denote as ξ̂ j = (φ̂′j : η̂′j)
′ the value

of ξ obtained by the application of a τ-step and α-step of algorithms AL1 and AL2 at iteration j starting
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from ξ j−1. In an I(1) context, Doornik (2017a) found that better convergence properties can be obtained
if a line search is added. For this purpose, define the final value of the j-th iteration as

ξ j(ω) = ξ j−1 + ω(ξ̂ j − ξ j−1)

where ω is chosen in R+ = (0, ∞) using a line search; note that values of ω greater than 1
are admissible. A simple (albeit admittedly sub-optimal) implementation of the line search is
employed in Doornik (2017a); it consists of evaluating the log-likelihood function `(ξ, Ω(ξ)) with
Ω (ξ) = T−1 ∑T

t=1 εt(ξ)εt(ξ)′ setting ξ equal to ξ j(ω) for ω ∈ {1.2, 2, 4, 8}, and in choosing the value of
ω with the highest loglikelihood `. This simple choice of line search is used in the empirical illustration.

5.3. Standard Errors

The asymptotic variance matrix of the ML estimators may be obtained from the inverse observed
(concentrated) information matrix as usual. Writing (24) as Z0t = ΠZ2t + ΓZ1t + εt, and letting
θ = (vec (Π′)′ : vec (Γ′)′)′, the observed concentrated information matrix for the reduced-form
parameter vector θ is obtained from

Iθ = −∂2`(θ)

∂θ∂θ′
=

(
Ω−1 ⊗ Z′2Z2 Ω−1 ⊗ Z′2Z1

Ω−1 ⊗ Z′1Z2 Ω−1 ⊗ Z′2Z2

)
.

This leads to the following information matrix in terms of the parameters (φ, η):

Iφ,η =

(
J′φ
J′η

)
Iθ

(
Jφ Jη

)
,

where Jφ = ∂θ/∂φ′ and Jη = ∂θ/∂η′. From Π = αρ′τ′ and Γ = αψ′ + λτ′, one obtains

Jφ =

(
αρ′ ⊗ Ip

λ⊗ Ip

)
G.

Define η = (vec (α′)′ : vec ($)′ : vec (δ′)′ : vec (λ′)′)′, so that Jη = [Jα : J$ : Jδ : Jλ], with

Jα =

(
Ip ⊗ τρ

Ip ⊗ ψ

)
, J$ =

(
α⊗ τd⊥

0

)
, Jδ =

(
0

α⊗ c⊥

)
, Jλ =

(
0

Ip ⊗ τ

)
.

With these ingredients, one finds

v̂ar(φ̂) =
(

Ĵ′φÎθ Ĵφ − Ĵ′φÎθ Ĵη( Ĵ′η Îθ Ĵη)
−1 Ĵ′η Îθ Ĵφ

)−1
,

where Îθ , Ĵφ and Ĵη are the expressions given above, evaluated at the ML estimators. Standard errors
of individual parameters estimates are obtained as the square root of the diagonal elements of v̂ar(φ̂).
Asymptotic normality of resulting t-statistics (under the null hypothesis), and χ2 asymptotic null
distributions of likelihood ratio test statistics for the over-identifying restrictions, depend on conditions
for asymptotic mixed normality being satisfied; this is discussed next.

6. Asymptotics

The asymptotic distribution of the ML estimator in the I(2) model has been discussed in
Johansen (1997, 2006). As shown there and discussed in Boswijk (2000), the limit distribution of
the ML estimator is not jointly mixed normal as in the I(1) case. As a consequence, the limit distribution
of LR test statistics of generic hypotheses need not be χ2 under the null hypothesis.
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In some special cases, the asymptotic distribution of the just-identified ML estimator of the
cointegration parameters can be shown to be asymptotically mixed normal. Consider the case r1 = 0
(i.e., r = m), and assume as before that no deterministic terms are included in the model. In this case,
the limit distribution of the cointegration parameters in Theorem 4 in Johansen (2006), J06 hereafter,
can be described in terms of the estimated parameters B̂0 := τ̄′⊥(ψ̂− ψ) and B̂2 := τ̄′⊥(τ̂ − τ), where τ̂

is identified as τc with c = τ. Note that the components C and B1 in the above theorem do not appear
here, because r1 = 0. One has(

TB̂0

T2B̂2

)
w→ B∞ :=

(∫ 1

0
H∗(s)H∗(s)′ds

)−1 ∫ 1

0
H∗(s)dW1(s)

with H∗(u) := (H0(u)′ : H2(u)′)′,

H2u :=
∫ u

0
H0(s)ds, H0(u) := τ′⊥C2W(u), W1(u) :=

(
α′Ω−1α

)−1
α′Ω−1W(u),

and where T−
1
2 ∑
bTuc
i=1 εi

w→W(u), a vector Brownian motion with covariance matrix Ω8.
As noted in J06, B∞ has a mixed normal distribution with mean 0, because H∗(u) is a function of

α′⊥W(u), which is independent of W1(u). Moreover in the case r1 = 0, the C∞ component of the ML
limit distribution does not appear, so that the whole limit distribution of the cointegration parameters
is jointly mixed normal, unlike in the case r1 > 0.

One can see that hypothesis (8) defines a smooth restriction of the B2 parameters9. More precisely
B2 depends smoothly only on φ2, B2 = B2(φ2), where φ2 contains the φ parameters in (8). Note also
that B0 depends on the parameters in ψ, which are unrestricted by (8); hence B0 depends only on φ1,
B0 = B0(φ1), where φ1 contains the parameters in δ in (22).

The conditions of Theorem 5 in J06 are next shown to be verified, and hence the LR
test of the hypothesis (8) is asymptotically χ2 with degrees of freedom equal to the number
of constraints, in case r1 = 0. In fact, B0(φ1), B2(φ2) are smoothly parametrizated by the
continuously identified parameters φ1 and φ2. Because B2 does not depend on φ1, one easily deduces
∂B2/∂φ1 = ∂2B2/∂φ2

1 = 0 in (37) of J06. Similarly, one has φ1 = φ1B with ∂B0/∂φ1 and ∂B2/∂φ2 of full
rank; hence (38) of J06 is satisfied. This shows that the LR statistic is asymptotically χ2 under the null,
for r1 = 0.

In case r1 = (m− r) > 0, the asymptotic distribution of τ̂ is defined in terms of (B∞, C∞) in J06
p. 92, which is not jointly mixed normal. In such cases, Boswijk (2000) showed that inference is mixed
normal if the restrictions on τ̂c can be asymptotically linearized in (B∞, C∞), and separated into two
sets of restrictions, the first group involving B∞ only, and the second group involving C∞ only. Because
the conditions of Theorem 5 in J06 cannot be easily verified for general linear hypotheses of the form
(8) in this case, they will need to be checked case by case. The authors intend to develop more readily
verifiable conditions for χ2 inference on τ in their future research.

7. Illustration

Following Juselius and Assenmacher (2015), consider a 7-dimensional VAR with

Xt = (p1t : p2t : e12t : b1t : b2t : s1t : s2t)
′,

where pit, bit, sit are the (log of) the price index, the long and the short interest rate of country i at time
t respectively, and e12t is the log of the exchange rate between country 1 (Switzerland) and 2 (the US)

8 Here w→ indicates weak convergence and b·c denotes the greatest integer part.
9 In the rest of this section the notation φ1, φ2 and ∂Bi/∂φj are used in accordance to the notation in J06.
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at time t. The results are based on quarterly data over the period 1975:1–2013:3. The model has two
lags, a restricted linear trend as in (21), which appears in the equilibrium correction only appended to
the vector of lagged levels, and a number of dummy variables; see Juselius and Assenmacher (2017),
which is an updated version of Juselius and Assenmacher (2015), for further details on the empirical
model. The data set used here is taken from Juselius and Assenmacher (2017).

Specification (3) is based on the prediction that r2 = 2. Based on I(2) cointegration tests,
Juselius and Assenmacher (2017) choose a model with r = m = 5, which indeed implies r2 = 2,
but also r1 = m− r = 0; arguably, however, the test results in Table 1 of their paper also support the
hypothesis (r, r1) = (4, 1), which has the same number r2 = 2 of common I(2) trends. The latter model
would be selected applying the sequential procedure in Nielsen and Rahbek (2007) using a 5% or 10%
significance level in each test in the sequence.

Consider the case (r, r1) = (5, 0). The over-identifying restrictions on τ⊥ implied by (3) are
incorporated in the parametrization (3), with normalizations φ11 = φ42 = 1, which in turn leads to the
over-identified structure for τc in (15), to be estimated by ML. The restricted ML estimate of τ⊥c⊥ is
(standard errors in parentheses):

τ̂⊥c⊥ =



1 0
1.49
(0.11)

−25.14
(5.23)

−1.88
(0.72)

−35.70
(29.81)

0 1
0 −1.91

(0.53)

0 1.23
(0.29)

0 −3.02
(0.95)


.

The LR statistics for the 3 over-identifying restrictions equals 16.11. Using the χ2(3) asymptotic limit
distribution, one finds an asymptotic p-value of 0.001, and hence a rejection of the null hypothesis.
This indicates that the hypothesized structure on τ⊥ is rejected.

For comparison, consider also the case (r, r1) = (4, 1), for which the LR test for cointegration
ranks has a p-value of 0.13. The resulting restricted estimate of τ⊥c⊥ is:

τ̂⊥c⊥ =



1 0
1.38
(0.09)

−24.67
(5.22)

−1.07
(0.56)

−30.10
(22.42)

0 1
0 −1.75

(0.52)

0 1.20
(0.28)

0 −2.97
(1.02)


.

The estimates and standard errors are similar to those obtained under the hypothesis (r, r1) = (5, 0).
The LR statistic for the over-identifying restrictions now equals 10.08. If one conjectured that the limit
distribution of the LR test is also χ2(3) in this case, one would obtain an asymptotic p-value of 0.018,
so the evidence against the hypothesized structure of τ appears slightly weaker in this model.

The results for both model (r, r1) = (5, 0) and for model (r, r1) = (4, 1) are in line with the
preferred specification of Juselius and Assenmacher (2017), who select an over-identified structure for
τ, which is not nested in (15), and therefore implies a different impact of the common I(2) trends.
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8. Conclusions

Hypotheses on the loading matrix of I(2) common trends are of economic interest. They are
shown to be related to the cointegration relations. This link is explicitly discussed in this paper, also for
hypotheses that are over-identifying. Likelihood maximization algorithms are proposed and discussed,
along with LR tests of the hypotheses.

The application of these LR tests to a system of prices, exchange rates and interest rates for
Switzerland and the US shows support for the existence of two I(2) common trends. These may
represent a ‘speculative’ trend and a ‘relative prices’ trend, but there is little empirical support for the
corresponding exclusion restrictions in the loading matrix.
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Appendix A

Theorem A1 (Johansen Representation Theorem). Let the vector process Xt satisfy A(L)Xt = µ0 + µ1t +
εt, where A(L) := Ip−∑k

i=1 AiLi, a matrix lag polynomial of degree k, and where εt is an i.i.d. (0, Ω) sequence.
Assume that A(z) is of full rank for all |z| < 1 + c, c > 0, with the exception of z = 1. Let A, Ȧ and Ä denote
A(1), the first and second derivative of A(z) with respect to z, evaluated at z = 1; finally define Γ = Ȧ− A.
Then Xt is I(2) if and only if the following conditions hold:

(i) A = −αβ′ where α, β are p× r matrices of full column rank r < p,
(ii) Pα⊥ΓPβ⊥ = α1β′1 where α1, β1 are p× r1 matrices of full column rank r1 < p− r,

(iii) α′2Θβ2 is of full rank r2 := p− r− r1, where Θ := 1
2 Ä + Ȧβ̄ᾱ′ Ȧ, α2 := (α, α1)⊥ and β2 := (β, β1)⊥,

(iv) µ1 = αβD for some βD,
(v) α′2µ0 = α′2Γβ̄βD.

Under these conditions, Xt admits a common trends I(2) representation of the form

Xt = C2

t

∑
i=1

i

∑
s=1

εs + C1

t

∑
i=1

εi + C?(L)εt + v0 + v1t, (A1)

where
C2 = β2(α

′
2Θβ2)

−1α′2, (A2)

C?(L)εt is an I(0) linear process, and v0 and v1 depend on the VAR coefficients and on the initial values of
the process.

Proof. See Johansen (1992), Johansen (2009) and Rahbek et al. (1999), which also contain expressions
for C1, C∗(L) and (v0, v1).

It is next shown that conditions (iv) and (v) are satisfied by the τ-par (21). In fact, condition (iv)
holds for βD = ρ′τ1. Note that Γ = αψ′ + λτ′, β = τρ and Pα⊥ΓPβ⊥ = Pα⊥λτ′Pβ⊥ = α1β′1. The l.h.s.
of (v) is

α′2µ0 = α′2λτ1. (A3)

Next write the r.h.s. of (v) using τ′τρ(ρ′τ′τρ)−1ρ′ = I− ρ⊥(ρ
′
⊥(τ

′τ)−1ρ⊥)
−1ρ′⊥(τ

′τ)−1 by oblique
projections; one finds

α′2Γβ̄βD = α′2λτ′τρ(ρ′τ′τρ)−1ρ′τ1

= α′2λτ1 − α′2λρ⊥(ρ
′
⊥(τ

′τ)−1ρ⊥)
−1ρ′⊥(τ

′τ)−1τ1 = α′2λτ1 (A4)
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where the last equality holds because α′2λρ⊥ = 0, as shown below. Note in fact that β1 = τ̄ρ⊥ lies in
col β⊥ and α2 lies in col α⊥; hence one can write

α′2λρ⊥ = α′2λτ′τ̄ρ⊥ = α′2Pα⊥λτ′Pβ⊥β1 = α′2Pα⊥ΓPβ⊥β1 = α′2α1β′1β1 = 0.

Hence, because (A3) equals (A4), condition (v) is satisfied.

Appendix B

This Appendix contains a proof that the increase in ` in one combination of α-step and τ-step
of AL1 is greater or equal to the one obtained by AL2. In order to state the argument in somewhat
greater generality, define a parameter vector θ partitioned in 3 components, denoted (θ1, θ2, θ3), where
each θj represents a subvector of parameters, respectively of dimensions n1, n2, n3. Let `(θ) be the
log-likelihood function. Define also the following switching algorithms, both starting at the same
initial value (θ

(j−1)
1 , θ

(j−1)
2 , θ

(j−1)
3 ):

Definition A1. ALGO1 (3 way switching)

Step 1: for fixed θ1, maximize ` with respect to (θ2, θ3);
Step 2: for fixed θ2, maximize ` with respect to (θ1, θ3).

Let `(θ(1,j)) be the value of ` corresponding to the application of step 1 and 2 of ALGO1.

Definition A2. ALGO2 (Pure switching)

Step 1: for fixed θ1, maximize ` with respect to (θ2, θ3);
Step 2: for fixed (θ2, θ3), maximize ` with respect to θ1.

Let `(θ(2,j)) be the value of ` corresponding to the application of step 1 and 2 of ALGO2.

Proposition A1 (Pure versus 3-way switching). One has `(θ(1,j)) ≥ `(θ(2,j)).

Proof. In order to see this, let

(θ?2 , θ?3 ) = arg max
θ2,θ3

`(θ
(j−1)
1 , θ2, θ3).

Step 1 is the same for ALGO1 and ALGO2. In the second step of ALGO1 one considers

`(θ(1,j)) = max
θ1,θ3

`(θ1, θ?2 , θ3), (A5)

while for ALGO2 one considers
`(θ(2,j)) = max

θ1
`(θ1, θ?2 , θ?3 ). (A6)

The conclusion that `(θ(1,j)) ≥ `(θ(2,j)) follows from the fact that the maximization problem (A6) is a
constrained version of (A5) under θ3 = θ?3 .

It is simple to observe that the argument of the proof implies that the larger the dimension of n3,
the better.
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