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Abstract: Several modified estimation methods of the memory parameter have been introduced
in the past years. They aim to decrease the upward bias of the memory parameter in cases of
low frequency contaminations or an additive noise component, especially in situations with a
short-memory process being contaminated. In this paper, we provide an overview and compare the
performance of nine semiparametric estimation methods. Among them are two standard methods,
four modified approaches to account for low frequency contaminations and three procedures
developed for perturbed fractional processes. We conduct an extensive Monte Carlo study for
a variety of parameter constellations and several DGPs. Furthermore, an empirical application of
the log-absolute return series of the S&P 500 shows that the estimation results combined with a
long-memory test indicate a spurious long-memory process.

Keywords: spurious long memory; semiparametric estimation; low frequency contamination;
perturbation; Monte Carlo simulation

JEL Classification: C13; C14; C22

1. Introduction

Over the last decades, the long memory literature focusses on an effect called spurious long
memory. This effect is characterized by a contaminated short-memory process exhibiting the
typical properties of a long-memory process, such as a hyperbolically decaying autocorrelation
function and an unbounded spectral density at the origin. Several types of contamination exist
and we follow the classification of Hou and Perron (2014). We distinguish between short-run and
additive noise components which influence the bias and efficiency of the standard estimator in
finite samples. Further, low frequency contaminations modeled by time trends and level shifts
can cause inconsistent estimators and are a source of the aforementioned spurious long memory
(cf. Diebold and Inoue 2001; Granger and Hyung 2004). Haldrup and Nielsen (2007) present strongly
biased standard estimators for contaminated processes in their simulation study and emphasize
the need of modified estimators. Besides the theoretical effects of low frequency contaminations,
McCloskey and Perron (2013) emphasize the relevance to macroeconomic and financial applications.

Motivated by these findings, several modified estimation methods of the memory parameter have
been developed. In this survey paper, we concentrate on semiparametric estimation methods and
do not consider the literature of fully parametric estimation techniques, such as McCloskey (2013) or
McCloskey and Hill (2017). Further, we omit semiparametric Fourier- and wavelet-based estimation
approaches and refer to a survey paper by Faÿ et al. (2009).

Generally, all modified estimation methods aim to decrease the upward bias of the memory
parameter in cases of low frequency contaminations or an additive noise component, especially in
situations with a short-memory process being contaminated. Several types of modifications have been
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proposed in the literature and we compare the effects of a trimmed periodogram and an adjusted
spectral density. The order of the periodogram differs from a typical long-memory process to a
contaminated process. Therefore, by adding or replacing components of the original spectral density,
a so-called pseudo-spectral density function is modeled (e.g., Hou and Perron 2014). Alternatively,
trimming the lower frequencies of a periodogram removes the high peak of the periodogram that is
caused by the contamination. A common drawback of the modified estimators is the bias-variance
trade-off which means that a bias reduction is combined with an increased variance.

To our knowledge, this is the first survey paper on semiparametric estimation methods of the
memory parameter considering several types of contaminated processes. Usually, authors of modified
estimation methods compare the results to the original non-modified estimation method. However,
a comparison between different modified estimation methods would be of great interest. Further,
the simulation studies of the modified estimation procedures are often limited to a few data generating
processes (DGPs) and to a small set of parameter constellations, except for Hou and Perron (2014).
We contribute to this literature by providing an extensive Monte Carlo study for a variety of parameter
constellations and several DGPs. Additionally, we review the performance of the estimation methods
for perturbed fractional processes since the general idea is closely related to an additive noise
component as it has been considered by Hou and Perron (2014).

The idea of the paper is to give an overview of different estimation methods of pure and
contaminated short and long-memory processes and to compare them under several scenarios.
We aim to provide some user-guidelines in the end or a recommendation on which method should
be preferred or which one is performing most stable across the wide setup in the simulation study.
In the following, we briefly introduce the estimation methods. Two widespread semiparametric
estimation methods are considered for pure long-memory processes, the log-periodogram estimator
(also known as GPH estimator) of Geweke and Porter-Hudak (1983) and the local Whittle estimation
approach of Kuensch (1987). In this survey paper, we compare the modified estimators of Smith (2005),
Iacone (2010), McCloskey and Perron (2013) and Hou and Perron (2014). Smith (2005) develops a
biased corrected version of the log-periodogram estimator by adding an additional regressor to the
ordinary least squares regression equation. The trimming technique of Iacone (2010) is based on the
local Whittle estimator, whereas McCloskey and Perron (2013) use the GPH estimator. As stated by
Yamamoto and Perron (2013), the high peaks in the periodogram at low frequencies induced by the
level shifts or trends are robustly removed by the trimming procedure of McCloskey and Perron (2013)
and Iacone (2010). Modifying the estimator of Kuensch (1987) by adding a term to the spectral density
that considers the contaminated process results in the estimator of Hou and Perron (2014).

In addition to the modified estimation methods of the memory parameter, we consider three
estimation methods for perturbed fractional processes. In contrast to a pure fractional process,
the short-run dynamics and long-run behavior of a perturbed fractional process are no longer driven
by the same innovation. As defined in Frederiksen et al. (2012), a perturbed fractional process can
be expressed by a signal-plus-noise model with the signal process being a long-memory process,
which is perturbed by an additive noise term. We focus on local Whittle based estimators for perturbed
fractional processes and refer to Sun and Phillips (2003) or Arteche (2006) for contributions based on
the log-periodogram estimator.

Extending this survey paper by the estimators of Andrews and Sun (2004), Hurvich et al. (2005)
and Frederiksen et al. (2012) we are considering an additive noise component as well as short-run
effects as another form of contamination. All three estimation methods modify the form of the spectral
density. Andrews and Sun (2004) replace a constant term in the spectral density by a polynomial
structure to model the short-run dynamics. Hurvich et al. (2005) extend the estimator of Hurvich
and Ray (2003) that is adding an additional term for capturing the effect of the noise term to the
low frequency behavior of the spectral density. The estimator of Frederiksen et al. (2012) models the
short-run dynamics as well as the influence of an additive noise component by a polynomial and
allows for serial dependence in the noise term, in contrast to Frederiksen and Nielsen (2008).
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According to our Monte Carlo results, we conclude to use either the estimator of Iacone (2010)
or Hou and Perron (2014) in cases of low frequency contaminations. Although the estimator
of McCloskey and Perron (2013) yields comparable estimation results, it suffers from a higher
variance. The performance of the estimator of Smith (2005) in cases of high short-run dynamics
or perturbation is comparable to the standard perturbation methods, although the estimator has
originally been developed for low frequency contamination. However, in the latter situation,
the estimator is no alternative to its competitors. Furthermore, the estimator of Hurvich et al. (2005)
and Frederiksen et al. (2012) yield almost identical findings, which are in most situations better than
the results of Andrews and Sun (2004). Based on the Monte Carlo results, we recommend applying
the low frequency estimators when it is unclear whether a low frequency contamination or a perturbed
fractional process is present.

Three out of the seven modified semiparametric estimators that we consider have been applied to
empirical data in the original paper, such as the Dow Jones Industrial Average or the S&P 500 series.
Smith (2005) and Frederiksen et al. (2012) find upward biased estimator suggesting a long-memory
process, whereas McCloskey and Perron (2013) find evidence for a spurious long-memory process.
In an empirical application, we apply the methods robust to perturbation as well as to low frequency
contaminations to daily log-absolute returns of the S&P 500 which gives us additional insights which
of these effects if not both are of relevance in our data set. We conclude that the analyzed time series
follows rather a spurious long-memory process than a perturbed fractional process. This finding is
further supported by a test of Qu (2011) that rejects the null hypothesis of a true long-memory process
at the 1% significance level.

The structure of the paper is as follows. In the next section, we introduce a variety of modified
semiparametric estimation methods of the memory parameter. In Section 3, we analyze the small
sample performance of the different estimation approaches in a Monte Carlo study. Section 4 presents
the empirical application and Section 5 concludes. Supplementary Materials with detailed Monte
Carlo results are provided on the authors webpages.

2. Semiparametric Estimation Methods

In this section, we introduce several concepts of standard and modified estimation methods.
We start with general long-memory definitions and briefly review the two standard estimation methods.
An overview of modified local Whittle and log-periodogram estimation methods follows which have
been designed to capture low frequency contaminations and to reduce the bias of the standard methods.
Afterwards, we consider approaches which focus on perturbed fractional processes and therefore
account for short-run and additive noise effects.

2.1. The Model and Standard Estimation Methods

A pure long-memory process is typically modeled as an ARFIMA (p, d, q) process which has
been developed by Granger and Joyeux (1980) and Hosking (1981). It is defined as

Φ(L)(1− L)dyt = Θ(L)εt,

where εt ∼ iid(0, σ2
ε ), Φ(L) and Θ(L) are the autoregressive and moving average polynomials,

respectively, with all roots lying outside the unit circle. The order of fractional integration is given

by d, L denotes the backshift operator and (1− L)d = ∑∞
j=0

Γ(j−d)Lj

Γ(−d)Γ(j+1) with the Gamma function
Γ(z). The interval 0 < d < 1/2 implies long memory and short memory exists for d = 0 with
an exponentially decaying autocorrelation function and a bounded spectral density function for
zero frequencies. The process is stationary and invertible for the interval −1/2 < d < 1/2 as
well as mean reverting for d < 1. Typically, a long-memory process is defined by not summable
autocovariances, ∑∞

k=−∞ |γ(k)| = ∞. Further, the spectral density function of a stationary ARFIMA
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process is given by f (λ) = Gλ−2d for frequency λ close to the origin and a slowly varying function G
(cf. Doukhan et al. 2002).

In the following, we introduce the data generating process with a constant term c and yt being a
short or long-memory process,

xt = c + yt + Aut + Bwt. (1)

The low frequency contamination and additive noise component are captured by ut and wt,
where A is a dummy variable which is 1 if we include low frequency contaminations in the DGP
and zero otherwise. The dummy variable B is its respective equivalent for a possible perturbation
process. We consider several types of low frequency contamination, among them are a sinus time
trend and randomly (non-)stationary as well as deterministic level shifts. The perturbation process is
captured by different forms of ARMA processes with varying coefficients and variances of the error
term. The explicit structure of ut and wt will be discussed in Section 3 in more detail. The two standard
estimation methods are designed for a process of the form xt = yt. The four estimators especially
designed for low frequency components consider the data generating process xt = yt + ut, except
for Smith (2005) who excludes the short-memory process in yt. Additionally, Hou and Perron (2014)
extend the process to xt = yt + ut +wt with wt being a zero mean white noise process with variance σ2

w.
The three estimators developed for perturbed fractional processes are exhibiting the following DGP
structure xt = yt + wt with wt being an ARMA process. Finally, a joint definition of the periodogram
for the individual processes in Equation (1) with Iv(λ) = (2πT)−1|∑T

t=1 vt exp(−itλ)|2 with v = x, y, u
and T being the sample size is provided by Hou and Perron (2014).

Before we compare the modified estimation methods, we briefly summarize the properties of two
most commonly applied semiparametric estimation procedures of Geweke and Porter-Hudak (1983)
and Kuensch (1987). They serve as benchmark approaches, since the modified versions should
generally produce a smaller bias in the presence of contaminations. Further, the efficiency loss of
the modified versions in situations without contaminations can be illustrated by comparing their
performance to the standard methods. Geweke and Porter-Hudak (1983) propose the log-periodogram
estimator as one of the earliest estimator for a semiparametric model. The GPH estimator is based on a
regression model which is obtained by replacing the spectral density of a process by the logarithm of
its periodogram,

log Iy(λj) = c + dXj + ej, λj = 2π j/T, j = 1, . . . , m, (2)

with a constant term c and an error term ej. The explanatory variable is given by Xj = − log(2−
2 cos(λj)) with the bandwidth parameter m and the Fourier frequency λj. Minimizing the sum of
squared residuals of the above regression model with respect to the slope coefficient yield

d̂GPH = −1
2

m
∑

j=1

(
Yj − Ȳ

)
log Iy(λj)

m
∑

j=1

(
Yj − Ȳ

)2
,

with Yj = log |1− exp(−iλj)| = log |2 sin(λj/2)| and Ȳ = 1/m ∑m
j=1 Yj. Robinson (1995) shows that

the asymptotic distribution equals
√

m(d̂GPH − d) d−→ N
(

0, π2

24

)
for d ∈ (−1/2, 1/2). For the following

asymptotic properties of the different estimation methods we assume the stationary interval of the
memory parameter, if not stated differently. The local Whittle method of Kuensch (1987), also known
as the Gaussian semiparametric estimation method, is often applied in the literature. The estimator is
based on the local Whittle likelihood function
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Q(G, d) =
1
m

m

∑
j=1

log(Gλ−2d
j ) +

Iy(λj)

Gλ−2d
j

 ,

with j = 1, . . . , bT/2c. Minimizing Q(G, d) with respect to G leads to the profiled likelihood function

R(d) = log

(
1
m

m

∑
j=1

λ2d
j Iy(λj)

)
− 2d

m

m

∑
j=1

log λj. (3)

The local Whittle estimator is given by d̂LW = arg min
d

R(d) and converges to a normal distribution

according to
√

m(d̂LW − d) d−→ N
(

0, 1
4

)
.

2.2. Modified Log-Periodogram Estimator of Smith (2005)

The form of the spectral density is influenced by low frequency contaminations, however, standard
estimation methods are not considering this change and biased estimators emerge. Smith (2005)
introduces a modified log-periodogram estimator. For rare level shifts, the part of the adjusted spectral
density that is mainly responsible for the high bias of the standard GPH method equals − log(p2 + λ2).
Since the level shift probability p is unknown an estimate pT = km/T is introduced with k > 0.
The estimation approach considers the new form of the spectral density with pT by including the
above component of the adjusted spectral density as a regressor in Equation (2). The regression model
of the log-periodogram estimator is extended by the additional regressor to

log Ix(λj) = c + dXj + τZj + ej,

with Xj as defined above and Zj = − log
(
(km/T)2 + λ2

j

)
. The modified log-periodogram estimator

is given by

d̂SMI = (X̃′MX̃)−1X̃′M log Ix(λj),

with X̃ = X− X̄, the annihilator matrix M = I − P = I − Z̃(Z̃′Z̃)−1Z̃′ with P denoting the projection
matrix and Z̃ = Z − Z̄. Simulation studies of Smith (2005) recommends to set k = 3. The limiting

distribution is similar to the log-periodogram distribution with
√

m(d̂SMI − d) d−→ N
(

0, π2

24zk

)
.

However, the bias reduction implicates a variance increase which is captured by the scale factor
zk, with z3 = 0.31 for k=3.

2.3. Modified Local Whittle Estimator of Iacone (2010)

In contrast to modifying the form of the spectral density, Iacone (2010) proposes a trimmed version
of the Gaussian semiparametric estimator of Kuensch (1987). The idea of the procedure is to balance
the frequencies of the periodogram. On the one hand, enough frequencies should be considered so
that the stationary ARFIMA process dominates in this region and on the other hand lower frequencies
for which the contamination component is most influential should be excluded. Therefore, a trimming
parameter l is introduced to the local Whittle likelihood function and the loss function in Equation (3)
can be rewritten as,

R(d) = log

{
1

m− l + 1

m

∑
j=l

λ2d
j Ix(λj)

}
− 2d

m− l + 1

m

∑
j=l

log λj.
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The modified local Whittle estimator is given by d̂IAC = arg min
d

R(d) and by setting l = 1 the

local Whittle estimator is obtained. In general, the trimming and bandwidth parameter need to be
set to l = max{1, bKlTαc} and m = max{l + 1, bKmTβc} with 0 ≤ α < β < 1 for some Kl , Km ∈ (0, ∞)

and 1 ≤ l < m ≤ bT/2c. Under certain assumptions of the trimming and bandwidth parameter, the
estimator of Iacone (2010) follows the limiting distribution of the local Whittle estimator without an

inflated variance caused by the trimming technique,
√

m(d̂IAC − d) d−→ N
(

0, 1
4

)
.

2.4. Modified Log-Periodogram Estimator of McCloskey and Perron (2013)

In addition to Smith (2005), who introduces a biased correction form of the GPH estimator,
McCloskey and Perron (2013) provide a trimmed version of the popular log-periodogram estimator
of Geweke and Porter-Hudak (1983). One major difference between these two estimation methods
is the restriction on the process. The modified GPH estimator of Smith (2005) is designed for a
short-memory process, whereas McCloskey and Perron (2013) extend their estimator to short or
long-memory processes. The standard log-periodogram regression from Equation (2) is adjusted by
the trimming parameter l and given by

log Ix(λj) = c + dXj + ej,

with j = l, . . . , m. Applying the ordinary least squares method, the modified GPH estimator can be
expressed as

d̂MCP = −1
2

m
∑
j=l

(
Yj − Ȳ

)
log Ix(λj)

m
∑
j=l

(
Yj − Ȳ

)2
, (4)

with Yj = log |1 − exp(−iλj)| and Ȳ = (m − l + 1)−1 ∑m
j=l Yj. In addition to the general

requirements on the trimming and bandwidth parameter mentioned above for the previous estimator,
McCloskey and Perron (2013) constrained the trimming parameter to a strictly positive α value.
Further, an additional condition on the two user-chosen parameters is expressed by (m log m)/T +

(l log2 m)/m + (T1−2d log4 m)/(l2−2d)→ 0 as T → ∞. To satisfy this condition α is restricted to certain
values depending on the memory parameter. For the interval of particular interest, 0 ≤ d < 1/2,
the exponent of the trimming parameter needs to be set to α = 1/2 + ε with ε > 0. The optimal choice
of the upper and lower bound of the sum in (4) is crucial for this estimation method.

Under restrictive assumptions concerning the trimming and bandwidth parameter, the limiting
distribution of the trimmed GPH estimator shows no efficiency loss in cases of low frequency

contaminations so that
√

m(d̂MCP − d) d→ N
(

0, π2

24

)
is still valid. However, in the absence of

a contamination component, the variance increases and, compared to the trimmed estimator of
Iacone (2010), the variance increase is sometimes extremely high.

2.5. Modified Local Whittle Estimator of Hou and Perron (2014)

This approach considers the new form of the approximated spectral density when low frequency
contaminations are present. In contrast to Iacone (2010) and McCloskey and Perron (2013), this method
considers all data and no trimming technique is required. Adding the new term Guλ−2/T to the
standard form of the spectral density, a so-called pseudo spectral density can be written as

fx(λ) = Gλ−2d + Guλ−2/T = G(λ−2d + (Gu/G)λ−2/T) = G(λ−2d + θuλ−2/T),

where θu is the signal-to-noise ratio. The new parameter θu controls the influence of contaminations
at low frequencies. The pseudo spectral density aims to provide a good approximation of the true
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spectral density in the existence of low frequency contaminations. The pseudo likelihood function is
given by

Q(G, d, θu) =
1
m

m

∑
j=1

{
log fx(λj) +

Ix(λj)

fx(λj)

}
(5)

and the modified local Whittle estimator is defined as d̂HP = arg min
d,θu

R(d, θu) for d ∈ (−1/2, 1) and

θu ∈ (0, ∞) with

R(d, θu) = log

 1
m

m

∑
j=1

Ix(λj)

λ−2d
j + θuλ−2

j /T

+
1
m

m

∑
j=1

log
(

λ−2d
j + θuλ−2

j /T
)

.

In the absence of low frequency contamination, the form of the pseudo likelihood function in
Equation (5) reduces to the standard local Whittle likelihood function. Hence, no asymptotic efficiency

loss exists with
√

m(d̂HP − d) d−→ N
(

0, 1
4

)
for d ∈ [0, 1/2). In contrast to the aforementioned authors,

Hou and Perron (2014) are the first who provide an extension to account for additive noise and
short-memory effects. The modifications are based on the concepts of Andrews and Sun (2004),
Hurvich et al. (2005) and Frederiksen et al. (2012) which follow in the next subsections.

2.6. Local Polynomial Whittle Estimator of Andrews and Sun (2004)

In addition to the modified estimation methods of the memory parameter, we consider three
estimation methods for perturbed fractional processes. Arteche (2004) shows that when the local
Whittle and log-periodogram estimator are applied to perturbed fractional processes they are biased
but remain consistent and asymptotical normal. Therefore, several estimation methods have been
developed to account for the perturbation. The following three estimation methods modify the local
Whittle estimator of Kuensch (1987).

In contrast to a pure fractional process, the short-run dynamics and long-run behavior of
a perturbed fractional process are no longer driven by the same innovation. As defined in
Frederiksen et al. (2012), a perturbed fractional process can be expressed by a signal-plus-noise model
with the signal process being a long-memory process, which is perturbed by an additive noise term.
Following the authors, we use an ARMA process for the perturbation process.

The estimation method of Andrews and Sun (2004) adjusts the form of the spectral density
by providing a polynomial structure. For frequencies close to the origin the term log G can be
approximated by log G − γ(θs, λ) with the polynomial γ(θs, λ) = ∑r

k=1 θkλ2k. This leads to the
following form of the spectral density f (λ) = Gλ−2d = Gλ−2d exp(−γ(θs, λ)) and the resulting
estimator is known as local polynomial Whittle (LPW). The log-likelihood function of the estimator is
given by

Q(G, d, θs) =
1
m

m

∑
j=1

log
[

Gλ−2d
j exp(−γ(θs, λj))

]
+

Ix(λj)

Gλ−2d
j exp(−γ(θs, λj))

 , (6)

where γ(θs, λj) = ∑r
k=1 θkλ2k

j and θs = (θ1, . . . , θr)′. The local polynomial Whittle estimator is defined

as d̂LPW = arg min
d,θs

R(d, θs) and θs will be in a set of R with

R(d, θs) = log

(
1
m

m

∑
j=1

λ2d
j Ix(λj) exp(γ(θs, λj))

)
− 2d

m

m

∑
j=1

log λj −
1
m

m

∑
j=1

γ(θs, λj) + 1,
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and, by setting θs = 0 in Equation (6), the standard local Whittle estimator is obtained. The polynomial
degree r influences on the one hand the variance and on the other hand the convergence rate of the
estimator. We are more interested in a reduced variance than in a convergence rate close to a parametric
one. Therefore, we choose a small polynomial degree and set r = 1.

The variance of the LPW estimator increases by a constant cr that depends on the polynomial
degree r since a polynomial structure of the spectral density is considered. The asymptotic properties

can be summarized by
√

m(d̂LPW − d) d−→ N
(
0, cr

4
)

where the constant term in the variance is
increasing with r and equals c1 = 9/4 for r = 1.

2.7. Local Whittle with Noise Estimator of Hurvich et al. (2005)

Hurvich et al. (2005) suggest to replace the constant component G in the spectral density by a more
complex function G(1+ h(d, θρ, λ)). We focus on the following parameterizations of h(d, θρ, λ) = θρλ2d.
The local Whittle with noise (LWN) estimator of Hurvich et al. (2005) is nested in the estimator of
Frederiksen et al. (2012) and the additional parameter θρ is labeled according to them. The above
parameterization of h(d, θρ, λ) excludes serial correlation between the noise term and the long-memory
process, unlike the method of Frederiksen et al. (2012). With the improved form of the spectral density
and the additional parameter θρ, the log-likelihood function equals

Q(G, d, θρ) =
m

∑
j=1

log
[

Gλ−2d
j (1 + h(d, θρ, λj))

]
+

Ix(λj)

Gλ−2d
j (1 + h(d, θρ, λj))

 .

Minimizing Q(G, d, θρ) with respect to G leads to the profiled likelihood function

R(d, θρ) = log

(
1
m

m

∑
j=1

Ix(λj)λ
2d
j

1 + h(d, θρ, λj)

)
− 2d

m

m

∑
j=1

log
(
λj(1 + h(d, θρ, λj))

)
.

The LWN estimator is defined as d̂LWN = arg min
d,θρ

R(d, θρ) for d ∈ (0, 1) and θρ ∈ (0, ∞).

The standard local Whittle estimator is obtained in the case of h(d, θρ, λ) = 0. An important difference
to the previously introduced estimation methods is the domain of the memory parameter since the
short-memory case is explicitly not allowed, instead d is supposed to be greater than zero. Allowing for
no correlation between the signal and noise process, the variance of the LWN estimator is depending on

d with d ∈ (0, 3/4), so that the limiting distribution is expressed by
√

m(d̂LWN − d) d−→ N
(

0, (1+d)2

16d2

)
.

2.8. Local Polynomial Whittle with Noise Estimator of Frederiksen et al. (2012)

Frederiksen et al. (2012) combine the approaches of Andrews and Sun (2004) and
Hurvich et al. (2005) to create a new estimation method, the so-called local polynomial Whittle with
noise (LPWN) estimator. In contrast to Hurvich et al. (2005), the spectral density of the LPWN estimator
is locally approximated by polynomials instead of a constant near the zero frequency. Furthermore,
this procedure differs from the aforementioned methods, since it considers the correlation between the
signal and the noise process. Therefore, two polynomials are introduced that capture the noise, rw, and
short-memory effects ry. Frederiksen et al. (2012) propose the following approximation of the spectral
density fx(λj) ∼ Gλ−2dh(d, θ, λ). The LPWN estimator assumes an additional functional form of the
spectral density that is expressed by

h(d, θ, λ) = exp
(
hy(θy, λ)

)
+ θρλ2d exp (hw(θw, λ)) (7)

with θ =
(

θ′y, θρ, θ′w

)′
and by setting h(d, θ, λ) = 1 the spectral density of the local Whittle estimator

is obtained. The exponents in Equation (7) exhibit the polynomial structure of the earlier introduced
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estimator of Andrews and Sun (2004) with ha(θa, λ) = ∑ra
k=1 θa,k2k where a = y, w and ha(θa, λ) = 0

for ra = 0. Additionally, by setting both polynomials ry and rw to zero the LWN estimator
of Hurvich et al. (2005) is obtained with h(d, θ, λ) = 1 + θρλ2d. Further, the authors distinguish
between three different types of LPWN(ry,rw) estimators, the LPWN(0,1), LPWN(1,0) and LPWN(1,1).
The LPWN estimator is obtained by d̂LPWN = arg min

d,θ
R(d, θ) for d ∈ (0, 1) and θ ∈ (Ry× (0, ∞)×Rw)

with the objective function

R(d, θ) = log

(
1
m

m

∑
j=1

λ2d
j Ix(λj)

h(d, θ, λj)

)
− 2d

m

m

∑
j=1

log λj +
1
m

m

∑
j=1

log h(d, θ, λj).

The polynomials increase the asymptotic variance of
√

m(d̂LPWN − d) by a multiplicative constant
depending only on d and not on the parameters θ, with d ∈ (0, 3/4). The LPWN estimator is normally
distributed with a zero mean and exhibits a more complex form of the variance compared to the
aforementioned methods, which can be found in Frederiksen et al. (2012).

3. Monte Carlo Analysis

This section analyzes the performance of the previously presented estimators under different
scenarios. First, we introduce the Monte Carlo setup with different kind of DGPs and parameter
settings for the estimation methods. Afterwards, we present the simulation results by focusing on the
bias and root mean squared error (RMSE) of the estimators.

3.1. Monte Carlo Setup

We compare the performance of the estimation methods under nine different DGPs, which are
given in Table 1. The DGP types are obtained by adapting parts of the Monte Carlo structure provided
by Qu (2011), Frederiksen et al. (2012) and Hou and Perron (2014). The process yt is modeled by an
ARFIMA (1,d,0) with (1− αyL)(1− L)dyt = εt, where εt is a zero mean white noise process if not
otherwise defined. We standardize the ARFIMA process by its own standard deviation and consider
the following values of the autoregressive and persistence coefficient with d = 0.0, 0.2, 0.4, 0.6 and
αy = 0.0, 0.3, 0.6. By choosing d = 0.6, we violate against the stationarity assumption for a variety of
estimators to check the robustness in the case of non-stationarity. The sample size is set to T = 256,
512, 1024, 4096 and the results are based on 1000 Monte Carlo replications.

Table 1. Overview of data generating processes

no contamination xt = yt

sinus trend xt = yt + ut ut = 3 sin(4πt/T)

stationary RLS xt = yt + ut ut = (1− πφ)ut−1 + δt

δt = πtηt ηt
iid∼ N(0, 1) πt

iid∼ Bernoulli(10/T, 1) φ = 1

non-stationary RLS xt = yt + ut ut = (1− πφ)ut−1 + δt

δt = πtηt ηt
iid∼ N(0, 1) πt

iid∼ Bernoulli(10/T, 1) φ = 0

deterministic level shift xt = yt + ut ut = ∑B
i=1 ci1(Ti−1 < t ≤ Ti)

0 < |ci| < ∞ 0 = T0 < T1 < . . . < TB−1 < TB = T

GARCH (1,1) xt = yt + ut ut = σtvt vt
iid∼ N(0, 1) σ2

t = 0.1u2
t−1 + 0.8σ2

t−1

ARMA(0,0) xt = yt + wt wt = ζt ζt
iid∼ N(0, 4)

ARMA(0,1) xt = yt + wt wt = (1 + βwL)ζt βw = 0.6 ζt
iid∼ N(0, 1) εt

iid∼ N(0, σ2
εt
)

stationary RLS plus noise xt = yt + ut + wt ut = (1− πφ)ut−1 + δt

δt = πtηt ηt
iid∼ N(0, 1) πt

iid∼ Bernoulli(10/T, 1) φ = 1

wt = ζt ζt
iid∼ N(0, 4)
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In the following, we provide further information on the different types of DGPs given in Table 1.
Unreported simulation results of a linear trend as contamination show almost no difference to the
performance of a sinus trend and are therefore omitted. The components πt and ηt of the random
level shift (RLS) processes are mutually independent and the shift probability equals p = 10/T.
For the deterministic level shift process, we consider five shifts at fixed user-chosen dates with
ci = −2, 2,−4, 2, 1,−2 for i = 1, . . . , 6 and Ti/T → τi with 0 < τ1 < . . . < τ5 < 1. DGPs 7 and 8
are especially designed for the perturbed fractional estimation methods. The ARMA(0,0) process
is basically an additive white noise process with a large variance. Unreported simulation results of
an ARMA(1,0) process with αw = 0.6 are showing no clear pattern and recommendations are hard
to formulate. Therefore, we omit the results and instead consider the ARMA(0,1) process. The last
DGP combines the two groups of contaminations with a low frequency component, in the form of a
stationary RLS, and an additive noise term as a perturbation contamination.

Following Frederiksen et al. (2012), we set the noise-to-signal ratio equal to five and by rearranging
the noise-to-signal ratio the variance of the ARFIMA (1,d,0) process is obtained by

σ2
ε =

(1− αy)2 · (1+βw)2

(1−αw)2

5
.

We conduct the simulation study for all three forms of the LPWN estimator of
Frederiksen et al. (2012). The bias and RMSE results of the three different types are very similar,
especially the LPWN(0,1) and LPWN(1,0) show no significant difference. For the Monte Carlo
study and the empirical example, we present the results of the LPWN(1,1) since we are varying
the autoregressive coefficient for every DGP and also analyze several noise structures as perturbation.
In general, we follow the commonly used parameter settings in the literature to reflect the empirical
findings in the financial volatility. For all estimation methods, we choose the following values of the
bandwidth m = bTδc with δ = 0.60, 0.70, 0.79. The additional parameter of Smith (2005) is set to
k = 3. To satisfy the trimming and bandwidth condition of Iacone (2010), we choose m = b0.9Tδc
and l = b0.2Tδ−0.05c. We consider the adaptive procedure of McCloskey and Perron (2013), since this
extension exhibits a smaller variance. The first step of the adaptive method, i = 1, applies the setting of
the trimmed GPH estimator with l = bKlT1/2+εc. For the next iterations, i > 1, the trimming changes
to l = bKlT(1−2d̂i−1)/(2−2d̂i−1)+εc with d̂ as a consistent estimator of d. Two different convergence
criteria are used, either the procedure stops as |d̂i − d̂i−1| < 0.01 or when i > 9 with the final value of
d̂. We set Kl = 1 and ε = 0.03 for the estimator of McCloskey and Perron (2013) and the GPH estimator
is used as starting value. The numerical optimization of the Monte Carlo study is based on R using the
L-BFGS-B algorithm developed by Byrd et al. (1995).

3.2. Monte Carlo Results

In the following, the DGPs are numbered consecutively according to the order in Table 1. The bias
and root mean squared error results of all estimation methods and for the corresponding DGPs are
given in the Supplementary Materials. Before presenting some detailed results, we are summarizing
the major findings of the simulation study.

The two standard estimation methods are very robust compared to the modified methods in
two cases. Considering the first DGP without contamination and the ARFIMA (1,d,0) plus GARCH
(1,1), the log-periodogram and Gaussian estimator are both characterized by a smaller bias and RMSE
especially for φ ≤ 0.3. In the case of a larger bandwidth and φ = 0.6, the modified estimators of
Andrews and Sun (2004) and Hou and Perron (2014) perform slightly better or equivalent in terms
of the RMSE than the local Whittle estimator. The same results hold for the modified estimator of
Smith (2005) compared to the GPH estimator.

For a sinus trend or deterministic level shift as contamination type, the modified estimator of
Hou and Perron (2014) is outperforming the local Whittle estimator in terms of bias and also for the
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majority cases of RMSE. Additionally, for the two variations of the random level shift process, d̂HP
performs well, especially for lower values of the memory parameter (d≤0.2).

The two trimmed versions of the local Whittle and GPH estimator are both exhibiting a very
similar pattern over the DGPs. Similar to the estimator of Hou and Perron (2014), the estimators of
Iacone (2010) and McCloskey and Perron (2013) also have their strength in the presence of level shifts,
irrespective of whether they occur randomly (non-)stationary or deterministic. The good performance
in the aforementioned situations is restricted to smaller values of d and to less short-run effects.

While the estimators of Hou and Perron (2014), Iacone (2010) and McCloskey and Perron (2013)
often improve the standard estimators in the short-memory case or without short-run dynamics, the
methods of Smith (2005), Andrews and Sun (2004), Hurvich et al. (2005) and Frederiksen et al. (2012)
outperform their respective standard methods for larger values of the persistence parameter (d ≥ 0.4)
as well as for a higher short-run parameter (φ ≥ 0.3). This finding is not very surprising for the
three estimation methods designed for perturbation, however the good performance of d̂SMI in these
situations is rather unexpected. In particular, the DGPs especially constructed for the perturbation
setup are dominated by the perturbation estimators and by Smith (2005). Moreover, unreported
simulation studies stress the robustness of the estimation method of Smith (2005) to short-run effects
with values larger than φ = 0.6.

After a broad overview of the simulation results, we focus on three different contamination types
in more detail: a sinus trend, a stationary random level shift and an additive noise term. Since the
parameter intervals of the Monte Carlo study are very comprehensive, we concentrate on a sample size
of T = 1024 for the following three tables and distinguish between two bandwidths. Further, we omit
the persistence value of d = 0.6 for the first two detailed DGPs and for the third contamination type
we add the memory value d = 0.6 but exclude the short-memory case.

The results of a sinus trend as contamination are presented in Table 2. The best performance in
terms of lowest bias and RMSE is obtained by the GPH and modified GPH estimator of McCloskey
and Perron (2013). Further, the trimmed local Whittle estimator of Iacone (2010) exhibits a comparable
small bias and RMSE for φ = 0. In the next step, we compare the modified methods to the respective
standard estimators. The modified estimator of Hou and Perron (2014) outperforms the local Whittle
estimator for all combinations in terms of bias and RMSE. Generally, the estimator improves the
performance with a larger bandwidth, except for situations with a larger autoregressive parameter of
the ARFIMA model. The performance of the estimator of Iacone (2010) is very similar with an even
smaller bias and RMSE for φ = 0.0 and for φ = 0.3 combined with a smaller bandwidth. Although
the trimmed GPH estimator of McCloskey and Perron (2013) performs well in terms of the bias for
φ ≤ 0.3, the inflated variance increases the RMSE compared to the GPH estimator in most cases.
The estimator of Smith (2005) performs better with an increasing autoregressive parameter and for
a larger bandwidth. However, the three estimation methods developed for perturbed fractional
processes are not an alternative to the standard methods. For the trimmed local Whittle estimator,
the reduction of the RMSE is in the range of 60–80% for φ = 0.0 and remains within 30–75% for φ = 0.3.
In contrast to the aforementioned estimator, the estimator of Hou and Perron (2014) has a smaller
reduction of the RMSE for φ = 0.0 with 20–65% due to the higher bias. For φ = 0.3, the reduction of the
RMSE of d̂HP is very similar to the estimator of Iacone (2010) with 35–80% and remains within 20–75%
for φ = 0.6, except for d = 0.4. The estimator of Smith (2005) provides a smaller reduction of the
RMSE compared to the estimator of Hou and Perron (2014) for the highest value of the autoregressive
parameter with 5–50%.
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Table 2. DGP2:ARFIMA (1,d,0) plus sinus trend for T = 1024.

φ = 0.0 φ = 0.3 φ = 0.6

d 0.0 0.2 0.4 0.0 0.2 0.4 0.0 0.2 0.4

δ 0.70 0.79 0.70 0.79 0.70 0.79 0.70 0.79 0.70 0.79 0.70 0.79 0.70 0.79 0.70 0.79 0.70 0.79

Bias

dLW 0.661 0.524 0.457 0.350 0.297 0.215 0.614 0.527 0.432 0.375 0.300 0.268 0.614 0.596 0.470 0.485 0.374 0.420
dGPH 0.119 0.075 0.095 0.063 0.080 0.047 0.153 0.171 0.131 0.158 0.114 0.148 0.267 0.369 0.246 0.355 0.234 0.349
dHP −0.311 −0.147 −0.288 −0.145 −0.275 −0.160 −0.158 0.059 −0.154 0.048 −0.159 0.037 0.121 0.371 0.119 0.374 0.161 0.413
dIAC 0.002 0.002 −0.007 −0.008 −0.007 −0.017 0.070 0.185 0.057 0.173 0.063 0.167 0.293 0.519 0.288 0.513 0.293 0.503
dMCP −0.082 −0.015 −0.041 −0.007 0.020 0.006 0.060 0.159 0.045 0.131 0.096 0.148 0.252 0.371 0.250 0.362 0.335 0.503
dSMI 0.287 0.179 0.234 0.146 0.187 0.113 0.257 0.155 0.215 0.125 0.171 0.101 0.227 0.190 0.185 0.163 0.151 0.143
dLPW 0.928 0.719 0.665 0.501 0.448 0.329 0.830 0.650 0.593 0.457 0.413 0.314 0.735 0.625 0.539 0.469 0.401 0.364
dLW N 0.790 0.789 0.582 0.507 0.789 0.674 0.546 0.372 0.673 0.499 0.437 0.423
dLPW N11 0.790 0.789 0.581 0.507 0.789 0.674 0.545 0.372 0.673 0.499 0.436 0.423

RMSE

dLW 0.661 0.524 0.457 0.350 0.299 0.216 0.615 0.527 0.432 0.375 0.302 0.270 0.615 0.596 0.470 0.486 0.376 0.421
dGPH 0.134 0.086 0.113 0.076 0.098 0.065 0.163 0.176 0.143 0.164 0.128 0.155 0.273 0.371 0.253 0.357 0.241 0.352
dHP 0.332 0.161 0.311 0.158 0.302 0.173 0.191 0.080 0.185 0.075 0.195 0.072 0.150 0.375 0.151 0.378 0.224 0.415
dIAC 0.104 0.079 0.108 0.076 0.109 0.079 0.128 0.199 0.116 0.190 0.118 0.184 0.312 0.525 0.308 0.518 0.310 0.507
dMCP 2.981 0.105 0.178 0.079 0.127 0.066 0.230 0.171 0.134 0.142 0.148 0.155 0.269 0.373 0.288 0.368 0.397 0.535
dSMI 0.310 0.195 0.257 0.164 0.219 0.139 0.280 0.172 0.240 0.147 0.203 0.130 0.252 0.203 0.215 0.180 0.188 0.164
dLPW 0.929 0.720 0.666 0.501 0.450 0.330 0.831 0.650 0.594 0.458 0.416 0.316 0.736 0.625 0.541 0.470 0.404 0.366
dLW N 0.790 0.789 0.582 0.511 0.789 0.679 0.549 0.376 0.678 0.499 0.441 0.424
dLPW N11 0.790 0.789 0.582 0.510 0.789 0.679 0.548 0.376 0.678 0.499 0.441 0.424



Econometrics 2018, 6, 13 13 of 21

Table 3 presents the results for a stationary random level shift as contamination. In general,
the results of the non-stationary RLS in the Supplementary Materials have a similar pattern but
with a larger bias due to the non-stationarity and, thus, an increased RMSE. Three out of the four
modified estimators developed especially for low frequency contaminations, such as a random level
shifts, improve the standard methods, especially for smaller persistence values. The highest reduction
in the RMSE for the estimation methods of Hou and Perron (2014), Iacone (2010) and McCloskey and
Perron (2013) is obtained for φ = 0.3 with 50–55%, 35–50% and 1–35%, respectively, and with less
improvement for an increased short-run effect. The performance of d̂SMI is rather unexpected and
shows no improvement against the GPH estimator. The poor results of Smith (2005) are stressed by the
fact that the estimator of Andrews and Sun (2004) outperforms d̂SMI , even though the estimator of
Smith (2005) has originally been developed for random level shifts, unlike d̂LPW . The three estimation
methods not explicitly developed for low frequency contaminations are offering no improvement.
Nevertheless, compared to the sinus trend above the bias and RMSE decreased and the findings are
getting closer to the other modified estimators, especially for a higher short-run dynamic.

After two typical examples of low frequency contaminations in the form of a time trend and
level shift, we consider the effect of an additive noise term with the results given in Table 4. Overall,
the estimators of Smith (2005), Hurvich et al. (2005) and Frederiksen et al. (2012) are the three best
performing estimation methods in terms of bias and RMSE. In the following, we compare the modified
methods to the respective standard estimators. As expected, the three estimation methods developed
for perturbed fractional processes are dominating the standard methods in terms of a lower bias and
RMSE, although a RMSE reduction is restricted to larger memory values of d ≥ 0.4. Additionally,
the estimator of Smith (2005) performs well compared to the GPH estimator. The reduction of the
RMSE for the estimators of Smith (2005) and Andrews and Sun (2004) is decreasing over the φ interval
and ranging from 20–30% to 15–30% and finally to 10–30%. A similar but slightly larger reduction of
the RMSE is obtained for the estimation methods of Hurvich et al. (2005) and Frederiksen et al. (2012)
with 20–60%, 15–60% and still 5–60% for the same aforementioned region of φ. The largest reduction is
gained for d = 0.6 and δ = 0.79, irrespective of the previous estimation methods. In the presence of
an additive noise term, the two standard methods are more robust than the four modified estimators
developed for low frequency contaminations, except for Smith (2005).

The last detailed DGP in Table 5 contains two groups of contamination: a stationary random
level shift and an additive noise term. The overall outcome combines the individual results of each
contamination type from Table 3 and Table 4. Excluding the short-memory process, the estimators of
Smith (2005) and Andrews and Sun (2004) perform best in terms of bias and RMSE. For d ≥ 0.4 the
reduction of the RMSE to the respective standard method of Smith (2005) and Andrews and Sun (2004)
equals on average 30%, irrespectively of the short-run influence. On the contrary, the estimators of
Iacone (2010) and Hou and Perron (2014) provide the best results for a short-memory process being
contaminated. With an increasing influence of the short-run dynamic, the reduction of the RMSE for
d = 0 decreases on average from 55% to 50% and then to 30% for the estimators of Iacone (2010) and
Hou and Perron (2014). Therefore, no procedure provides stable results over the whole range of the
persistence parameter in the case of two contamination types.
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Table 3. DGP3: ARFIMA (1,d,0) plus stationary RLS for T = 1024.

φ = 0.0 φ = 0.3 φ = 0.6

d 0.0 0.2 0.4 0.0 0.2 0.4 0.0 0.2 0.4

δ 0.70 0.79 0.70 0.79 0.70 0.79 0.70 0.79 0.70 0.79 0.70 0.79 0.70 0.79 0.70 0.79 0.70 0.79

Bias

dLW 0.340 0.257 0.159 0.090 0.019 −0.047 0.319 0.270 0.159 0.121 0.033 −0.012 0.339 0.335 0.207 0.197 0.090 0.044
dGPH 0.322 0.225 0.152 0.077 0.020 −0.049 0.304 0.251 0.157 0.120 0.037 −0.008 0.337 0.336 0.210 0.206 0.096 0.054
dHP 0.039 0.017 −0.049 −0.075 −0.128 −0.185 0.089 0.116 0.015 0.026 −0.083 −0.108 0.235 0.282 0.149 0.161 0.034 −0.028
dIAC 0.100 0.035 −0.013 −0.070 −0.102 −0.185 0.121 0.129 0.033 0.037 −0.059 −0.100 0.252 0.328 0.172 0.191 0.062 −0.018
dMCP 0.058 0.026 −0.037 −0.059 −0.089 −0.138 0.106 0.131 0.026 0.050 −0.038 −0.053 0.261 0.306 0.174 0.190 0.082 0.037
dSMI 0.570 0.429 0.337 0.228 0.160 0.086 0.505 0.373 0.292 0.204 0.142 0.083 0.418 0.347 0.244 0.225 0.136 0.135
dLPW 0.479 0.371 0.266 0.181 0.104 0.038 0.428 0.338 0.234 0.171 0.095 0.049 0.374 0.343 0.217 0.215 0.114 0.108
dLW N 0.491 0.459 0.228 0.204 0.403 0.310 0.190 0.148 0.287 0.256 0.161 0.165
dLPW N11 0.455 0.434 0.198 0.182 0.379 0.300 0.170 0.131 0.281 0.247 0.151 0.141

RMSE

dLW 0.350 0.266 0.175 0.108 0.068 0.068 0.330 0.277 0.174 0.133 0.071 0.048 0.347 0.339 0.217 0.202 0.106 0.061
dGPH 0.335 0.236 0.174 0.098 0.079 0.074 0.317 0.259 0.176 0.134 0.080 0.053 0.348 0.342 0.223 0.213 0.117 0.074
dHP 0.147 0.072 0.135 0.103 0.175 0.199 0.152 0.133 0.107 0.065 0.136 0.130 0.254 0.287 0.171 0.169 0.098 0.079
dIAC 0.158 0.084 0.115 0.104 0.150 0.201 0.166 0.148 0.113 0.085 0.124 0.125 0.274 0.336 0.202 0.206 0.121 0.082
dMCP 0.224 0.126 0.221 0.121 0.202 0.170 0.230 0.158 0.173 0.097 0.160 0.096 0.291 0.313 0.212 0.200 0.139 0.077
dSMI 0.589 0.445 0.366 0.251 0.206 0.130 0.526 0.389 0.325 0.229 0.194 0.130 0.444 0.364 0.278 0.245 0.186 0.164
dLPW 0.493 0.382 0.286 0.198 0.141 0.082 0.442 0.348 0.255 0.188 0.134 0.086 0.390 0.352 0.237 0.226 0.144 0.125
dLW N 0.520 0.484 0.269 0.238 0.437 0.339 0.233 0.185 0.310 0.269 0.189 0.189
dLPW N11 0.489 0.463 0.244 0.222 0.415 0.330 0.214 0.171 0.304 0.259 0.176 0.166
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Table 4. DGP8: ARFIMA (1,d,0) plus ARMA(0,0) for T = 1024.

φ = 0.0 φ = 0.3 φ = 0.6

d 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6

δ 0.70 0.79 0.70 0.79 0.70 0.79 0.70 0.79 0.70 0.79 0.70 0.79 0.70 0.79 0.70 0.79 0.70 0.79

Bias

dLW −0.134 −0.144 −0.227 −0.258 −0.333 −0.393 −0.105 −0.105 −0.196 −0.228 −0.322 −0.380 −0.034 −0.040 −0.150 −0.191 −0.300 −0.368
dGPH −0.132 −0.141 −0.225 −0.257 −0.339 −0.406 −0.100 −0.102 −0.191 −0.225 −0.329 −0.394 −0.032 −0.036 −0.145 −0.188 −0.304 −0.381
dHP −0.151 −0.155 −0.273 −0.298 −0.459 −0.504 −0.123 −0.115 −0.243 −0.267 −0.455 −0.498 −0.046 −0.046 −0.191 −0.232 −0.433 −0.492
dIAC −0.148 −0.154 −0.284 −0.323 −0.469 −0.529 −0.112 −0.108 −0.255 −0.288 −0.458 −0.519 −0.012 −0.032 −0.193 −0.262 −0.435 −0.521
dMCP −0.176 −0.179 −0.330 −0.336 −0.506 −0.539 −0.132 −0.117 −0.296 −0.297 −0.508 −0.529 −0.050 −0.046 −0.233 −0.259 −0.467 −0.532
dSMI −0.112 −0.126 −0.153 −0.190 −0.189 −0.271 −0.091 −0.103 −0.125 −0.157 −0.172 −0.256 −0.055 −0.040 −0.083 −0.110 −0.147 −0.234
dLPW −0.125 −0.136 −0.184 −0.216 −0.246 −0.314 −0.107 −0.107 −0.157 −0.185 −0.233 −0.297 −0.053 −0.037 −0.116 −0.136 −0.207 −0.279
dLW N 0.013 0.003 −0.011 −0.003 −0.013 0.000 0.029 −0.004 −0.004 −0.014 −0.002 0.008 0.035 0.012 −0.009 0.008 0.000 0.015
dLPW N11 −0.010 −0.024 −0.055 −0.049 −0.061 −0.042 0.007 −0.023 −0.040 −0.052 −0.046 −0.034 0.025 −0.001 −0.032 −0.036 −0.044 −0.031

RMSE

dLW 0.142 0.148 0.231 0.260 0.335 0.394 0.115 0.110 0.200 0.230 0.324 0.381 0.056 0.050 0.155 0.193 0.301 0.369
dGPH 0.145 0.148 0.233 0.260 0.343 0.408 0.117 0.110 0.199 0.228 0.333 0.396 0.067 0.056 0.154 0.192 0.309 0.383
dHP 0.161 0.160 0.281 0.302 0.469 0.508 0.134 0.120 0.253 0.271 0.466 0.502 0.070 0.057 0.202 0.237 0.448 0.498
dIAC 0.183 0.172 0.303 0.333 0.481 0.535 0.156 0.130 0.278 0.299 0.471 0.525 0.105 0.084 0.219 0.273 0.450 0.528
dMCP 0.248 0.211 0.375 0.349 0.594 0.550 0.378 0.142 0.359 0.312 0.565 0.540 0.223 0.096 0.282 0.279 0.609 0.545
dSMI 0.162 0.149 0.191 0.204 0.215 0.279 0.150 0.129 0.168 0.176 0.200 0.264 0.135 0.088 0.136 0.134 0.176 0.245
dLPW 0.146 0.146 0.198 0.222 0.253 0.316 0.132 0.118 0.173 0.191 0.240 0.299 0.093 0.062 0.133 0.143 0.214 0.281
dLW N 0.193 0.188 0.186 0.175 0.160 0.143 0.186 0.148 0.172 0.152 0.162 0.141 0.130 0.088 0.140 0.128 0.149 0.138
dLPW N11 0.175 0.173 0.186 0.180 0.179 0.163 0.170 0.137 0.166 0.169 0.174 0.158 0.118 0.072 0.156 0.130 0.159 0.153
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Table 5. DGP9: ARFIMA (1,d,0) plus stationary RLS plus additive noise for T = 1024.

φ = 0.0 φ = 0.3 φ = 0.6

d 0.0 0.4 0.6 0.0 0.4 0.6 0.0 0.4 0.6

δ 0.70 0.79 0.70 0.79 0.70 0.79 0.70 0.79 0.70 0.79 0.70 0.79 0.70 0.79 0.70 0.79 0.70 0.79

Bias

dLW 0.221 0.157 −0.131 −0.188 −0.283 −0.356 0.212 0.167 −0.120 −0.169 −0.275 −0.347 0.225 0.196 −0.086 −0.150 −0.262 −0.339
dGPH 0.205 0.134 −0.137 −0.199 −0.293 −0.374 0.199 0.149 −0.123 −0.178 −0.281 −0.366 0.220 0.190 −0.087 −0.157 −0.269 −0.358
dHP 0.031 0.016 −0.274 −0.307 −0.476 −0.523 0.049 0.048 −0.248 −0.280 −0.465 −0.515 0.118 0.119 −0.195 −0.257 −0.448 −0.517
dIAC 0.041 0.014 −0.272 −0.320 −0.462 −0.532 0.048 0.048 −0.249 −0.290 −0.447 −0.523 0.125 0.133 −0.193 −0.273 −0.431 −0.521
dMCP 0.005 −0.007 −0.317 −0.333 −0.502 −0.543 −0.045 0.043 −0.290 −0.295 −0.443 −0.532 0.118 0.120 −0.217 −0.275 −0.464 −0.533
dSMI 0.399 0.276 0.022 −0.069 −0.101 −0.205 0.368 0.259 0.024 −0.054 −0.089 −0.198 0.325 0.262 0.037 −0.028 −0.086 −0.180
dLPW 0.329 0.237 −0.040 −0.112 −0.174 −0.257 0.303 0.230 −0.035 −0.093 −0.165 −0.250 0.280 0.240 −0.013 −0.068 −0.155 −0.234
dLW N 0.205 0.201 0.077 0.087 0.179 0.174 0.075 0.085 0.149 0.161 0.063 0.094
dLPW N11 0.154 0.164 0.031 0.046 0.135 0.137 0.030 0.049 0.114 0.119 0.019 0.049

RMSE

dLW 0.233 0.168 0.146 0.194 0.332 0.385 0.223 0.175 0.134 0.175 0.280 0.349 0.236 0.203 0.103 0.155 0.267 0.342
dGPH 0.220 0.146 0.154 0.206 0.300 0.377 0.213 0.159 0.140 0.185 0.289 0.370 0.234 0.197 0.110 0.164 0.276 0.361
dHP 0.108 0.058 0.292 0.313 0.490 0.528 0.112 0.073 0.267 0.286 0.480 0.520 0.148 0.129 0.219 0.266 0.465 0.522
dIAC 0.115 0.076 0.293 0.329 0.474 0.537 0.116 0.090 0.270 0.301 0.460 0.528 0.166 0.153 0.221 0.284 0.445 0.526
dMCP 0.465 0.112 0.402 0.351 0.573 0.556 2.195 0.099 0.339 0.312 1.551 0.543 0.336 0.147 0.275 0.295 0.497 0.546
dSMI 0.424 0.295 0.132 0.117 0.157 0.224 0.392 0.277 0.130 0.106 0.146 0.215 0.354 0.281 0.134 0.094 0.150 0.198
dLPW 0.345 0.251 0.103 0.131 0.193 0.265 0.320 0.242 0.098 0.114 0.183 0.257 0.299 0.252 0.087 0.091 0.174 0.242
dLW N 0.271 0.260 0.180 0.168 0.252 0.236 0.173 0.170 0.223 0.218 0.175 0.171
dLPW N11 0.244 0.242 0.178 0.168 0.227 0.220 0.170 0.167 0.200 0.197 0.171 0.168
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In the following, we give a broad user-guideline by focusing on the RMSE. Usually, an economist
is not aware of specific trends, level shifts or perturbation types when empirical data are analyzed.
In the following, we compare the effects of two possible scenarios. The first situation is characterized
by a perturbation process and instead of using the more appropriate estimators designed for this
specific case one falsely applies estimation methods developed for low frequency contamination.
The Monte Carlo results indicate a moderate increase of the RMSE for low frequency contaminated
estimators, apart from d = 0.6. The next scenario summarizes the reverse case, which means that,
for a low frequency contaminated process, the estimators developed to capture perturbation are used.
Depending on the specific type of low frequency contamination, the Monte Carlo study shows mixed
results. Considering a sinus trend or deterministic level shift the RMSE increases substantially for
the perturbation estimators, in some cases three times as much as the estimators developed for low
frequency contamination. The increase of the RMSE for a (non-)stationary RLS is lower than for
the two aforementioned processes but still more than twice as high as the RMSE of low frequency
contaminated estimators. The random level shift process plus an additive noise term shows slightly
higher root mean squared errors. Considering the three different types of random level shifts an
improvement of the RMSE is obtained for d = 0.6 when the perturbation estimators are used instead
of the methods designed for low frequency contamination. Therefore, we recommend the estimators
developed for low frequency contamination, since the increase in a perturbation setup is not as severe
as in the reverse case, especially in the stationary region of the memory parameter.

In summary, our results show a good performance of d̂SMI in situations of a high short-run
dynamic and in typical perturbation situations, however, in cases of low frequency contaminations,
the estimator shows some weaknesses. The estimators of Iacone (2010) and Hou and Perron (2014)
perform very similar in terms of bias and RMSE, whereas d̂HP is slightly better. In many situations,
the estimator of McCloskey and Perron (2013) cannot compete with the other modified estimators
developed for low frequency contamination in terms of RMSE due to the higher variance. Finally, the
estimators of Hurvich et al. (2005) and Frederiksen et al. (2012) yield almost identical findings, which
are in most situations better than the results of Andrews and Sun (2004).

4. Application

In this section, we analyze the daily log-absolute return series of the S&P 500 from 1 January
1997 to 31 October 2017 (T = 5245) to investigate the robustness of the aforementioned results to
the choice of estimator. Furthermore, we apply methods robust to perturbation as well as to low
frequency contaminations which gives us additional insights which of these effects if not both are of
relevance in our data set. We follow the method of Xu and Perron (2014) and calculate the log-absolute
returns as log(|rt|+ 0.001). The log-returns are obtained by differencing the logarithm of the price
index, rt = log(pt)− log(pt−1), and the constant 0.001 is added to avoid the problem of taking the
logarithm of zero. Figure 1 displays the time series of the S&P 500 with the hyperbolically decaying
autocorrelation function and the periodogram with a pole at the origin, as typical characteristics of a
long-memory process.

We estimate the persistence parameter with nine different estimation methods and vary the
bandwidth parameter according to our Monte Carlo study with m = b1 + Tδc and δ = 0.60, 0.70, 0.79.
The parameter settings of the corresponding estimation methods remain unchanged to the simulation
study above. Table 6 shows the estimation results of d̂ and the standard errors which are given in
brackets below. Additionally, we apply the univariate test of Qu (2011) to test the null hypothesis of
a true long-memory process against spurious long memory. The test statistics are given in the last
column of Table 6. We set the trimming parameter of Qu (2011) to εQu = 0.02 and the critical value
equals 1.517 at the 1% significance level.
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Figure 1. The log-absolute return series of the S&P 500 with the corresponding autocorrelation function
and periodogram.

Table 6. d̂ estimates and the corresponding standard errors in brackets below for different bandwidths
m = b1 + Tδc with * denoting significance at 1% level.

δ/d̂ LW GPH HP IAC MCP SMI LPW LWN LPWN11 Qu Test

0.60 0.453 0.493 0.353 0.339 0.506 0.570 0.521 0.608 0.603 0.910
(0.038) (0.049) (0.038) (0.086) (0.055) (0.100) (0.057) (0.039) (0.138)

0.70 0.383 0.408 0.270 0.313 0.349 0.534 0.489 0.585 0.473 1.836 *
(0.025) (0.032) (0.025) (0.056) (0.041) (0.061) (0.037) (0.026) (0.103)

0.79 0.284 0.275 0.133 0.125 0.156 0.483 0.390 0.629 0.589 3.727 *
(0.017) (0.022) (0.017) (0.038) (0.033) (0.040) (0.025) (0.017) (0.062)

In general, the memory parameters decrease with an increased bandwidth, with the exception
of d̂LWN and d̂LPWN11. This finding gives a first hint that the series might be contaminated since the
long-memory component dominates for higher frequencies in a contaminated process (cf. Perron and
Qu 2010). The estimators of Iacone (2010), Hou and Perron (2014) and McCloskey and Perron (2013)
are downward biased compared to the respective non-modified standard method. Especially for the
highest bandwidth (m = b1 + 52450.79c = 869), the reduction of the memory is extremely strong with
less than half of the memory value for d̂HP and d̂IAC compared to d̂LW . This downward pattern of the
estimators for an increased bandwidth suggests the existence of low frequency contaminations in the
log-absolute return series of the S&P 500. This interpretation is in line with the test results of Qu (2011).
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The test rejects the null hypothesis for δ = 0.70 and δ = 0.79 at the 1% significance level and therefore
suggests that the S&P 500 series follows a spurious long-memory process.

Contrary to this finding, the four other estimation methods present upward biased estimator
of d̂ in a non-stationary region compared to the local Whittle or GPH estimator. The estimator of
Andrews and Sun (2004) increases less than the other estimators and lies only for δ = 0.60 in the
non-stationary region. However, the estimators of Smith (2005), Frederiksen et al. (2012) and, especially,
Hurvich et al. (2005) show larger memory parameters in the non-stationary region. The estimation
results of Hurvich et al. (2005) and Frederiksen et al. (2012) are very similar. As expected from the
simulation study, the estimator of Smith (2005) behaves rather unexpected since it is an estimator
originally designed to capture low frequency contaminations instead of perturbation.

The estimators developed to capture perturbation are in the non-stationary region and combined
with downward biased standard estimators and even more biased modified estimators for low
frequency contamination a perturbed fractional process may be possible (cf. Wenger et al. 2017).
Our findings are in line with those of McCloskey and Perron (2013) and Frederiksen et al. (2012),
whereas the interpretation of the latter authors differs to our interpretation of a spurious long-memory
process. We conclude that the analyzed time series follows a spurious long-memory process rather than
a perturbed fractional process. In addition to the estimation results, this interpretation is supported by
a formal test of Qu (2011) and the current literature of spurious long memory (cf. Lu and Perron 2010
or Qu and Perron 2013). Without the test results of Qu (2011), a perturbed fractional process would be
an alternative conclusion.

In summary, the two standard methods indicate a stationary long-memory process, whereas
the methods of Iacone (2010), Hou and Perron (2014) and McCloskey and Perron (2013) suggest a
weakly stationary long-memory process, especially for the highest bandwidth. The four other modified
estimation methods imply a non-stationary long-memory process.

5. Conclusions

In this paper, we analyze the performance of nine semiparametric estimation methods and
compare them in a simulation study. The Monte Carlo study suggests to use either the estimator
of Iacone (2010) or Hou and Perron (2014) in cases of low frequency contaminations. Although the
estimator of McCloskey and Perron (2013) yields comparable estimation results, it suffers from a
higher variance. The performance of the estimator of Smith (2005) in cases of high short-run dynamics
or perturbation is comparable to the standard perturbation methods, even though the estimator
has originally been developed for low frequency contamination. However, in the latter situation,
the estimator is no alternative to its competitors. Furthermore, the estimators of Hurvich et al. (2005)
and Frederiksen et al. (2012) yield almost identical findings, which are in most situations better than
the results of Andrews and Sun (2004). Based on the Monte Carlo results, we recommend applying the
low frequency estimators when its unclear whether a low frequency contamination or a perturbed
fractional process is present. In our empirical example, we consider the log-absolute return series of
the S&P 500. The downward pattern of Iacone (2010), Hou and Perron (2014) and McCloskey and
Perron (2013) as the bandwidth increases combined with a rejection of the null hypothesis of a true
long-memory process by the test of Qu (2011) suggests a spurious long-memory process. This paper
presents the strengths and weaknesses of the different semiparametric estimation methods and provide
some user-guidelines.

Supplementary Materials: The following are available online at www.mdpi.com/2225-1146/6/1/13/s1.
The tables present the bias and root mean squared error (RMSE) results of nine dierent estimation methods.
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