
Forchini, Giovanni; Jiang, Bin; Peng, Bin

Article

TSLS and LIML estimators in panels with unobserved
shocks

Econometrics

Provided in Cooperation with:
MDPI – Multidisciplinary Digital Publishing Institute, Basel

Suggested Citation: Forchini, Giovanni; Jiang, Bin; Peng, Bin (2018) : TSLS and LIML estimators in
panels with unobserved shocks, Econometrics, ISSN 2225-1146, MDPI, Basel, Vol. 6, Iss. 2, pp. 1-12,
https://doi.org/10.3390/econometrics6020019

This Version is available at:
https://hdl.handle.net/10419/195456

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

  https://creativecommons.org/licenses/by/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.3390/econometrics6020019%0A
https://hdl.handle.net/10419/195456
https://creativecommons.org/licenses/by/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Article

TSLS and LIML Estimators in Panels with
Unobserved Shocks

Giovanni Forchini 1,* ID , Bin Jiang 2 and Bin Peng 3

1 Department of Economics, Umeå University, 901 87 Umeå , Sweden
2 Department of Econometrics and Business Statistics, Monash University, Clayton VIC 3800, Australia;

Bin.Jiang@monash.edu
3 Department of Economics, University of Bath, Bath BA2 7AY, UK; b.peng2@bath.ac.uk
* Correspondence: Giovanni.Forchini@umu.se; Tel.: +46-90-7867876

Received: 17 August 2017; Accepted: 27 March 2018; Published: 9 April 2018
����������
�������

Abstract: The properties of the two stage least squares (TSLS) and limited information maximum
likelihood (LIML) estimators in panel data models where the observables are affected by common
shocks, modelled through unobservable factors, are studied for the case where the time series
dimension is fixed. We show that the key assumption in determining the consistency of the
panel TSLS and LIML estimators, as the cross section dimension tends to infinity, is the lack of
correlation between the factor loadings in the errors and in the exogenous variables—including
the instruments—conditional on the common shocks. If this condition fails, both estimators have
degenerate distributions. When the panel TSLS and LIML estimators are consistent, they have
covariance-matrix mixed-normal distributions asymptotically. Tests on the coefficients can be
constructed in the usual way and have standard distributions under the null hypothesis.

Keywords: two-stage least squares; limited information maximum likelihood; common shocks

JEL Classification: C23; C26; C38

1. Introduction

Macroeconomic, technological, institutional, political, environmental, health, and sociological
shocks are plausible in empirical research in many situations. For example, a researcher may be using
a panel of countries to investigate a composite measure of health care attainment in terms of per capita
health expenditure and educational attainment. Both the explained and the explanatory variables
may be affected by the introduction of new medical technologies, medicines, hospital procedures,
the occurrence of a flu epidemic, or of a particular cold winter or hot summer in a large region, or,
as in recent years, the financial crisis. Such shocks are not observed. They affect several countries
and their impact depends on the characteristics of the countries themselves. Similar problems arise in
micro-econometric studies. For example, in analyzing a panel of executive compensation in terms of
returns on assets, stock returns, level of responsibility and gender (among other explanatory variables),
unobservable financial, political, environmental as well as industry specific shocks may occur and may
affect both the dependent variables and the regressors simultaneously.

Andrews (2005) has shown that common shocks—modelled by unobservable common factors in
both the disturbance and the regressors—strongly affect the properties of the ordinary least squares
(OLS) estimator in a linear regression model. Precisely, Andrews (2005) shows that, in order for the
OLS estimator to be consistent, the factor loadings for the disturbance and the regressors must be
uncorrelated conditional on the unobservable factors. These results have profound implications for
applied researchers since reliable inferences based on OLS in the presence of common shock require
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very strong assumptions. In panel data with both large time series and cross-sectional dimensions,
the assumption that the factor loadings in the disturbances and the regressors are conditionally
uncorrelated can be relaxed (e.g., Pesaran 2006; Bai 2009). However, this situation is certainly not the
norm in microeconometric applications, where the time dimension tends to be limited.

Since the common shocks affect both the errors and the regressors, they induce correlation
between some of the regressors and the disturbance term (we will refer to this as factors endogeneity).
Econometric models often contain explanatory variables that are endogenous due to simultaneity so
that the dependent variable and some of the explanatory variables are co-determined (we will refer to
this as classical endogeneity). In the presence of instrumental variables, two standard approaches
to endogeneity in panel data are the panel two-stage least squares (TSLS) (e.g., among others
Wooldridge 2005; Arellano 2016) and the panel limited information maximum likelihood (LIML)
estimators (e.g., Wansbeek and Meijer 2000; Alonso-Borrego and Arellano 1999; and Wansbeek and
Prak 2017). This paper investigates how the panel TSLS and LIML estimators are affected by common
shocks for which, surprisingly, no results seem available in the literature.

The literature on the effects of common shocks in models affected by classical endogeneity is very
small. Ahn et al. (2001, 2013) generalize a fixed effects model in which the unobserved individual effects
vary over time, and they propose a generalized method of moments (GMM) estimator that generalizes
the fixed effects estimator through quasi-differencing. Robertson and Sarafidis (2015) consider linear
panel data models with classical endogeneity in which the common factors affect the errors and the
factor loading may be correlated with the exogenous variables. Following Ahn et al. (2001, 2013),
Robertson and Sarafidis (2015) regard the common factors as unknown parameters, investigate the
identification conditions and suggest a GMM estimator. Notice that this literature on the effects of
common shocks differs from the one initiated by Andrews (2005) in two fundamental ways: (1) common
factors are regarded as parameters not as random variables; (2) the explanatory variables are correlated
to the error factor loadings while Andrews (2005) assumes that both the explanatory variables and the
error term depend on the same factors.

Harding and Lamarche (2011, 2014) extend the model of Pesaran (2006) to allow for classical
endogeneity. Precisely, Harding and Lamarche (2011) show that the estimators suggested by
Pesaran (2006) also account for classical endogeneity when both the time series and the cross sectional
dimensions are large (see also Harding and Lamarche (2014) for an approach based on quantiles).
Thus, they investigate how the estimators of Pesaran (2006) are affected by classical endogeneity but
are uninformative about how classical estimators are affected by factor endogeneity. Notice also that,
by assuming that (T, N) tends to infinity, one allows the information about the shocks to accumulate
over time. This is not usually a reasonable assumption in micro-econometric studies where the time
dimension tends to be small.

This paper investigates the effects of factor endogeneity on standard estimators used in the
presence of classical endogeneity by studying the asymptotic properties of the panel TSLS and LIML
estimators. Our results, which are in line with those of Andrews (2005), show that as the cross-sectional
dimension tends to infinity (for a fixed time dimension):

1. the panel TSLS and LIML estimators have a non-degenerate non-standard asymptotic distribution
if the factor loadings in the explanatory variables and the instruments are correlated to the reduced
form errors conditional on the common factors; and

2. they are consistent but have mixed-normal asymptotic distributions when the factor loadings
in the explanatory variables and the instruments are uncorrelated to the reduced form errors
conditional on the common factors. In this case, tests on the structural coefficients can be
constructed in the usual way and have standard distributions under the null hypothesis.

Therefore, the presence of common shocks may have a significant impact on the statistical
properties of the TSLS and the LIML estimators depending on the properties of the errors and regressors
conditional on the common shocks. These estimators are consistent if the reduced form errors and
regressors (including the instruments) are conditionally independent given the common shocks, but
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they are inconsistent otherwise. In other words, consistency of the TSLS and LIML estimators holds
if the the model satisfies classical conditions of the validity of instrumental variables estimators
conditional on the shocks (i.e., the ‘exogenous’ variables must be uncorrelated with the errors given
the shocks and the instruments need to be correlated with the right-hand-side endogenous variables
but be uncorrelated with the errors conditional on the shocks). As far as we know, there are no tests for
conditional independence of the factor loadings affecting the endogenous and the exogenous variables
directly. Thus, this work draws the attention of researchers on the possible inferential problems
affecting classical estimators when unobservable shocks are plausible.

The rest of the paper is organized as follows. Section 2 presents the model, the estimators
considered, and the technical assumptions underlying the model. Section 3 contains the main results
and Section 4 concludes. A discussion of some technical results—including stable convergence,
conditional strong law of large numbers and conditional central limit theorem—and proofs of the main
results are in an online supplementary file.

2. The Model

We consider a panel data structural equation model with a fixed number of time periods T ≥ 1.
The observations for unit i concerning an endogenous variable observed over T periods are collected
in the T × 1 vector y1,i. This depends linearly on the endogenous variables in y2,i, the exogenous
variables in z1,i, and an unobservable structural error u1,i:

y1,i
(T×1)

= δ0
(T×1)

+ y2,i
(T×p)

β0
(p×1)

+ z1,i
(T×k1)

α0
(k1×1)

+ u1,i
(T×1),

(1)

where δ0, β0 and α0 are the structural parameters. The dimensions of vectors and matrices are reported
in brackets the first time they are used, unless they are obvious from the context. The reduced form for
y2,i is

y2,i
(T×p)

= Π20
(T×p)

+ z1,i
(T×k1)

Π21
(k1×p)

+ z2,i
(T×k2)

Π22
(k2×p)

+ e2,i
(T×p)

, (2)

where z2,i denotes the observations on the exogenous variables excluded from the structural equation,
usually referred to as the instruments, e2,i is unobservable reduced form errors, and Π20, Π21 and Π22

are the reduced form parameters. Notice that, for T = 1, Equations (1) and (2) form a classical
cross-sectional structural equations model. We will now discuss how a factor structure can be
introduced in both the errors and some of the regressors in Equation (1).

To allow for a general model, we define the two matrices z1,i = ( w1,i
(T×h1)

, x1,i
(T×h2)

) S1
((h1+h2)×k1)

and

z2,i = ( w2,i
(T×h3)

, x2,i
(T×h4)

) S2
((h3+h4)×k2)

, where h1 + h2 > k1, h3 + h4 > k2. The matrices S1 and S2 are fixed

selection matrices of full rank equal to, respectively, k1 and k2. The matrices w1,i and w2,i represent
observations on variables that are not affected by the common shocks such as gender, age and
nationality; x1,i and x2,i contain observations on variables that are affected by common shocks.

We model common shocks by using unobservable factors structures. Precisely, we assume that

xi = (x1,i, x2,i) = FTΓi + vi, (3)

where FT =
(

f1
′, . . . , fT

′)′, ft for t = 1, . . . , T is a (1×m) unobservable vector of factors capturing
the common shocks at time t, Γi = ( Γ1,i

(m×h2)

, Γ2,i
(m×h4)

) is a random matrix of factor loadings, and

vi = ( v1,i
(T×h2)

, v2,i
(T×h4)

) is a random matrix representing the values of the exogenous variables (x1,i, x2,i)

that one would observe if there were no common shocks. Notice that, although the shocks are common,
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the way they affect each unit i is determined by Γi, which varies randomly from an individual to
another. The number of factors, m, affecting the regressors is finite but unknown.

We also assume that the common shocks affect the error terms. Without loss of generality, we
impose a factor structure on the reduced form errors and see how this implies a factor structure in the
error of Equation (1). Let

yi = (y1,i, y2,i) = (π10, Π20) + z1,i (π11, Π21) + z2,i (π12, Π22) + (e1,i, e2,i) ; (4)

then, the reduced form errors satisfy

ei = (e1,i, e2,i) = FTγi + (ε1,i, ε2,i) , (5)

where γi = ( γ1,i
(m×1)

, γ2,i
(m×p)

) is a matrix of factor loadings and εi = ( ε1,i
(T×1)

, ε2,i
(T×p)

) are proper idiosyncratic

errors. Once again, different units are affected by the common shocks in different ways because the
factor loadings vary randomly among units. The model considered has classical endogeneity due to
the presence of the endogenous variables on the right-hand side of the structural equation. It also has
factors’ endogeneity induced by the common shocks in the reduced form. To see this, we replace the
reduced form into the structural equation, and obtain the compatibility restrictions

π10 = Π20β0 + δ0, π11 = Π21β0 + α0, π12 = Π22β0, (6)

and

e1,i = u1,i + e2,iβ0. (7)

It follows from Equation (6) that the structural parameter β0 is identified if and only if

1. (π12, Π22) is identified, and
2. rank (Π22) = p 6 k2.

In order to identify α0 and δ0, one also needs (π11, Π21) and (π10, Π21) to be identified. Moreover,
rewriting Equation (7) using Equations (4) and (5), we obtain

u1,i = e1,i − e2,iβ0 = FT (γ1i − γ2iβ0) + ε1,i − ε2,iβ0. (8)

Thus, the structural error also has a factor structure with factor loadings γ1i − γ2iβ0.
The model considered allows for the case in which the common factors affect the errors (both

in the reduced form and the structural equation) as well as some of the instruments. It therefore
entails a complex interaction between factors and classical endogeneity. Notice that the model could be
generalized by imposing a more complex structure on the error term (ε1,i, ε2,i) to allow for unobserved
individual effects as in a random or fixed effects model.

We now briefly discuss the main differences between the model considered here and the models
of Robertson and Sarafidis (2015) and Harding and Lamarche (2011). Robertson and Sarafidis (2015)
regard the factors as unknown parameters. As a consequence, they require some extra identification
conditions and standardizations, which include, for example, bounds on the number of factors that
depend on the time series dimension of the panel (e.g., to have m = 2 factors the the number of waves
must be T ≥ 5 ). A second difference is related to the specification of our Equation (3), which allows
the common shocks to affect the exogenous variables as additive shocks that may induce correlation
between exogenous variables and the error terms through the correlation between Γi and γi. On the
other hand, Robertson and Sarafidis (2015) allow for a correlation between vi and γi but assume the
factors to be constant parameters.

Harding and Lamarche (2011) allow the reduced form errors to have a factor structure (so that
both u1,i and y2,i have a factor structure) with unobserved but random factors but the instruments z2,i
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are assumed not to be affected by shocks. They also focus on the case where T and N are large and
study the properties of the CCEP and CCEMG of Pesaran (2006) but not those of standard estimators.

2.1. TSLS and LIML Estimators

Let zi = (z1,i, z2,i) and Π =

(
π11 Π21

π12 Π22

)
. The reduced form can then be written as

yi = (π10, Π20) + ziΠ + ei, (9)

and the OLS estimators of Π and (π10, Π20) are respectively

Π̂ =

(
π̂11 Π̂21

π̂12 Π̂22

)
=

(
1
N

N

∑
i=1

zi
′zi − z̄′ z̄

)−1(
1
N

N

∑
i=1

zi
′yi − z̄′ȳ

)
(10)

and (
π̂10, Π̂20

)
= ȳ− z̄Π̂, (11)

where ȳ = 1
N ∑N

i=1 yi, and z̄ = 1
N ∑N

i=1 zi.
Let

Ĥ =
1
N

 N

∑
i=1

z̃′2,i z̃2,i −
N

∑
i=1

z̃′2,i z̃1,i

(
N

∑
i=1

z̃′1,i z̃1,i

)−1 N

∑
i=1

z̃′1,i z̃2,i

 ,

Ω̂ =
1
N

 N

∑
i=1

ỹ′i ỹi −
N

∑
i=1

ỹ′i z̃i

(
N

∑
i=1

z̃′i z̃i

)−1 N

∑
i=1

z̃′i ỹi

 ,

where ỹi = yi − ȳ, and z̃1,i, z̃2,i, and z̃i are defined similarly. Then, the panel TSLS estimator of β is

β̂TSLS =
(
Π̂′22ĤΠ̂22

)−1 (Π̂′22Ĥπ̂12
)

(12)

and the panel LIML estimator is

β̂LIML = arg min
b

(1,−b′)
(
π̂12, Π̂22

)′ Ĥ (π̂12, Π̂22
)
(1,−b′)′

(1,−b′) Ω̂ (1,−b′)′
. (13)

The estimators for α0 and δ0 are respectively

α̂ = π̂11 − Π̂21 β̂, δ̂ = π̂10 − Π̂20 β̂, (14)

where β̂ can be either the panel TSLS or LIML estimator. Notice that the panel TSLS and LIML
estimators of the structural coefficients reduce to the classical TSLS and LIML estimators when T = 1.

2.2. Model Assumptions

Following Andrews (2005) and Kuersteiner and Prucha (2013), it is natural to state the assumptions
for our model conditional on the factors. In order to do this, we will regard all variables as defined on
a probability space (Ω,A, P). The sigma-algebra generated by the random vector vec (FT) is denoted
by F =

{
ω ∈ A : vec (FT) (ω) ∈ BTm}, where BTm is the Borel sigma algebra in RTm. In addition, in

the rest of this paper, ‖A‖2 denotes
√

tr (A′A), where the operator tr (·) is the trace of a square matrix.
The assumptions of the model are formulated conditional on F to allow for the application of

a conditional version of the strong law of large numbers (e.g., Majerek et al. 2005; Rao 2009; and
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Cabrera et al. 2012) and the central limit theorem (e.g., Dedecker and Merlevede 2002; Grzenda and
Ziȩba 2008; and Yuan et al. 2014) in the hope to make the paper accessible to practitioners. The results
could be obtained under more general conditions along the lines of the work of Kuersteiner and
Prucha (2013), which allows for sequential exogeneity. Notice, however, that the main condition for
consistency of the TSLS and LIML estimators that we identify is the lack of correlation between the
factor loadings in the exogenous variables and those in the errors conditional on the unobservable
factors. Even if all other assumptions are weakened, this condition cannot be relaxed.

For notational simplicity, we define the following F -measurable matrices:

Z (FT) =

(
Z11 (FT) Z12 (FT)

Z21 (FT) Z22 (FT)

)
, Zj,k (FT) = lim

N→∞

1
N

N

∑
i=1

E
[
zj,i
′zk,i|F

]
for j, k = 1, 2,

Z∗ (FT) =

(
Z∗11 (FT) Z∗12 (FT)

Z∗21 (FT) Z∗22 (FT)

)
= Z (FT)− z (FT)

′ z (FT) ,

where z (FT) = lim
N→∞

1
N

N
∑

i=1
E [(z1,i, z2,i) |F ]. We make the following two sets of assumptions.

Assumption 1. Let ∆ be arbitrary F -measurable, and ∆ < ∞ a.s. and let ε > 0.

i The random matrices εi = (ε1,i, ε2,i) for i = 1, 2, . . . , N form a sequence of F -independent random

matrices, and have mean 0 and E
[
‖εi‖2

2+ε|F
]

< ∆ a.s. over i for some ε > 0. Moreover,

Σε (FT) = lim
N→∞

1
N

N
∑

i=1
E [εi

′εi|F ], where Σε (FT) is F -measurable.

ii The random matrices vi = (v1,i, v2,i) for i = 1, 2, . . . , N form a sequence of F -independent random

matrices, E
[
‖vi‖2

4+ε|F
]
< ∆ a.s. over i for some ε > 0. Moreover, v(FT) = limN→∞

1
N

N
∑

i=1
E[vi|F ]

and V (FT) = lim
N→∞

1
N

N
∑

i=1
E [vi

′vi|F ], where v(FT) and V (FT) are F -measurable.

iii The random matrices wi = (w1,i, w2,i) for i = 1, 2, . . . , N form a sequence of F -independent

random matrices with E
[
‖wi‖2

4+ε|F
]

< ∆ a.s. over i for some ε > 0. Moreover,

w(FT) = limN→∞
1
N

N
∑

i=1
E[wi|F ] and W (FT) = lim

N→∞
1
N

N
∑

i=1
E [wi

′wi|F ], where w (FT) and W (FT)

are F -measurable.
iv The factor loadings γi = (γi1, γi2) for i = 1, 2, . . . , N form a sequence of F -independent random

matrices with mean E [γi|F ] = γ (FT) and E
[
‖γi‖2

2+ε|F
]
< ∆ a.s. over i for some ε > 0, where

γ (FT) is F -measurable.
v The factor loadings Γi for i = 1, 2, . . . , N form a sequence of F -independent random matrices with

E [Γi|F ] = Γ (FT) and E
[
‖Γi‖2

4+ε|F
]
< ∆ a.s. over i for some ε > 0.

vi The random matrices wi, vi, εi, Γi and γi are uncorrelated conditional on F . ‖FT‖2 < ∞ a.s.
vii The random matrices wi, vi, εi and (Γi, γi) are uncorrelated conditional on F . ‖FT‖2 < ∞ a.s.

Reviews and discussions of the concept of conditional independence are given by Phillips (1988),
Majerek et al. (2005), Rao (2009) and Roussas (2008). Notice that conditional independence does not
imply unconditional independence (see Phillips 1988 for conditions under which this is the case). Since
γi, Γi, wi, vi and εi are heterogeneous conditional on F , they are not only unconditionally dependent
but also non-identically distributed. This is an extension of Andrews (2005) whose assumptions imply
that such quantities are exchangeable and hence identically distributed. Appendix A in the online
Supplementary Material contains a brief review of the various technical concepts used and gives
further references.
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Assumption 1 implies that the reduced form error εi and the exogenous variable zi are uncorrelated
conditional on F . Notice however that our model allows γi, Γi, wi, vi and εi to be (unconditionally)
dependent among themselves and/or over units (e.g., Phillips 1988). This assumption could have been
formulated in term of the structural equation and the reduced form for y2,i in an equivalent way given
the one-to-one connection between structural and reduced form.

The conditional heterogeneity allowed by Assumption 1 implies that the shocks affect each
individual differently through the terms FTΓi and FTγi as well as through the conditional means
E[vi|F ] and E[wi|F ] and the error covariance matrix E[ε′iεi|F ].

In a standard set-up, where there are no common shocks, it is possible to establish the identification
of the structural parameters in terms of the reduced form parameters since the latter are identified
and can be consistently estimated. It will be shown in Section 3 that if Assumption 1 i–vi holds, Π̂ is a
consistent estimator of Π as N → ∞. Hence, in this case, one can state the identification conditions for
the structural parameters β0 and α0 as follows.

Assumption 2.

i rank (Π22) = p 6 k2 and is satisfied.
ii Z∗ (FT) is non-singular and H (FT) = Z∗22 (FT) − Z∗21 (FT) Z∗11(FT)

−1Z∗12 (FT) is positive definite
uniformly.

Together with Assumption 1 i–vi, Assumption 2 provides identification restrictions, which are
analogous to those for structural equations in the classical set-up (e.g., Assumptions 2.2 and 2.3 of
Hausman (1983, p. 398), and Schmidt (1976, chp. 4)). Notice that Assumption 2 on its own does
not identify β0 or α0 because Π may itself be unidentified. This is the case, for example, if the factor
loadings Γi and γi are not uncorrelated conditional on F : the reduced form errors and (some of) the
reduced form regressors are correlated even conditional on the factors.

3. Consistency and Asymptotic Distribution

We now investigate the effects of common shocks on the panel TSLS and LIML estimators of the
structural parameters. Notice that the presence of the factors in the reduced form errors and some
of the regressors implies a correlation between the reduced form errors and regressors, so that the
OLS estimator of the reduced form parameter, Π, may or may not be consistent. As a consequence,
the panel TSLS and LIML estimators of the structural parameters may or may not be consistent.

We show that the panel LIML and TSLS estimators are consistent estimators if the factor loadings
are uncorrelated conditional on F . t. Let wi = (w1,i, w2,i) and xi = (x1,i, x2,i). Partition the selection

matrices S1
(h1+h2)×k1

=

(
S11

S12

)
and S2

(h3+h4)×k2

=

(
S21

S22

)
conformably to wi and xi, respectively,

and define

S =


S11 0
0 S21

S12 0
0 S22

 = (S1, S2) . (15)

Notice that zi = (wi, xi) S, z′izi = S′
(

w′iwi w′ixi
x′iwi x′i xi

)
S and zi − z̄ = ((wi, xi)− (w̄, x̄)) S.

Lemma 1. Under Assumptions 1 i–vi, as N → ∞, Π̂−Π→ 0 a.s. conditional on F . Moreover, conditional
on F

√
Nvec

(
Π̂−Π

)
→D

(
Ip+1 ⊗

(
S′Q∗ (FT) S

)−1S′
)
(Θ (FT))

1
2 N
(

0, I(h1+h2+h3+h4)(p+1)

)
(16)
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where

Q∗ (FT) =

(
W∗ (FT) WX∗ (FT)

WX∗ (FT)
′ X∗ (FT)

)
, (17)

W∗ (FT) = W (FT)− w (FT)
′ w (FT) , (18)

X∗ (FT) = V (FT)− v(FT)
′v(FT)

+ lim
N→∞

1
N

N

∑
i=1

E
[
Γi
′FT
′FTΓi|F

]
− Γ (FT)

′ FT
′FTΓ (FT) , (19)

WX∗ (FT) = lim
N→∞

1
N

N

∑
i=1

E
[
wi
′vi|F

]
− w(FT)

′v(FT), (20)

Θ (FT) = lim
N→∞

1
N

N

∑
i=1

cov [vec(Ei(FT))|F ] , (21)

and

Ei(FT) =


w′i −

1
N

N
∑

j=1
E
[
w′j|F

]
v′i −

1
N

N
∑

j=1
E
[
v′j|F

]
+ (Γi − Γ (FT))

′ F′T

 (εi + FT (γi − γ (FT))) . (22)

Lemma 1 implies that Π̂ is consistent and
√

Nvec
(
Π̂−Π

)
converges F -stably to a random

vector having a covariance matrix mixed-normal distribution (for the notion of stable convergence see
Appendix A in the online Supplementary Material and references therein).

It follows from Lemma 1 that
(
π̂10, Π̂20

)
= (π10, Π20) − z̄

(
Π̂−Π

)
+ ē so that

(
π̂10, Π̂20

)
→

(π10, Π20) a.s. if and only if ē → 0 a.s., which requires γ (FT) = 0 a.s. The inconsistency of the
OLS estimator of the constant has been noted by Andrews (2005) for the case of i.i.d. observations
conditional on F .

If the factor loadings in the reduced form explanatory variables and the reduced form errors are
not independent conditional on F , then the reduced form parameters cannot be estimated consistently
using OLS. This is the case because conditioning on the shocks does not remove the correlation between
the reduced form errors and explanatory variables.

Lemma 2. Under Assumptions 1 i–v and vii, then, as N → ∞,

Π̂ = Π + ∆ (FT) a.s., (23)

where ∆ (FT) = (S′Q∗ (FT) S)−1S′M (FT), Q∗(FT) is defined in Equation (17) and

M (FT) =

 0

lim
N→∞

1
N

N

∑
i=1

E
[
Γi
′FT
′FTγi|F

]
− Γ (FT)

′ FT
′FTγ (FT)

 . (24)

Notice that if the factor loadings in the reduced form explanatory variables and the reduced
form errors are correlated conditional on F , the OLS estimator of the reduced form parameters has a
non-degenerate asymptotic distribution as the cross-sectional dimension tends to infinity (cf. Theorem 1
of Andrews 2005).
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All results to follow depend on Lemmas 1 and 2. In this paper, these have been derived under
Assumption 1. However, Equations (16) and (23) may hold under weaker conditions. Precisely, writing

√
Nvec

(
Π̂−Π

)
=

Ip+1 ⊗
(

1
N

N

∑
i=1

S′
(

(wi − w̄)′ (wi − w̄) (wi − w̄)′ (xi − x̄)
(xi − x̄)′ (wi − w̄) (xi − x̄)′ (xi − x̄)

)
S

)−1

S′

×
1√
N

N

∑
i=1

vec

(
(wi − w̄)′ (ei − ē)
(xi − x̄)′ (ei − ē)

)
,

we see that for Lemma 1 to hold one needs:

1
N

N

∑
i=1

(
(wi − w̄)′ (wi − w̄) (wi − w̄)′ (xi − x̄)
(xi − x̄)′ (wi − w̄) (xi − x̄)′ (xi − x̄)

)
→ Q∗(FT) a.s., (25)

and
1√
N

N

∑
i=1

vec

((
(wi − w̄)′

(xi − x̄)′

)
(ei − ē)

)
→D (Θ(FT))

1
2 N(0, I(h1+h2+h3+h4)(p+1)) (26)

F -stably. These conditions can hold under weaker assumptions than the one used in this paper (cf.
Kuersteiner and Prucha 2013), but would be less accessible to practitioners.

We focus on the coefficients of the endogenous variables.

Theorem 1. Under Assumptions 1 i–vi and 2, conditional on F , as N tends to infinity,

1. β̂TSLS → β0 a.s. and
√

N
(

β̂TSLS − β0
)
→D A (FT) N

(
0, I(h1+h2+h3+h4)(p+1)

)
,

2. β̂LIML → β0 a.s. and
√

N
(

β̂LIML − β0
)
→D A (FT) N

(
0, I(h1+h2+h3+h4)(p+1)

)
, where A(FT) is

A (FT) = (Π′22H (FT)Π22)
−1Π22

′H (FT)
((

1,−β0
′)⊗ ((0, Ik2

) (
S′Q∗ (FT) S

)−1
)

S′
)
(Θ (FT))

1
2 .

When the factor loadings in the reduced form explanatory variables and the reduced form
errors are uncorrelated conditional on F , the panel TSLS and LIML estimators are consistent and
asymptotically equivalent in the sense that, once normalized, they converge F -stably to the same
covariance matrix mixed normal distribution. We will see in the next section that this allows the
construction of standard tests on these coefficients. However, if γi and Γi are correlated conditional on
F , consistency does not hold.

Theorem 2. Suppose Assumption 1 i–v and vii hold. Conditional on F , as N → ∞,

1. The panel TSLS estimator has a non-degenerate asymptotic distribution

β̂TSLS → β0 + b (FT) a.s.

2. The panel LIML estimator has also a non-degenerate asymptotic distribution

β̂LIML → β0 + b (FT) a.s.,

where ∆ (FT) is partitioned conformably to Π as ∆ (FT) =

(
∆11 (FT) ∆21 (FT)

∆12 (FT) ∆22 (FT)

)
, and

b (FT) =
[
(Π22 + ∆22 (FT))

′ H (FT) (Π22 + ∆22 (FT))
]−1

× (Π22 + ∆22 (FT))
′ H (FT) (∆12 (FT)− ∆22 (FT) β0) .
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Therefore, if the factor loadings in the reduced form explanatory variables and the reduced
form errors are not uncorrelated conditional on F , the panel TSLS and LIML estimators have the
same asymptotic non-degenerate distribution. The fact that they have degenerate distribution should
be expected from the result of Phillips (1988) in the presence of total lack of identification. Notice,
however, that, in our case, TSLS and LIML have the same asymptotic distribution because the failure
of identification of the structural parameters is due to failure of identification of the reduced form
parameters not to failure of the rank condition.

We now focus on the coefficients of the exogenous variables in the structural equation.

Theorem 3. Under Assumptions 1 i–vi and 2, conditional on F , as N tends to infinity

1. α̂TSLS → α0 a.s. and
√

N (α̂TSLS − α0)→D A∗ (FT) N
(

0, I(h1+h2+h3+h4)(p+1)

)
,

2. α̂LIML → α0 a.s. and
√

N (α̂LIML − α0)→D A∗ (FT) N
(

0, I(h1+h2+h3+h4)(p+1)

)
,

where

A∗ (FT) =
(
1,−β0

′)⊗(((
Ik1 , 0

)
−Π21(Π′22H (FT)Π22)

−1Π22
′H (FT)

(
0, Ik2

))
(S′Q∗ (FT) S)−1S′

)
Θ (FT)

1
2 .

Moreover, if we let γ (FT) = (γ1 (FT)
(m×1)

, γ2 (FT)
m×p

), then

3. δ̂TSLS → δ0 + FTγ1 (FT)− FTγ2 (FT) β0 a.s.,
4. δ̂LIML → δ0 + FTγ1 (FT)− FTγ2 (FT) β0 a.s.

If the factor loadings in the reduced form explanatory variables and the reduced form errors
are uncorrelated conditional on F , the panel TSLS and LIML estimators of the coefficients of the
exogenous variables in the structural equation are consistent and have a covariance matrix mixed
normal distribution. The estimators of the constant, however, have a non-degenerate distribution
unless γ (FT) = 0 a.e.

If the factor loadings in the reduced form explanatory variables and the reduced form errors
are not uncorrelated conditional on F , the panel TSLS and LIML estimators for α0 have the same
non-degenerated distribution as the following result shows.

Theorem 4. Under Assumptions 1 i–v, vii and 2, conditional on F , as N tends to infinity

1. α̂TSLS → α0 + ∆11 (FT) + Π21b (FT)− ∆21 (FT) (β0 − b (FT)) a.s.,
2. α̂LIML → α0 + ∆11 (FT) + Π21b (FT)− ∆21 (FT) (β0 − b (FT)) a.s.

4. Tests of Hypothesis

In order to perform tests on the slope parameters β, we need to be able to estimate A (FT)

consistently. We focus on the case where the factor loadings in the reduced form explanatory
variables and the reduced form errors are uncorrelated conditional on F . In the development of
the above asymptotic results, we have shown that conditional on F , Π̂22 → Π22 a.s., Ĥ → H (FT) a.s.,
β̂TSLS → β0 a.s., β̂LIML → β0 a.s., and

Q̂∗ =
1
N

N

∑
i=1

(
(wi − w̄)′ (wi − w̄) (wi − w̄)′ (xi − x̄)
(xi − x̄)′ (wi − w̄) (xi − x̄)′ (xi − x̄)

)
→ Q∗ (FT) a.s.

Lemma 3. Let Θ̂ = 1
N

N
∑

i=1
vec
[
(zi − z̄)′ êi

]
vec
[
(zi − z̄)′ êi

]′
, where êi = yi −

(
π̂10, Π̂20

)
− ziΠ̂. Given

Assumption 1 i–vi, conditional on F , Θ̂→ Θ(FT) a.s.
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Therefore, let β̂ be either the panel TSLS or LIML estimator. Then, conditional on F ,

Â =
(
Π22

′ĤΠ̂22
)−1Π̂′22Ĥ

((
1,−β̂′

)
⊗
((

0, Ik2

) (
S′Q̂∗S

)−1
)

S′
)

Θ̂
1
2 → A (FT) (27)

a.s., and

Â∗ =
((

1,−β̂′
)
⊗
(((

Ik1 , 0
)
− Π̂21

(
Π̂′22ĤΠ̂22

)−1Π̂′22Ĥ
(
0, Ik2

)) (
S′Q̂∗S

)−1
)

S′
)

Θ̂
1
2 → A∗ (FT) (28)

a.s.
Then, it is straightforward to obtain the following result.

Theorem 5. If Assumptions 1 i–vi and 2 hold and R is a known q× p matrix of rank q < p and r is a known
and fixed q× 1 vector, such that Rβ0 = r, then,

1.
√

N
(

RÂÂ′R′
) 1

2
(

Rβ̂TSLS − r
)
→D N

(
0, Iq

)
,

2.
√

N
(

RÂÂ′R′
) 1

2
(

Rβ̂LIML − r
)
→D N

(
0, Iq

)
.

The above theorem allows us to construct t and F tests on β0 having standard asymptotic
distributions under the null hypothesis. Test on the coefficients of the exogenous variables in the
structural equation can be constructed using standard procedures.

Theorem 6. Assumptions 1 i–vi and 2 hold and R∗ is a known q× k1 matrix of rank q < k1 and r∗ is a known
and fixed q× 1 vector, such that R∗α0 = r∗ then,

1.
√

N
(

RÂ∗ Â∗
′
R′
) 1

2
(R∗α̂TSLS − r∗)→D N

(
0, Iq

)
,

2.
√

N
(

RÂ∗ Â∗
′
R′
) 1

2
(R∗α̂LIML − r∗)→D N

(
0, Iq

)
.

5. Conclusions

The paper has studied the effects of common shocks on the panel TSLS and LIML estimators. It has
shown that the panel TSLS and LIML estimators are consistent and have asymptotic covariance-matrix
mixed-normal distributions when the factor loadings in the reduced form explanatory variables and
the reduced form errors are uncorrelated conditional on the common shocks. However, neither the
panel TSLS nor the panel LIML estimator is consistent when this is not the case. The paper has also
shown that tests on the structural parameters have standard asymptotic distributions under the null
hypothesis when the factor loadings in the errors and the regressors are uncorrelated given the common
shocks. These results extend those of Andrews (2005) to model with classical endogeneity, and suggest
that accounting for classical endogenity does not address the problem of factors endogeneity.

Supplementary Materials: Proofs of all results are available online at http://www.mdpi.com/2225-1146/6/2/
19/s1.
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