
Chotikapanich, Duangkamon; Griffiths, William E.; Hajargasht, Gholamreza;
Karunarathne, Wasana; Rao, D. S. Prasada

Article

Using the GB2 income distribution

Econometrics

Provided in Cooperation with:
MDPI – Multidisciplinary Digital Publishing Institute, Basel

Suggested Citation: Chotikapanich, Duangkamon; Griffiths, William E.; Hajargasht, Gholamreza;
Karunarathne, Wasana; Rao, D. S. Prasada (2018) : Using the GB2 income distribution,
Econometrics, ISSN 2225-1146, MDPI, Basel, Vol. 6, Iss. 2, pp. 1-24,
https://doi.org/10.3390/econometrics6020021

This Version is available at:
https://hdl.handle.net/10419/195459

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

  https://creativecommons.org/licenses/by/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.3390/econometrics6020021%0A
https://hdl.handle.net/10419/195459
https://creativecommons.org/licenses/by/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


econometrics

Review

Using the GB2 Income Distribution

Duangkamon Chotikapanich 1, William E. Griffiths 2,* ID , Gholamreza Hajargasht 3,
Wasana Karunarathne 2 and D. S. Prasada Rao 4

1 Monash Business School, Monash University, Melbourne VIC 3145, Australia;
duangkamon.chotikapanich@monash.edu

2 Department of Economics, University of Melbourne, Melbourne VIC 3010, Australia;
lakminik@unimelb.edu.au

3 Department of Accounting, Economics and Finance, Swinburne University of Technology,
Hawthorn VIC 3122, Australia; rhajargasht@swin.edu.au

4 School of Economics, University of Queensland, St. Lucia QLD 4072, Australia; d.rao@uq.edu.au
* Correspondence: wegrif@unimelb.edu.au

Received: 9 February 2018; Accepted: 4 April 2018; Published: 18 April 2018
����������
�������

Abstract: To use the generalized beta distribution of the second kind (GB2) for the analysis of income
and other positively skewed distributions, knowledge of estimation methods and the ability to
compute quantities of interest from the estimated parameters are required. We review estimation
methodology that has appeared in the literature, and summarize expressions for inequality, poverty,
and pro-poor growth that can be used to compute these measures from GB2 parameter estimates.
An application to data from China and Indonesia is provided.

Keywords: inequality; poverty; pro-poor growth; GMM estimation

JEL Classification: I32; O15; C13

1. Introduction

Specification and estimation of parametric income distributions has a long history in
economics. Much of the literature on alternative distributions can be accessed through the book by
Kleiber and Kotz (2003), and the papers in Chotikapanich (2008). A series of papers by McDonald and
his coauthors (McDonald 1984; McDonald and Xu 1995; Bordley et al. 1997; McDonald and Ransom 2008;
McDonald et al. 2011) carry details of many of the distributions and the relationships between
them. Our focus in this paper is on the generalized beta distribution of the second kind (GB2).
It is a four-parameter distribution defined over the support (0, ∞), and obtained by transforming
a standard beta random variable defined on (0, 1). As described by McDonald and Xu (1995), it
nests many popular three-parameter specifications of income distributions including the generalized
gamma, beta2, Singh-Maddala and Dagum distributions. Two-parameter special cases of these
distributions include the lognormal, gamma, Weibull, Lomax and Fisk distributions.1 Parker (1999)
describes a model of firm optimizing behavior that leads to a GB2 distribution for earnings.
Applications have appeared in Butler and McDonald (1986), Cummins et al. (1990), Feng et al. (2006),
Jenkins (2009), Graf and Nedyalkova (2014), and Jones et al. (2014). Biewen and Jenkins (2005) analyze
poverty differences using Singh-Maddala and Dagum distributions, with parameters as functions of
personal household characteristics, and with their choice between the Singh-Maddala and Dagum

1 McDonald and Xu (1995) and McDonald and Ransom (2008) also consider a five-parameter generalized beta distribution
which nests the GB2 and a GB1 distribution.
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distributions based on preliminary estimates of GB2 distributions. Quintano and D’Agostino (2006)
use the Dagum distribution and the Biewen-Jenkins methodology to examine the dependence of
inequality and poverty on personal characteristics. In an extensive study examining global inequality,
Chotikapanich et al. (2012) estimate special case beta2 distributions for 91 countries in 1993 and
2000. In an application involving 10 regions, Hajargasht and Griffiths (2013) find that the GB2
distribution compares favorably with the four-parameter double Pareto-lognormal distribution in
terms of goodness-of-fit.

Estimation of a good-fitting parametric income distribution such as the GB2 facilitates further
analysis. Once important quantities such as mean income, the Gini coefficient, the Lorenz curve, and
the headcount ratio have been expressed in terms of the parameters of the distribution, they can be
readily estimated from those parameters. If interest centers on a region which comprises a collection
of countries or areas, a GB2 distribution can be estimated for each country/area; inequality, poverty
and pro-poor growth for the region can be analyzed by computing estimates of indicators expressed
in terms of the parameters of a regional distribution which will be a population-weighted mixture of
the GB2 distributions. If only grouped data are available, then estimating a distribution such as the
GB2 provides a means for accommodating within-group variation, an important consideration for
assessing inequality and poverty.

The purpose of this paper is to collect results on measures for inequality, poverty, and pro-poor
growth, expressed as functions of the parameters of the GB2 distribution and its mixtures, and to
summarize various methods of estimation that have appeared in the literature for estimating GB2
parameters from single observations or from grouped data. Expressions for the inequality, poverty,
and pro-poor growth measures are given in Section 2. Section 3 contains a description of the various
estimation techniques. The results from an application to 4 years of data for China and Indonesia are
presented in Section 4. Some concluding remarks are offered in Section 5.

2. Inequality and Poverty Measures from the GB2 Distribution

Throughout we assume that income Y for a given country or area, can be represented by a GB2
distribution whose probability density function (pdf) is given by

f (y|a, b, p, q) =
ayap−1

bapB(p, q)
(

1 +
( y

b
)a
)p+q y > 0 (1)

where a > 0, b > 0, p > 0 and q > 0 are its parameters and B(p, q) =
∫ 1

0 tp−1(1− t)q−1dt is the beta
function. The cumulative distribution function (cdf) corresponding to (1) is given by

F(y|a, b, p, q) =
1

B(p, q)

w∫
0

tp−1(1− t)q−1dt = B(w|p, q) (2)

where w = (y/b)a/
[
1 + (y/b)a]. The function B(w|p, q) is the cdf for the normalized beta distribution,

defined on the (0, 1) interval, with parameters p and q, and evaluated at w. It is a convenient
representation because both it, and its inverse, are commonly included as readily-computed functions
in statistical software. Properties of the GB2 distribution and its special cases have been considered
extensively by McDonald (1984) and Kleiber and Kotz (2003). Three-parameter special cases, which
have been popular in the literature, are the Singh-Maddala distribution2 where p = 1, the Dagum
distribution where q = 1, and the beta2 distribution where a = 1. Extension to a 5-parameter GB
distribution has been considered by McDonald and Xu (1995) and McDonald and Ransom (2008).

2 The Singh-Maddala distribution is also commonly known as the Burr distribution, and has been described using a variety of
other names. See (Kleiber and Kotz 2003, p. 198).
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Some further properties of the GB2 distribution are described by Graf and Nedyalkova (2014). In this
section, we summarize the main results from the GB2 distribution that are relevant for computing
measures of inequality, poverty and pro-poor growth.

We envisage a scenario where GB2 distributions have been estimated for a number of countries,
or for specific areas within a country such as urban and rural, and the objective is to evaluate inequality
and poverty measures using the estimated parameters of the GB2 distributions. As well as evaluation
of the measures from single GB2 distributions, we are interested in evaluating them for mixtures that
arise when urban and rural GB2 distributions are combined to obtain a distribution for a country,
or when country GB2 distributions are combined to obtain the distribution for a region. In most
instances, we can express measures in terms of quantities such as beta and gamma functions that are
readily computed by available software. Measures whose exact computation proves to be difficult
can usually be written in terms of expectations which can be estimated by averaging values of the
function over simulated draws from one or more of the GB2 distributions. Key quantities that are
used for calculation of many measures, and for estimation of GB2 distributions, are the GB2 moments
and moment distribution functions. We begin by giving expressions for them, as well as indicating
how the GB2 Lorenz curve can be obtained. We then consider measures for inequality, poverty and
pro-poor growth.

The k-th moment of the GB2 exists for −ap < k < aq and is given by

µ(k) = E
(

Yk
)

= bkB(p+k/a,q−k/a)
B(p,q)

= bkΓ(p+k/a)Γ(q−k/a)
Γ(p)Γ(q)

(3)

where Γ(·) is the gamma function. The k-th moment distribution function for the GB2 is given by3

Fk(y|a, b, p, q) = 1
µ(k)

y∫
0

tk f (t)dt

= F(y|a, b, p + k/a, q− k/a)

This result—that the GB2’s moment distribution functions can be written in terms of its cdf
evaluated at different parameter values—is particularly useful for deriving the Lorenz curve and
for setting up and computing GMM estimates from grouped data. The Lorenz curve, relating the
cumulative proportion of income η to the cumulative proportion of population u is given by

η(u) = F1
[
F−1(u|a, b, p, q)

∣∣a, b, p, q
]

= F
[
F−1(u|a, b, p, q)

∣∣a, b, p + 1/a, q− 1/a
]

= B
[
B−1(u|p, q)

∣∣p + 1/a, q− 1/a
]

0 < u < 1

where the function B(·|·, ·) is defined in Equation (2).

2.1. Inequality Measures

2.1.1. Gini Coefficient

The most widely used inequality measure is the Gini coefficient. McDonald (1984) and
McDonald and Ransom (2008) use hypergeometric functions to express the Gini coefficient in terms of
the GB2 parameters. An algorithm for computing these functions has been proposed by Graf (2009).
It has been our experience that it is easier computationally to compute the Gini coefficient via numerical
integration than to numerically evaluate the hypergeometric functions. Another alternative is to

3 See, for example, (Butler and McDonald 1989).
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estimate the Gini coefficient by simulating from the GB2 distribution. Specifically, noting that the Gini
coefficient is given by

G = −1 + 2
µ

∞∫
0

yF(y|φ) f (y|φ)dy

= −1 + 2
µE[yF(y|φ)]

where µ = µ(1) = E(y) = b[Γ(p + 1/a)Γ(q− 1/a)]/[Γ(p)Γ(q)] and φ′ = (a, b, p, q), we can draw
observations (y1, y2, . . . , yM) from f (y|φ) and estimate G from

Ĝ = −1 +
2
µ

1
M

M

∑
m=1

ymF(ym|φ)

The number of draws M can be made as large as necessary to achieve the derived level of accuracy.
To draw observations from f (y|φ), we first draw observations (w1, w2, . . . , wM) from a standard
beta (p, q) distribution, defined on the (0, 1) interval, and then compute ym = b[wm/(1− wm)]

1/a.
If interest centers on one of the special case distributions where p = 1, q = 1 or a = 1, then closed form
expressions in terms of gamma or beta functions are available for the Gini coefficient. They are

Beta2 a = 1 G = 2B(2p,2q−1)
2B2(p,q)

Singh–Maddala p = 1 G = 1− Γ(q)Γ(2q−1/a)
Γ(q−1/a)Γ(2q)

Dagum q = 1 G = Γ(p)Γ(2p+1/a)
Γ(2p)Γ(p+1/a) − 1

Suppose now we have estimated GB2 income distributions for a number of different areas, such as
countries within a region or urban and rural areas within a country, and we are interested in estimating
the Gini coefficient for the combined area. The combined income distribution can be written as a
population-weighted mixture of the individual GB2 distributions. That is,

f (y|Φ) =
J

∑
j=1

λj f
(

y
∣∣∣φj

)
(4)

where Φ =
(
φ1,φ2, . . . ,φJ

)
, λj is the proportion of the combined population in area j, and

φ′ j =
(
aj, bj, pj, qj

)
is the vector of parameters of the distribution for area j. As noted by

Chotikapanich et al. (2007), in this case the Gini coefficient for a combination of J areas can be
estimated from

G = −1 +
2
µC

J

∑
j=1

J

∑
`=1

λjλ`τj`

where

τj` =
1
M

M

∑
m=1

yj,mF
(
yj,m

∣∣φ`

)
µC = ∑J

j=1 λjµj is the mean of the combined areas, µj is the mean for area j, and yj,m is the m-th draw

from pdf f
(

y
∣∣∣φj

)
. For the empirical work in this paper we estimated separate distributions for rural

and urban areas in China and Indonesia, then combined them.
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2.1.2. Generalized Entropy Measures

Next we consider the generalized entropy (GE) class of inequality measures, whose expressions
in terms of the parameters of the GB2 distribution were provided by Jenkins (2009). The GE index is
given by

I(α) = 1
α(α−1)

[
µ(α)

µα − 1
]

for α 6= 0, 1 (5)

where, for the GB2 distribution, µ(α) =
∫ ∞

0 yα f (y|φ)dy is given in (3), and µα =
[
µ(1)

]α
. For large

positive α, the index I(α) is sensitive to large differences at the top of the distribution; for large negative
α, it is sensitive to differences at the bottom end of the distribution. Theoretically, α can range from
−∞ to ∞, but values between −1 and 2 are usually considered in applications. Two popular special
cases are obtained by taking limits as α→ 0 and α→ 1 . The case where α→ 0 is known as the mean
logarithmic deviation or Theil(0) (Theil 1967, p. 127). Its general expression, and the result for the GB2
distribution, are4

I(0) =
∞∫
0

log
(
µ
y

)
f (y|φ)dy

= log(µ)− E[log(y)]
= ln(µ/b)−ψ(p)/a +ψ(q)/a

where ψ(c) = d log Γ(c)/dc is the digamma function, computable by most software. The index
obtained as α→ 1 is known as Theil(1) (Theil 1967, p. 96). Its general expression, and result for the
GB2 distribution, are

I(1) =
∞∫
0

y
µ log

(
y
µ

)
f (y|φ)dy

= [E(y log(y))]/µ− logµ
= [ψ(p + 1/a)−ψ(q− 1/a)]/a + log(b/µ)

In the event that software is not available to compute the digamma function, draws (y1, y2, . . . , yM)

from f (y|φ) can be used to calculate ∑M
m=1 log(ym)/M and ∑M

m=1 ym log(ym)/M as estimators for
E[log(y)] and E[y log(y)], respectively.

The GE index for a mixture of income distributions and its decomposition into within and between
group inequality has been considered by Sarabia et al. (2017). To obtain the GE index for a region
whose income distribution is a mixture of GB2 distributions, the quantities µ(α) and µα, defined
in (5) for the GB2 distribution f (y|φ), are replaced by the corresponding moments for the mixture
distribution f (y|Φ) = ∑J

j=1 λj f
(

y
∣∣∣φj

)
given in (4). For α 6= 0, 1, the resulting index is

IC(α) = 1
α(α−1)

[
∞∫
0

(
y
µC

)α J
∑

j=1
λj f
(

y
∣∣∣φj

)
dy− 1

]

= 1
α(α−1)

[
1
µαC

J
∑

j=1
λjEj(yα)− 1

]

= 1
α(α−1)

[
∑J

j=1 λjµ
(α)
j(

∑J
j=1 λjµj

)α − 1

] (6)

4 See McDonald and Ransom (2008) or Jenkins (2009) for derivations. Equation (4) in Jenkins (2009) should read
I(1)v1/µ− logµ. Sarabia et al. (2017) give details of the Theil indices for a wide range of distributions including the GB2.
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where µ(α)j = Ej(yα) is the α-moment with respect to f
(

y
∣∣∣φj

)
, the distribution of the j-th component.

For the case where α = 0, we have

IC(0) =
∞∫
0

log
(
µC
y

) J
∑

j=1
λj f
(

y
∣∣∣φj

)
dy

= logµC −
J

∑
j=1

λjEj(log y)

where, for the GB2 distribution, Ej(log y) =
[
ψ
(

pj
)
−ψ

(
qj
)]

/aj + log
(
bj
)
. For the case where α = 1,

IC(1) =
∞∫
0

y
µC

log
(

y
µC

) J
∑

j=1
λj f
(

y
∣∣∣φj

)
dy

= 1
µC

J
∑

j=1
λjEj(y log y)− logµC

with
Ej(y log y) =

(
µj/aj

)[
ψ
(

pj + 1/aj
)
−ψ

(
qj − 1/aj

)]
+ µj log bj.

An attractive feature of the GE index from a mixture is that it decomposes into a GE measure of
inequality within the components of the mixture and a GE measure of inequality between components.
To establish this decomposition, we write the index for the j-th area as

Ij(α) =
1

α(α− 1)

µ(α)j

µαj
− 1


and note that

µ
(α)
j

µαj
= α(α− 1)Ij(α) + 1

Substituting this expression into (6) yields

IC(α) = 1
α(α−1)

{
J

∑
j=1

λj

(
µj
µC

)α[
α(α− 1)Ij(α) + 1

]
− 1

}

=
J

∑
j=1

λj

(
µj
µC

)α
Ij(α) +

1
α(α−1)

{
J

∑
j=1

λj

(
µj
µC

)α
− 1

}
= Iwith

C (α) + Ibetw
C (α)

where Iwith
C (α) = ∑J

j=1 λj

(
µj/µC

)α
Ij(α) is a weighted average of the inequalities for each area with

weights given by λj

(
µj/µC

)α
, and Ibetw

C (α) = [α(α− 1)]−1
{

∑J
j=1 λj

(
µj/µC

)α
− 1
}

is a discrete
version of the GE index for the J areas, measuring between inequality. Note that, unless α = 0 or 1,
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the weights do not sum to 1. When α = 0, the weights are the population shares λj; when α = 1,

the weights are the income shares λjµj/∑J
j=1 λjµj. The components for these two cases are

Iwith
C (0) =

J
∑

j=1
λj Ij(0)

=
J

∑
j=1

λj log
(
µj

)
−

J
∑

j=1
λjEj(log y)

Ibetw
C (0) =

J
∑

j=1
λj log

(
µC
µj

)
= logµC −

J
∑

j=1
λj logµj

Iwith
C (1) =

J
∑

j=1
λj
µj
µC

Ij(1)

= 1
µC

J
∑

j=1
λjEj(y log y)−

J
∑

j=1
λj
µj
µC

log
(
µj

)

Ibetw
C (1) =

J
∑

j=1
λj
µj
µC

log
(
µj
µC

)
=

J
∑

j=1
λj
µj
µC

log
(
µj

)
− logµC

2.1.3. Atkinson Index

The Atkinson index is an inequality index that can be viewed as an ordinal special case of a GE
index. It is given by

A(ε) = 1− 1
µ

[
µ(1−ε)

]1/(1−ε)
for 0 < ε 6= 1

A(1) = 1− exp{E(log(y))}
µ

The parameter ε reflects the degree of aversion to inequality in a social welfare function. As ε→ 0, there
is no aversion to inequality, and A(ε)→ 0 . As ε→ ∞, social welfare is increased by redistributing
income towards complete equality; A(ε)→ 1 . To compute A from the parameters of the GB2
distribution, we note that µ(1−ε) is given in Equation (3) and E[log(y)] = [ψ(p)−ψ(q)]/a− log(b).
Alternatively, and for computing AC(ε), the Atkinson index for a mixture of GB2 distributions, the
relationship between A(ε) and the GE index I(α) can be exploited. With α = 1− ε, and ε > 0, it is
given by

A(ε) = 1− [α(α− 1)I(α) + 1]1/α for 0 6= α < 1

A(0) = 1− exp{−I(0)}

2.1.4. Pietra Index

In contrast to the Gini coefficient, which is equal to twice the area between the Lorenz curve and
the line of perfect equality, the Pietra index is equal to the maximum distance between the Lorenz curve
and the perfect equality line (Kleiber and Kotz 2003), as well as twice the area of the largest triangle
within the area between the Lorenz curve and line of perfect equality (Butler and McDonald 1989).
Details of these results and an extensive analysis of the Pietra index, generally, and in terms of several
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distributions and their mixtures, can be found in Sarabia and Jordá (2014). For a single GB2 distribution,
we have

P = 1
2µ

∞∫
0
|y− µ| f (y|φ)dy

= F(µ|φ)− F1(µ|φ)

= F(µ|a, b, p, q )− F(µ|a, b, p + 1/a, q− 1/a )

For a mixture of distributions, it is given by

PC =
J

∑
j=1

λjF
(
µC|φj

)
− 1
µC

J

∑
j=1

λjµjF1

(
µC|φj

)
2.1.5. Quintile Share Ratio

Inequality is often also expressed in terms of the ratio of the income share of the richest to the
income share of the poorest in the population. Graf and Nedyalkova (2014) consider the quintile share
ratio (QSR), which is the ratio of the income share of the richest 20% relative to the income share of the
poorest 20%. For the GB2 distribution, it is given by

QSR =
1− B

[
B−1(0.8|p, q)

∣∣p + 1/a, q− 1/a
]

B[B−1(0.2|p, q)|p + 1/a, q− 1/a]

Noting that,

F1(y|Φ) = 1
µC

y∫
0

t
J

∑
j=1

λj f
(

t
∣∣∣φj

)
dt

= 1
µC

J
∑

j=1
λjµjF1

(
y
∣∣∣φj

)
the QSR for a mixture of GB2 distributions can be computed from

QSRC =

1−
J

∑
j=1

λjµjB
(
wj,0.8

∣∣pj + 1/aj, qj − 1/aj
)

J
∑

j=1
λjµjB

(
wj,0.2

∣∣pj + 1/aj, qj − 1/aj
)

where wj,0.8 =
(
y0.8/bj

)aj /
[
1 +

(
y0.8/bj

)aj
]

and wj,0.2 =
(
y0.2/bj

)aj /
[
1 +

(
y0.2/bj

)aj
]
, with y0.2 and

y0.8 being the 20th and 80th percentiles from the mixture distribution. To obtain y0.2 and y0.8,
the mixture distribution function needs to be inverted to obtain its corresponding quantile function,
something that is not possible in closed form. As alternatives, one can (1) attempt to solve the required
equation numerically, or (2) generate a large number of observations from each component, combine
and sort these components, choosing the 20th and 80th empirical percentiles as estimates.

2.2. Poverty Measures

Expressions for several poverty measures in terms of the parameters of the GB2 distribution have
been provided by Chotikapanich et al. (2013). The first is the headcount ratio which is simply the
proportion of the population with income less than or equal to a poverty line z

H(z) = F( z|φ) = B(v|p, q) (7)
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where v = (z/b)a/
[
1 + (z/b)a]. Setting the poverty line at 0.6 times the median gives what Graf and

Nedyalkova (2014) term the at-risk-poverty rate (ARPR). It can be calculated from (7) after setting the
poverty line at

z = 0.6b
(

B−1(0.5|p, q)
1− B−1(0.5|p, q)

)1/a

(8)

A second poverty measure used extensively in the literature is the FGT(α) class of measures
(Foster et al. 1984) given by

FGT(α) =
z∫

0

(
z−y

z

)α
f (y|φ)dy for α ≥ 1

For integer values of α, this expression can be written in terms of incomplete moments of the GB2
distribution as well as in terms of the income gap ratio, defined as the average amount of money that
must be given to each of the poor to bring them up to the poverty line, expressed relative to the poverty
line. Working in this direction, we define the k-th incomplete moment for the GB2 distribution, relative
to poverty line z, as

µ
(k)
z = E

(
yk
∣∣∣y < z

)
= 1

F( z|φ)

z∫
0

yk f (y|φ)dy

= µ(k)B(v|p+k/a,q−k/a)
B(v|p,q)

Defining the income gap ratio as g(z) = (z− µz)/z where µz = µ
(1)
z is mean income of the poor, we

can write
FGT(1) = B(v|p, q)− (µ/z)B(v|p + 1/a, q− 1/a)

= H(z)g(z)

and
FGT(2) = B(v|p, q)− (2µ/z)B(v|p + 1/a, q− 1/a)

+
(
µ(2)/z2

)
B(v|p + 2/a, q− 2/a)

= H(z)
[
[g(z)]2 + [1− g(z)]2 σ

2
z
µ2

z

]
where σ2

z = µ
(2)
z − µ2

z is the variance of the income of the poor. For noninteger values of α, we can
simulate values y1, y2, . . . yM from the GB2 distribution and use the estimator

FGT(α) =
1
M

M

∑
m=1

(
z− ym

z

)α
I(ym ≤ z)

where I(·) is an indicator function equal to 1 if its argument is true and zero otherwise.
As an alternative to the income gap ratio g(z) = (z− µz)/z, Graf and Nedyalkova (2014) use a

concept known as the relative median poverty gap (RMPG). It is defined as the relative gap between a
poverty line, which is 0.6 times the median income of the population, and the median income of the
poor. Specifically, with z defined as in (8),

RMPG =
z−mpoor

z

where the median of the poor is defined as

mpoor = b
(

B−1(A/2|p, q)
1− B−1(A/2|p, q)

)1/a

with A being the at-risk-poverty rate (the headcount ratio using the poverty line in (8)).
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Considering the income shortfall in log format leads to the Watts index (Watts 1968), defined as

W =
∞∫
0
(ln z− ln y) f (y|φ)dy

= ln
( z

b
)

B(v|p, q)−
1
a
{

DpB(v|p, q)− DqB(v|p, q) + B(v|p, q)[ψ(p)−ψ(q)]
} (9)

where DpB(v|p, q) and DqB(v|p, q) are the derivatives of the beta cdf B(v|p, q) with respect to p and
q, respectively. These derivatives are available in some software (e.g., EViews), otherwise (9) can be
estimated via simulation.

The last poverty measure that we describe is the Sen index (Sen 1976) where the poverty gap is
weighted by a person’s rank in the ordering of the poor. This index is given by

S = 2
z∫

0

(
z−y

z

)(
H(z)−F(y|φ)

H(z)

)
f (y|φ)dy

= H(z)(g(z) + (1− g(z))G(z))
(10)

where G(z) is the Gini coefficient for the poor given by

G(z) = −1 +
2

µz H2(z)

z∫
0

yF(y|φ) f (y|φ)dy

The last line in (10) shows how the index can be written in terms of the headcount ratio, the aggregate
income gap ratio and the inequality of the poor measured using G(z). Expressing S in terms of the
parameters of the GB2 distribution is more difficult than it was for the other indices. In (10) we can use
H(z) = B(v|p, q) and g(z) = 1− µz/z, but evaluation of G(z) is more troublesome. If we follow the
simulation approach and draw M observations ym, m = 1, 2, . . . , M from f (y|φ), it can be estimated
using

G(z) = −1 +
2

µzH2(z)
1
M

M

∑
m=1

[ymB(wm|p, q)I(ym ≤ z)]

where wm = (ym/b)a/
[
1 + (ym/b)a].

For aggregating poverty over a number of areas each of which has a GB2 distribution, the
headcount ratio, FGT, and Watts indexes are simply population-weighted averages of the indexes for
each area. That is, using obvious notation,

HC(z) =
J

∑
j=1

λjF
(

z
∣∣∣φj

)
=

J

∑
j=1

λjB
(
vj
∣∣pj, qj

)

FGTC(α) =
M
∑

j=1
λjFGTj(α)

WC =
M
∑

j=1
λjWj

This result does not hold for the at-risk-poverty rate and the relative median poverty gap where
the poverty line is endogenous, nor does it hold for the Sen index, which contains the cdf. For ARPR
and RMPG, the median of the mixture is required and RMPG also needs the median of the poor
from the mixture distribution. These values can be estimated by simulating observations from the
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component distributions and ordering them as was suggested for the QSR. For the Sen index for the
mixture, we have

SC = 2

[
FGTC(1)−

J
∑

j=1

J
∑
`=1

λjλ`

z∫
0

(
z−y

z

)
F(y|φ`) f

(
y
∣∣∣φj

)
dy

]

= 2

[
FGTC(1)−

J
∑

j=1

J
∑
`=1

λjλ`γj`

]

The term γj` =
∫ z

0 [(z− y)/z]F(y|φ`) f
(

y
∣∣∣φj

)
dy can be estimated from

γ̂j` =
1
M

M

∑
m=1

(
z− ym

z

)
F
(
yj,m

∣∣φ`

)
I
(
yj,m ≤ z

)
where the yj,m are draws from f (y

∣∣∣φj) .

2.3. Measures of Pro-Poor Growth

In addition to examining changes in poverty incidence over time using measures such as the
headcount ratio or refinements of it that take into account the severity of the poverty, it is useful to
examine whether growth has favored the poor relative to others placed at more favorable points in the
income distribution. Following Duclos and Verdier-Chouchane (2010), we consider three such pro-poor
measures, namely, measures attributable to Ravallion and Chen (2003), Kakwani and Pernia (2000),
and a “poverty equivalent growth rate” (PEGR) suggested by Kakwani et al. (2004).

The first step towards the Ravallion-Chen measure is the construction of a “growth incidence
curve” (GIC), which describes the growth-rate of income at each percentile u of the distribution.
Specifically, if FA(y) is the income distribution function at time A, and FB(y) is the distribution function
for the new income distribution at a later point B, then

GIC(u) =
F−1

B (u)− F−1
A (u)

F−1
A (u)

For computing values of GIC(u) from the GB2 distribution, note that

F−1(u|φ) = b
(

B−1(u|p, q)
1− B−1(u|p, q)

)1/a

where B−1(u|p, q) is the quantile function of the standardized beta distribution evaluated at u. When
we have a regional distribution or a country distribution, which is a mixture of rural and urban GB2
distributions, it is no longer straightforward to compute the quantile function. In this case, we require
F−1(u|Φ) which is the inverse function of F(y|Φ) = ∑J

j=1 λjF
(

y
∣∣∣φj

)
. One needs to either solve

the resulting nonlinear equation numerically or estimate F−1(u|Φ) using an empirical distribution
function obtained by generating observations from the relevant GB2 distributions in the mixture.
We followed the latter approach in our applications.

The GIC can be used in a number of ways. If GIC(u) > 0 for all u, then the distribution at time B
first-order stochastically dominates the distribution at time A. If GIC(u) > 0 for all u up to the initial
headcount ratio HA, then growth has been absolutely pro-poor. If GIC(u) > (µB − µA)/µA for all u
up to the initial headcount ratio HA, that is, the growth rate of income of the poor is greater than the
growth rate of mean income (µ), then growth has been relatively pro-poor.
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For a single measure of pro-poor growth Ravallion and Chen suggest using the average growth
rate of the income of the poor. It can be expressed as

RC =
1

HA

HA∫
0

GIC(u)du

For a GB2 distribution (not a mixture), this integral can be evaluated numerically. Alternatively, we
can generate observations from a GB2 distribution or a mixture and compute

R̂C =
1

N1

N1

∑
i=1

GIC(i/N)

where N is the total number of observations generated, and N1 = HAN.
The Kakwani-Pernia measure compares the change in a poverty index such as the change in

the headcount ratio, HA − HB, with the change that would have occurred with the same growth
rate, but with distribution neutrality, HA − HB̃. Here, B̃ denotes an income distribution that would
be obtained if all incomes changed in the same proportion as the change in mean income that
occurred when moving from distribution A to distribution B. To obtain B̃ in the context of single
GB2 distributions, we can simply change the scale parameter b and leave the parameters a, p and q
unchanged. The Lorenz curve and inequality measures obtained from a GB2 distribution depend on a,
p and q, but do not depend on b. Thus, we have

aB̃ = aA pB̃ = pA qB̃ = qA bB̃ =
(
µB
µA

)
bA

Finding B̃ for a mixture of GB2 distributions—a situation that occurs when we combine rural
and urban distributions to find a country distribution—is less straightforward. In this case, the scale
parameters in all components of the mixture change and the other parameters are left unchanged.
For example, using the superscripts r and u to denote rural and urban, respectively, and

(
λr

A, λu
A
)

and
(
λr

B, λu
B
)

to denote the respective population proportions at times A and B, we first compute the
combined means at times A and B as

µA = λr
Aµ

r
A + λu

Aµ
u
A µB = λr

Bµ
r
B + λu

Bµ
u
B

Then, we obtain the distribution function for B̃ as follows

aj
B̃
= aj

A pj
B̃
= pj

A qj
B̃
= qj

A bj
B̃
=
(
µB
µA

)
bj

A j = u, r

F
(

y
∣∣∣φr

B̃,φu
B̃

)
= λr

AF
(

y
∣∣∣φr

B̃

)
+ λu

AF
(

y
∣∣∣φu

B̃

)
Thus, to obtain B̃ we assume that all incomes in the rural and urban sectors increase in the same
proportion as their respective mean incomes, and the distributions of income and the population
proportions in each of the sectors remain the same.

The Kakwani-Pernia measure is
KP =

HA − HB
HA − HB̃

Assuming the growth in mean income has been positive, a value KP > 0 implies the change in the
distribution has been absolutely pro-poor, and a value KP > 1 implies the change in distribution has
been relatively pro-poor.

The third measure of pro-poor growth is the poverty-equivalent growth rate (PEGR) suggested by
Kakwani et al. (2004). In the context of our description of the Kakwani-Pernia measure, it is the growth
rate used to construct distribution B̃ such that HB = HB̃. In other words, it is the growth rate necessary
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to achieve the observed change in the headcount ratio when distribution neutrality is maintained.
In terms of the GB2 distribution, it is the value g∗ that solves the following equation

HB = B(u|pB, qB) = B(u∗|pA, qA)

where u = (z/bB)
aB
[
1 + (z/bB)

aB
]

and

u∗ =
[z/(g∗ + 1)bA]

aA

1 + [z/(g∗ + 1)bA]
aA

Thus, to find g∗ we have u∗ = B−1(HB|pA, qA) and

g∗ =
z

bA

(
1− u∗

u∗

)1/aA

− 1

As was the case with previous calculations, for a mixture of GB2 distributions, this procedure is less
straightforward. As an alternative, to find an approximate g∗ for a combined rural–urban distribution,
we computed separate growth rates and g∗u for the two sectors and found a weighted average of them
using weights from period B.

g∗ = λr
Bg∗r + λu

Bg∗u

If g∗ < g = (µB/µA − 1), then, under distribution neutrality, the growth rate required to achieve the
same outcome for the headcount ratio is less than realized growth rate, implying that the change in
the distribution has not favored the poor. Conversely, when g∗ > g, a higher growth rate is required
under distributional neutrality to equate the two headcount ratios. In this case, the distributional effect
must have favored the poor.

3. Estimation

All the required quantities—the means of the distributions, the density and distribution functions,
the Gini coefficients, the poverty measures, and the pro-poor growth measures—depend on the
unknown parameters φj of the GB2 distributions. Potential methods of estimation of these parameters
depend on whether the available data are in the form of single observations or are grouped, and, if they
are grouped, whether information on group means, as well as the number of observations in each
group, is available.

3.1. Estimation with Single Observations

For single observations, say a sample of observations (y1, y2, . . . , yT), maximum likelihood
estimation can be used with the log-likelihood given by

L(φ) =
T

∑
t=1

log f (yt|φ)

For samples where sampling weights are available, a pseudo log-likelihood can be maximized to
provide consistent parameter estimates, and their precision can be assessed with a sandwich covariance
matrix estimator. Details of this estimation procedure are described by Graf and Nedyalkova (2014).
With income equivalized over all household members, and sampling weights wi attached to each
household, their pseudo log-likelihood is given by

L(φ) =
h

∑
i=1

wini log f (yi|φ)

where h is the number of households and ni is the number of persons in household i.
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A further estimation method has been suggested by Graf and Nedyalkova (2014). This method
minimizes a weighted sum of squared distance between sample quantities for (ARPR, RMPG,
QSR, Gini), and these quantities are expressed in terms of GB2 parameters. This method has some
similarities to the grouped data methods of estimation we describe in the next subsection, where a
weighted squared distance between empirical and theoretical quantiles and group means is minimized.
One difference is that, for using quantiles and group means, an optimal weight matrix can be derived.
Deriving an optimal weight matrix for the Graf-Nedyalkova proposal would appear to be a more
difficult problem.

3.2. Estimation with Grouped Data

Suppose now that the observations (y1, y2, . . . , yT ,) have been grouped into N income classes
(x0, x1), (x1, x2), · · · , (xN−1, xN) with x0 = 0 and xN = ∞. Let ci be the proportion of observations in
the i-th group, let yi be mean income for the i-th group, and let y be overall mean income. In some
instances, where income share data for each group (s1, s2, . . . sN) are available, the group means may
need to be calculated from yi = siy/ci. Choice of an estimation method depends on how much of
the information just described is available. If the ci and xi are available, but the yi are not, then the
multinomial likelihood is a natural choice. In this case the log-likelihood is given by

L(φ) ∝
N

∑
i=1

ci log[F( xi|φ)− F( xi−1|φ)]

Another possibility is the minimum chi-squared estimator described in McDonald and Ransom (2008).
For the scenario where one also has data for the group means yi, and when the group bounds

xi may or may not be available, estimators based on moment conditions have been suggested by
Chotikapanich et al. (2007), Hajargasht et al. (2012) and Griffiths and Hajargasht (2015). To describe
the objective functions that are minimized to obtain these estimators, we need the moments of each
group up to order 2, expressed in terms of φ and x′ = (x1, x2, . . . , xN−1). Working in this direction,
we define

ki = F( xi|φ)− F( xi−1|φ)

µi = µ[F1( xi|φ)− F1( xi−1|φ)]

µ
(2)
i = µ(2)[F2( xi|φ)− F2( xi−1|φ)]

where F1( xi|φ) and F2( xi|φ) are the moment distribution functions defined in Section 2. Further,
we define vi = kiµ

(2)
i − µ

2
i . Then, Hajargasht et al. (2012) show that the GMM estimator that uses

moments for ci and ỹi = ciy, and the optimal weight matrix, can be written as

GMM1(x,φ) =
N

∑
i=1

w1i(ci − ki)
2 +

N

∑
i=1

w2i(ỹi − µi)
2 − 2

N

∑
i=1

w3i(ci − ki)(ỹi − µi) (11)

where w1i = µ
(2)
i /vi, w2i = ki/vi and w3i = µi/vi. GMM1(x,φ) can be minimized with respect to

both x and φ, or, if observations on x are available, with respect to φ only. Because the weights depend
on (x,φ), a variety of estimators can be used, depending on whether GMM1(x,φ) is minimized
directly or a two-step or iterative procedure is employed. In a two-step procedure, initial estimates
with weights that are not dependent on the parameters are obtained, and then estimates that minimize
GMM1(x,φ), with weights computed from the initial estimates, are computed. Iterating this process
leads to an iterative estimator.

An estimator that uses weights that do not depend on (x,φ), and which is useful for
obtaining starting values for a two-step or iterative estimator from (11), is that proposed by
Chotikapanich et al. (2007). In contrast to (11), they considered moment conditions for ci and yi
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instead of ci and ỹi = ciyi. Although they focused on the special case beta 2 distribution, their results
also hold for the more general GB2 distribution. The function that they minimized is

GMM2(x,φ) =
N

∑
i=1

(
ci − ki

ci

)2
+

N

∑
i=1

(
yi − µi/ki

yi

)2
(12)

The weights used for this estimator
(

c−2
i and y−2

i

)
are not optimal, but they have the intuitive appeal

of minimizing the sum of squares of percentage errors. Also, computation of the second moment µ(2)i
is not required.

A third GMM estimator is that described by Griffiths and Hajargasht (2015). Like (12), this
estimator considers the moment conditions for ci and yi, but uses the optimal weight matrix.5 It is
given by

GMM3(x,φ) = k−1
i

N

∑
i=1

(ci − ki)
2 + k3

i v−1
i

N

∑
i=1

(yi − µi/ki)
2 (13)

Relative to the other optimal weight formulation in (11), this objective function avoids the term with
the cross product of the moment conditions.

4. Applications

A major source of data for the cross-country study of income distributions, inequality and poverty
is from the World Bank PovcalNet website. We used data from China and Indonesia, two Asian
countries with relatively large populations. The years considered were 1999, 2005, 2010 and 2013 for
China and 1999, 2005, 2010 and 2016 for Indonesia6. The data available are in grouped form comprising
population shares and corresponding expenditure shares for a number of classes, together with mean
monthly expenditure that has been reported from surveys, and then converted to purchasing power
parity (PPP) using the World Bank’s 2011 PPP exchange rates for the consumption aggregate for
national accounts. Also available are the data on population size. Throughout the paper we use the
generic term income distributions, although our example distributions are for expenditure. For both
countries, separate data were available for rural and urban populations and so distributions were
estimated for each of these components. Data for China were in the form of 20 groups, with the
exception of China-rural 1999 (19 groups) and 2005 (17 groups), while those for Indonesia were
available in 100 groups. To make the data for both countries relatively consistent for estimation, we
aggregated the Indonesian data into 20 groups. The distributions were estimated by minimizing
the objective function GMM3(x,φ) given in (13). Initial estimates were obtained by minimizing
GMM2(x,φ), those initial estimates were used to compute the weights for GMM3(x,φ), the estimates
from were then used to compute a new set of weights, and the process was continued for 10 iterations.
Parameterizing the objective function in terms of (a,µ, p, q) instead of (a, b, p, q) facilitated convergence.

Parameter estimates for each of the distributions are presented in Table 1, along with
corresponding estimates for mean income and the populations for each region. The density functions
for China and Indonesia, obtained as mixtures of the urban and rural densities, are plotted in Figures 1
and 2, respectively. A striking feature of the parameter estimates is the very large estimates for p (and
correspondingly small estimates for b) for Indonesia-urban in 2010 and 2016. As p→ ∞, the GB2
distribution approaches the 3-parameter inverse generalized gamma distribution,7 and so the results

5 It may be better to describe the estimators that minimize GMM2(x,φ) and GMM3(x,φ) as minimum distance estimators
rather than GMM estimators because the “moment condition” for yi is plim yi = µi/ki not E(yi) = µi/ki . The asymptotic
distribution is the same, however. See, for example, (Greene 2012, chp. 13).

6 The version of the data that was used was downloaded on 9 March 2018 at http://iresearch.worldbank.org/PovcalNet/
povOnDemand.aspx.

7 See (McDonald and Xu 1995, p. 139).

http://iresearch.worldbank.org/PovcalNet/povOnDemand.aspx
http://iresearch.worldbank.org/PovcalNet/povOnDemand.aspx
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suggest this special-case distribution would be adequate for these two cases. Its density function is
given by

f (y|a, q,β) =
aβaq

Γ(q)
y−aq−1 exp

(
−β

y

)a

The figures show that, for both countries, there is an improvement over time in the sense that the
distribution shifts to the right, and mean income increases, with the most dramatic improvements
being from 1999 to 2005, and after 2010.

Table 1. Parameter estimates, mean income and population.

Country/Year a b p q µ
Population
(Millions)

China rural
2013 1.5806 101.3579 3.8613 2.1609 190.23 635.69
2010 1.2063 21.4069 11.6780 2.2025 131.52 697.21
2005 1.3443 32.0352 7.0416 2.3558 100.07 749.35
1999 2.0243 30.1693 3.3733 1.3113 67.78 815.97

China urban
2013 1.6455 261.4467 2.3392 1.9792 373.92 721.69
2010 1.8842 187.8696 2.3745 1.5884 306.81 658.50
2005 1.8294 144.7708 2.4059 1.7919 217.11 554.37
1999 1.6302 95.0994 3.2433 2.5261 134.70 436.77

Indonesia rural
2016 2.0275 55.8739 3.8536 1.3660 129.11 118.90
2010 2.1389 36.6977 4.4602 1.2132 96.63 121.45
2005 2.7720 52.1883 2.5501 1.1926 85.84 122.57
1999 3.0994 49.6466 2.0371 1.2727 67.62 123.52

Indonesia urban
2016 0.7417 0.0010 25,914.0 4.0699 208.00 142.22
2010 0.9107 0.0094 15,488.0 3.2802 156.25 121.08
2005 2.0275 55.8746 3.8535 1.3660 129.11 104.15
1999 2.0737 35.6598 4.7873 1.2719 96.37 85.10

Figure 1. Income distributions for China.
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Figure 2. Income distributions for Indonesia.

Inequality measures for the rural and urban areas and their combined distributions are presented
in Table 2. We computed the Gini coefficient, the Pietra index, QSR, I(0) and I(1). The within and
between urban and rural components for IC(0) and IC(1) are reported in Table 3. Tables 4 and 5
contain poverty measures and pro-poor growth measures, respectively. For poverty measures, the
headcount, FGT(1), FGT(2) and Sen indices were computed using a poverty line of $57.8 per month,
equivalent to $1.9 per day. Pro-poor growth measures, RC, KP and PEGR were computed for the
combined distributions; the GIC’s for each time interval are depictured in Figures 3–8. From the tables
and figures, we can make the following observations about China.

1. All inequality measures indicate that inequality increased from 1999 to 2010, and then declined
from 2010 to 2013. The recent decline is attributable to a decline in rural inequality; there was
an increase in urban inequality in the same period. Also, there is no clear conclusion about how
rural inequality changed from 1999 to 2005; the Gini and I(1) suggest a slight decrease, whereas
QSR, I(0) and Pietra suggest a slight increase.

2. Inequality is much greater in the combined distribution than in its components, reflecting the
large discrepancy in mean incomes between the rural and urban areas. Within inequality remains
greater than between inequality, however.

3. The changes in inequality have been accompanied by large increases in mean income and large
decreases in poverty. The decline in poverty was particularly dramatic for rural China where the
headcount ratio declined from 57% in 1999 to 3.7% in 2013. Poverty in rural China is uniformly
greater than that in urban China.

4. The GIC curves show that, from 1999 to 2010, growth has favored the rich more than the poor, but
from 2010 to 2013, growth has strongly favored the poor relative to the rich, a result consistent
with the decline in inequality over this period. The scalar measures of pro-poor growth are also
consistent with this observation. Growth has favured the poor in an absolute sense from 1999 to
2010 (0 < RC < g, 0 < KP < 1, PEGR < g), and in a relative sense after 2010 (RC > g, KP > 1,
PEGR > g).
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Examining the results for Indonesia, we find:

1. Urban inequality changed very little from 1999 to 2005, increased dramatically from 2005 to 2010,
and then increased more moderately from 2010 to 2016. Rural inequality increased from 1999
to 2010, but declined thereafter. The combined results reflect these changes, with increasing
inequality overall, but with Gini coefficients approximately the same in 2010 and 2016.

2. Poverty declined from 1999 to 2005, remained roughly constant from 2005 to 2010, when there
were large increases in inequality, and then declined again from 2010 to 2016. From 2005 to 2010 a
decline in urban poverty was offset by an increase in rural poverty.

3. The GIC curves show that growth has favored the rich relative to the poor in all time intervals.
From 2005 to 2010 the poor faired very badly; the growth rate for the bottom 15% of the population
was negative. This period was also one where the growth in mean incomes was low relative
to that in the other two periods. The scalar pro-poor growth measures are in line with the
conclusions from the GIC curves. Growth was absolutely but not relatively pro-poor in the first
and third time intervals; in the second interval it was not absolutely pro-poor according to the
RC measure, and only slightly absolutely pro-poor using the KP measure.

Table 2. Inequality measures.

Country/Year Gini QSR I(0) I(1) Pietra

China rural
2013 0.3349 5.4526 0.1903 0.2086 0.2424
2010 0.3959 7.1456 0.2664 0.3189 0.2901
2005 0.3519 5.8464 0.2097 0.2375 0.2563
1999 0.3638 5.6579 0.2083 0.2495 0.2545

China urban
2013 0.3735 6.5286 0.2291 0.2454 0.2628
2010 0.3540 5.9757 0.2126 0.2370 0.2545
2005 0.3436 5.7017 0.1992 0.2163 0.2460
1999 0.3185 4.9247 0.1649 0.1731 0.2246

China combined
2013 0.4010 8.1998 0.2659 0.2864 0.2874
2010 0.4323 9.5593 0.3274 0.3451 0.3155
2005 0.4052 6.4547 0.2796 0.2979 0.2959
1999 0.3941 4.5101 0.2495 0.2683 0.2825

Indonesia rural
2016 0.3343 5.2640 0.1912 0.2270 0.2442
2010 0.3502 5.2808 0.1962 0.2412 0.2480
2005 0.2756 3.9165 0.1275 0.1448 0.1980
1999 0.2352 3.3989 0.1002 0.1087 0.1746

Indonesia urban
2016 0.4154 7.9453 0.2920 0.3409 0.3044
2010 0.4070 6.7226 0.2493 0.2930 0.2818
2005 0.3444 5.2640 0.1912 0.2270 0.2442
1999 0.3368 5.2471 0.1939 0.2370 0.2467

Indonesia combined
2016 0.4027 7.6873 0.2737 0.3286 0.2963
2010 0.4042 6.5792 0.2513 0.3013 0.2842
2005 0.3297 4.6841 0.1776 0.2117 0.2357
1999 0.2959 4.0104 0.1539 0.1879 0.2169
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Table 3. Between and within inequality.

Country/Year IC(0) Iwith
C (0) Ibetw

C (0) IC(1) Iwith
C (1) Ibetw

C (1)

China combined
2013 0.2659 0.2109 0.0550 0.2864 0.2340 0.0523
2010 0.3274 0.2399 0.0875 0.3451 0.2622 0.0829
2005 0.2796 0.2053 0.0743 0.2979 0.2244 0.0735
1999 0.2495 0.1932 0.0563 0.2683 0.2101 0.0582

Indonesia combined
2016 0.2737 0.2461 0.0276 0.3286 0.3019 0.0267
2010 0.2513 0.2227 0.0286 0.3013 0.2732 0.0281
2005 0.1776 0.1568 0.0208 0.2117 0.1910 0.0207
1999 0.1539 0.1385 0.0154 0.1879 0.1723 0.0156

Table 4. Poverty measures.

Country/Year HC FGT(1) FGT(2) SEN

China rural
2013 0.0374 0.0070 0.0021 0.0099
2010 0.2042 0.0489 0.0171 0.0713
2005 0.2998 0.0786 0.0296 0.1057
1999 0.5702 0.1907 0.0844 0.2568

China urban
2013 0.0077 0.0017 0.0006 0.0020
2010 0.0085 0.0017 0.0005 0.0023
2005 0.0294 0.0062 0.0021 0.0088
1999 0.1064 0.0233 0.0080 0.0324

China combined
2013 0.0216 0.0042 0.0013 0.0083
2010 0.1079 0.0256 0.0089 0.0496
2005 0.1848 0.0478 0.0179 0.0901
1999 0.4084 0.1324 0.0577 0.2289

Indonesia rural
2016 0.1267 0.0243 0.0073 0.0348
2010 0.3033 0.0700 0.0234 0.0995
2005 0.2917 0.0613 0.0193 0.0883
1999 0.4647 0.1117 0.0385 0.1526

Indonesia urban
2016 0.0649 0.0122 0.0035 0.0174
2010 0.1142 0.0221 0.0065 0.0313
2005 0.1267 0.0243 0.0073 0.0353
1999 0.3031 0.0700 0.0234 0.0941

Indonesia combined
2016 0.0931 0.0177 0.0052 0.0345
2010 0.2089 0.0461 0.0150 0.0863
2005 0.2159 0.0443 0.0138 0.0828
1999 0.3988 0.0947 0.0324 0.1659
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Table 5. Pro-poor growth measures.

Country/Year Growth Rate Growth Rate for the Poor (RC) KP PEGR

China
2010–2013 0.3218 0.6245 1.4251 0.3245
2005–2010 0.4536 0.2331 0.6503 0.2839
1999–2005 0.6446 0.5281 0.8702 0.4504

Indonesia
2010–2016 0.3614 0.2836 0.8622 0.2414
2005–2010 0.1956 –0.0107 0.0709 0.0079
1999–2005 0.3323 0.2449 0.8049 0.2575

Figure 3. Growth incidence curve, China 1999–2005.

Figure 4. Growth Incidence Curve, China 2005–2010.
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Figure 5. Growth Incidence Curve, China 2010–2013.

Figure 6. Growth Incidence Curve, Indonesia 1999–2005.

Figure 7. Growth Incidence Curve, Indonesia 2005–2010.
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Figure 8. Growth Incidence Curve, Indonesia 2010–2016.

5. Concluding Remarks

Studying income distributions can provide valuable information about important aspects of a
society’s welfare such as the degree of inequality, the incidence of poverty, and whether there have
been improvements in welfare over time. The GB2 is a popular and versatile distribution well suited
to this purpose. We have reviewed some of the common indexes for measuring inequality, poverty
and pro-poor growth, and described how values for these indexes can be computed from estimates of
the parameters of the GB2 distribution. Optimal techniques for estimating the parameters using either
single observations or grouped data are also reviewed. It is our hope that the bringing together of all
these results into a single source will facilitate and promote use of the GB2 distribution.
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