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Abstract
The problem of social choice is studied on a domain with countably many individuals.
In contrast to most of the existing literature which establish either non-constructive
possibilities or approximate (i.e. invisible) dictators, we show that if one adds a con-
tinuity property to the usual set of axioms, the classical impossibilities persist in
countable societies. Along the way, a new proof of the Gibbard–Satterthwaite theo-
rem in the style of Peter Fishburn’swell known proof ofArrow’s impossibility theorem
is obtained.

Keywords Arrow’s impossibility theorem · The Gibbard–Satterthwaite theorem ·
Infinite society · Continuity

JEL Classification D70 · D71

1 Introduction

Shortly after the publication of Arrow (1963), researchers started to deal with the prob-
lem of social choice for infinite populations. Infinite society models open up many
challenges; both mathematical and interpretational. They allow us to establish inter-
esting connections between the major themes in economics, such as the well known
core equivalence theorem. They are also useful, even necessary if one approaches to
the problem of social choice from a statistical point of view as its analysis is based on
asymptotic properties of statistical estimators, e.g. Condorcet jury theorems, Kemeny
rule etc.

The early literature on social choice theory for large (or arbitrary) societies begins
with Fishburn (1970), Kirman and Sondermann (1972), Brown (1974), Hansson
(1976), Pazner and Wesley (1977) and Armstrong (1980). Among these, Kirman
and Sondermann (1972) and Armstrong (1980) are more interested in persistence
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of Arrow’s impossibility theorem (see Theorem 1) for large societies, while Fishburn
(1970), Brown (1974), Hansson (1976) and Pazner and Wesley (1977) focused on its
failure.

A notable result is given by Kirman and Sondermann (1972) showing that when
we model societies as arbitrary non-empty sets, every social welfare function which
is Pareto efficient and IIA yields a unique nested collection of decisive subsocieties
(i.e. an ultrafilter). They also give a more intuitive measure theoretic interpretation
of this theorem and prove a stronger impossibility result when the set of alternatives
is finite. A survey of this literature can be found in Lauwers (1998), and as can be
seen from more recent works the exploration along this direction continues today [see
e.g. Torres (2005)]. Consistent with the recurrent trend to obtain close connections
between Arrow’s impossibility theorem and the Gibbard–Satterthwaite theorem (see
Theorem2),Mihara (2000) eventually showed that a result analogous to that inKirman
and Sondermann (1972) holds for social choice functions when we require coalitional
strategy-proofness [see also Rao et al. (2018)].

Recently, some authors focused either on countable society models or on continuity
properties of social welfare and choice functions, but to our knowledge, none both at
the same time as we did. Mihara (1997), Mihara (1999) and Tanaka (2007a, b) are
examples of the former, while Salonen and Saukkonen (2005), Saukkonen (2007) are
examples of the latter. Mihara (1997) was, to our knowledge, the first to concentrate
on peculiarities of the smallest large society in order to establish a connection between
computability theory and social choice theory. It shows that if Turing computability
axiom is added to the usual set of axioms in Arrow’s theorem, we obtain an impossi-
bility theorem. The other three papers in the former category deal with the possibility
of social choice for countable societies. One of the key problems there is to construct
concrete examples which violate classical impossibilities. Difficulty of this task has
already been mentioned in the earlier literature which focused on failures of Arrow’s
theorem for large societies, and the main conclusion of these recent papers is that the
task is as delicate as ever.

An earlier work which focused on topological continuity of social welfare func-
tions is Chichilnisky (1980). Recently, Salonen and Saukkonen (2005) and Saukkonen
(2007) are also concerned with topological continuity of a social welfare function and
social choice function, respectively. Based on the framework in Armstrong (1980),
they introduce a topology on the domain and range of these functions and defined
continuity in the usual sense, i.e. mapping open sets into open sets. They show that
adding this continuity axiom to the usual set of axioms gives impossibility results
similar to those in Sect. 3.

As a continuation of this line of research, we establish two objectives in this paper.

– In Sect. 3, we show that two classical impossibility results, namely Arrow’s theo-
rem and the Gibbard–Satterthwaite theorem can be extended to a countable society
setting in an exactmanner if we add a continuity property to the usual set of axioms,
and

– In Sect. 4, we obtain a new proof for the Gibbard–Satterthwaite theorem à la
Fishburn (1970) as a byproduct.
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Let us comment on each objective in turn. The notion of continuity thatwe introduce
in Sect. 2 requires that limit and choice are interchangeable, i.e. the limit of choices (or
rankings) must be the same as the choice (or ranking) in the limit. As stated this axiom
is an order theoretic notion and our treatment requires no advanced mathematical
theories such as topology, measure theory and model theory. Moreover, this axiom
not only resolves mathematical complications arising from countable infinity, but also
allows us to carry on the tools commonly used in proving classical (finite population)
impossibility theorems (see Sect. 3).

In terms of thefirst objective, our paper is somewhat similar toMihara (1997) as both
papers introduce a new axiom to obtain impossibility theorems for countably infinite
populations, and both axioms are peculiar to the set of natural numbers. But the newly
added axioms differ from each other and the tools Mihara (1997) use are innovative
while those we use are conservative. As mentioned above, some authors focused on
topological continuity of social welfare and choice functions already. However, their
notion of continuity depends on the topology introduced and is not directly related
to ours. In particular, while continuity in our sense is guaranteed whenever society is
finite, this is not true for the other (topological) continuity axioms as one can arbitrarily
tear apart images of preference profiles.

As for the second objective, providing new proofs for impossibility theorems is
a common exercise, and most of the existing proofs fall into one of the following
categories.

Deductive proofs Proofs in the style of Arrow (1963) and Sen (1986). The common
feature is to treat the impossibility result under consideration as a self contained
mathematical structure, and deduce the result from its setting without referring
to an external mathematical device [see A. Sen’s discussions in Maskin and Sen
(2014)].
Inductive proofs Proofs in the style of Satterthwaite (1975) and Svensson and
Reffgen (2014), where mathematical induction is used explicitly.
Proofs by contradiction Proofs in the style of Fishburn (1970), Suzumura (1988)
and the proof given in Sect. 4 where ‘reductio ad absurdum’ is used.
Proofs by construction Proofs in the style of Barberà (1980, 1983) and Reny
(2001) where an explicit procedure for finding a dictator is given. Their treatment
of impossibility theorems is similar to that of the intermediate value theorem in
calculus, and the underlying procedure (i.e. pivotal voter) has beenmodified several
times, see e.g. Fey (2014).
Indirect proofs Proofs in the style of Gibbard (1973) and Denicolò (1993), where
a result is obtained through other known impossibility theorems.

Among these, the first four approaches are more common, and they provide not
only mere verifications but also insights on what role does a given axiom play in
establishing the result. On the other hand, judging on these four is difficult, especially
if they are equally capable. Yet, to be able to compare we shall first know if they are
indeed equally capable, and this can be done by either formally establishing their equal
capability, or providing results which are provable by some methods but not by the
others, or proving every major impossibility result with every major proof method.
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The third task is more feasible than the former two which are meta-theoretical, and
the ‘program’ of completing it is worthwhile as in each successful attempt we can
reasonably hope to discover something new about the results, as well as the methods.1

Accordingly, in Sect. 4 we give a new proof for the Gibbard–Satterthwaite theorem
following Fishburn (1970)’s approach.

2 The preliminaries

In practice, an argument or result is “combinatorial” if it is not overtly model-
theoretic, topological, or measure-theoretic.
James Baumgartner

A denotes the set of alternatives with 3 ≤ |A| < ∞, X and X∗ denote, respectively,
the set of strict and weak rankings on A.2 Let I = {1, 2, . . .} be a countable set repre-
senting individuals in the society. Thus, I can be of two types: either I = {1, 2, . . . , n}
for some n ∈ N or I = N. Let X I denote the set of all preference profiles, i.e. the set
of all functions from I into X . A function F : X I → X∗ is called as a social welfare
function (SWF) and a function f : X I → A is called as a social choice function
(SCF).

A member x of X I is called a profile and its i ′th component, xi , is called individual
i ′s ranking. A member of X∗ is called a social order or society’s ranking. When a ∈ A
is ranked above b ∈ A according to xi we write a �x

i b, and for the same ranking of
a vs. b according to F(x), we write a �F(x) b. Similarly, when a is ranked at least
as good as b according to F(x), we write a �F(x) b. For any x ∈ X I and i ∈ I , let
(x ′

i , x−i ) ∈ X I denote the profile that has x ′
i ∈ X in its i ′th component instead of

xi ∈ X , and otherwise the same as x ∈ X I .
A group of individuals G ⊆ I is decisive over a, b ∈ A for F if a �x

i b for all
i ∈ G implies a �F(x) b for all x ∈ X I . G ⊆ I is decisive for F if it is decisive over
all a, b ∈ A. Similarly, a group of individuals G ⊆ I is decisive over a ∈ A for f if
a ∈ A is ranked on top of xi for all i ∈ G implies f (x) = a for all x ∈ X I . G ⊆ I
is decisive for f if it is decisive over all a ∈ A. We say that F : X I → X∗ is Pareto
efficient (PE) if I is decisive for F . It is independent of irrelevant alternatives (IIA)
if whenever a, b ∈ A, x, x ′ ∈ X I are such that a �x

i b if and only if a �x ′
i b, for all

i ∈ I , we have a �F(x) b if and only if a �F(x ′) b. Finally, it is dictatorial (D) if
there is a decisive group for F consisting of a single individual. The following result
is known as Arrow’s impossibility theorem:

Theorem 1 (Arrow 1963) Let I be finite. Then F : X I → X∗ is PE and IIA if and
only if it is D.

1 Fishburn (1970) is a clear evidence that a new proof can open up a new research direction. It is also
reasonable to believe that a more capable approach can prove more general results; see e.g. Eliaz (2004)
and Yu (2015).
2 Weak ranking is a complete and transitive binary relation, while strict ranking is a weak ranking which
is also antisymmetric.
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We say that f : X I → A is unanimous (UNM) if I is decisive for f . It is manip-
ulable (MNP) at x ∈ X I by i ∈ I via x ′

i ∈ X if f (x ′
i , x−i ) �x

i f (x). It is strategy
proof (STP) if it is not manipulable. Finally, it is dictatorial (DT) if there is a decisive
group for f consisting of a single individual. The following result is known as the
Gibbard–Satterthwaite theorem:

Theorem 2 (Gibbard 1973; Satterthwaite 1975) Let I be finite. Then, f : X I → A is
UNM and STP if and only if it is DT.

We introduce an auxiliary axiom in order to avoid complexities arising from the
infinite society set up. Fix z ∈ X I and define the following binary relation Rz on X I .
For any x, y ∈ X I ,

x Rz y ⇔ min{i ∈ I : xi �= zi } ≥ min{i ∈ I : yi �= zi }.

It is clear that Rz is a weak ranking on X I , and z ∈ X I is the greatest element with
respect to Rz . Let Pz denote its asymmetric component, and a sequence of profiles
(xn)n∈N ∈ X I is increasing w.r.t. Pz , which is denoted as (xn) ↑ z, if

– x1 is not a minimal element in (X I , Rz), i.e. the first component of x1 is the same
as that of z, and

– for all m, n ∈ N with m < n and m < |I |, we have xn Pzxm .
That is, profiles in (xn)n∈N are becoming increasingly similar (or stabilising on) to
z ∈ X I as n → ∞. To visualise this situation, construct an ∞ × |I | matrix where its
(i, j)′th entry is xij , i.e. the preference of j ∈ I in xi . Then, (xn) ↑ z means for all
i ∈ N, the i ′th row has at least the first i entries the same as the corresponding first i
entries of z ∈ X I , and this similarity only increases as we go down to the next row.

Let us give another interpretation. Recall that X can be endowed with the so called
Kemeny distance which takes the number of pairwise swaps needed to change xi ∈ X
to zi ∈ X as the distance between xi and zi [for details see e.g. Can and Storcken
(2018)]. With this notion we can say that (xn)n∈N ∈ X I converges (pointwise) to
z ∈ X I , which is denoted as (xn) → z, if the distance between xni and zi converges
to 0 as n → ∞, for all i ∈ I . Clearly, (xn) ↑ z implies (xn) → z.

We say that F : X I → X∗ is continuous (CNT) if for all z ∈ X I , a, b ∈ A and
(xn)n∈N ∈ X I such that (xn) ↑ z,

– a �F(xn) b for all n ∈ N implies a �F(z) b.

Similarly, f : X I → A is continuous (CNT) if for all z ∈ X I ,a ∈ A and (xn)n∈N ∈ X I

such that (xn) ↑ z,

– f (xn) = a for all n ∈ N implies f (z) = a, and
– f (xn) �= a for all n ∈ N implies f (z) �= a.

CNT has the same motivation as the continuity axiom of a probability measure and
that of a preference relation in consumer theory, as it insures that a SWF and a SCF
does not make sudden changes in the limit. However, in our case convergence is in an
order theoretic sense.3

3 Recall that in Kolmogorov’s axiomatization of a probability measure, continuity together with finite
additivity imply countable additivity [see e.g. Chap. 2.1 in Borovkov (2013)]. The hidden axiom of full
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In order to see CNT in action let us make a few observations. It is easy to see that
CNT can equivalently be expressed as follows:

– F : X I → X∗ is CNT if for all z ∈ X I , A′, B ′ ⊆ A, and (xn)n∈N ∈ X I such that
(xn) ↑ z, a �F(xn) b for all a ∈ A′, b ∈ B ′ and for all n ∈ N implies a �F(z) b
for all a ∈ A′ and b ∈ B ′; and

– f : X I → A is CNT if for all z ∈ X I , A′ ⊆ A and (xn)n∈N ∈ X I such that
(xn) ↑ z, f (xn) ∈ A′ for all n ∈ N implies f (z) ∈ A′.

From the definition of CNT it directly follows that when I is finite every SWF is CNT,
so is every SCF.4 That is because of the following fact.

– (xn) ↑ z if and only if for all n ∈ N with n ≤ |I |, min{i ∈ I : xni �= zi } > n, i.e.
at least the first n coordinates of xn are the same as those of z ∈ X I .

The following results are used in the sequel.

Lemma 1 (Pareto) Let f : X I → A be UNM, STP and CNT, and a, b ∈ A, x ∈ X I

be such that a �x
i b for all i ∈ I . Then f (x) �= b.

Proof Assume f (x) = b and let x ′ ∈ X I be the profile where x ′
i is obtained from xi

by bringing a ∈ A to the top and b ∈ A to the second position, for all i ∈ I . Transform
x ∈ X I into x ′ ∈ X I by changing xi into x ′

i for i ∈ I , one at a time and let xn be the
profile obtained after x1, . . . , xmin{n,|I |} are changed.We set x0 := x . Then f (xn) = b
for all n ∈ N since

– f (x0) = b, and
– if f (xk) = b, then f (xk+1) = b for all k ∈ N with 0 ≤ k < |I |. To see this,
note that f (xk+1) ∈ {a, b}, as otherwise f is MNP by k + 1 at xk+1 via xk+1, and
f (xk+1) �= a, as otherwise f is MNP by k + 1 at xk via x ′

k+1.

By construction (xn) ↑ x ′ and f (xn) = b for all i ∈ N. Then CNT implies that
f (x ′) = b which contradicts UNM. ��

f : X I → A is ONTO if ∀a ∈ A, ∃x ∈ X I : f (x) = a. Clearly, UNM implies
ONTO. The following result concerns the reverse implication.

Lemma 2 If f : X I → A is ONTO, STP and CNT, then it is UNM.

Proof Take a ∈ A and x ∈ X I such that a is ranked as the top in xi for all i ∈ I . It
suffices to show that f (x) = a. Since f is ONTO there is y ∈ X I such that f (y) = a.
Transform y ∈ X I into x ∈ X I by changing yi into xi for i ∈ I , one at a time and let
yn be the profile obtained after y1, . . . , ymin{n,|I |} are changed. We set y0 := y. Then
f (yn) = a for all n ∈ N since

– f (y0) = a, and

domain makes CNT a global property; for all z ∈ X I there is (xn) ∈ X I with (xn) ↑ z. Note that in the
definition of CNT replacing (xn) ↑ z by (xn) → z makes it stronger.
4 Thus, CNT is implicit in the finite setting and we often employ this hidden property in our treatments of
impossibility theorems; e.g. in using the pivotal voter approach.
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– if f (yk) = a, then f (yk+1) = a for all k ∈ N with 0 ≤ k < |I |, as otherwise f
is MNP at yk+1 ∈ X I by k + 1 via yk+1.

Since (yn) ↑ x and f (yn) = a for all n ∈ N, CNT implies f (x) = a. ��
Let I = N and we say that a SCF or SWF is infinitarian (INF) if an infinite support

always wins against a finite opposition. More formally, f : XN → A is INF if for
all x ∈ XN and for all a, b ∈ A with infinitely many individuals rank a above b,
and finitely many of them have the opposite ranking at x ∈ XN, we have f (x) �= b.
Similarly, F : XN → X∗ is INF if for all x ∈ XN and for all a, b ∈ A with infinitely
many individuals rank a above b, and finitely many of them have the opposite ranking
at x ∈ XN, we have a �F(x) b. Thus, INF implies UNM and PE. The following result
shows that INF is inconsistent with CNT.

Theorem 3 Let I = N. Then, there exist no SCF (or SWF) which is INF and CNT.

Proof Let f : XN → A be INF, hence also UNM, and let x ∈ XN be such that
xi = (a � · · · � b) for all i ∈ N. Let (xn) ∈ XN be a sequence with xni = xi for all
1 ≤ i ≤ n, and xnj = (b � · · · � a) for all n < j , for all n ∈ N. Then, (xn) ↑ x , and
by INF, f (xn) �= a for all n ∈ N. But by UNM, f (x) = a, thus f is not CNT. A very
similar argument shows that every F : XN → X∗ which is PE and INF is not CNT. ��

Remark In proving the results above it suffices to assume |A| ≥ 2, instead of |A| ≥ 3.
The analysis above allows us to provide a motivation for CNT axiom within the
framework of social choice. Let us interpret the infinite society as literally, or as a
collection of state contingent selves as Mihara (1997), or as that of time-contingent
selves. The justification for the latter is as follows. Suppose there are finitely many
individuals in the society, but each of them forms an opinion (i.e. preference) at every
instant of time. The social aggregation process (e.g. election) takes place once in a
while and when that happens it aggregates all the formed (interim) opinions which are
indexed by the time contingent selves.5

Suppose the society is in a transformation from an initial state to a target state,
both expressed as profiles, through a dynamic process of changing some individuals’
rankings into their target rankings in each step. Then, CNT ensures that a SWF or SCF
must decide within a finite step whether or not to respond to this social change. To
be more concrete, consider the setting in Theorem 3 and suppose that the society is
becoming increasingly concerned about an issue so that b ∈ A is the social alternative
in which the concern is taken care of. Then, under UNM, CNT ensures that SCF learns
this growing trend (or pressure) before it is too late and responds to it, whereas any
INF rule will ignore it until the end. In this sense, CNT which could also be called
as ‘finite responsiveness’ is desirable in every forward looking or intelligent social
design.

5 Litak (2017) criticises infinite population models traditionally used in the context of social choice by
their loose connections with reality based on the so called Hildenbrand criterion. The time-contingent-
selves argument is an attempt to resolve this matter.
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3 Themain results

Theorem 4 F : X I → X∗ is PE, IIA and CNT if and only if it is D.

Proof Our proof is based on Amartya Sen’s proof of Theorem 1 (see Sen 1986).

Lemma 3 (Expansion) If G ⊆ I is decisive for F over some a, b ∈ A, then it is
decisive.

Proof See the proof of the field expansion lemma in Sen (1986). ��
Lemma 4 (Contraction) If G ⊆ I with |G| ≥ 2 is decisive for F then it has proper
subset which is decisive for F.

Proof See the proof of the group contraction lemma in Sen (1986). ��
Let us now turn to Theorem 4. For k ∈ N, let G(k) = {1, . . . , k} ∩ I and further let

xk ∈ X I be the profile which is constant over G(k) with the fixed ranking (a � · · · �
b), and so is over I\G(k) with the ranking (b � · · · � a), for some a, b ∈ A. Then,
we claim that a �F(xk ) b for some k ∈ N. Suppose by contradiction that no such k
exists. Then, b �F(xk) a for all k ∈ N and (xk) ↑ x where x ∈ X I is the ranking
which is constant over I with the same fixed ranking (a � · · · � b). CNT implies that
b �F(x) a, but this contradicts PE. We proved our claim.

Let k∗ = min{k ∈ N : a �F(xk) b} and take any c ∈ A\{a, b}. Let u ∈ X I

be a profile such that c �i
u a �i

u b for all i ∈ G(k∗), and b � j
u a, c � j

u a for all
j ∈ I\G(k∗). Then, by PE c �F(u) a and by IIA a �F(u) b; hence, c �F(u) b by
transitivity. Since the relative ranking of b, c ∈ A is unspecified across u j for all
j ∈ I\G(k∗), this together with IIA imply that G(k∗) is decisive for F over c, b.
Then, by Lemma 3 we conclude that G(k∗) is decisive and repeated application of
Lemma 4 to G(k∗) gives the result in Theorem 4. ��
Remark Theorem 4 implies Theorem 1 as when I is finite every SWF is CNT. Sen
(1986) writes that “The Field Expansion Lemma and the Group Contraction Lemma
both continue to hold for infinitely large communities and decisive sets can be endlessly
curtailed, effectively disenfranchising nearly everybody.” We believe that Theorem 4
is a way to make this insight formal.

Fishburn (1970) gives a SWF which is PE, IIA, non-DT. It is easy to see that this
example satisfies INF, noting that under the finitely additive probability measure he
used every finite coalition has zero mass. By Theorem 3 such SWF is not CNT, hence
this example assures the role of CNT in Theorem 4. However, this example is not
constructive as it uses Zorn’s lemma, and ideally, we should try to construct explicitly
a SWF which is PE, IIA, non-DT and not CNT. But that task is very difficult, if not
impossible, because of the Mihara’s impossibility theorem, saying that every PE, IIA
and Turing computable SWF is DT (see Mihara 1997).6

6 An investigation on formal connections between Turing computability and CNT for a SWF is highly
desirable. A common ground for both concepts is formal logic and in particular, model theory. CNT is
basically a compactness type property, as in model theory, compactness means a formula is satisfiable if
and only if any finite subsection is satisfiable. Also the notion of Scott continuity in domain theory might
be relevant; see e.g. Vassilakis (1992).
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Fig. 1 Profiles x j−1 and x j

Fig. 2 Profiles z and u

Theorem 5 f : X I → A is ONTO, STP and CNT if and only if it is DT.

Proof By Lemma 2 we may assume that f is UNM. Our proof is based on the proof
of Theorem 2 in Reny (2001).

Step 1 Consider a, b ∈ A and let x ∈ X I be a profile in which a is ranked as the top
and b is ranked as the bottom in xi for all i ∈ I . By UNM, f (x) = a. Consider now
changing individual 1′s ranking by raising b′s position one by one. By UMN the social
choice remains at a as long as a is on the top. When b rises above a to the top, the
social choice either changes to b or remains at a by Lemma 1. Begin the same process
with individual 2, then 3, etc. Let xi be the resulting profile after b got the top position
in x1, …, xmin{i,|I |}, and let y ∈ X I be the resulting profile after b got the top position
in everyone’s ranking. We shall prove that there is i ∈ I such that f (xi ) = b. Assume
that f (xi ) �= b for all i ∈ I . Then, f (xi ) �= b for all i ∈ N. Since (xi ) ↑ y, this
implies f (y) �= b by CNT which contradicts UNM. Let j = min{i ∈ I : f (xi ) = b}.
Since f (xi ) ∈ {a, b} for all i ∈ N, f (x j−1) = a and f (x j ) = b, by definition (see
Fig. 1).
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Step 2 Let z ∈ X I be such that zi = (b � · · · � a) for 1 ≤ i ≤ j − 1, z j = (b � a �
· · · ), and zi = (· · · � a � b) for i > j . We shall prove that f (z) = b. Transform
x j ∈ X I by replacing x j

i with zi for all i ∈ I , one at a time. Let zi ∈ X I be the profile

obtained after x j
1 , . . . , x j

min{i,|I |} are replaced. Then, STP ensures that f (zi ) = b for

all i ∈ N. Since (zi ) ↑ z, we then conclude that f (z) = b (see Fig. 2).
Let u ∈ X I be such that the positions of a, b in ui are the same as in zi for all

i ∈ I\{ j}, and that in z j is reversed in u j , i.e. u j = (a � b � · · · ). We first claim
that f (u) ∈ {a, b}. To see this, transform z ∈ X I by replacing zi with ui for all i ∈ I ,
one at a time. Let ui ∈ X I be the profile obtained after z1, . . . , zmin{i,|I |} are replaced,
and we set u0 := z. Then, f (ui ) ∈ {a, b} for all i ∈ N, since

– f (u0) = b,
– if f (ui ) = b, but f (ui+1) �= b for some i ∈ {0, . . . , j − 2}, then f is MNP at
ui+1 ∈ X I by individual i + 1 via zi+1,

– if f (u j−1) = b but f (u j ) /∈ {a, b} then f is MNP at u j ∈ X I by individual j via
z j ,

– if f (ui ) ∈ {a, b}, but f (ui+1) /∈ {a, b} for some i ∈ { j, j + 1, . . .}, then f is
MNP at ui ∈ X I by individual i + 1 via ui+1.

Since (ui ) ↑ u, we conclude by CNT that f (u) ∈ {a, b}.
We then claim that f (u) = a. To see this, assume f (u) = b. Transform u ∈ X I

by replacing ui with x j−1
i for all i ∈ I , one at a time. Let vi ∈ X I be the profile

obtained after u1, . . . , umin{i,|I |} are replaced, and we set v0 := u. Then, f (vi ) = b
for all i ∈ N, since

– f (v0) = b,
– if f (vi ) = b, but f (vi+1) �= b for some i ∈ {0, . . . , j − 2}, then f is MNP at

vi+1 ∈ X I by individual i + 1 via ui+1,
– if f (v j−1) = b but f (v j ) /∈ {a, b} then f is MNP at v j ∈ X I by individual j
via u j . Thus, f (v j ) ∈ {a, b}. But if f (v j ) = a then f is MNP at v j−1 ∈ X I by

individual j via x j−1
j . Thus, f (v j ) = b,

– if f (vi ) = b, but f (vi+1) �= b for some i ∈ { j, j + 1, . . .}, then f is MNP at
vi ∈ X I by individual i + 1 via x j−1

i+1 .

Since (vi ) ↑ x j−1, we then conclude by CNT that f (x j−1) = b which is a contradic-
tion.
Step 3 Take c ∈ A\{a, b} and let w ∈ X I be the profile in Fig. 3 (left).

We shall prove that f (w) = a. Transform u ∈ X I by replacing ui with wi for all
i ∈ I , one at a time. Let wi ∈ X I be the profile obtained after u1, . . . , umin{i,|I |} are
replaced, and we set w0 := u. Then, f (wi ) = a for all i ∈ N, since

– f (w0) = a,
– if f (wi ) = a, but f (wi+1) �= a for some i ∈ {0, . . . , j − 2}, then f is MNP at

wi ∈ X I by individual i + 1 via wi+1,
– if f (w j−1) = a but f (w j ) �= a then f is MNP at w j ∈ X I by individual j via
u j ,
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Fig. 3 Profiles w and t

– if f (wi ) = a, but f (wi+1) �= a for some i ∈ { j, j + 1, . . .}, then f is MNP at
wi ∈ X I by individual i+1 viawi+1 (Note that f (wi ) �= b for i ≥ j by Lemma 1
since everyone ranks c above b).

Since (wi ) ↑ w, we conclude by CNT that f (w) = a.
Step 4 Let t ∈ X I be the profile in Fig. 3 (right). We shall prove that f (t) = a.
Transform w ∈ X I by replacing wi with ti for all i ∈ I , one at a time. Let t i ∈ X I be
the profile obtained after w1, . . . , wmin{i,|I |} are replaced, and we set t0 := w. Then,
f (t i ) ∈ {a, b} for all i ∈ N, since

– f (t0) = a,
– if f (t i ) = a, but f (t i+1) �= a for some i ∈ {0, . . . , j − 2}, then f is MNP at
t i ∈ X I by individual i + 1 via ti+1,

– if f (t j−1) = a but f (t j ) �= a then f is MNP at t j ∈ X I by individual j via w j ,
– if f (t i ) ∈ {a, b}, but f (t i+1) /∈ {a, b} for some i ∈ { j, j +1, . . .}, then f is MNP
at t i ∈ X I by individual i + 1 via ti+1.

Since (t i ) ↑ t , we conclude by CNT that f (t) ∈ {a, b}. But f (t) �= b by Lemma 1.
Thus, f (t) = a.
Step 5Let s ∈ X I be any profilewhere a ∈ A is ranked as the top in s j . By transforming
t ∈ X I into s ∈ X I and using a similar argument as above we can conclude that
f (s) = a. So, we may say that j ∈ I is a dictator for alternative a. Because a was
arbitrary, we have shown that for each alternative a ∈ A, there is a dictator for it.
But clearly there cannot be distinct dictators for distinct alternatives, hence there is a
single dictator. ��
Remark Theorem 5 implies Theorem 2, as when I is finite every SCF is CNT. Cato
(2011) shows that when I is arbitrary, STP is implied by any of the following axioms:
Maskinmonotonicity, independentweakmonotonicity, independent person-by-person
monotonicity and coalitional strategy proofness. Thus, one can replace STP in The-
orem 5 by any of them; in particular, the Muller-Satterthwaite theorem holds for the
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countable society under CNT. It also reveals that when I is countable, under UNM
and CNT all of these axioms are equivalent as each implies DT. 7

Pazner and Wesley (1977) gives an example of a SCF which is STP and non-DT,
and the following is a slightly modified version of it. Let I = N, A = {a1, . . . , am}
and define f � : XN → A as

f �(x) = argmin{ j : a j ranked as the top infinitely often in x}

for all x ∈ XN. It is easy to see that f � is well defined as for every x ∈ X I , at least
one of a1, . . . , am is ranked as the top by infinitely many individuals. By construction
f � is UNM, INF, and it is also STP and non-DT, as no single individual can influence
f �. Then, by Theorem 3 f � is not CNT and this example assures the role of CNT in
establishing Theorem 5.

4 Another missing proof of the Gibbard–Satterthwaite theorem

This section gives a proof of Theorem 2 à la Fishburn (1970). We first prove a useful
lemma. For x ∈ X I and a ∈ A, let G(a, x) = {i ∈ I : xi ranks a as the top}.
Lemma 5 (Tops only) If x ∈ X I and a, b ∈ A are such that G(a, x) ∪ G(b, x) = I
and at least one of G(a, x) and G(b, x) is finite, then f (x) ∈ {a, b}.
Proof By UNM we may assume that a, b ∈ A are distinct. Without losing generality,
we may assume that G(a, x) = {1, . . . , k} and G(b, x) = {k + 1, . . .} for some
k ∈ I . Consider x ′ ∈ X I such that x ′

i = (a � b � · · · ) for all i ∈ G(a, x), and
x ′
j = (b � a � · · · ) for all j ∈ G(b, x). We claim that f (x ′) ∈ {a, b}. To see this,

suppose f (x ′) /∈ {a, b}. Transform x ′ ∈ X I by reversing the positions of a, b ∈ A in
x ′
i for all i ∈ G(a, x), one at a time. Let xi be the resulting profile after x ′

1, …, x ′
i are

changed, and we set x0 := x ′. Then, f (xi ) /∈ {a, b} for all i ∈ G(a, x), since

– f (x0) /∈ {a, b}, and
– if f (xi ) /∈ {a, b}, but f (xi+1) ∈ {a, b} for some i ∈ {0, . . . , k − 1}, then f is
MNP at xi ∈ X I by individual i + 1 via x ′

i+1.

In particular, f (xk) /∈ {a, b}, which then contradicts UNM, and this proves our claim.
Transform x ′ ∈ X I by replacing x ′

i with xi for all i ∈ G(a, x), one at a time. Let
yi ∈ X I be the profile obtained after x ′

1, . . . , x
′
i are replaced and we set y0 := x ′.

Then, f (yi ) ∈ {a, b} for all i ∈ G(a, x), since

– f (y0) ∈ {a, b}, and
– if f (yi ) ∈ {a, b} then f (yi+1) ∈ {a, b} for all i ∈ {0, . . . , k − 1}. To see this,
suppose for some i ∈ {0, . . . , k − 1}, f (yi ) ∈ {a, b} but f (yi+1) /∈ {a, b}.
Start with yi+1 ∈ X I and transform everyone’s preferences across {k + 1, . . .}
by bringing a ∈ A to the top. Then STP ensures that social choice is never in
{a, b}, and by CNT, neither the social choice at the profile obtained after making
all transformations, which then contradicts UNM.

7 It is probably true that this equivalence holds even UNM is dropped.
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In particular, f (yk) ∈ {a, b}. Now transform x ′ ∈ X I by replacing x ′
j with x j for

all j ∈ G(b, x), one at a time. For j > k, let z j ∈ X I be the profile obtained after
x ′
k+1, . . . , x

′
min{ j,|I |} are replaced, z I ∈ X I be the resulting profile after all transfor-

mations are made and we set zk := x ′. Then, f (z j ) ∈ {a, b} for all j ≥ k, since

– f (zk) ∈ {a, b}, and
– if f (z j ) ∈ {a, b} then f (z j+1) ∈ {a, b} for all j ∈ {k, k + 1, . . .}. To see this
suppose for some j ∈ {k, k + 1, . . .}, f (z j ) ∈ {a, b} but f (z j+1) /∈ {a, b}.
Start with z j+1 ∈ X I and transform everyone’s preferences across {1, . . . , k}
by bringing b ∈ A to the top. Then STP ensures that social choice is never in
{a, b}, which then eventually contradicts UNM after transforming the individual
k′s preferences.

Then, by CNT we conclude that f (z I ) ∈ {a, b}. We claim that exactly one of the
following two statements holds true:

– f (yk) = b, or
– f (z I ) = a.

To see this, assume none of them holds true. Then, since both f (yk) and f (z I ) are
in {a, b}, we have f (yk) = a and f (z I ) = b. Transform yk ∈ X I back to x ′ ∈
X I by reversing the above procedure. Then STP ensures that social choice remains
at a ∈ A throughout this transformation and we conclude f (x ′) = a. Similarly,
transform z I ∈ X I back to x ′ ∈ X I . Again, STP ensures that social choice remains at
b ∈ A throughout this transformation, and (when I is infinite by CNT) we conclude
f (x ′) = b, which is a contradiction as we already concluded that f (x ′) = a and
a, b ∈ A are different alternatives. Thus, at least one of the two statements must be
true. However, with a very similar argument one can also show that the two statements
in our claim can not be true at the same time. This proves our claim.

To complete the proof of Lemma 5, assume f (yk) = b and transform yk ∈ X I into
x ∈ X I by changing preferences of the individuals in G(b, x) into their preferences
in x ∈ X I , one at a time. Then, STP ensures that social choice remains at b ∈ A
throughout this transformation, and (when I is infinite byCNT)weconclude f (x) = b.
If instead we had f (z I ) = a, then we can show that f (x) = a with a similar argument.
Thus, in either case, f (x) ∈ {a, b}. ��

We say that G ⊆ I is undecisive over a ∈ A if f (x) �= a for all x ∈ X I such that
a is ranked as the top in xi for all i ∈ G, and some b ∈ A\{a} is ranked as the top
in x j for all j ∈ I\G. G ⊆ I is undecisive if it is undecisive over all a ∈ A. From
now on we assume that f is UNM, STP, CNT and non-DT. This implies |I | > 1, as
otherwise UNM and non-DT contradict.

Lemma 6 (Group expansion) For all n ∈ N, every group G ⊆ I with |G| = n is
undecisive and |I | > n.

Proof We use (strong) induction on n ∈ N in two steps.

Step 1 We prove that Lemma 6 is holds for n = 1.
We already established that |I | > 1. We now prove that {i} ⊂ I is undecisive for

all i ∈ I . Without loss of generality we may assume i = 1 and since f is non-DT,
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there is x ∈ X I and a ∈ A such that a is ranked top in x1 and f (x) = b �= a. We
claim that {1} is undecisive over a. Let us transform x ∈ X I by changing xi to bring
b ∈ A at the top and a ∈ A at the bottom, for i ∈ I\{1}, one at a time starting with 2.
For n ≥ 2, let xn be the profile obtained after changing x2, . . . , xmin{n,|I |}, and we set
x1 := x . Further let x ′ ∈ X I be the resulting profile after all changes are made. Then,
f (xn) = b for all n ∈ N since

– f (x1) = b, and
– if f (xi ) = b, but f (xi+1) �= b for some 1 ≤ i < |I |, then f is MNP by individual
i + 1 at xi+1 ∈ X I via xi+1.

By construction, (xn) ↑ x ′ and f (xn) = b for all n ∈ N. Then CNT implies that
f (x ′) = b. Let x ′′ ∈ X I be any profile such that a ∈ A is ranked as the top in x ′′

1 , and
b ∈ A is ranked as the top in x ′′

i for i ∈ I\{1}. Let us transform x ′ ∈ X I by changing
x ′
i into x ′′

i , for i ∈ I\{1}, one at a time starting with 2. For n ≥ 2, let yn be the profile
obtained after changing x ′

2, . . . , x
′
min{n,|I |}, and we set y1 := x ′. Further let y′ ∈ X I

be the resulting profile after all changes are made. Then, f (yn) = b for all n ∈ N

since

– f (y1) = b, and
– if f (yi ) = b, but f (yi+1) �= b for some 1 ≤ i < |I |, then f is MNP by individual
i + 1 at yi+1 ∈ X I via x ′

i+1.

Since (yn) ↑ y′ and f (yn) = b for all i ∈ N, CNT implies that f (y′) = b. We obtain
x ′′ ∈ X I from y′ by replacing its first component x1 with x ′′

1 . Since f (y′) = b �= a,
f (x ′′) �= a as otherwise f is MNP by 1 at y′ via x ′′

1 .
Take any c ∈ A\{a, b} and let x∗ ∈ X I be the profile we obtain from x ′ ∈ X I

after bringing c ∈ A in the second position in x ′
1, and to the top position everywhere

else. Let us now transform x ′ by changing x ′
i into x∗

i for i ∈ I , one at a time starting
with individual 1. Let zk be the profile after x ′

1, . . . , x
′
min{k,|I |} are changed, and we

set z0 := x ′. Then f (zk) �= a for k ∈ N since

– f (z1) �= a as otherwise f is MNP by 1 at z0 ∈ X I via x∗
1 , and

– if f (zi ) �= a, but f (zi+1) = a for some i ∈ I with 1 ≤ i < |I |, then f is MNP
by individual i + 1 at zi+1 ∈ X I via x

′
i+1.

Since (zn) ↑ x∗ and f (zn) �= a for all i ∈ N, CNT implies that f (x∗) �= a. By
Lemma 5 f (x∗) ∈ {a, c}, thus f (x∗) = c. Then by repeating the same argument as
above one can show that for any x∗∗ ∈ X I such that a ∈ A is on the top of x∗∗

1 , and
c ∈ A is on the top everywhere else, we have f (x∗∗) �= a. This establishes our claim.

Let now b, c ∈ A\{a} be two arbitrary (distinct) alternatives and let y∗ ∈ X I be the
profile with y∗

1 = (a � b � · · · ) and for all i ∈ I\{1}, y∗
i = (c � · · · � b). Since {1}

is undecisive over a ∈ A, we must have f (y∗) �= a, and then by Lemma 5, f (y∗) = c.
Let y∗∗ ∈ X I be the profile same as y∗ except the relative ranking of a, b ∈ A in
y∗
1 is reversed in y∗∗

1 . Then f (y∗∗) �= b as otherwise f is MNP at y∗ ∈ X I by 1 via
y∗∗
1 . Then, by repeating the above argument we can show that {1} is undecisive over
b ∈ A\{a}. Thus, {1} is undecisive. This completes Step 1.
Step 2 We prove that if Lemma 6 holds for k < n, then it holds for n.
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Let G ⊆ I be such that |G| = n. We may assume that G = {1, 2, . . . , n} and
split G into two subgroups G1 = {1}, G2 = {2, . . . , n}. We know that G1 and G2 are
undecisive. Let x ∈ X I be the (Condorcet) profile with x1 = (a � b � c � · · · ), xi =
(c � a � b � . . .) for all i ∈ G2, and x j = (b � c � a � · · · ) for all j ∈ I\G. Then,
f (x) ∈ {a, b, c} by Lemma 1 and we claim that f (x) = b. Notice that f (x) ∈ {a, b}
as otherwise f is MNP by {1} at x ∈ X I via some x ′

1 = (b � a � c � · · · ). That is
because for x ′ = (x ′

1, x−1), f (x ′) �= c since G2 is undecisive, and hence f (x ′) = b
by Lemma 5.

Let x∗ ∈ X I be the profile with x∗
i = xi for i ∈ G, and x∗

j = (c � b � a � · · · ) for
j ∈ I\G. Then, f (x∗) �= a as G1 is undecisive, and hence f (x∗) = c by Lemma 5.
Let us transform x∗ by changing x∗

j into x j for all j ∈ I\G, one at a time starting with

individual (n + 1). For i > n, let xi be the resulting profile after x∗
n+1, . . . , x

∗
min{i,|I |}

are changed and we set xn := x∗. Then f (xi ) ∈ {b, c} for all i ∈ N with i > n since

– f (xn) = c ∈ {b, c}, and
– if f (xi ) ∈ {b, c}, but f (xi+1) /∈ {b, c} for some n ≤ i < |I |, then f is MNP by
individual i + 1 at xi+1 ∈ X I via x∗

i+1.

After shifting its indices (xi ) ↑ x and f (xi ) �= a for all i ∈ N. Then CNT implies that
f (x) �= a. Combining this with our earlier observation, f (x) ∈ {a, b}, we conclude
that f (x) = b. But Lemma 1 implies that I\G �= ∅, as otherwise f (x) �= b. Thus,
we established that |I | > n.

Finally, we need to show thatG is undecisive. Let us transform x ∈ X I by changing
xi into x ′

i = (a � c � b � . . .) for all i ∈ G2, one at a time starting with individual
2. For i ≥ 2, let xi be the resulting profile after x2, . . . , xi are changed and we set
x1 := x . Then f (xi ) = b for all i = 1, 2, . . . , n since

– f (x1) = b, and
– if f (xi ) = b, but f (xi+1) �= b for some 0 ≤ i < n, then by Lemma 1 f (xi+1) ∈

{a, c} and hence f is MNP by individual i + 1 at xi ∈ X I via x ′
i+1.

In particular, f (xn) = b and notice that at xn ∈ X I , a ∈ A is ranked as the top by
everyone in G, while b ∈ A is ranked as the top by everyone in I\G and f (xn) = b.
Take any any profile y ∈ X I where the top ranked alternative in yi is the same as
that in xni for all i ∈ I . We claim that f (y) �= a. To see this, transform xn ∈ X I

by changing xnj into y j for j ∈ I\G, one at a time, starting with individual (n + 1).

For i > n, let yi be the profile after xnn+1, . . . , x
n
min{i,|I |} are changed, y′ ∈ X I is the

resulting profile after all changes are made, and we set yn := xn . Then, f (yi ) = b
for all i ∈ N with i > k since

– f (yn) = b, and
– if f (yi ) = b, but f (yi+1) �= b for some n ≤ i < |I |, then f is MNP by individual
i + 1 at yi+1 ∈ X I via xni+1.

After shifting its indices (yi ) ↑ y′ and f (yi ) = b for all i ∈ N. Then CNT implies that
f (y′) = b. Transform y′ ∈ X I into y ∈ X I by replacing y′

i with yi for all i ∈ G, one
at a time starting with individual 1. Let zi be the profile obtained after y′

1, . . . , y
′
i are

changed, and we set z0 := y′. Notice that by construction zn = y. Then, f (zi ) �= a
for i = 1, . . . , n since,
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– f (z0) = b �= a, and
– if f (zi ) �= a, but f (zi+1) = a for some i ∈ {0, . . . , n − 1}, then f is MNP by
individual i + 1 at zi ∈ X I via yi+1.

Thus, f (y) �= a. Since our choice of a, b, c was arbitrary, this implies that G is
undecisive. ��
Let us now prove Theorem 2. Suppose by contradiction that when I is finite, there is
f : X I → A which is UNM, STP and non-DT. Then, f is CNT, and by Lemma 6 we
conclude that I is infinite, which is a contradiction. ��
Remark The above proof is adopted from Fishburn (1970)’s proof of Theorem 1 with
the following difference. Fishburn (1970)’s proof does not need any of CNT axiom,
Lemmas 1 and 5 whereas these are building blocks of our proof. However, this dif-
ference is due to differences in the mathematical settings in which Theorems 1 and 2
are formulated, and also in the set of axioms constituting the premises of these results
[see discussions in Sect. 4 in Ninjbat (2018)].

5 Final remarks

It is well known that infinity is mind-boggling, paradoxical yet helpful. One can
argue that a satisfactory mathematical theory should reduce the set of presumptions
as much as possible. As discussed in Chap. 1 in Alós-Ferrer and Ritzberger (2016),
among such assumptions oftenmade in economics are cardinality restrictions. In social
choice theory, researchers noticed early on that finite population axiom is critical
in establishing Arrow’s impossibility theorem, and since then they got interested in
knowing just how critical it is.

In this paper, we extended classical impossibility theorems, which are stated for
small societies, to the smallest large society. Our extension is somewhat conservative
as it employs techniques used for the finite case in dealing with the infinite case. The
main ingredient is a continuity axiom which was inspired by the continuity property
(or axiom) of a preference ordering in consumer choice theory and that of a probability
measure. In the current context, this axiom is justified for the following reasons:

– It adds no restriction to the classical set up with finitely many individuals, as it is
embedded in this setting,

– It allows us to use tools and results effective in the classical setting to a larger
domain,

– When an infinite society choice problem is confronted it captures, to some extend,
the idea of dynamic consistency. In such a situation, it is likely that the social
decision takes into account the trade-off between the current and the future, such
as the social planner’s problem in an OLG economy. Since the society is infinite,
the current infinite support tends to win over a growing trend in the society which
is to become the main position in the future (i.e. the future infinite support). Con-
tinuity axiom puts some restriction on the outcome of the social decision making
procedure over such dynamics by asking it to be consistent.
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The newly introduced axiom also helped us to obtain a new proof of the Gibbard–
Satterhwaite theorem.With this proof we finally know that both Fishburn (1970)’s and
Sen (1986)’s approaches are equally capable of proving Theorem 1 and 2. One should
not fail to notice the procedural duality of them; in one we establish a dictatorship by
shrinking a group, while in the other we establish an infinite society by an indefinite
enlargement under the hypothesis of non-dictatorship.

At this moment, many interesting questions wait for further analysis:

– Canweweaken conditions needed in twomain theorems in Sect. 3, e.g. transitivity
into quasi-transitivity etc?Canwemodify and/or unify these theorems (seeNinjbat
2015)?

– How these results formally relate with some of the existing literature (e.g. Turing
computability, topological continuity of SCW and SCF, etc.)? In fact, can we
interconnect all the existing impossibility results on large societies?

– Can we further extend these results to the case where societies are modelled as
well-ordered sets?
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