
Rondina, Francesca

Article

Estimating unobservable inflation expectations in the New
Keynesian Phillips Curve

Econometrics

Provided in Cooperation with:
MDPI – Multidisciplinary Digital Publishing Institute, Basel

Suggested Citation: Rondina, Francesca (2018) : Estimating unobservable inflation expectations in the
New Keynesian Phillips Curve, Econometrics, ISSN 2225-1146, MDPI, Basel, Vol. 6, Iss. 1, pp. 1-20,
https://doi.org/10.3390/econometrics6010006

This Version is available at:
https://hdl.handle.net/10419/195443

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

  https://creativecommons.org/licenses/by/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.3390/econometrics6010006%0A
https://hdl.handle.net/10419/195443
https://creativecommons.org/licenses/by/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


econometrics

Article

Estimating Unobservable Inflation Expectations in the
New Keynesian Phillips Curve

Francesca Rondina † ID

Department of Economics, University of Ottawa, 120 University Private, Ottawa, ON K1N 6N5, Canada;
frondina@uottawa.ca; Tel.: +1-613-562-5800 (ext. 6602)
† I would like to thank the participants to the brown bag workshop at the University of Ottawa for their

comments and suggestions. I am also grateful to two anonymous reviewers for their constructive comments,
which helped improve the quality of the paper. The usual disclaimer applies.

Received: 1 December 2017; Accepted: 31 January 2018; Published: 5 February 2018

Abstract: This paper uses an econometric model and Bayesian estimation to reverse engineer the path
of inflation expectations implied by the New Keynesian Phillips Curve and the data. The estimated
expectations roughly track the patterns of a number of common measures of expected inflation
available from surveys or computed from financial data. In particular, they exhibit the strongest
correlation with the inflation forecasts of the respondents in the University of Michigan Survey
of Consumers. The estimated model also shows evidence of the anchoring of long run inflation
expectations to a value that is in the range of the target inflation rate.
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1. Introduction

Expectations about future values of inflation and other economic variables play a central role
in macroeconomic models. Theoretical research can provide precise information about the type of
expectations that should affect the economy (of firms, households, policymakers, etc.) and specify the
way in which these expectations should be formed (from rational expectations to alternative forms of
bounded rationality). However, expectations cannot be directly observed from the data, which implies
that the recommendations of the theoretical model are often difficult to translate into empirical research.
It is then not surprising that the question of how to measure expectations has been at the center of
a long stream of research in empirical macroeconomics. One branch of this literature, which builds
upon the original work of McCallum (1976), has focused on the development of econometric-based
measures that can be employed to approximate expectations in the models to be estimated. Another
approach, which has become increasingly common in recent years, is to use survey data, or other
measures that can be extracted from the observable data, as a proxy for expectations.

This paper is related to the literature concerned with the measurement of expectations in
models of the New Keynesian Phillips Curve (NKPC). In particular, this work contributes to the
branch of research that examines the extent to which observable measures of expectations are able to
approximate their model-consistent counterparts (see, among the others, Roberts 1995; Nunes 2010;
Coibion and Gorodnichenko 2015; Coibion et al. 2017; Lopez-Perez 2017). The paper follows along the
lines of this literature, and in particular it builds upon Coibion and Gorodnichenko (2015). As in these
previous contributions, I take the NKPC model and its predicaments seriously. However, I use a very
different methodological approach. Most of the works in this area are focused on the analysis of the
model fit to the data when alternative proxies for expectations are used in the estimation. Instead,
I employ an econometric framework and Bayesian methods to reverse engineer the path of inflation
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expectations implied by the NKPC and the data. I then compare this path to several available measures
of inflation expectations. The questions of interest in this paper are: 1. In the context of a NKPC model,
what path of expectations emerges from the data? And, in more detail, what does this path look like?
What are its time series properties? 2. Is this path similar to the expectations that we can observe from
surveys or compute from the data?

This paper is not the first one to treat expectations as unobservable variables and to estimate their
path using an empirical framework and the data. Previous contributions have adopted this approach
to study trend inflation and long run inflation expectations (see, in particular, Kozicki and Tinsley 2012;
Chan et al. 2015; and Stock and Watson 2016), using frameworks that are built upon the econometric
model of Stock and Watson (2007). The strategy employed by some of the contributions in this area
is to exploit survey data on expectations to back-up estimates of the parameters of the model (as for
instance in Nason and Smith 2013; Mertens 2016; Mertens and Nason 2017). The empirical model of
expectations used in this paper is less general than the frameworks adopted in this literature, and it is
dependent on the equation of the NKPC. However, the model is estimated using a more unrestricted
approach, in which the path of expectations is obtained jointly with all the other parameters of the
model. The framework employed in this paper is closer to Blanchard (2016). However, Blanchard (2016)
uses the model to study the changes over time in the parameters of the Phillips Curve, while I am most
interested in estimating the unobservable expectations and in computing their correlation with the
available data on inflation forecasts. Methodologically, the Bayesian procedure adopted in this work
follows the approach used by Primiceri (2006) to estimate the unknown natural rate of unemployment.

The results show that the estimated expectations are relatively persistent, and that they are
not characterized by permanent shifts over time. The estimated path resembles the data from
various surveys, especially in some parts of the sample. In particular, the paper finds that household
expectations are strongly correlated with the model-consistent expectations that emerge from the
NKPC. This result confirms the conclusions of Coibion and Gorodnichenko (2015). The estimated
slope of the Phillips curve, and its changes over time, are also in line with the values obtained in the
previous literature (Coibion and Gorodnichenko 2015; Blanchard 2016). Finally, I find evidence of the
anchoring of long run inflation expectations to a value that is in the range of the target inflation rate,
which is consistent with the conclusions of Bernanke (2010) and Svensson (2015).

It is worth remarking that the analysis performed in this paper is not normative, in the sense
that the econometric model used to estimate expectations does not make any structural assumptions
about the way in which expectations are formed. This implies that the results of this study cannot be
directly employed for monetary policy analysis, because the framework that I adopt cannot make any
statements about how expectations would change following a change in policy. However, the results
of this paper, in particular those related to the relationship between the estimated expectations and the
available survey data, are relevant, and can be exploited, in the research using the NKPC for normative
monetary policy analysis.

The remainder of the paper is organized as follows. Section 2 describes the model and Section 3
outlines the empirical strategy used to estimate its parameters and the unknown inflation expectations.
Section 3 discusses the results and compares the estimated path of expectations to the available data
on inflation forecasts. Section 4 concludes. The Appendix A provides more details about the Bayesian
empirical procedure and its implementation.

2. The Model

The model is a standard expectations-adjusted New Keynesian Phillips Curve (NKPC),
the specification that I employ is the same as in Coibion and Gorodnichenko (2015) and Svensson (2015):

πt − πe
t = α + βxt + et (1)



Econometrics 2018, 6, 6 3 of 20

In this equation, πt is the inflation rate, πe
t is expected inflation, xt is a measure of “slack”, such as

the unemployment or output gap1, and et is a N
(
0, σ2

e
)

shock.
The basic NKPC is augmented of an empirical model for expectations:

πe
t = δt + ρπe

t−1 + vt (2)

δt = δt−1 + st (3)

where vt and st are N(0, σ2
v ) and N(0, σ2

s ) innovations, respectively. I assume that E (vtst) = 0,
E (etst) = 0, and E (etvt) = 0. Frameworks similar to the one described by (2) and (3) have been
previously employed in the literature to characterize the path of inflation expectations (for instance
by Blanchard 2016) but also other unobservable variables, as the natural rate of unemployment
(Staiger et al. 2001; Primiceri 2006).

The econometric model for πe
t defined by (2) and (3) is relatively simple, but flexible enough to be

able to reproduce several of the features that could potentially be present in the time series path of this
variable. More specifically, the parameter ρ can measure the autocorrelation of inflation expectations
over time, the innovation vt can capture transitory variations in expectations, while permanent shifts
can be reflected by changes in the time-varying intercept δt. The intercept δt can be viewed as related to
the expected long run inflation rate π∗t according to the relationship: δt = (1− ρ)π∗t . Thus, variations
in δt can further be interpreted as revisions in agents’ long run inflation expectations.2

The path of πe
t is estimated jointly with the parameters of the econometric model defined by (2)

and (3), the history of δt, and the parameters of the NKPC (1), using the observable data for πt and xt.
Thus, the time series of inflation expectations emerging from this estimation procedure will reflect the
information carried by the data, “filtered” through the structure of the NKPC.

3. Estimation

The model is estimated using data for the U.S. The inflation rate is the annualized log difference
in the quarterly CPI (Consumer Price Index). The measure of “slack” xt is the unemployment
rate gap ut − uN

t , where ut is the civilian unemployment rate while uN
t is the CBO measure

of the short-term NAIRU.3 The choice of the variables to be used in the estimation follows
Coibion and Gorodnichenko (2015), and allows the results to be comparable; however, robustness checks
performed replacing the CPI with core or headline PCE (Personal Consumption Expenditure) delivered
comparable results. The data are quarterly and go from 1959 : I I to 2017 : I I I.4 The main analysis
uses observations from 1968 : I to 2017 : I I I, while data from 1959 : I I to 1967 : IV are used to set the
parameters of the prior distributions in the Bayesian estimation procedure.

As previously explained, in the second part of the analysis I compare the estimated path of πe
t

to observable data on inflation forecasts. Following Coibion and Gorodnichenko (2015), I use three
different sources of data, with the purpose of capturing the expectations of different groups of agents
in the economy. The first source is the University of Michigan Survey of Consumers, which measures
households’ inflation expectations. The data that I employ for the baseline analysis are the “median
forecast of price changes over the next 12 months”, available from the University of Michigan Surveys

1 See Coibion and Gorodnichenko (2015) for a discussion of the interpretation of this variable in alternative structural models
of the Phillips Curve.

2 The random walk process assumed in (3) is quite general, but other approaches to model long run inflation expectations
within the context of the NKPC are also possible. For instance, see the framework used in Baştürk et al. (2014).

3 The natural rate of unemployment could also be estimated using a similar econometric model as the one employed for πe
t .

However, treating both the natural rate and inflation expectations as unknown would have made the estimation of the full
framework quite challenging. Given that the focus of this paper is on expectations, I decided to simply use the measure of
the natural rate computed by the CBO and treat the variable xt as fully observable.

4 Monthly variables were transformed into quarterly by taking averages of the months in the quarter. The data for πt, ut, and
uN

t were all downloaded from the FRED Federal Reserve Bank of St. Louis webpage.
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of Consumers webpage. The series is monthly and was transformed to quarterly observations for the
period 1978 : I − 2017 : I I I.5 The second source of data reflects the market’s inflation expectations.
The specific measure that I employ is maintained by the Federal Reserve Bank of Cleveland, which uses
“Treasury yields, inflation data, inflation swaps, and survey-based measures of inflation expectations
to calculate the expected inflation rate (CPI)”.6 The series includes monthly data starting from January
1982, which were transformed to quarterly observations from 1982 : I to 2017 : I I I. The last source of
data that I employ is the Survey of Professional Forecasters. The inflation forecasts contained in this
survey are widely used to approximate expectations in empirical macroeconomic research. The specific
series that I use are the median of the respondents’ forecasts of headline and core CPI inflation for the
current period, the next period, and the next year (i.e. the average of the next four quarters). The data
are quarterly; for headline CPI the sample starts in 1981 : I I I, while for core CPI the data are only
available from 2007 : I.

3.1. Empirical Strategy

Using a framework with time-varying parameters, Blanchard (2016) shows that the
slope of the NKPC decreased after 1985, a result that is supported by the estimations of
Coibion and Gorodnichenko (2015). In order to account for this result, I follow the approach adopted
by Coibion and Gorodnichenko (2015) and I estimate a modified version of the NKPC:

πt − πe
t = α + βxt + γI85

t · xt + et (4)

where I85
t is an indicator variable that takes the value of 1 for t ≥ 1985 : I.7 The parameter γ captures

the possible shift in the slope of the NKPC that happened in the mid-1980s.
The framework composed of Equations (4), (2), and (3) is estimated using Bayesian methods.

The measure of interest is the joint posterior distribution of all the parameters of the model, together
with the histories of the time-varying intercept δt and expectations πe

t . The estimation is performed
through a Markov Chain Monte Carlo (MCMC) procedure which uses the data and the (known)
conditional distributions of the parameters and variables of interest to obtain draws from their
(unknown) joint posterior.

The empirical model to be estimated can be written in vectorial form as:

πt − πe
t = XPC

t B + et (5)

πe
t = Xe

t Dt + vt (6)

Dt = Dt−1 + s̃t (7)

where B = [α β γ]′, XPC
t =

[
1 xt I85

t · xt
]

, Dt = [δt ρ]′ , Xe
t =

[
1 πe

t−1
]
, and s̃t = [st 0]′,

with E (s̃t s̃′t) = S. Notice that S is a 2× 2 matrix with zeros everywhere, except for the element in

5 Two additional exercises use the median forecast of price changes over the next 12 months for different demographic groups,
and the median forecast of price changes over the next 5 to 10 years. As for the baseline series, these additional data were
obtained from the University of Michigan Surveys of Consumers webpage and transformed into quarterly observations.

6 The methodology used to compute this series is described in Haubrich et al. (2008).
7 Equation (4) is not exactly the same as the one estimated by Coibion and Gorodnichenko (2015), because I do not include

the indicator variable I85
t by itself as an additional variable. Thus, the model described by (4) is only able to capture a shift

in the slope β, but not in the intercept α. This choice was forced by the fact that adding one more parameter considerably
decreased the precision of all the estimated parameters of the NKPC. Thus, I decided to include the indicator variable only
in the form of an interaction with xt, which still allows the model to incorporate possible shifts in the slope of the NKPC,
without increasing the dispersion of the estimates to a troublesome degree.
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the first row, first column, which is equal to σ2
s . Using this notation, the assumptions on the prior

distributions of the parameters and variables of interest can be written as follows:

B ∼ N
(

B̂OLS, V(B̂OLS)
)

(8)

D0 ∼ N
(

D̂OLS, V(D̂OLS)
)

(9)

πe
0 ∼ N

(
πe

T0
, V (πe)

)
(10)

σ2
e ∼ IW (T0 ·Φ0,e, T0) (11)

σ2
v ∼ IW (T0 ·Φ0,v, T0) (12)

σ2
s ∼ IW

(
2 · k2

s ·Φ0,s, 2
)

(13)

where IW (S, v) denotes the Inverse Wishart distribution with scale parameter S and v degrees
of freedom.

The assumptions about the priors follow previous works that use Bayesian methods to estimate
models similar to (5)–(7), in particular Primiceri (2006). The vector B of (time invariant) parameters
of the NKPC is assumed to have a Normal prior distribution. The priors for the initial state of the
vector Dt, denoted by D0, and the initial value of expectations, denoted by πe

0, are also assumed to be
normally distributed. These assumptions are standard in the literature. For the vector B, the Normal
prior and the Gaussian conditional likelihood of the data implied by (5) give a conditional posterior
that is also a Normal distribution, with parameters that can be computed using simple formulas.
For the vector Dt and expectations πe

t , the priors (9) and (10), together with the laws of motion given
by (5)–(7) and the assumptions about the distributions of the shocks of the model, imply that the
conditional posteriors of DT and πe,T are known. Further details about these distributions are provided
in the Appendix A. With respect to the variances of the shocks, the assumptions on their distribution
are restricted by the fact that variances need to be non-negative numbers. The standard choice in
the literature is to use an Inverse Wishart distribution, which is defined on positive-definite matrices.
In Bayesian estimation, this assumption is convenient also because it allows to exploit the properties of
conjugate priors. In the specific framework under analysis, the variances σ2

e , σ2
v , and σ2

s , are assumed
to be independent of each other and to have each an Inverse Wishart prior as defined by (11)–(13).8

The corresponding conditional posterior probabilities are detailed in the Appendix A.
The parameters of the prior distributions (8)–(13) are set using the training sample

1959 : I I − 1967 : IV. Within this period, I approximate expectations as πe
t = 1

4

4
∑

j=1
πt−j. I employ

the approximated expectations, together with the observations for πt and xt, to estimate Equations (5)
and (6) by OLS, using a time-invariant intercept in the equation for inflation expectations. I then exploit
the results of these regressions to set the parameters of the prior distributions. In the Normal prior (8),
B̂OLS is the estimated vector of parameters B obtained from (5) and V(B̂OLS) is the variance of this
estimate. Similarly, in the Normal prior (9), D̂OLS is the estimated vector of parameters D obtained
from (6) and V(D̂OLS) is the variance of this estimate. In (10), πe

0 denotes expected inflation at time 0
of the estimation period, i.e. in 1967 : IV. In the Normal prior for this variable, the mean πe

T0
is the

approximated value of expectations for the last period of the training sample, and V (πe) is the variance
of πe

t in the training sample. In the Inverse Wishart priors for σ2
e and σ2

v , the parameters Φ0,e and Φ0,v
are the variance of the residuals in the OLS regressions of Equation (5) and (6), respectively. In both (11)
and (12), T0 is the number of observations in the training sample. Finally, Φ0,s is the variance of the OLS

8 Notice that these are univariate Inverse Whisart distributions, which are equivalent to Inverse Gamma distributions.
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estimate of the time-invariant intercept in (6). In the prior for σ2
s , the scale parameter is multiplied by

the factor k2
s = (0.01)2 and the degrees of freedom are set to 2, which corresponds to the dimension of

σ2
s plus one. The assumptions on the prior for σ2

s follow Cogley and Sargent (2001) and Primiceri (2005);
they are adopted to avoid an excessive time-variation of δt and to ensure, at the same time, that this
time variation is driven by the data and not by the choice of parameters in (13). The results are almost
unaffected if alternative values of ks (for instance, 0.1 or 0.5) are used instead.

The conditional posteriors of the parameters and variables of interest can be obtained from
the prior distributions, using the likelihood of the data and the properties of conjugate priors.
These posteriors are then employed in the MCMC algorithm to produce draws from the unknown
joint posterior distribution of the parameters α, β, γ, ρ, σ2

e , σ2
v , σ2

s and histories δT and πe,T . The MCMC
method is a simulation procedure used to generate draws from unknown (or complex) joint posterior
distributions. The algorithm samples successively from known distributions, which in the framework
under study in this paper are the conditional posteriors of the parameters of the model and histories
δT and πe,T . The “ chain” structure of the procedure implies that each new set of values is drawn
conditional on the values obtained in the previous step of the sequence. Once the algorithm has
converged, the additional draws will have the same distribution as if they were sampled from the true
joint posterior of interest.

In the model described by (4), (2), and (3), the MCMC procedure is implemented according to
the following sequence. First, a history DT =

(
δT , ρ

)
is drawn conditional on πe,T and the parameters

σ2
v and σ2

s . A value for σ2
s can then be sampled given DT . Second, a history πe,T is drawn conditional

on δT , the parameters B, σ2
e , and σ2

v , and the data. A value for σ2
v can then be sampled given πe,T ,

DT , and σ2
s . Finally, values for B and σ2

e can be drawn conditional on πe,T and the observed data.
The first 200,000 draws are discarded as burn in period, then one every 300 draws is saved until a total
of 1000 is retained. The Appendix A provides a detailed description of the MCMC procedure and
its implementation.

4. Results

The MCMC algorithm outlined in the previous section delivers 1000 draws from the joint posterior
distribution of the parameters α, β, γ, ρ, σ2

e , σ2
v , σ2

s and histories δT and πe,T . These values are used to
produce the results discussed in this section. The algorithm converges quickly and is quite insensitive
to changes in the assumptions about the parameters of the prior distributions.9 The plots of the
retained draws do not exhibit evident autocorrelation patterns and, overall, the procedure seems to
perform well given the framework and the data at hand. Some convergence diagnostics are presented
in the Appendix A.

The estimated path of inflation expectations is reported in Figure 1. This figure shows the median
value of the retained draws of πe

t for each time t; the dotted bands are the 16th and 84th percentiles of
the draws. The figure also reports the path of the inflation rate for comparison. Figure 2 provides some
further information by plotting the difference between the actual inflation rate and the median of the
draws of πe

t . These figures show that the estimated expectations quite closely track the behaviour of
the actual inflation rate, but their changes over time are smoother. Expectations mistakes are larger
in more turbulent times, as for instance in the 1970s or during the recent financial crisis. Overall,
the estimated expectations seem to exhibit a behaviour that is consistent with what we would have
anticipated, and that is relatively easy to rationalize.

9 I experimented with a range of different values for πe
T0

and for the mean in the prior for D0. I also tried to increase the
dispersion of the Normal priors (8), (9), and (10), by multiplying the original variances by 4. Finally, I included factors k2

e
and k2

v in (11) and (12) in addition to (13), and I experimented with different values for these factors. Neither the results nor
the convergence of the algorithm were substantially affected by any of these changes.
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15
expectations
inflation

Figure 1. The estimated path of expectations. For each t, the figure reports the median of the retained
posterior draws of πe

t (blue line), together with the 16th and 84th percentiles of the draws. The figure
also reports the path of the inflation rate for comparison (dashed black line).

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015
-6

-5

-4

-3

-2

-1

0

1

2

3

4

Figure 2. Expectations mistakes. For each t, the figure plots the difference between the actual inflation
rate and the median of the draws of πe

t , together with the 16th and 84th percentiles of this difference.

Figure 3 analyses the estimated history of inflation expectations and its components in more
detail. More specifically, the figure reports the median value of the retained draws of δt for each
time t; the dotted bands are the 16th and 84th percentiles of the draws. The figure also shows the
median path of πe

t . It is clear from this figure that the contribution of the time-varying intercept δt to
the pattern of expectations is quite moderate. The estimated expectations do not seem to feature any
sizeable permanent changes during the time period under analysis, and starting from the mid 1980s,
the median value of δt stabilizes around values in the range 0.4–0.6.

The estimated parameters of the model are reported in Table 1. This information can be used
to study the time-series properties of πe

t . The median value of ρ (0.7606) indicates that inflation
expectations are quite autocorrelated over time. As predictable given the path of δt shown in Figure 3,
the volatility of the permanent shocks st is very small (0.0273). The transitory shocks vt have much
larger volatility, and because of the autocorrelation implied by the magnitude of ρ, they are predicted
to have long lasting effects on the path of πe

t .
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Table 1. Estimated parameters of the model. The table reports the median, together with the 16th and
84th percentiles, of the 1000 retained posterior draws obtained from the MCMC estimation procedure.

16th Median 84th

α −0.3075 −0.0597 0.1461
β −0.6963 −0.4990 −0.3246
γ −0.1570 0.2976 0.7105
ρ 0.6881 0.7606 0.8508

σ2
e 0.9464 1.2597 1.7059

σ2
v 1.0767 1.9009 2.6421

σ2
s 0.0113 0.0273 0.0554

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015
-4

-2

0

2

4

6

8

10

12

14
intercept
expectations

Figure 3. The time-varying intercept. For each t, the figure reports the median of the retained draws
of δt (red line), together with the 16th and 84th percentiles of the draws. The figure also reports the
median of the retained posterior draws of πe

t (blue line).

The slope of the Phillips curve (i.e. the parameter β) reported in Table 1 is in the range
of values obtained in recent works using similar models of the NKPC (Blanchard et al. 2015;
Coibion and Gorodnichenko 2015; Svensson 2015; Blanchard 2016). The estimates point in the
direction of a shift in the slope of the Phillips Curve in the mid-1980s, although the parameter γ

is not statistically significant. The results are consistent in magnitude with the time-varying slope
estimated by Blanchard et al. (2015) and Blanchard (2016), and with the values of both β and γ obtained
by Coibion and Gorodnichenko (2015).10

Finally, the value of ρ and the path of δt can be used to study the behaviour of long run inflation
expectations based on the interpretation of the time-varying intercept as δt = (1− ρ)π∗t . The value of
π∗t computed using this relationships has been in the range 1.5%–2.5% since the late 1990s. Thus, the
estimated model does seem to suggest that long run inflation expectations have been “anchored” to the
target rate for quite a few years. This result is again consistent with the conclusions of Blanchard (2016).

4.1. Comparison with the Observable Data on Expectations

Next, I study the extent to which the estimated path of πe
t is comparable to the available

inflation forecasts data series described in Section 3. Figures 4 and 5 report the median, and 16th
and 84th percentiles, of the retained draws of πe

t , together with the Michigan, Cleveland, and SPF

10 The estimated value of γ is not statistically significant in Coibion and Gorodnichenko (2015) as well.
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measures of inflation expectations. For the SPF, I report the inflation forecasts for the next quarter
(denoted as t + 1) and for the next year (denoted as y). Figure 4 shows all the available data, while
Figure 5 focuses on the sub-sample 2007 : I − 2017 : I I I, which is the period under analysis in
Coibion and Gorodnichenko (2015).

1980 1985 1990 1995 2000 2005 2010 2015
-5

0

5

10

15
Michigan

Cleveland

SPF CPI t+1

SPF CPI y

SPF core CPI t+1

SPF core CPI y

expectations

Figure 4. The estimated and observable expectations, 1978 : I − 2017 : I I I. For each t, the figure plots
the median of the retained draws of πe

t (together with the 16th and 84th percentiles of the draws) and
the measures of inflation forecasts described in the main text.

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
-6

-4

-2

0

2

4

6

8

Michigan

Cleveland

SPF CPI t+1

SPF CPI y

SPF core CPI t+1

SPF core CPI y

expectations

Figure 5. The estimated and observable expectations, 2007 : I − 2017 : I I I. For each t, the figure plots
the median of the retained draws of πe

t (together with the 16th and 84th percentiles of the draws) and
the measures of inflation forecasts described in the main text.

Tables 2 and 3 report information about the correlations between the estimated path of πe
t and the

observable measures of inflation expectations. For each measure, one correlation value is computed
with each of the 1000 retained draws of πe,T ; the tables report the median, 16th and 84th percentiles of
these values. Table 2 uses all the available data, while Table 3 splits the sample in two periods: before
2007 : I (excluded) and after 2007 : I (included). Again, the analysis on the split sample is done to
compare the results with those of Coibion and Gorodnichenko (2015). In this table, the data from the
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SPF includes one additional variable, inflation forecasts for the current period, for both headline and
core CPI. 11

Table 2. Correlations between the estimated path of expectations and different measures of inflation
forecasts, all available data. For each measure, the table reports the median, together with the 16th and
84th percentiles, of the 1000 correlations computed using the retained posterior draws of πe,T .

Correlations Sample 16th Median 84th

Michigan 1978–2017 0.8414 0.8620 0.8830
Cleveland 1982–2017 0.5092 0.6459 0.7250
SPF CPI (t) 1981–2017 0.6967 0.7777 0.8185

SPF CPI (t + 1) 1981–2017 0.5990 0.7065 0.7699
SPF CPI (y) 1981–2017 0.5564 0.6603 0.7359

SPF core CPI (t) 2007–2017 −0.0625 0.1810 0.4196
SPF core CPI (t + 1) 2007–2017 −0.2842 0.0055 0.3203

SPF core CPI (y) 2007–2017 −0.2712 0.0221 0.3395

Table 3. Correlations between the estimated path of expectations and different measures of inflation
forecasts; the sample is split in 2007 : I. For each measure, the table reports the median, together with
the 16th and 84th percentiles, of the 1000 correlations computed using the retained posterior draws
of πe,T .

Correlations Sample 16th Median 84th Sample 16th Median 84th

Michigan 1978–2006 0.8983 0.9128 0.9265 2007–2017 0.3823 0.4650 0.5370
Cleveland 1982–2006 0.5690 0.6415 0.7071 2007–2017 0.4175 0.6085 0.7325
SPF CPI (t) 1981–2006 0.7206 0.7630 0.7940 2007–2017 0.5877 0.7251 0.8095

SPF CPI (t + 1) 1981–2006 0.6933 0.7442 0.7916 2007–2017 0.2634 0.4956 0.6755
SPF CPI (y) 1981–2006 0.6574 0.7145 0.7763 2007–2017 0.0586 0.3286 0.5771

SPF core CPI (t) - - - - 2007–2017 −0.0625 0.1810 0.4196
SPF core CPI (t + 1) - - - - 2007–2017 −0.2842 0.0055 0.3203

SPF core CPI (y) - - - - 2007–2017 −0.2712 0.0221 0.3395

Figures 4 and 5 show that, in most periods, the estimated path of πe
t mimics the behaviour of

several of the available measures of inflation forecasts. These results are confirmed by the correlations
reported in Tables 2 and 3. Most notably, the forecasts of the University of Michigan Survey of
Consumers are found to be very highly correlated with the estimated expectation, particularly in the
part of the sample before 2007 (the median correlation is 0.9128 for this period). In addition, Figure 5
shows that the forecasts of the Michigan Survey still behave quite similarly to the estimated πe

t in the
years from 2007 to 2012 (result that is consistent with the findings of Coibion and Gorodnichenko 2015),
but the relationship seems to become weaker after 2012. In general, Table 3 suggests that for several
of the measures the correlation with the estimated πe

t decreases after 2007, with the exception of the
expectations computed by the Federal Reserve Bank of Cleveland and the SPF forecasts of headline
CPI inflation for the current period.

The findings of this paper contribute to the discussion about the “missing disinflation” puzzle,
which is the focus of the analysis of Coibion and Gorodnichenko (2015). This puzzle refers to the
absence of disinflation during the recent Great Recession, when the “slack” in the economy was very
high so, according to standard models of the Phillips curve, the inflation rate should have been much
lower. A model of the Phillips Curve as the one described by (1) will rationalize the variation in πt

as due to changes in the measure of slack xt, to realizations of the shocks et, and to the behaviour of
expectations. The specific framework employed in this paper allocates this variation among xt, et,

11 I did not include these measures in Figures 4 and 5 as the additional data were making the figures difficult to read.
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and πe
t , by estimating the parameters of the models jointly with the entire history πe,T . This implies

that, by construction, any missing disinflation (or excess inflation) arising from the estimated model
will be accompanied by a path πe,T that can rationalize it. The exercise of comparing the observable
measures of expectations to the estimated history πe,T can thus also provide information on the extent
to which each of these measures can explain the missing disinflation. As shown in Figure 5, in the
years from 2007 to 2012 the inflation forecasts of the Michigan Survey appear to more closely track
the behaviour of the estimated expectations relative to the Cleveland or SPF forecasts. This result
suggests that, indeed, the expectations of households recorded in the Michigan Survey can explain
the missing disinflation puzzle, consistently with what argued by Coibion and Gorodnichenko (2015)
and Binder (2015).

To provide a more thorough analysis of the similarities between the estimated πe,T and the
observable inflation forecasts, I computed a few other statistics in addition to the correlations reported
in Tables 2 and 3. These statistics are the average, variance, and first order autocorrelation of the
expected inflation series. The results obtained using all the available data are shown in Table 4, while
Tables 5 and 6 focus on 3 different sub-periods: the period before the Great Moderation (1978–1984),
the Great Moderation (1985–2006), the Great Recession and post-Great Recession period (2007–2017).12

For simplicity of the analysis, in this exercise I only used the median of the retained draws of πe,T .
Tables 4 and 5 show that the estimated expectations and the observable inflation forecasts imply

very similar average expected inflation rates, although the differences are slightly larger for the period
2007–2017 (see Table 5, third column). In terms of variances, Table 4 suggests that the estimated
series πe,T is generally more volatile than the observable measures of expectations. However, the
results reported in Table 6 indicate that there are some differences across measures and across periods.
For instance, the expectations recorded in the Michigan Survey exhibit a volatility that is quite high,
and almost comparable to that of πe,T , in the sub-sample 1978–1984 but not in later years. On the other
hand, the SPF forecasts of headline CPI inflation for the current period are as volatile as the estimated
expectations across the entire sample period. The variance of all the other observable measures of
expectations is lower, particularly in the years from 2007 to 2017. Finally, Tables 4 and 7 report the first
order autocorrelations of the series. The Michigan Survey data and the estimated expectations exhibit
very similar autocorrelations; this is true across the entire sample period under analysis. With respect
to the other measures, many of them (specifically, the SPF inflation forecasts for the next period or the
next year and the Cleveland inflation expectations) seem to be more autocorrelated than the estimated
πe,T , especially during the sub-period 1985–2006.

Theoretical models of the NKPC are typically clear about what type of expectations should be
included in equations like (1). For instance, in the standard New Keynesian model presented in
Galì (2008), expectations are assumed to be formed at time t for the horizon t + 1. As these models
are often interpreted in terms of quarterly data, the horizon for which they assume expectations to be
formed is in fact very short. The framework that I employ in this paper, however, is built to simply
reverse-engineer a path of the variable πe

t , that evolves according to (2), and that captures the fraction
of the variation of πt that cannot be explained by xt or attributed to the shock et. This implies that
the estimated path of πe

t could, in practice, reflect different types of expectations. Overall, the results
presented so far seem to indicate that the short term measures of expectations employed in the analysis
resemble the estimated path of model-consistent expectations in several directions. However, longer
term expectations could in principle perform equally well.

In order to address this question, I considered one additional observable measure of expectations:
the Michigan Survey “median forecast of price changes over the next 5 to 10 years”. I examined the
correlation with the estimated πe,T , in addition to the variance and the autocorrelation of the series,

12 For several of the inflation forecasts measures, the data are only available for some of these sub-periods. In each case, I only
computed the statistics of interest if I had data for all the quarters in the sub-period.
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and I compared these statistics to those obtained in the first part of the analysis for the Michigan
Survey “median forecast of price changes over the next 12 months”. As the forecasts over the next
5 to 10 years are only available starting from 1990, I computed all the statistics for the full sample
1990–2017, and for the two sub-samples 1990–2006 and 2007–2017. The results of this exercise are
reported in Table 8. The table shows that for almost all the calculated statistics, the estimated path of
expectations is more similar to the forecasts of inflation over the next 12 months than to the forecasts
over the next 5 to 10 years. This result seems to indicate that the estimated history πe,T more closely
mirrors expectations for the short horizon, in line with the theoretical assumptions of the NKPC model.
However, the differences emerging from Table 8 are not very large, and do not allow to make strong
statements in this respect.

Table 4. Average, variance, and first order autocorrelation of the estimated path of expectations and
different measures of inflation forecasts, all available data. For the estimated expectations, these
statistics were computed using the median value of the 1000 retained posterior draws of πe,T .

Average Variance Autocorrelation

Sample period 1978–2017

Estimated πe
t 3.7903 7.4360 0.9188

Michigan 3.6138 2.8630 0.9554

Sample period 1982–2017

Estimated πe
t 3.0425 2.3068 0.7468

Cleveland 2.9029 1.4444 0.9385

Sample period 1981–2017

Estimated πe
t 3.1243 2.7763 0.7733

SPF CPI (t) 2.8799 2.6685 0.6252
SPF CPI (t + 1) 2.9583 1.5487 0.9393

SPF CPI (y) 3.0597 1.5025 0.9788

Sample period 2007–2017

Estimated πe
t 2.1912 2.6422 0.5640

SPF core CPI (t) 1.8103 0.1723 0.6025
SPF core CPI (t + 1) 1.8383 0.1327 0.8820

SPF core CPI (y) 1.9094 0.0946 0.8898

Table 5. Average expected inflation—the table reports the same information shown in Table 4, left
column, but for different sub-periods.

Average 1978–1984 1985–2006 2007–2017

Estimated πe
t 8.3280 3.1279 2.1912

Michigan 6.2940 3.0295 3.0643
Cleveland - 3.1651 1.7018
SPF CPI (t) - 3.0346 1.8138

SPF CPI (t + 1) - 3.0678 1.9542
SPF CPI (y) - 3.1531 2.0488

SPF core CPI (t) - - 1.8103
SPF core CPI (t + 1) - - 1.8383

SPF core CPI (y) - - 1.9094
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Table 6. Variance of expected inflation rate—the table reports the same information shown in Table 4,
middle column, but for different sub-periods.

Variance 1978–1984 1985–2006 2007–2017

Estimated πe
t 8.8005 1.1633 2.6422

Michigan 6.3941 0.2493 0.3301
Cleveland - 0.5958 0.3048
SPF CPI (t) - 1.2955 2.0618

SPF CPI (t + 1) - 0.7813 0.2251
SPF CPI (y) - 0.7306 0.0670

SPF core CPI (t) - - 0.1723
SPF core CPI (t + 1) - - 0.1327

SPF core CPI (y) - - 0.0946

Table 7. First order autocorrelation of the expected inflation series—the table reports the same
information shown in Table 4, right column, but for different sub-periods.

Autocorrelation 1978–1984 1985–2006 2007–2017

Estimated πe
t 0.9136 0.7582 0.5640

Michigan 0.9495 0.7061 0.6431
Cleveland - 0.9179 0.5220
SPF CPI (t) - 0.5604 0.3198

SPF CPI (t + 1) - 0.9129 0.5019
SPF CPI (y) - 0.9677 0.7446

SPF core CPI (t) - - 0.6025
SPF core CPI (t + 1) - - 0.8820

SPF core CPI (y) - - 0.8898

Table 8. The table reports the correlations with the estimated expectations, the variances, and the
autocorrelations, of two observable measures of expectations: “Michigan” and “Michigan 5 years”.
“Michigan” refers to the measure used in the baseline analysis, i.e. the Michigan Survey “median
forecast of price changes over the next 12 months”. “Michigan 5 years” is the Michigan Survey “median
forecast of price changes over the next 5 to 10 years”. The results are presented for all the available
data (1990–2017), and for two different sub-periods (1990–2006 and 2007–2017).

1990–2006 2007–2017 1990–2017

Correlation with πe
t

Michigan 0.5851 0.4650 0.4722
[16th, 84th] [0.4931, 0.6574] [0.3823, 0.5370] [0.3904, 0.5253]

Michigan 5 years 0.4695 0.3608 0.4091
[16th, 84th] [0.3489, 0.5816] [0.2374, 0.4499] [0.3422, 0.4800]

Variance

Estimated πe
t 0.9228 2.6422 1.6963

Michigan 0.2204 0.3301 0.2648
Michigan 5 years 0.2294 0.0322 0.1842

Autocorrelation

Estimated πe
t 0.7279 0.5640 0.6347

Michigan 0.6597 0.6431 0.6579
Michigan 5 years 0.9672 0.7844 0.9602

The path of πe,T estimated in this paper could capture different types of expectations not only
with respect to the horizon of reference, but also in other dimensions. For instance, these expectations
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could refer to alternative measures of inflation, or they could reflect the forecasts of some groups of the
population more than others. In terms of inflation measures, the SPF data used in the paper include
both headline and core CPI inflation forecasts. This choice was an attempt to account for the fact
that agents could base their expectations over different measures of inflation. Unfortunately, the core
inflation forecasts are only available for a very short period of time, so the results of this analysis are
only indicative. With respect to the expectations of different demographic groups, the recent work
of Binder (2015) has shown that their impact on the dynamics of inflation might not be uniform.13

To explore this direction in more depth, I performed one last exercise in which I studied the correlations
between the estimated expectations and the Michigan Survey “median forecast of price changes over
the next 12 months” for different demographic groups. In this exercise, I used all the available
disaggregated data, for all the available years. The results are reported in Table 9; the first row
reproduces the results obtained from the aggregate data, for comparison. The table shows that the
correlation between the estimated expectations and the survey data is roughly the same across regions,
and is not affected by the gender of the respondents. The forecasts of respondents over 55 years of
age or in the bottom 33% income group are less correlated to the estimated πe,T and, in general, the
correlations increase with the income and education of the respondents. These results are consistent
with those reported by Binder (2015), although, overall, the differences among demographic groups
emerging from Table 9 do not seem to be very large.

Table 9. The table reports the correlations between the estimated expectations and the Michigan Survey
“median forecast of price changes over the next 12 months” for different demographic groups. For each
group, the table reports the median, together with the 16th and 84th percentiles, of the 1000 correlations
computed using the retained posterior draws of πe,T . The results are computed using all the available
data for each group.

Correlations 16th Median 84th

Michigan aggregate
(sample 1978–2007) 0.8414 0.8620 0.8830

Age groups (sample 1978–2017)

18–34 0.8442 0.8658 0.8906
35–54 0.8528 0.8731 0.8938
55+ 0.7654 0.7932 0.8152

Regions (sample 1978–2017)

West 0.8382 0.8593 0.8831
North Central 0.8263 0.8482 0.8685

Northeast 0.8522 0.8727 0.8912
South 0.8282 0.8499 0.8713

Gender (sample 1978–2017)

Male 0.8493 0.8693 0.8883
Female 0.8290 0.8514 0.8732

Income group (sample 1979–2017)

Bottom 33% 0.7315 0.7617 0.7853
Middle 33% 0.7913 0.8160 0.8401

Top 33% 0.8189 0.8452 0.8675

Education level (sample 1978–2017)

High School or less 0.7908 0.8175 0.8383
Some college 0.8186 0.8410 0.8614

College degree 0.8576 0.8790 0.9014

13 In particular, Binder (2015) found that the expectations of males, with high income, high education, and in their working
age, have the largest impact.
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As previously mentioned, I performed several robustness checks using different values of the
parameters in the prior distributions (more specifically, the means and variances of the normal
distributions and the scale parameters of the Inverse Wishart distributions). I also experimented
with different burn in periods and sampling lengths in the MCMC estimation procedure, as detailed
in the Appendix A. Finally, I repeated the estimation using core or headline PCE instead of CPI to
compute πt. The main results of the paper were materially unaffected by these changes.

5. Conclusions

This paper employed an econometric model to estimate the model-consistent path of inflation
expectations emerging from the NKPC and the data. The estimated expectations are relatively
persistent and do not exhibit large permanent shifts during the period under analysis, not even
following major events as for instance the recent financial crisis. These results can be interpreted as
providing evidence of the anchoring of long run inflation expectation to the target rate.

The path of expectations estimated in this paper shows the strongest correlation with the
inflation forecasts of households recorded in the University of Michigan Survey of Consumers.
This is true especially for the period before 2012. This result strongly supports the argument
of Coibion and Gorodnichenko (2015), who suggest that households forecasts are the most
model-appropriate measure of expectations in the context of the NKPC, as they are close to the
expectations of firms which are not observable in the data.

Clearly, the results of this paper are model dependent, as the MCMC procedure used to estimate
the path of expectations exploits the equation of the NKPC. In addition, this work does not make
any structural assumptions about the way in which expectations are formed, and how they would
change following a change in policy. In this sense, the analysis is fully positive, and does not aim
at making statements about policy recommendations. Despite these caveats, I do believe that the
results of this paper are important for the literature on monetary policy analysis in the context of
the NKPC. In particular, the conclusions of this paper are in line with the recommendations of
Coibion and Gorodnichenko (2015) and Coibion et al. (2017) about the use of survey data, in particular
household inflation forecasts, as a proxy for expectations in monetary policy analysis.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A. The Markov Chain Monte Carlo Procedure

The measure of interest is the joint posterior distribution of all the parameters of the model,
together with the histories of the time-varying intercept δt and the history of expectations πe

t . In order
to simplify notation, I am going to group the parameters as ψ1 =

(
B, σ2

e
)

and ψ2 =
(

DT , S
)
;

the superscript T denotes the history of the variable up to time T. Using this notation, the posterior
distribution of interest can be written as:

p
(

ψ1, ψ2, σ2
v , πe,T | YT

)
where YT = (πT , xT) is the observable data. As previously explained, the MCMC procedure samples
from the conditional posterior distributions of the parameters of interest, which are known.

Drawing δT , ρ and σ2
s

I first draw a path for the time varying intercept δt and a value of the parameters ρ and σ2
s .

The conditional distribution p
(

DT | S, ψ1, σ2
v , πe,T , YT) = p

(
DT | πe,T , S, σ2

v
)

can be factored as shown
in Carter and Kohn (1994):

p
(

DT | πe,T , S, σ2
v

)
= p

(
DT | πe

T , S, σ2
v

) T−1

∏
t=1

p
(

Dt | Dt+1, πe
t , S, σ2

v

)
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where:
p
(

Dt | Dt+1, πe
t , S, σ2

v
)
= N

(
Dt|t+1, PD

t|t+1

)
Dt|t+1 = E

(
Dt | Dt+1, πe

t , S, σ2
v
)

PD
t|t+1 = Var

(
Dt | Dt+1, πe

t , S, σ2
v
)

This expression can be used to draw a history DT . The values Dt|t+1 and PD
t|t+1 can be obtained

from the “Kalman smoother” of Carter and Kohn (1994). The smoother is based upon a forward
recursion (the Kalman filter) that delivers the final values DT|T and PD

T|T , and on a subsequent backward

recursions that gives each Dt|t+1 and PD
t|t+1.14 The formulas of the forward recursion, applied to the

specific model under analysis in this paper, are:
Dt|t−1 = Dt−1|t−1
PD

t|t−1 = PD
t|t−1 + S

Kt = PD
t|t−1Xe′

t (Xe
t PD

t|t−1Xe′
t + σ2

v )
−1

Dt|t = Dt|t−1 + Kt(πe
t − Xe

t Dt|t−1)

PD
t|t = PD

t|t−1 − KtXe
t PD

t|t−1

The initial values of the recursion, D0|0 and PD
0|0, are set using data from the training sample, as

discussed in the main text.
The final values of the recursion, DT|T and PD

T|T , can be used to draw a value for DT from

N
(

DT|T , PD
T|T

)
. Then, this value can be used in the first step of the backward recursion to obtain DT−1|T

and PD
T−1|T , and then these values can be used to draw a value for DT−1 from N

(
DT−1|T , PD

T−1|T

)
.

The process can be repeated for all t. The generic formulas of this backward recursion are:

Dt|t+1 = Dt|t + PD
t|t

(
PD

t+1|t

)−1 (
Dt+1 − Dt|t

)
PD

t|t+1 = PD
t|t − PD

t|t

(
PD

t+1|t

)−1
PD

t|t
Notice that, because of the form of the matrix S, this approach will deliver 2× 1 vectors Dt which

are composed of a time-varying δt and a time-invariant ρ (i.e. the value of ρ will be the same for all t),
consistently with the model described by (2) and (3).

Drawing a Path of Inflation Expectations
Given the history δT , the data, and the parameters of the NKPC, the conditional distribution of

πe,T can be written as: p
(
πe,T | YT , ψ1, ψ2, σ2

v
)
= p

(
πe,T | YT , δT , ψ1, σ2

v
)
. This density can be factored

again following Carter and Kohn (1994) as:

p
(

πe,T | YT , δT , ψ1, σ2
v

)
= p

(
πe

T | YT , δT , ψ1, σ2
v

) T−1

∏
t=1

p
(

πe
t | πe

t+1, Yt, δt, ψ1, σ2
v

)
The procedure for drawing πe,T is exactly the same as the one used for δT . Notice that the equation

of the NKPC can be re-arranged as: πt − XPC
t B = πe

t + et. Given the data and the parameters in ψ1,
the left hand side of this equation is known. The formulas of the forward recursion used to obtain
πe

T|T = E
(
πe

T | YT , δT , ψ1, σ2
v
)

and Pe
T|T = Var

(
πe

T | YT , δT , ψ1, σ2
v
)

are:
πe

t|t−1 = δt + ρπe
t−1|t−1

Pe
t|t−1 = ρ2Pe

t|t−1 + σ2
v

Ke
t = Pe

t|t−1(Pe
t|t−1 + σ2

e )
−1

πe
t|t = πe

t|t−1 + Ke
t (πt − XPC

t B− πe
t|t−1)

Pe
t|t = Pe

t|t−1 − KtPe
t|t−1

14 For more details, see Carter and Kohn (1994).
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The initial values of the recursion, πe
0|0 and Pe

0|0, are again set using data from the training
sample, as explained in Section 3.1. The values πe

T|T and Pe
T|T can be used to draw a value for πe

T

from N
(

πe
T|T , Pe

T|T

)
, this value can be employed to obtain πe

T−1|T and Pe
T−1|T , which can then be

used to draw a value for πe
T−1 from N

(
πe

T−1|T , Pe
T−1|T

)
, and so on. The formulas of the backward

recursion are:
πe

t|t+1 = πe
t|t + ρPe

t|t

(
Pe

t+1|t

)−1 (
πe

t+1 − δt+1 − ρπe
t|t

)
Pe

t|t+1 = Pe
t|t − ρ2Pe

t|t

(
Pe

t+1|t

)−1
Pe

t|t

Drawing σ2
v and σ2

s
Given the assumption on the prior distributions, the conditional posteriors of the variances σ2

v
and σ2

s (the only non-zero element of the matrix S) are Inverse Wishart distributions:
p
(
σ2

v | ψ1, ψ2, πe,T , YT) = p
(
σ2

v | ψ2, πe,T) = IW(Φv, T0 + T)
p
(
σ2

s | ψ1, σ2
v , DT , πe,T , YT) = p

(
σ2

s | DT) = IW(Φs, 2 + T)
where:

Φv = Φ0,v +
T
∑

t=1
(v̂t)

2 ; v̂t = πe
t − δt − ρπe

t−1

Φs = k2
s Φ0,s +

T
∑

t=1
(ŝt)

2 ; ŝt = δt − δt−1

Values of σ2
s and σ2

v can be sampled from these Inverse Wishart distributions.

Drawing the Parameters of the NKPC
Given the assumptions on their prior distributions, the history πe,T , and the data, the parameters

of the NKPC have a Normal-Inverse Wishart posterior:
p
(
ψ1, ψ2, σ2

v , πe,T | YT) = p
(

B, σ2
e | πe,T , YT) = p

(
B | σ2

e , πe,T , YT) p
(
σ2

e | πe,T , YT)
p
(

B | σ2
e , πe,T , YT) = N(B̂, V(B̂))

p
(
σ2

e | πe,T , YT) = IW(Φe, T0 + T)
where:

B̂ =
(

PPC)−1
[

PPC
0 B̂OLS + XPC′

t (πt − πe
t )
]

V(B̂) = σ2
e
(

PPC)−1

PPC
0 =

T0
∑

t=1
XPC

0,t XPC′
0,t

PPC = PPC
0 +

T
∑

t=1
XPC

t XPC′
t

Φe = Φ0,e +
T
∑

t=1
(êt)

2 ; êt = πt − πe
t − XPC

t B

Values of B and σ2
v can be sampled from these distributions.

In Summary
The steps of the MCMC procedure can be summarized as follows:

1. Start with some initial values for the history πe,T and the parameters B, σ2
e , σ2

v , σ2
s ;

2. draw a history DT =
(
δT , ρ

)
from p

(
DT | πe,T , S, σ2

v
)

and a value σ2
s from p

(
σ2

s | DT);
3. draw a history πe,T from p

(
πe,T | YT , δT , ψ1, σ2

v
)

and a value σ2
v from p

(
σ2

v | ψ2, πe,T);
4. draw B from p

(
B | σ2

e , πe,T , YT) and σ2
e from p

(
σ2

e | πe,T , YT);
5. go back to point 2.

The first 200,000 draws were discarded as burn in period. Then, one every 300 draws was saved,
in order to break the autocorrelation of the values sampled from the Markov Chain. This ensures that
the saved draws can be treated as approximately independent observations from the joint posterior
distribution of interest. The procedure was ended when the number of saved draws reached 1000.
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Convergence of the MCMC Algorithm
The results do not change if the number of discarded draws is decreased to 50,000 or increased to

500,000. The results remain unaffected as well if one every 50 or one every 100 draws are saved.
In order to further assess the convergence of the MCMC algorithm, I studied the autocorrelations

of the draws. I first verified that the plots of the retained draws do not exhibit evident autocorrelation
patterns. To substantiate the results of this graphical analysis, I then computed the autocorrelation
functions of the draws. Below, I report the results for the 1st and 10th order autocorrelations; Table A1
refers to the parameters of the model and Figure A1 to each πe

t and δt in the histories πe,T and δT . All
of these autocorrelations are very small, often smaller than 0.05 in absolute value, confirming that the
convergence of the MCMC algorithm does not seem to be a reason for concern in this exercise.

Table A1. Autocorrelations of the retained draws.

1st OrderAutocorrelation 10th OrderAutocorrelation

α 0.0370 0.0409
β 0.0719 0.0273
γ 0.0088 -0.0003
ρ 0.0283 0.0304

σ2
e 0.0674 0.0034

σ2
v 0.0754 0.0299

σ2
s 0.0051 0.0524

autocorrelation of the draws of πe,T

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015
-0.1

-0.05

0

0.05

0.1

0.15

1st order

10th order

autocorrelation of the draws of δT

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015
-0.1

-0.05

0

0.05

0.1

0.15

1st order

10th order

Figure A1. Autocorrelations of the retained draws.
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