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Abstract: We use a cointegrated structural vector autoregressive model to investigate the relation
between monetary policy in the euro area and the stock market. Since there may be an instantaneous
causal relation, we consider long-run identifying restrictions for the structural shocks and also used
(conditional) heteroscedasticity in the residuals for identification purposes. Heteroscedasticity is
modelled by a Markov-switching mechanism. We find a plausible identification scheme for stock
market and monetary policy shocks which is consistent with the second-order moment structure of
the variables. The model indicates that contractionary monetary policy shocks lead to a long-lasting
downturn of real stock prices.

Keywords: cointegrated vector autoregression; heteroscedasticity; Markov-switching model;
monetary policy analysis

JEL Classification: C32

1. Introduction

The interaction of monetary policy and the stock market has been studied extensively with
structural vector autoregressive (VAR) models. A central problem is the identification of the
structural shocks. Nowadays, a range of different tools is available for identifying structural VARs
(see Kilian and Lütkepohl 2017). Therefore, different types of identifying restrictions for monetary policy
and stock market shocks have been used. For example, Bjørnland and Leitemo (2009) considered a
structural VAR model for the US, where long-run and short-run restrictions were combined to identify
structural shocks. Such models were also used in the context of identification by heteroscedasticity
(e.g., Lütkepohl and Netšunajev 2017a, 2017b; Bertsche and Braun 2018). All these studies investigated
the relation between monetary policy and the stock market in the US, but they ignored that the variables
may be cointegrated. In the present study, we consider the relation between monetary policy and the
stock market in Europe and explicitly account for possible cointegration of the variables involved.

European monetary policy is, of course, a central topic of empirical macroeconomics
(e.g., Peersman and Smets 2001). There are also studies investigating explicitly the impact of monetary
policy in Europe on the stock market. Cassola and Morana (2004) found that price-stabilizing monetary
policy contributes to the stability of the stock market in the euro area. Bredin et al. (2009) performed
an event study and found a negative relation between UK monetary policy and stock returns, but
not between German monetary policy and stock returns. Kholodilin et al. (2009) used the approach
of Rigobon and Sack (2004) and found heterogeneous relations between monetary policy and stock
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prices for different sectors, but the effect of an increase in the policy rate of the European Central Bank
(ECB) on an aggregate stock index was reported to be negative. m identified the ECB monetary policy
shocks using an event-study approach and via heteroscedasticity following Rigobon and Sack (2004).
Both identification methods yielded a negative relationship between unexpected changes in policy
rates and stock returns. Alessi and Kerssenfischer (2016) estimated a structural factor model using
euro area data and argued that the responses of stock returns to monetary policy are larger and quicker
than in a conventional small-scale structural VAR. In a more recent study, Fausch and Sigonius (2018)
used different techniques to investigate the relation between ECB monetary policy and German stock
returns, including an event study, a VAR analysis—where monetary policy surprises are captured
by a proxy variable—and a threshold VAR model. They found a negative relation between the ECB
monetary policy and stock returns in the pre-crisis period.

In this study, we use a structural vector error correction model (VECM) identified through
heteroscedasticity to investigate the relation between monetary policy and the stock market.
The cointegration framework developed by Johansen and Juselius (see Johansen and Juselius 1990;
Johansen 1991, 1995; Juselius 2006) opens up a convenient way to impose restrictions on the long-run
effects of structural shocks in structural VAR analysis, as shown by King et al. (1991). They used the
Granger–Johansen representation of a VAR model (Johansen 1995) to determine the long-run effects of
their shocks, and the framework is easy to combine with identifying information obtained from the
second-moment structure of the model (see Lütkepohl and Velinov 2016 or Kilian and Lütkepohl 2017,
chp. 14). We use this framework in our empirical investigation.

We model the conditional heteroscedasticity in the data by a Markov-switching (MS) mechanism
and find a cointegrated structural VAR model for which conventional identifying restrictions are in line
with the second-moment structure of the data. The impulse responses are plausible and, in particular,
production and price level go down after a contractionary monetary policy shock. Although the
long-run impact of a monetary policy shock on stock prices is restricted to zero, such a shock is found
to have a rather long-lasting negative impact on the stock market.

The structure of this study is as follows. In the next section, the basic structural VECM is presented
and the model for the second moments is discussed in Section 3. The empirical analysis is considered in
Section 4 and conclusions are presented in Section 5. The appendix provides details on the data sources.

2. Structural Vector Error Correction Models

The time series variables of interest are collected in the (K× 1) vector yt. The components of yt

may be integrated and cointegrated variables. We assume that all variables are stationary (I(0)) or
integrated of order one (I(1)). Assuming a cointegration rank r, 0 ≤ r ≤ K, our point of departure is
the VECM form of a VAR model,

∆yt = ν + αβ′yt−1 + Γ1∆yt−1 + · · ·+ Γp−1∆yt−p+1 + ut, (1)

where ∆ is the differencing operator such that ∆yt = yt − yt−1, ν is a (K× 1) constant intercept term,
α is a (K× r) loading matrix of rank r, β is a (K× r) cointegration matrix of rank r, and Γ1, . . . , Γp−1

are (K× K) coefficient matrices (see also Johansen 1995).
The reduced-form residuals ut are white noise, that is, ut is serially uncorrelated with mean zero

but may have time-varying second moments. In other words, ut may be heteroscedastic or conditionally
heteroscedastic. The structural shocks, denoted by εt, are obtained from the reduced-form residuals
by a linear transformation εt = B−1ut or Bεt = ut. The (K× K) transformation matrix B is assumed
to be such that the structural shocks are instantaneously uncorrelated. Hence, E(εtε

′
t) = Σεt is a

diagonal matrix.
Substituting Bεt for ut in (1), the matrix B is easily recognized as the matrix of impact effects of the

structural shocks. Thus, imposing restrictions directly on the impact effects means putting restrictions
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on the elements of B. Typically, zero restrictions are imposed on B, which implies that certain variables
do not respond instantaneously to a shock.

The long-run effects of the shocks are easily obtained through the Granger–Johansen
representation (see Johansen (1995, Theorem 4.2)) of yt corresponding to (1),

yt = Ξ
t

∑
i=1

ui + Ξ∗(L)ut + δt + y∗0 , (2)

where

Ξ = β⊥

[
α′⊥

(
IK −

p−1

∑
i=1

Γi

)
β⊥

]−1

α′⊥, (3)

Ξ∗(L)ut is a stationary process, δt contains deterministic terms, and y∗0 represents initial conditions.
In (3), β⊥ and α⊥ are (K× (K− r)) dimensional orthogonal complements of the (K× r) dimensional
matrices β and α, respectively. If the cointegration rank r is zero, the orthogonal complement matrices
are replaced by (K× K) identity matrices so that the long-run effects matrix becomes

Ξ =

(
IK −

p−1

∑
i=1

Γi

)−1

. (4)

The corresponding long-run effects of the structural shocks are given by ΞB. Since α and β have
rank r, their orthogonal complements have rank K − r, implying that Ξ also has rank K − r, and
the same holds for ΞB because B is an invertible matrix of full rank K. For a given reduced-form
matrix Ξ, restrictions on ΞB imply restrictions for B and, hence, can help identify the structural shocks.
The reduced rank of the long-run effects matrix implies that there can be at most r shocks without
any long-run effects, corresponding to r columns of zeros of ΞB. In other words, only r shocks can
be purely transitory. Another side effect of the reduced rank of ΞB is, however, that simply counting
zero restrictions is not enough to assess identification of the structural matrix B, as we will see in our
empirical application in Section 4.

This setup for identifying structural shocks in VAR models was proposed by King et al. (1991).
Introductory treatments are given by Lütkepohl (2005, chp. 9) and Kilian and Lütkepohl (2017, chp. 10).
An advantage of the structural VECM setup is that only the cointegration rank is needed, which
implies the rank of the long-run effects matrix ΞB. Knowing that rank, the structural shocks can be
properly specified through long-run restrictions. Typically the actual cointegration relations are not
needed. Thus, pretesting for specific cointegration relations and even knowing the precise order of
integration of specific variables is not necessary, as long as the cointegration rank is known.

There are a number of situations of special interest. For r = 0, the matrix of long-run effects ΞB
is of full rank K and, hence, cannot have zero columns. Thus, for r = 0, all K structural shocks have
some long-run effects. If the cointegrating rank is zero, the VECM (1) reduces to a VAR model in
first differences,

∆yt = ν + Γ1∆yt−1 + · · ·+ Γp−1∆yt−p+1 + ut,

for which the accumulated long-run effects on the ∆yt are known to be

(
IK −

p−1

∑
i=1

Γi

)−1

B.

The accumulated effects on the first differences are just the long-run effects on the levels yt, of course.
This case was considered by Blanchard and Quah (1989), and the estimation of the structural
parameters, i.e., the B matrix, is particularly easy for this case (e.g., Lütkepohl (2005, chp. 9)).
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If some of the components of yt are I(0), the long-run effects matrix Ξ and, hence, also ΞB,
has corresponding rows of zero elements because a stationary variable is not affected permanently by
a shock. Formally, that can be seen by dividing up the vector

yt =

[
yn

t
ys

t

]
,

where all components of the (Kn × 1) vector yn
t are I(1) and all components of the (Ks × 1) vector ys

t
are I(0). In this case there exists a cointegration matrix of the form

β =

[
β(11) 0Kn×Ks

0Ks×(r−Ks) IKs

]
,

where β(11) is a (Kn × (r− Ks)) matrix and 0M×N denotes a (M× N) zero matrix. Thus, there exists
an orthogonal complement of β such that

β⊥ =

[
β
(1)
⊥

0Ks×(K−r)

]
.

Hence, the last Ks rows of Ξ are rows of zeros.
There are alternative proposals for imposing long-run restrictions for identifying structural

shocks in VARs. Examples are proposals by Gonzalo and Ng (2001); Fisher et al. (2000),
and Pagan and Pesaran (2008). Fisher and Huh (2014) review the literature and discuss the relations
between alternative approaches.

3. Structural VAR Models with Changes in Volatility

If the reduced-form residuals ut are heteroscedastic or conditionally heteroscedastic, this
property can be used for identification purposes. We use the approach of Lanne et al. (2010) and
Herwartz and Lütkepohl (2014), who proposed a Markov-switching (MS) mechanism for modelling
volatility changes in this context. They assumed that the distribution of the error term ut depends on a
discrete Markov process st, such that

ut|st ∼ (0, Σu(st)). (5)

The Markov process st has states 1, . . . , M and transition probabilities

pij = Pr(st = j|st−1 = i), i, j = 1, . . . , M.

Note that only the residual covariance matrices depend on the state st, whereas the VAR slope
parameters are not state dependent. The model captures conditional heteroscedasticity of a quite
general form.

The second-moment structure can be used for structural identification if the covariance matrices
can be decomposed such that

Σu(1) = BB′, Σu(m) = BΛmB′, m = 2, . . . , M, (6)

where the Λm are (K × K) diagonal matrices. In that case, the matrix B can be used to obtain the
structural shocks from the reduced-form residuals, and B is identified if the following condition holds,
where λjk denotes the kth diagonal element of Λj:

∀k, l ∈ {1, . . . , K} ∃j ∈ {2, . . . , M} such that λjk 6= λjl . (7)
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If M = 2, the condition means that the diagonal elements of Λ2 must all be distinct. Generally, the
condition requires that there is sufficient heterogeneity in the volatility changes across the shocks. If this
condition is satisfied, B is unique up to column sign changes and column permutations. In other words,
using this B matrix for computing the structural shocks from the reduced-form residuals, only the sign
and positioning of the shocks remain undetermined. Note, however, that this identification approach
relies on the assumption that the impact effects of the shocks remain time-invariant and only the
variances change over time.

Assuming a normal conditional distribution for ut|st, the model can be estimated by Gaussian
maximum likelihood (ML) using the algorithm described by Herwartz and Lütkepohl (2014). It may
be useful to estimate the cointegration matrix β in a first step and keep it fixed in the subsequent
optimisation of the log-likelihood with respect to the remaining parameters, including the transition
probabilities. Computing the Gaussian ML estimates can be a challenge for larger models with many
variables, autoregressive lags, or volatility states.

The fact that the model assigns the volatility regimes endogenously is appealing. Hence, the
researcher can estimate the volatility states rather than having to know or assume them. We use the
model in our empirical application, which is discussed in the next section.

4. Monetary Policy and the Stock Market in Europe

A five-dimensional VAR model for the euro area with variables yt = (qt, pt, ct, st, rt)′ is considered,
where qt is the log of an industrial production index, pt denotes the log of the harmonized index of
consumer prices (HICP), ct is a log non-energy commodity price index, st is the log of the real Euro
Stoxx 50 stock price index, and rt denotes the 3 month Euribor. The set of variables corresponds to the
system used by Bjørnland and Leitemo (2009) for analysing the relation between monetary policy and
the stock market in the US. We use monthly data for the period 1999M1–2014M12 and, hence, avoid
the period of quantitative easing in the eurozone. Further details on the variables and data sources are
given in the appendix, and the time series are plotted in Figure 1.

1999 2004 2009 2014
4.5

4.6

4.7

q t

1999 2004 2009 2014
4.2

4.4

4.6

p t

1999 2004 2009 2014
3

4

5

c t

1999 2004 2009 2014
3

3.5

4

4.5

s t

1999 2004 2009 2014
0

5

10

r t

Figure 1. Time series used in the empirical study for sample period 1999M1–2014M12.
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Given the substantial impact of the financial crisis in 2008 following the collapse of Lehman
Brothers, one may wonder whether a time-invariant VAR or VECM is appropriate for the full sample
period. We have therefore fitted VAR(2) models for yt = (qt, pt, ct, st, rt)′, where all or some of the
coefficients are allowed to vary over time. The time-variation is governed by a two-state MS mechanism.
Some models are compared in Table 1, using standard model selection criteria. The abbreviations
used in Table 1 follow those proposed by Krolzig (1997), that is, MSIAH stands for a VAR model
with time-varying intercept, VAR slope coefficients, and error covariance matrix; MSIH abbreviates
a model where only the intercept vector and the error covariance matrix are allowed to vary; and
MSH signifies a model with time-invariant intercept and VAR slope coefficients but varying error
covariance matrix. In all cases, two Markov states are used, which is indicated in parentheses behind
the model abbreviation. A lag order of p = 2 is suggested by the Akaike information criterion (AIC),
the Schwarz Criterion (SC), and the Hannan–Quinn criterion (HQ) (see Lütkepohl (2005, sct. 4.3)) for a
time-invariant VAR process for the full sample period. Thus, in Table 1, for example, VAR(2)-MSH(2)
signifies a VAR model of order 2 with 2 possible error covariance regimes and time-invariant intercept
and VAR slope coefficients. It turns out that such a model is favoured by the SC and HQ model
selection criteria, while AIC favours a fully flexible model. Provided the quantitative easing period is
excluded from the sample, it is reasonable to believe that the monetary policy regime has not changed.
With that in mind, and taking into account the preferences of the SC and HQ criteria, we use the model
with time-invariant intercepts and slope coefficients and allow for a time-varying error covariance
matrix only in the following. We decompose the covariance matrices such that time-invariant impact
effects and time-invariant impulse responses are identified.

Table 1. Comparison of Markov-switching vector autoregressive models for yt = (qt, pt, ct, st, rt)
′.

Model Log L AIC SC HQ

VAR(2) 2514.761 −4889.522 −4662.230 −4797.449
VAR(2)-MSIAH(2) 2668.241 −5052.483 −4591.405 −4858.779
VAR(2)-MSIH(2) 2617.071 −5050.142 −4750.452 −4928.766
VAR(2)-MSH(2) 2611.456 −5048.912 −4766.421 −4934.479

Note: L—Gaussian likelihood, AIC = −2 log L + 2× number of free parameters, SC = −2 log L + log T×
number of free parameters, HQ = −2 log L + 2× number of free parameters× log(log T). MSIAH—model
with time-varying intercept, VAR slope coefficients and error covariance matrix; MSIH—model with
time-varying intercept and error covariance matrix; MSH—model with time-varying error covariance matrix
but time-invariant intercept and VAR slope coefficients.

Based on conventional ADF tests, all five variables are classified as I(1) variables. Thus, there may
be cointegration among the variables, which is worth taking into account in our structural analysis.
Since the VAR(2)-MSH(2) model, and thus a model with conditional heteroscedasticity, was favoured in
the previous analysis, we base tests for the cointegration rank on Johansen’s (1995) cointegration rank
tests robustified for conditional heteroscedasticity by generating the p-values with a wild bootstrap
algorithm, as proposed by Cavaliere et al. (2010) and further investigated by Cavaliere et al. (2018).
The results are presented in Table 2 and suggest a cointegration rank of r = 2 if a 5% significance level
is used. Thus, we consider a VECM(1) with one lag of the differenced variables (i.e., p− 1 = 1) and
cointegration rank r = 2 for our structural analysis.
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Table 2. Testing for the cointegration rank of a VECM(1) with intercept for yt = (qt, pt, ct, st, rt)
′.

H0 LR Statistic p-Value

r = 0 70.570 0.036
r ≤ 1 59.559 0.001
r ≤ 2 20.539 0.081
r ≤ 3 6.227 0.482
r ≤ 4 0.248 0.978

Note: p-values are computed using Algorithm 1 of Cavaliere et al. (2010) with 1000 bootstrap replications.

One advantage of imposing long-run restrictions on the long-run effects matrix ΞB obtained
via the Granger–Johansen representation is that we do not have to take a stand on the exact
cointegration relations, we just need to know the cointegration rank of the model. Imposing
only the rank restriction is also in line with the original ideas behind structural VAR modelling,
which imposes as few restrictions as possible. In this context, it is perhaps worth mentioning
that Bjørnland and Leitemo (2009) considered a system yt = (qt, ∆pt, ∆ct, ∆st, rt)′ for US data which
effectively assumes that there is no cointegration between the variables pt, ct and st so that these
variables can be included in first differences. Although we do not want to reconsider the issue for
US data here, it may be worth checking whether a setup with ∆pt, ∆ct, and ∆st instead of the levels
variables can be used for European data as well, or whether the variables are potentially cointegrated.
In Table 3, we present the results of cointegration rank tests and find clear evidence of cointegration
between pt, ct, and st. Thus, the precise model specification used by Bjørnland and Leitemo (2009)
would be difficult to defend for our European data, and we use the VECM(1) model with cointegration
rank r = 2 in the following. Another point worth emphasising is that this choice even accommodates
the possibility that there are stationary variables in the model. For example, if there is a suspicion that
the unit root tests have indicated unit roots just because of lack of power, this may be accommodated
in our VECM setup as long as the cointegration tests indicate the cointegration rank adequately.

Table 3. Testing for the cointegration rank of a VECM(1) with intercept for yt = (pt, ct, st)
′.

H0 LR Statistic p-Value

r = 0 53.90 0.001
r ≤ 1 0.928 0.999
r ≤ 2 0.157 0.984

Note: p-values are computed using Algorithm 1 of Cavaliere et al. (2010) with 1000 bootstrap replications.
The lag order of the VECM is suggested by HQ and SC.

Based on the previous MS analysis we fit a volatility model of the type discussed in Section 3 with
two states of the Markov process. The model is referred to as a VECM(1)-MSH(2) in the following.
Given our small sample size, considering more volatility states is unreasonable.1 The AIC, HQ,
and SC values of a VECM(1) model without allowing for heteroscedasticity and a VECM(1)-MSH(2)
model are shown in Table 4. They clearly signal that allowing for conditional heteroscedasticity
improves the model fit. The values of all three model selection criteria are substantially smaller than
the corresponding values for the model without heteroscedasticity. In other words, the second-moment
structure may well provide useful identifying information for the structural shocks.

1 We also tried a Markov process with M = 3 volatility states but failed to get reasonable Gaussian ML estimates.
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Table 4. Comparison of VECMs for yt = (qt, pt, ct, st, rt)
′.

Model Log L AIC SC HQ

VECM(1) 2505.139 −4888.278 −4690.210 −4966.639
VECM(1)-MSH(2) 2595.154 −5034.308 −4781.040 −5134.507

Note: L—Gaussian likelihood, AIC = −2 log L + 2× number of free parameters, SC = −2 log L + log T×
number of free parameters, HQ = −2 log L + 2× number of free parameters× log(log T).

In Figure 2, the smoothed state probabilities of the VECM(1)-MSH(2) model are presented.
They show that the two volatility regimes change frequently throughout the sample period so that
guessing the change points reliably would be difficult for a researcher. Hence, using a model which
allows for endogenously assigned volatility changes is clearly an advantage over a model where the
volatility states have to be prespecified by the researcher.

1999 2004 2009 2014
0

0.5

1

State 1

1999 2004 2009 2014
0

0.5

1

State 2

Figure 2. Smoothed state probabilities of VECM(1)-MSH(2) model.

To explore the identification issue, we have to consider the diagonal elements of Λ2,
which represent the variances of the structural shocks in the second volatility state relative to the
first state, as explained in Section 3. They are displayed in Table 5, together with estimated standard
errors. Four of the five estimated relative variances of the structural shocks in the second state are
smaller than 1. Hence, most structural shocks have smaller variance in the second than in the first state.
In other words, the second state captures potentially periods of lower volatility. From Figure 2, it can
be seen that the first regime is associated with the period around the turn of the millennium, where the
internet bubble burst, and with the period 2008/2009, where the financial crisis started. These events
may have generated higher volatility in some of the structural shocks. Note, however, that at this point
it is difficult to associate any of the shocks identified through heteroscedasticity with economic shocks
of interest because the ordering of the shocks is arbitrary. Therefore, it is difficult to argue that specific
economic shocks are more volatile in state 1.

For the identification of the shocks through heteroscedasticity, the diagonal elements of Λ2 have
to be distinct. Although the estimated diagonal elements are all distinct, the estimation uncertainty
reflected in the standard errors is rather high and, hence, the true underlying quantities may not be
distinct. This uncertainty in the estimates is not surprising given the relatively small sample size.
However, some of the standard errors are quite small compared to the corresponding estimates of the
relative variances, so it is reasonable to assume that at least some of the diagonal elements of Λ2 are
distinct. Thus, there is at least some identifying information in the second moments which may be
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sufficient to discriminate between competing conventional identification schemes. We emphasise that
for this to hold, it is not necessary that all the λ2i are distinct.

Table 5. Estimated relative variances of VECM(1)-MSH(2) model for yt = (qt, pt, ct, st, rt)
′.

Relative Variance Estimate Estimated Standard Error

λ21 1.557 0.587
λ22 0.765 0.294
λ23 0.479 0.186
λ24 0.024 0.007
λ25 0.202 0.075

We are primarily interested in a monetary policy shock and a stock market shock.
Therefore, we place these shocks in the last two positions of εt, that is, εt = (ε1t, ε2t, ε3t, εsm

t , ε
mp
t )′.

In other words, the stock market shock, εsm
t , is the fourth shock, and the monetary policy shock, ε

mp
t ,

is last. The other components of εt are left unspecified and represent other shocks to the economy.
We consider the two alternative identification schemes in Table 6. Since we have a cointegration

rank r = 2, the rank of ΞB is K − r = 3. Thus, there can be two columns of zeros in the long-run
effects matrix ΞB. The first identification scheme in Table 6 assumes that both the stock market shock
and the monetary policy shock are purely transitory and, hence, do not have any long-run effects on
any of the variables. The two shocks are distinguished by the assumption that εsm

t does not affect the
commodity price index instantaneously, but only with some delay. Hence, there is a corresponding
zero in the third row of B. The long-run restrictions may be justified by the notion that the effects
of monetary policy and stock market shocks should be transitory. In a conventional VAR analysis,
effects of these shocks on the macroeconomic variables vanish over time (see Christiano et al. 1999;
Bjørnland and Leitemo 2009). The restriction on the short-run effect is needed to distinguish the two
shocks, which are both neutral in the long run, and it is part of the identification schemes used
by Christiano et al. (1999), Bjørnland and Leitemo (2009), and others for US data. Note also that no
restrictions are imposed on the first three columns of B and ΞB so that the first three shocks are
identified purely by the volatility changes. Since we are not interested in them, we did not ensure that
they have economic interpretations.

Table 6. Identification schemes for yt = (qt, pt, ct, st, rt)
′.

Scheme B ΞB

(1)


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ 0 ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗



∗ ∗ ∗ 0 0
∗ ∗ ∗ 0 0
∗ ∗ ∗ 0 0
∗ ∗ ∗ 0 0
∗ ∗ ∗ 0 0



(2)


∗ 0 0 0 0
∗ ∗ 0 0 0
∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗



∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ 0
∗ ∗ ∗ ∗ ∗



The second identification scheme is due to Bjørnland and Leitemo (2009), who used it for US
data. They were also primarily interested in the last two shocks, and arbitrarily identified the first
three shocks by imposing a recursive structure on their contemporaneous impact effects, which is seen
by the recursive structure of the zero entries in the first three columns of B. Again, the last shock is
specified as monetary policy shock. It is assumed to have no long-run impact on stock prices, and this
distinguishes the shock from the stock market shock. Both shocks are assumed to have no impact
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effects on industrial production, the price level, and the commodity price index. This assumption
reflects the belief that these variables move slowly in response to εsm

t and ε
mp
t . There are no further

long-run restrictions.
The two identification schemes differ not only in the way they identify the shocks of interest.

While the first scheme relies primarily on long-run restrictions, the second scheme imposes most
restrictions on the impact effects. Without heteroscedasticity, Scheme (1) is under-identified and the
second scheme is just-identified. Thus, in the absence of heteroscedasticity, they cannot be compared
with statistical tests without further assumptions. However, assuming that the shocks are already
identified by the second-moment structure, the zero restrictions on B and ΞB are over-identifying and
can be tested by standard likelihood ratio (LR) tests.

The results of such tests are presented in Table 7, where the alternative is a model that is purely
identified by heteroscedasticity and has no zero restrictions on B or ΞB. In addition to the value of the
LR statistic, the assumed degrees of freedom of the χ2 limiting distributions are presented on which
the p-values are based. For both tests, the number of degrees of freedom is determined under the
assumption that the structural matrix B is fully identified by heteroscedasticity. The number of degrees
of freedom for testing Scheme (1) is 7 because, for r = 2, the long-run effects matrix ΞB has rank
K− r = 3 and, hence, each column of zeros counts for three independent restrictions only. In other
words, the columns of the matrix ΞB can be represented as a linear combination of three basis vectors.
A zero column is obtained if the basis vectors are multiplied by zero coefficients. Thus, each of the two
columns of zeros is obtained by restricting the three weights of the basis vectors to zero. Hence, the 10
zero coefficients in the last two columns of the long-run effects matrix in Scheme (1) count for six
restrictions only. In addition, there is one zero restriction on the impact effects matrix B.

Table 7. Tests of identification schemes.

H0 LR Statistic Degrees of Freedom p-Value

Scheme (1) 62.494 7 4.787× 10−11

Scheme (2) 18.807 10 0.043

For Scheme (1), the p-value of the LR test is less than 1%, so Scheme (1) is rejected at any
conventional significance level. This also indicates that there must be identifying information in
the second-moment structure because the H0 model is not identified by the zero restrictions alone.
Thus, the heteroscedastic structure has identifying power. However, since the evidence of all relative
variances being distinct in Table 5 is weak, there is of course the possibility that the structure is only
partially identified by heteroscedasticity. In that case, the degrees of freedom of the LR tests in Table 7
may be smaller than assumed in the table, implying that the p-values would be even smaller than
those in the table.

Considering the second p-value in Table 7, Identification Scheme (2) cannot be rejected at a
1% level, although its p-value is slightly below 5%, at least if a χ2 distribution with 10 degrees
of freedom is used as reference. This outcome is interesting because, in a related study based on
identification through heteroscedasticity, Lütkepohl and Netšunajev (2017a) found strong evidence
against the restrictions for the US. Admittedly, this evidence is based on a quite different sample period.
Moreover, Bertsche and Braun (2018) did not confirm this result with a different volatility model. However,
Lütkepohl and Netšunajev (2017b) also found an implausible reaction of the inflation rate to a monetary
policy shock for the US. Thus, it is instructive to see the responses of the variables to the two shocks of
interest for our European model when Identification Scheme (2) is used.

The estimated impulse responses with ± one standard error bootstrap confidence intervals are
shown in Figure 3. The confidence intervals have a 68% level in a Gaussian environment. The standard
errors are estimated with a fixed-design wild bootstrap conditioning on the transition probabilities,
as proposed in Herwartz and Lütkepohl (2014) and also used in Lütkepohl and Netšunajev (2017a).
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Figure 3. Responses to stock market and monetary policy shocks with ± one standard error confidence
intervals for Identification Scheme (2).

The responses of the variables to both shocks are quite plausible. A stock market shock
is followed by increases in all other variables, although these upswings occur with some delay.
This is in line with the studies by Bjørnland and Leitemo (2009) and Li et al. (2010) for the US.
The increase in output and inflation is consistent with the view that a rise in stock prices increases
consumption (Beaudry and Portier 2006) through a wealth effect and investment through a Tobin Q
effect, thus inducing aggregate demand to increase. Due to nominal rigidities, prices react slowly,
and inflation as well as commodity prices rise in the intermediate run. The response of the interest rate
may be explained by the behaviour of an inflation-targeting central bank which is increasing interest
rates to combat the inflationary pressure of a high aggregate demand.

A contractionary monetary policy shock, induced by an increase in the interest rate, reduces industrial
production, the price level, and commodity prices with some delay. Similar to Peersman and Smets (2001)
and Ehrmann et al. (2003), we do not find any price puzzle and observe long-run effects on prices.
The shock leads to a long-lasting downturn of the stock index after a monetary policy tightening.
This is in line with results of Bjørnland and Leitemo (2009) for the US, but the effect for the euro
area is not as pronounced as in their study. Even though there is mixed evidence regarding the
influence of monetary policy on industry- or country-level stock returns in Europe, most of the
studies agree on a negative relation between ECB monetary policy and aggregate stock returns
in the euro area (Kholodilin et al. 2009; Alessi and Kerssenfischer 2016; Fausch and Sigonius 2018).
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Clearly, our results support those previous findings which show that the policy of the ECB has a
substantial impact on the stock market in Europe.

5. Conclusions

We have constructed a five-dimensional cointegrated structural VAR model for monthly euro
area variables for the period 1999M1–2014M12 to study the relation between monetary policy and the
stock market. The period of quantitative easing is explicitly excluded because it may be regarded as a
new monetary policy regime. We allowed for conditional heteroscedasticity in the data and modelled
volatility changes by a Markov-switching mechanism. Heteroscedasticity was used to disentangle a
stock market and a monetary policy shock. Conventional identification restrictions on the impact and
long-run effects of the structural shocks that have been used for a similar model for the US are found
to be roughly consistent with the second-moment structure of the variables for our sample period,
while an alternative identification scheme is strongly rejected.

The impulse responses for the maintained identification scheme are economically plausible
and, in particular, production and price level go down after a contractionary monetary policy shock.
Although the long-run impact of a monetary policy shock on stock prices is restricted to be neutral,
such a shock is found to have a rather long-lasting negative impact on the stock market.
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Appendix A. Variables and Data Sources

The industrial production index is seasonally adjusted and obtained from the ECB Statistical Data
Warehouse. The harmonized index of consumer prices (HICP) is also seasonally adjusted and obtained
from Eurostat. The non-energy commodity price index is obtained from the World Bank. The Euro
Stoxx 50 stock price series is obtained from www.stoxx.com and deflated by the consumer price
index to measure real stock prices. Finally, the 3 month Euribor is obtained from the ECB Statistical
Data Warehouse.
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