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Abstract Weconsider amodel of local public goods in a randomnetwork context. The
influence network determines (exogenously) who observes whom every period and
comprises a wide array of options depending on the degree distribution and the in/out-
degree correlations. We show that there exists a unique equilibrium level of public
good provision and compare it with the efficient level. We derive further insights for
this problem by performing a comparative statics analysis.

Keywords Influence networks · Public goods · Out-degree · In-degree · Best-shot
game

JEL Classification D85 · H41

1 Introduction

The study of networks has been of significant importance in diverse academic fields
such as sociology, physics and computer science (see, e.g.,Wasserman and Faust 1994;
Newman 2003, and the long list of references cited therein). The last two decades
have witnessed how numerous phenomena of economic relevance have also been
studied using the paradigmof networks. Instances are network formation (e.g., Jackson
and Wolinsky 1996; Bala and Goyal 2000), diffusion of behaviors (Morris 2000;
López-Pintado 2008a), labor markets (Calvó-Armengol 2004; Calvó-Armengol and
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Jackson 2007), peer effects in education (Calvó-Armengol et al. 2009), crime activities
(Ballester et al. 2006; Goyal and Virgier 2014), financial markets (Elliot et al. 2014)
and microfinance credits (Benerjee et al. 2013).1

We consider a model of local public goods in a random network context. There are
many socioeconomic situationswhich can be described as a local public good, that is, a
good that is non-rival and non-excludible amongneighbors in a relevant network. Some
examples are innovations among collaborating firms, complementarity of skills within
social contacts, the provision of an open source product (e.g., software) or information
in the Internet (e.g., websites or blogs). We shall be concerned with directed networks,
i.e., networks in which the benefits from interacting with an agent providing the public
good is only one way. We define the out-degree (observability) of an agents as the
number of agents she observes, whereas her in-degree (visibility) indicates how many
agents observe this agent. The correlation between agent’s out-degree and in-degree
might depend on the application. For instance, in friendship networks, this correlation
tends to be high because friendship is mostly bidirectional, whereas for other types of
networks such as the WWW this correlation could potentially be lower.

As standard in this literature, we assume that the network is exogenously given in
order to isolate the decision to contribute to the local public good from the network
formation issue. We depart, however, from the fixed network approach and consider
random networks instead (see e.g., Pastor-Satorrás and Vespignani 2001; Jackson and
Rogers 2007; López-Pintado 2008b, 2012, 2013; Galeotti and Goyal 2009, among
others). That is, the network is characterized by its large-scale properties which are
fixed, although the connections evolve randomly over time. This paper focuses on two
of such properties: the (out-)degree distribution and the in/out-degree correlation.

Agents have to decide whether to invest, or not, in the public good. If they enjoy
the public good -either because they have invested in it or because they free ride on
some other agent in the population that has done so- they obtain some benefits. This
determines a game known as the best-shot game in which an agent has incentives to
invest in the public good only if no other agent observed by her has already done so.
The static version of this model on a fixed (directed) underlying network structure has
some limitations. On the one hand, for most networks structures there will be a large
set of equilibrium outcomes and thereforewewould incur inmultiplicity problems. On
the other hand, for some simple networks an equilibrium, in pure strategies, will not
exist. We therefore propose and focus on an alternative approach based on a dynamics
influence process which leads to a unique equilibrium prediction. In particular, there
exists a unique globally stable outcome (fraction of individuals investing in the public
good) of this dynamics characterized by the (out-)degree distribution and the in/out-
degree correlation. Thus, some comparative statics results can be provided.

There are two outcomes of interest: (1) the fraction of public good providers in
equilibrium, and (2) the fraction of links that reach a public good provider in equilib-
rium. The comparative statics results lead to the following conclusions. On the one
hand, for any given out-degree distribution, an increase in the in/out-degree corre-
lation increases measure (1) and decreases measure (2). On the other hand, for any

1 SeeGoyal (2007), Vega-Redondo (2007) and Jackson (2008) for comprehensive treatments of the general
topic of social and economic networks.
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in/out-degree correlation, if the network is sufficiently dense, a First Order Stochastic
Dominance shift (Mean Preserving Spread) of the out-degree distribution decreases
(increases) measure (2).

We partially compare the efficient and equilibrium outcomes. We find that in the
case of an homogeneous population in equilibrium there is underprovision of the public
good. We also show that if we allow for some heterogeneity regarding out-degrees
the efficient and equilibrium outcomes provide opposite results; the probability of
contributing to the public good increases with respect to out-degree in equilibrium,
whereas it decreases in the efficient state.

Public goods in a network context was first analyzed in the seminar paper by Bra-
moullé andKranton (2007)who characterized the (multiple)Nash equilibria of a public
good game in a static network framework. Boticinelli and Pin (2012) addressed the
issue of equilibrium selection by introducing a dynamic model. Galeotti et al. (2010)
also shrink considerably the potentially large set of equilibria that arise under com-
plete information by assuming incomplete knowledge by part of the consumers with
respect to the network. Bramoullé et al. (2014) focus on games of strategic substitutes
on networks with linear best-reply functions which has recently been extended to non-
linear settings by Allouch (2015). We contribute to this vast literature by analyzing
local public goods in a random network context.

The rest of the paper is organized as follows. In Sect. 2 we describe the model. In
Sect. 3 we characterize the equilibrium. The comparative statics of the equilibrium
outcome are discussed in Sect. 4. In Sect. 5 we provide some results on efficiency.
Finally, in Sect. 6 we conclude.

2 The model

Before presenting the full specification of the model, let us start with the static bench-
mark case which will be useful to motivate our dynamic approach.

2.1 The static model

Let us consider a population with N = {1, . . . , n} agents, where n is sufficiently large.
Agents observe each other due to what we describe as an influence network, which
is exogenously given. Let Ni ⊆ N be the set of agents observed by i , where di , the
out-degree, is simply the cardinality of Ni . The network is directed. That is, if an agent
i observes (or is influenced by) j this does not imply that j observes i . For instance,
an agent can observe the webpage of another agent but not vice versa. Each agent
i ∈ N chooses an action indicating whether or not to provide a (costly) local public
good. More precisely, an agent chooses ai ∈ {0, 1}, where ai = 1 (0) is interpreted as
the decision of (not) providing a public good. Let a = (a1, . . . , an) ∈ {0, 1}n denote
an action profile. An agent providing the public good (ai = 1) pays a cost of C > 0,
whereas an agent enjoying the public good (from at least one other agent, or herself)
obtains a benefit of A > 0, where A > C . Let Ui (ai , a−i ) be the utility function of
agent i given the action profile a = (ai , a−i ), where a−i stands for the action chosen
by all agents except for i . Then:
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Ui (ai , a−i ) = A − aiC if
∑

j∈Ni∪{i}
a j ≥ 1

Ui (ai , a−i ) = 0 otherwise

There are at least two key assumptions implicit in this specification. On the one
hand, there is no congestion, and thus the benefit of observing the public good is
independent on howmany other agents also benefit from it (i.e., the good is non-rival).
On the second hand, there is no extra benefit derived from observing the public good
more than once. 2

We can now analyze the Nash equilibria of the induced game, where all agents
decide simultaneously whether or not to provide the public good. An agent would
decide to provide the public good if and only if nobody observed by her is doing
so. Formally, one can characterize the equilibrium as follows: a strategy profile
(a∗

1 , a
∗
2 , . . . , a

∗
n ) is a Nash equilibrium if and only if all agents providing the public

good, i.e.,
{
i ∈ N , s.t. a∗

i = 1
}
, form a maximal independent set. A maximal inde-

pendent set is a set of agents satisfying that no agent observes any other agent in the
set, and all agents out of the set observe at least one agent within the set. 3

Notice that, this model has little predictive power since for many complex networks
there will be a large set of possible equilibrium outcomes. 4 In addition to this problem,
it is easy to construct simple networks where there exists no maximal independent set,
and thus the issue of non-existence of (pure strategy) Nash equilibria arises. 5 This
motivates the study of a dynamic approach for which there always exists a unique
prediction.

2.2 The dynamic model

We consider a dynamic model to describe the evolution of agents’ choices through
time. We differ from the static approach in several directions. On the one hand, agents
update their decision to provide the public good over time. On the other hand, the
influence network is going to change (non-strategically) every period due to the ran-
domness assumed in the linking process. Agents are characterized by their out-degree
di , representing for instance, exogenous time constraints, where P(d) denotes the
out-degree distribution in the population. At each time step the network is randomly

2 The equilibrium predictions of this model are robust to other types of utility functions, as long as the
main features remain (i.e., agents are only willing to provide the public good if nobody observed by them
has done so). The welfare analysis described in Sect. 5 will obviously depend on the specific utility function
considered.
3 This concept was introduced as a formal way of describing the equilibrium for local public good games
by Bramoullé and Kranton (2007). Later, López-Pintado (2013) extended the concept to directed networks
with no in/out-degree correlations.
4 Consider, as an example, the undirected star network. Notice that, the case where only the center con-
tributes to the public good is a Nash equilibrium, as well as the case where all agents except for the center
contribute to the public good.
5 An example where there is no (pure strategy) Nash equilibrium is the following. Consider a network
composed by three agents {i, j, k} and three directed links. In particular, agent i observes j , j observes k
and k observes i .
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generated given two primitives of the process that remain fixed: (a) the degree distri-
bution P(d) and (b) a parameter α ∈ R which introduces linking biases with respect
to the out-degree. In particular, the probability that an agent links with (or observes)
an agent with out-degree d is equal to

1

〈dα〉P d
αP(d),

where 〈dα〉P = ∑
d d

αP(d). The expected in-degree of an agent is defined as the
expected number of agents that observe this agent. It is straightforward to show the
expected in-degree (din) of an agent with out-degree dout = d is equal to 〈din |
dout = d〉 = dα

〈dα〉P 〈d〉P . 6 With some abuse of terminology, throughout the paper,
the expected in-degree will simply be referred to as the in-degree. Two special cases
could be singled out regarding α. If α = 0 agents observe others uniformly at random
and as a consequence the out-degree and in-degree are uncorrelated, in fact, all agents
have the same in-degree or visibility (see López-Pintado 2013 for the analysis of such
extreme case). If, instead, α = 1 then an agent with twice the out-degree of another
agent is selected twice as often. This reflects the idea that agents that have a higher
out-degree are also more visible for others and therefore will have a higher in-degree.
Hereafter the in/out-degree correlation can be roughly identified with parameter α

when α ∈ [0, 1] as an increase in such parameter corresponds with an increase in the
similarity between the out-degree and in-degree of agents.

Notice that, if α > 1 agents with a high out-degree have an even higher in-degree,
whereas α < 0 implies that agents with a high out-degree will typically have a very
low in-degree. For most of the paper we will concentrate on the case α ∈ [0, 1],
although we will point out which results can be extended to other values of α.

Consider a continuous-time dynamics to describe the evolution of the provision of
the local public good in the population. At each time t an agent, say i , revises his
action ai at a rate λ ≥ 0. This agent decides whether or not to contribute to the public
good given the behavior of those agents observed by agent i in the influence network
realized at time t , i.e., applying a myopic best response.

Let ρd(t) denote the proportion of agents with out-degree d that are choosing action
1 at time t . A state is determined by the profile {ρd(t)}d≥1, where we assume that all
agents have at least out-degree 1. There are two measures that will be of particular
importance for our analysis.

First, the overall fraction of agents choosing 1 (non-conditional on degree). This
measure is denoted by ρ(t) and can be computed as follows:

ρ(t) =
∑

d≥1

P(d)ρd(t).

6 Notice that 〈din | dout = d〉 =
1

〈dα 〉P dα P(d)
∑

k
nP(k)k

nP(d)
, where the numerator is the total number of

links that would reach the set of agents with out-degree d and the denominator is the number of agents with
out-degree d in the population.
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Second, the probability that a link reaches an agent choosing 1. This probability is
represented by θ(t) and can be computed as follows:

θ(t) = 1

〈dα〉P
∑

d≥1

dαP(d)ρd(t). (1)

The computation of θ(t) is derived from the fact that dα P(d)
〈dα〉 is the probability of

observing an agent with out-degree d and, conditional on having out-degree d, the
probability of providing the public good is ρd(t). Notice that, in the extreme case
where α = 0 (i.e., in/out-degree correlation is zero) then θ(t) = ρ(t) but, in general,
these two measures will differ.

For each degree d, the deterministic approximation of the evolution of ρd(t) is
given by the following differential equation:

dρd(t)

dt
= (1 − ρd(t))λ(1 − θ(t))d − ρd(t)λ(1 − (1 − θ(t))d). (2)

Notice that the positive term in the equation accounts for transitions from action 0 to
1, whereas the negative term accounts for the reverse transitions (i.e., from action 1
to 0). The first term can be interpreted as follows: 1 − ρd(t) is the probability that
an agent with out-degree d is choosing 0 at time t . This agent revises at a rate λ and
switches to 1 if nobody observed by her is choosing 1 , something which occurs with
probability (1 − θ(t))d . The second term can be interpreted in a similar way: ρd(t)
is the probability that an agent with out-degree d is choosing 1 at time t . This agent
revises at a rate λ and switches to 0 if at least one agent observed by her is choosing
1, something which occurs with probability 1 − (1 − θ(t))d .

After simplifications of Eq. (2) we find that, for each d,

dρd(t)

dt
= λ(−ρd(t) + (1 − θ(t))d). (3)

Given this systemof differential equationswe can nowaddress the issue of equilibrium.

3 Results: the equilibrium

In the stationary state (or equilibrium) of this dynamics,
dρd (t)
dt = 0, for all d, which

implies that:

ρd(θ) = (1 − θ)d . (4)

Therefore, given Eq. (1), θ∗ must be a solution of the following (fixed-point) equa-
tion:

θ = HP,α(θ), (5)
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where we define

HP,α(θ) ≡
∑

d≥1

dαP(d)

〈dα〉P (1 − θ)d .

Once we know θ∗ in equilibrium we can also determine ρ∗
d for each d and, conse-

quently, the overall fraction of public good contributors ρ∗.
Notice that, in the dynamics described above, agents can switch actions (from 0 to 1

and vice-versa) in equilibrium, given that the influence network is randomly generated
every period. Therefore, the concept of stationary state, only refers to stationary values
for θ , {ρd}d and ρ. The next result addresses the issue of existence and uniqueness of
the equilibrium.

Proposition 1 Given an influence network characterized by P and α ∈ R, there exists
a unique equilibrium of the dynamic model. Furthermore, this equilibrium is globally
stable.

Proof Note that dHP,α(θ)

dθ
= − 1

〈dα〉P
∑

d≥1 d
αP(d)d(1 − θ)d−1 ≤ 0 for all θ ∈

[0, 1]. Therefore, HP,α(θ) is a (continuous and) decreasing function of θ . Furthermore,
HP,α(0) = 1 and HP,α(1) = 0. Thus, there exists a unique solution θ∗ ∈ (0, 1) of Eq.
(5) and therefore a unique value for θ (and ρ) in equilibrium. To conclude, let us show
that θ∗ is globally stable, i.e., starting from any initial fraction of agents choosing 1
(ρ = ρ0), the dynamics converges to a state where θ = θ∗. To do so notice that

dθ(t)

dt
= 1

〈dα〉P
∑

d≥1

dαP(d)
dρd(t)

dt
,

and, substituting dρd (t)
dt for its value determined by ( 3), we obtain that

dθ(t)

dt
= 1

〈dα〉P
∑

d≥1

dαP(d)λ(−ρd + (1 − ρ(t))d);

or, equivalently,

dθ(t)

dt
= λ(HP,α(θ(t)) − θ(t)),

from where the desired conclusion follows. ��

In the next section we develop comparative statics results with respect to the in/out-
degree correlation α and the out-degree distribution P (the two primitives of the
influence network).
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4 Comparative statics

Let ρ∗(P, α) and θ∗(P, α) denote the equilibrium values for ρ and θ , respectively,
given P and α.

Consider first the comparative statics with respect to α.

Proposition 2 Let P be a given out-degree distribution. Also, let α1 ∈ [0, 1] and
α2 ∈ [0, 1] be two levels of in/out-degree correlation. If α1 ≤ α2 then θ∗(P, α1) ≥
θ∗(P, α2) and ρ∗(P, α1) ≤ ρ∗(P, α2).

Notice that an increase inα leads to opposite effects on θ∗ and ρ∗, somethingwhich,
at first, is quite counter-intuitive. The intuition for such a result is the following. It is
always the case that, in equilibrium, the fraction of agents contributing to the public
good decreases with respect to the out-degree (i.e., ρ∗

d is decreasing with respect to
d) since the probability of observing an agent providing the public good is lower for
agents with smaller out-degrees (see Eq. 4). Thus, if α increases, agents with low
out-degree are observed by relatively fewer agents which implies that the probability
of observing through one of the links the public good (i.e., θ∗) would also decrease.
As a consequence, to compensate for such a decrease in θ∗, the fraction of agents
contributing to the public good (i.e., ρ∗) increases as α increases.

The formal proof is the following.

Proof Recall that the fixed point equation characterizing θ∗(P, α) is

θ =
∑

d≥1

dαP(d)

〈dα〉P (1 − θ)d .

Let Qα,P (d) = dα P(d)
〈dα〉P . We can interpret Qα,P (d) as the out-degree distribution

of observed agents. We show next that Qα2,P (d) First Order Stochastic Dominates
Qα1,P (d) if and only if α1 ≤ α2. Intuitively, this should hold as a higher in/out-degree
correlation implies that agents with high out-degree are observed more often which
also implies that the out-degree distribution of observed agentsmust take larger values.
Formally, wemust find that the cumulative distribution function of Qα2,P (d) is always
below the cumulative distribution function of Qα1,P (d). That is, for all D > 1

D∑

d≥1

dα2 P(d)

〈dα2〉P ≤
D∑

d≥1

dα1 P(d)

〈dα1〉P ,

or, analogously, that

D∑

d≥1

dα2 P(d)
〈
dα1

〉
P ≤

D∑

d≥1

dα1 P(d)
〈
dα2

〉
P . (6)

123



SERIEs (2017) 8:97–112 105

Condition (6) can be written as follows:

D∑

d1≥1

∑

d2≥1

dα2
1 dα1

2 P(d1)P(d2) ≤
D∑

d1≥1

∑

d2≥1

dα1
1 dα2

2 P(d1)P(d2).

Note that the two expressions coincide, as long as d2 is bounded below D. That is, we
know that

D∑

d1≥1

D∑

d2≥1

dα2
1 dα1

2 P(d1)P(d2) =
D∑

d1≥1

D∑

d2≥1

dα1
1 dα2

2 P(d1)P(d2).

For the part of the sum where d2 exceeds D, however, this is no longer the case (since
a permutation of the indices no longer appears in the sum). For such cases, as d1 < d2
and α1 < α2, then dα2

1 dα1
2 < dα1

1 dα2
2 . Thus,

D∑

d1≥1

∑

d2≥D

dα2
1 dα1

2 P(d1)P(d2) <

D∑

d1≥1

∑

d2≥D

dα1
1 dα2

2 P(d1)P(d2)

which proves condition (6).
To complete the proof we use that ρd = (1 − θ)d is decreasing as a function of d

(for all θ ∈ [0, 1]), which implies that

∑

d≥1

dα2 P(d)

〈dα2〉P (1 − θ)d ≤
∑

d≥1

dα1 P(d)

〈dα1〉P (1 − θ)d ,

and thus that θ∗(P, α2) ≤ θ∗(P, α1). Then, ρ∗
d (P, α1) ≤ ρ∗

d (P, α2) for all d and
therefore ρ∗(P, α1) ≤ ρ∗(P, α2). ��

Notice that the result is true for all possible values of α ∈ R, not just α ∈ [0, 1].
In order to present the next result let us define first the meaning of a free rider

in this context. An agent is a free rider if it observe the public good but it does not
provide it herself. The next result indicates how the fraction of free riders depends on
the parameter α.

Proposition 3 The fraction of free riders in equilibrium decreases with α, where
α ∈ [0, 1].
Proof Notice that the fraction of free riders, denoted by y, is equal to

y =
∑

d≥1

P(d)(1 − ρd)(1 − (1 − θ)d)

since (1− (1− θ)d) is the probability that an agent with out-degree d has of enjoying
the public good. In equilibrium ρ∗

d = (1 − θ∗)d and therefore
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y∗ =
∑

d≥1

P(d)(1 − (1 − θ∗)d)2

which is increasing with respect to θ∗. Notice that, due to Proposition 2, θ∗ decreases
with α which proofs the result. ��

Consider now the comparative statics with respect to P . To do so, we assume a
fixed value of α ∈ [0, 1] and analyze how different out-degree distributions lead to
different outcomes. We first study the effect of a First Order Stochastic Dominance
shift of the out-degree distribution, and then analyze the effect of a Mean Preserving
Spread.

Proposition 4 Let α ∈ [0, 1] and let dm denote the minimum degree in the network.
If P(d) First Order Stochastic Dominates P(d) and

1 − e
−α
dm ≤ 1

〈dα〉
∑

d≥dm

dαP(d)e− dα
dm , (7)

then θ∗(P, α) ≤ θ∗(P, α).

Notice that condition (7) is satisfied as long as dm is sufficiently high. Roughly
speaking, Proposition 3 implies that if the network becomes denser then, in equilib-
rium, the fraction of links reaching the public good decreases. This result also implies
that ρ∗

d (P, α) ≥ ρ∗
d (P, α) for all d. Comparative statics, however, with respect to ρ∗

might depend on further properties of the out-degree distributions.7

The proof of the result is provided next.

Proof We aim to show that HP,α(θ) ≤ HP,α(θ) for all θ ∈ [θ∗(P, α), 1] as this

would imply that θ∗(P, α) ≤ θ∗(P, α). We first rewrite HP,α(θ) as

HP,α(θ) = 1

〈dα〉P
∑

d≥1

P(d)gθ (d),

where

gθ (d) = dα(1 − θ)d .

Let us show next that if θ ∈ [1 − e
−α
dm , 1] then gθ (d) is decreasing for all d ≥ dm .

Notice that

g′
θ (d) = dα−1(1 − θ)d [α + d ln(1 − θ)],

7 Note that the result is straightforward if we consider the simpler framework where we compare two
homogeneous populations, one with a low out-degree and another one with a high out-degree. In this case
θ = ρ and thus we find that the fraction of public good contributors is higher for the low density network,
as expected.
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which is negative if and only if

d ≥ −α

ln(1 − θ)
.

Let θm be such that

dm = −α

ln(1 − θm)
.

That is, θm = 1 − e
−α
dm . We can easily check that −α

ln(1−θ)
is a decreasing function

of θ which then implies that g(d) is decreasing for all d ≥ dm , provided that θ ≥ θm .
Therefore, as P(d) first order stochastic dominates P(d),

∑

d≥dm

P(d)g(d) ≤
∑

d≥dm

P(d)g(d),

for all θ ∈ [θm, 1]. In addition, as dα is an increasing function of d we know that
〈dα〉P ≥ 〈dα〉P . Thus,

HP,α(θ) ≤ HP,α(θ) for all θ ∈ [θm, 1].

To complete the proof we must show that θm ≤ θ∗(P, α), which is the case if
θm ≤ HP,α(θm), or, analogously, if the next condition holds:

1 − e
−α
dm ≤ 1

〈dα〉P
∑

d≥dm

dαP(d)e− dα
dm .

��
It is straightforward to show that Proposition 3 holds for all values of α > 0, but

does not apply to the case α < 0, as dα would be an increasing function of d and thus
〈dα〉P ≤ 〈dα〉P .

Finally we compare two out-degree distributions where one is a Mean Preserving
Spread of the other one. In particular these two distribution have the same average
out-degree, but different variance. Which case would lead to a larger contribution in
equilibrium? The next result partially addresses this question.

Proposition 5 Let α ∈ [0, 1] and let dm denote the minimum degree in the network.
If P(d) is a Mean Preserving Spread of P(d), and

1 − e− α+√
α

dm ≤ 1

〈dα〉
∑

d≥dm

dαP(d)e−d α+√
α

dm , (8)

then θ∗(P, α) ≤ θ∗(P, α).
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Note that condition (8) holds as long as dm is sufficiently high. Proposition 4
indicates that the number of links reaching the public good (i.e., θ∗) increases with the
heterogeneity of the network. This result also implies that ρ∗

d (P, α) ≤ ρ∗
d (P, α) for

all d. Again, comparative statics with respect to ρ might depend on further properties
of the out-degree distributions.

Proof We aim to show that HP,α(θ) ≤ HP,α(θ) for all θ ∈ [θ∗(P, α), 1] as this would
imply that θ∗(P, α) ≤ θ∗(P, α). Consider again

gθ (d) = dα(1 − θ)d

and let us show next that if θ ∈ [1 − e− α+√
α

dm , 1] then g(d) is convex for all d ≥ dm .
We have that

g′′
θ (d) = (1 − θ)ddα−2 fθ (d),

where

fθ (d) =
[
(ln(1 − θ))2d2 + 2α ln(1 − θ)d + α(α − 1)

]
.

Notice that fθ (d) is a parabolic function. It is straightforward to see that g′′
θ (d) ≥ 0

if and only if fθ (d) ≥ 0.Moreover, the positive solution of fθ (d) = 0 is d̂ = α+√
α

− ln(1−θ)
.

Therefore, if dm = d̂ then g′′
θ (d) is positive for all d ≥ dm . Let θm be such that

dm = α + √
α

− ln(1 − θm)
.

That is, θm = 1 − e− α+√
α

dm . Since α+√
α

− ln(1−θ)
is a decreasing function of θ then g(d)

is convex for all d ≥ dm , provided that θ ≥ θm . Therefore,

∑

d≥dm

P(d)g(d) ≤
∑

d≥dm

P(d)g(d),

for all θ ∈ [θm, 1]. In addition, we know that 〈dα〉P ≥ 〈dα〉P , as dα is a concave
function of d. Thus,

HP,α(θ) ≤ HP,α(θ) for all θ ∈ [θm, 1].

To complete the proof we must show that θm ≤ θ∗(P, α), which is the case if
θm ≤ HP,α(θm) or, analogously, if the next condition holds:

1 − e− α+√
α

dm ≤ 1

〈dα〉
∑

d≥dm

dαP(d)e−d α+√
α

dm .

��
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It is straightforward to show that Proposition 4 does not apply to the cases α < 0
nor 1 < α, since dα would be a convex function of d and thus 〈dα〉P ≤ 〈dα〉P .

5 Efficiency

In this section we focus on efficiency. We study the simplest possible version of
utility aggregation which is utilitarianism. That is, we say that a state is efficient if it
maximizes the sum of the utilities of all the agents in the population. A state in this
context is characterized by the vector {ρd}d≥1. In particular, let the expected welfare
be defined (when normalized by the population size n) as:

W ({ρd}d≥1) = A(1 − x) − C
∑

d

P(d)ρd

where

x =
∑

P(d)(1 − ρd)(1 − θ)d

is the fraction of agents that do not enjoy the public good. Notice that, this is analogous
to the computation of the expected utility of an agent chosen uniformly at random from
the population given {ρd}d≥1.

To simplify matters we focus first on the homogeneous case where all agents have
the same out-degree d. By definition α plays no role in such an homogenous frame-
work. In particular, in this case the fraction of links pointing to a public good coincides
with the fraction of agents contributing to the public good, i.e., θ = ρ. We obtain the
following result.

Proposition 6 If all agents have a degree equal to d then the fraction of agents that
contribute to the public good in the efficient state is

ρe = 1 −
[

1
A
C (d + 1)

]1/d

.

Moreover, in equilibrium there is underprovision of the public good, that is, ρ∗ < ρe.

The proof comes next.

Proof We must solve the following maximization problem

max
0≤ρ≤1

W (ρ) = A(1 − (1 − ρ)d+1) − Cρ.

The second order condition is satisfied and the first order condition (W ′(ρ) = 0)

provides the efficient outcome ρe = 1 −
[

1
A
C (d+1)

]1/d
. Moreover, the equilibrium

value of ρ should satisfy the fixed point equation ρ∗ = H(ρ∗) = (1 − ρ∗)d . It
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is straightforward to see that H(ρe) < ρe which implies, as H is decreasing, that
ρ∗ < ρe. ��

The previous result illustrates that the efficient and equilibrium outcomes do not
typically coincide. It also shows that the efficient value of ρe increases with respect to
the revenue/cost ratio A

C of the public good. Thus, as A
C increases the tension between

efficiency and equilibrium is augmented.8 The computation of the efficient state in a
more general setting can be quite cumbersome.Wepresent next the case of a population
with two types of agents; agents with high out-degree d and agents with low out-degree
d to show that not only the efficient and equilibrium outcomes do not coincide, but
also that they exhibit distinctive properties. For simplicity let us assume that an agent
can have high or low out-degree with equal probability. That is,

P(d) = 1/2 and P(d) = 1/2.

We show the following.

Proposition 7 Consider a population where half of the agents have a high degree d,
and the other half a low out-degree d and let α > 0 then the efficient state is such that
ρe
d < ρe

d
.

This result shows that the efficient and equilibrium states are different in a funda-
mental property. The probability that an agent invests in the public good decreases
with the out-degree in the equilibrium state, whereas it increases in the efficient state
(recall from Eq. 4 that ρ∗

d
< ρ∗

d ).

Proof In this case the expected welfare is equal to

W (ρd , ρd) = A

(
1 − 1

2
((1 − ρd)(1 − θ)d + (1 − ρd)(1 − θ)d)

)
− C

1

2
(ρd + ρd)

where

θ = 1
1
2 (d

α + d
α
)

1

2
(dαρd + d

α
ρd)

It is straightforward to show thatW (ρd , ρd) is a continuous, differentiable and con-
cave function of ρd and ρd . The efficient state should satisfy the first order conditions
and thus,

∂W

∂ρd
= ∂W

∂ρd
= 0.

In particular,

∂W

∂ρd
= ∂W

∂ρd

8 In particular, if d = 1 then ρ∗ = 1/2 and ρe = 1 − C
2A .
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if and only if

(1 − θ)d − (1 − ρd)B − (1 − ρd)D = (1 − θ)d − (1 − ρd)B − (1 − ρd)D

or analogously,

(1 − θ)d − (1 − θ)d = (B + D)(ρd − ρd)

where

B = d(1 − θ)d−1 dα 1
2

1
2 (d

α + d
α
)

and D = d(1 − θ)d−1 d
α 1
2

1
2 (d

α + d
α
)

Since B and D are positive values then it must be the case that ρd − ρd > 0. ��

6 Discussion

In this paper we propose a stylized model of public good provision in a random net-
work context. The influence network is characterized by its degree distribution and
the correlation between agents’ out-degree (observation level) and in-degree (visibil-
ity level). In particular, because nowadays personal interaction and influence is being
substituted by online social networks it seems reasonable to assume that such corre-
lations are not trivial. We find that, in equilibrium, an increase in the in/out-degree
correlation increases the number of public good providers (i.e., ρ), but, on the contrary,
it decreases the number of links that reach a public good provider (i.e., θ ). Moreover,
the number of free riders decreases with in/out-degree correlations.

We have also analyzed the effect that a variation of the out-degree distribution
has on the equilibrium outcomes. Our results in this respect show that, if degrees are
sufficiently large, an increase in the average level of information (i.e., an increase
in the average out-degree) decreases the fraction of links reaching the public good,
whereas an increase in the dispersion of information (i.e., an increase in the variance
of P) increases such fraction.

Finally we show that there is misalignment between the efficient outcome and the
equilibrium outcome which becomes more important as the revenue/cost ratio of the
public good (A/C) increases (at least in the homogeneous case). We illustrate an addi-
tional tension between efficient and equilibrium states; the probability of contributing
to the public good decreases with respect to out-degree in equilibrium, whereas it
increases in the efficient state.

This paper contributes to the growing literature on public goods in networks by
bridging the work developed in statistical physics (where random networks are com-
monly used) with the literature in economics, for which the problem of public good
provision is amajor topic of study. The assumption that the network is randomly gener-
ated every period is quite strong and thus, one possible direction for further studywould
be to enrich our model by allowing for clustering and community structures. This
extension has already been addressed for contagion models with heterogenous agents
and homophily providing fruitful results (e.g., Jackson and López-Pintado 2013).
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