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Abstract

Regression models for proportions are frequently encountered in applied work. The condi-
tional expectation is bound between 0 and 1 and, therefore, must be non-linear which requires
non-standard panel data extensions. The quasi-maximum likelihood estimator of Papke and
Wooldridge (1996) suffers from the incidental parameters problem when including fixed effects.
In this paper, we re-consider the binomial panel logit model with fixed effects (Machado, 2004).
We show that the conditional maximum likelihood estimator is very easy to implement using
standard software. We investigate the properties of the estimator under misspecification and
derive a new test for overdispersion in the binomial fixed effects logit model. Models and test
are applied in a study of contracted work-time percentage, measured as proportion of full-time
work, for women in Switzerland.
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1 Introduction

After half a century of research on econometric models for limited dependent variables (Maddala,

1983, Wooldridge, 2002), it remains the case that only a small portion deals with proportions data,

and even a smaller one with panel models for such proportions. Among the latter, Machado (2004)

proposes the binomial fixed effects logit model, Papke and Wooldridge (2008) a correlated random

effects probit quasi-likelihood estimator and Ramalho et al. (2016) a class of exponential GMM

estimators.

And yet, proportions and related types of data are regularly encountered in applied econometric

work. Often, they correspond to the number of “successes” in a sequence of Bernoulli trials, such

as homicide- or unemployment rates, or the fraction of days absent from work during a work week.

Also, variety scores (e.g., the number of applicable items in a general health questionnaire), bounded

count data, as well as ratings, share the key feature of discreteness and the existence of an upper

and lower bound for the outcome.

In all these cases, the binomial model with a logit function for the expected proportion provides

a natural starting point for modelling. For the fixed effects setting, Machado (2004) shows that

the incidental parameters problem can be overcome by a conditional maximum likelihood (CML)

estimator, much like it is the case for the binary response logit model. She also provides Monte

Carlo evidence indicating that the dummy variables (DV) approach is subject to an upward bias

that is decreasing in both the length of the panel, T , and in the number of Bernoulli trials, K. For

T > 5 and K > 5, CML and DV approaches yield quite comparable results (Machado, 2004).

This paper advances this earlier work in three important directions: First, we show how the binomial

logit fixed effects estimator can be implemented using any off-the-shelf statistical software that

includes a conditional logit routine. Second, we study the properties of the CML and DV estimators

for the case that the binomial distributional assumption fails. The leading example is that of

overdispersion, as it originates from unobserved heterogeneity or dependence among the Bernoulli

trials. Since the CML estimator is not a pseudo ML estimator in the sense of Gourieroux, Monfort

and Trognon (1984), it does not possess formal robustness properties. We therefore investigate the

extent of bias in a series of simulation experiments. Third and finally, we derive and implement a

new test for the binomial assumption, i.e., a test for the hypothesis of no overdispersion, as existing

tests (e.g. Dean, 1992) cannot be applied because the fixed effects are not estimated by the CML

estimator.
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To illustrate the proposed methods, we conduct a study of the determinants of women’s work

behavior, as measured by the contracted work-time percentage, where 0 means no work and 1

means full-time work. The binomial logit estimates indicate that having children is associated with

substantially reduced work-time percentage, ceteris paribus. Perhaps more surprisingly, having

a partner makes the effect more pronounced, whereas speaking French reduces it. Without ac-

counting for fixed effects, the work-time percentage difference between mothers and non-mothers

is underestimated, indicating a positive selection into motherhood.

2 Model and estimation

A proper panel model for proportions yit ∈ [0, 1] must overcome two challenges. First, the model

should observe the restricted support of the outcome, as well as being able to handle data clustering

at the end points. For instance, the log-odds transformation (see Berkson’s minimum chi-square

method in Maddala, 1983), log[yit/(1− yit)] is not defined for yit = 0 or yit = 1. Another method

facing the same limitation is beta regression, which is flexible for fitting continuous proportional

data but cannot give predictions at the boundaries with positive probability. Second, direct control

for unobserved time-invariant individual heterogeneity (that may or may not be correlated with

the regressors) using a dummy for each cross-sectional unit is subject to the incidental parameters

problem, giving inconsistent and severely biased estimation of structural parameters when the

length of panel T is fixed.

Machado (2004) addresses these two issues by proposing a conditional maximum likelihood estima-

tor for the binomial fixed effects logit model.

Assumption 1

Let Yit = Kyit where K is a known integer, and

yit ∈
{

0,
1

K
,

2

K
, . . . , 1

}
such that

Yit|pit ∼ binomial(K, pit) , i = 1, . . . , N ; t = 1, . . . , T (1)

Here, K is the number of “trials”, Yit = Kyit is the “number of successes”, and yit is the proportion,

or fraction of successes for observation unit i in period t.
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Assumption 2

Let the expected proportion depend on covariates xit and an individual specific effect αi as follows:

E(yit|xit, αi) = pit =
exp(x′itβ + αi)

1 + exp(x′itβ + αi)
≡ Λit (2)

xit and αi can be correlated.

Assumption 3

Observations are independent between individuals and, conditional on group effects αi, serially

uncorrelated.

The objective of the analysis is estimation of β. Under Assumptions 1-3, the joint binomial density

for Yi1, Yi2, . . . , YiT conditional on
∑

t Yit is given by (see Machado, 2004)

f

(
Yi1, Yi2, . . . , YiT |

∑
t

Yit

)
=

Πt

(
K
yit

)
pYitit (1− pit)K−Yit∑

q∈Qi Πt

(
K
qt

)
pqtit (1− pit)K−qt

=
exp(

∑
t Yitx

′
itβ)Πt

(
K
yit

)∑
q∈Qi exp(

∑
t qtx

′
itβ)Πt

(
K
qt

) (3)

where Qi = {q = (q1, q2, . . . , qT )|qt ∈ {0, 1, 2, . . . ,K},
∑

t qt =
∑

t Yit}. The conditional binomial

approach eliminates the fixed effects αi which appear in the numerator and denominator with same

power. Observations for which
∑

t Yit = 0 or
∑

t Yit = 1 have a conditional probability of 1 and

do not contribute to estimation of β. For proportion data, such outcomes tend to be much less

prevalent than for binary outcomes.

2.1 An alternative implementation

Next, we show how the binomial logit fixed effects estimator can be implemented using any off-

the-shelf statistical software with a conditional logit routine. Our approach to estimation exploits

the fact that the binomial distribution arises as the sum of K independent Bernoulli trials, which

technically leads to an equivalence of two estimators, one based on a binomial log-likelihood function

and the other based on a Bernoulli log-likelihood for an expanded dataset. Consider first the case of

a pure cross-section. In this case, αi is not identified and we drop it for the moment from expression

(2).

For the expanded dataset, one simply generates a sequence of K copies for each i, keeping the

regressors unchanged, where the proportion yi is replaced by a sequence of 0/1 indicator variables
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dij in arbitrary order such that

K∑
j=1

dij = Kyi (4)

It follows that dij and yi have the same CEF:

E(yi|xi) = E

(∑K
j=1 dij

K

∣∣∣∣∣xi
)

= E(dij |xi) (5)

Suppose that E(yi|xi) = Λi is of logistic form. Then, the (Bernoulli) log-likelihood function of the

expanded dataset is given by

logL =
N∑
i

K∑
j

dij log(Λi) + (1− dij) log(1− Λi)

=

N∑
i

Yi log(Λi) + (K − Yi) log(1− Λi)

and we obtain the following first derivative, or score function,

∂ logL

∂β
= K

N∑
i

(
yi
Λi
− 1− yi

1− Λi

)
Λ′ixi

= K
N∑
i

(
yi −

exp(x′iβ)

1 + exp(x′iβ)

)
xi (6)

This first-order condition is identical to the score function of the binomial log-likelihood and differs

from that of the Bernoulli quasi-log-likelihood (Papke and Wooldridge, 1996) only by a proportion-

ality constant. Hence, the three estimators are identical in a cross-section.

For panel data, the binomial probability pit has conditional expectation as defined in (2). In the

expanded model, every yit is replaced by K binary variables dijt, such that
∑

j dijt = Kyit = Yit.

Conditional on
∑

t

∑
j dijt =

∑
tKyit, i = 1, 2, . . . , N , the conditional density function for each

individual i can be written as follows

f

{dijt}|∑
t

∑
j

dijt

 =
ΠtΠjp

dijt
it (1− pit)1−dijt∑

s∈Si ΠtΠjp
sjt
it (1− pit)K−sjt

=
exp(

∑
t

∑
j dijtx

′
itβ)∑

s∈Si exp(
∑

t

∑
j sjtx

′
itβ)

(7)

where Si = {(s11, s12, . . . , s1T , s21, . . . , sKT )|sjt ∈ {0, 1},
∑

t

∑
j sjt =

∑
t

∑
j dijt)}
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Compared with equation (3), the number of s such that {s|∑j sijt = qit} is
(
K
qt

)
for given q.

Equation (7) is therefore basically the same as equation (3), except for the term Πt

(
K
yit

)
in the

numerator. But this term does not depend on any parameter and thus drops out of the first-order

condition for the maximum of the log-likelihood function. Specifically, the conditional Bernoulli

log-likelihood function can be written as:

logL =
∑
i

∑
t

∑
j

dijtx
′
itβ − log(

∑
s∈Si

exp(
∑
t

∑
j

sjtx
′
itβ))

 (8)

with first derivative

∂ logL

∂β
=
∑
i

[∑
t

Kyitx
′
it −

∑
s∈Si exp(

∑
t

∑
j sjtx

′
itβ)

∑
t

∑
j sjtx

′
it∑

s∈Si exp(
∑

t

∑
j sjtx

′
itβ)

]
(9)

which is the same as in the conditional binomial model, up to an additive constant, and will give

the same consistent estimator of β, after elimination of the fixed effects.

2.2 Overdispersion

Departures from the binomial proportions model can take a number of forms. A first one is a

violation of the independence assumption of the underlying Bernoulli trials. Positive dependence,

or contagion, among the sequence of Bernoulli trials causes overdispersion, a conditional variance

exceeding the one implied by the binomial model equal to Kpit(1 − pit). Another violation is

“unobserved heterogeneity”, where pit is no longer a constant but rather a random variable, say

p̃it. Marginalizing over p̃it then leads to a mixture model that is characterized by overdispersion as

well. Depending on the distribution of p̃it, proportions can for example have a u-shaped probability

function even conditional on αi and xit, i.e., probability mass stacked at the endpoints of 0 and 1,

which is never the case for a binomial distribution that has either a single mode, or two adjacent

modes.

A prominent example for a continuous mixture is the beta-binomial model, where

p̃it ∼ beta(uit, vit) (10)

and

uit = φΛ(xitβ + αi), vit = φ(1− Λ(xitβ + αi))
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It is easy to show that the thus obtained beta-binomial distribution has expectation KΛit and

variance

Var(Yi|K,Λit, φ) = KΛit(1− Λit)

(
1 +

K − 1

φ+ 1

)
(11)

Thus, the variance of the beta-binomial model is proportional to that of the binomial model. The

degree of overdispersion increases in K, the number of trials, and it decreases in the parameter φ.

The binomial variance is obtained for K = 1, or in the limit, for φ → ∞, which also means that

Var(p̃it)→ 0.

In general, fixed effects conditional maximum likelihood estimators are not consistent if the un-

derlying model is misspecified. The reason is that the first-order condition is no longer a moment

condition for the mean, but rather a function of the conditional probabilities (Gourieroux et al.,

1984). However, it might still be the case that the CML estimator works satisfactorily as long as

the degree of overdispersion, and hence the departure from the binomial assumption, is not too

large. We will explore this type of robustness in a series of simulation experiments.

2.3 Simulation study

We conduct simulation experiments for two different data generating processes (DGPs): one, where

the binomial assumption is satisfied, and a second one, based on the beta-binomial model, where

overdispersion is present. Unobserved time-invariant individual heterogeneity is positively corre-

lated with the regressor in both cases. The degree of overdispersion is varied from 10 to 100

percent.

Both set-ups use the same logit conditional expectation function with a single regressor

E(yit|xit, αi) = Λ(β0 + β1xit + αi) =
exp(β0 + β1xit + αi)

1 + exp(β0 + β1xit + αi)
, (12)

where β0 = 0, β1 = 2 and the size of the cross-section is either N = 100 or N = 500. The time

dimension increases from T = 2, T = 5 to T = 10.

The regressor xit is drawn from a uniform distribution with support [−1, 1] and has therefore a

mean of 0 and a variance of 1/3. Draws are independent both across individuals and over time.

We make a correlated random effects assumption:

αi =
√
T x̄i + εi, (13)
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where εi ∼ N(0, 1). It follows that the correlation between αi and x̄i is 0.5, a substantial amount.

Once the mean is given, the dependent variable is obtained by generating pseudo random numbers

from either a binomial or a beta-binomial distribution. Specifically, we first draw integer random

numbers from a (beta) binomial distribution with parameters K and Λ(xitβ1 +αi), and then divide

the result by the number of categories K. e.g.:

yit =
Kyit
K

,Kyit ∼ binomial(K, pit), pit = Λ(β0 + β1xit + αi) (14)

K is exogenously determined. In our case, we set K to 2, 5 or 10. For K = 2, K × yit can be 0, 1,

or 2, with corresponding fractions of yit = 0, 0.5, or 1, respectively; if K = 10, yit takes on one-digit

decimals: 0, 0.1, 0.2,. . . , 1.

The theoretical predictions are clear. Ignoring the presence of the individual specific component

and estimating the marginal, pooled model will have two effects:

• β1 is upward biased due to the positive correlation between xit and αi.

• β1 is downward biased due to omitted heterogeneity. In the probit model, there is a closed

form expression for this bias (Wooldridge, 2002). In the logit model, it needs to be computed

numerically, but the direction is the same.

Which one of the two biases is larger is an empirical matter. The DV estimator, on the other hand,

suffers from the standard upward incidental parameters bias (Abrevaya, 1997).

−−−−−−−−− Table 1 about here −−−−−−−−−

Table 1 shows the simulation results based on 1000 replications, for a sample size of N = 100.

The mean and standard deviation of estimated coefficients across replications are reported. The

three estimators are referred to as Blogit CML, Blogit DV, and pooled logit respectively. The first

row of each sub-panel (for K = 2, K = 5 and K = 10) gives the results for the DGP without

overdispersion, i.e. results where the dependent variable has a binomial distribution conditional on

xit and αi.

As Machado (2004), we find that the Blogit CML model estimates the true structural slope pa-

rameter very well even for small samples. There is a 2% upward bias for T = K = 2 that vanishes
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quickly as either T or K increase. The sampling variability inmcreases not only in T but also in K,

albeit at a less than
√
K rate. The Blogit DV estimators have a larger bias and a larger standard

error, and hence a higher mean squared error, in all settings. It becomes small as T and K increase.

For instance, for T = 10 and K = 10, the mean Blogit DV estimate is 2.025, whereas the mean

Blogit CML estimate is 2.000. On the other hand, the pooled logit estimator has no tendency to

converge. Depending on parameterization of the DGP, it overestimates or underestimates the true

parameter β1 = 2. In Table 2, the simulations are repeated for a larger sample, N = 500 instead

of N = 100, but the qualitative conclusions remain unchanged.

Beta-binomial DGP

Simulations from the beta-binomial model add a further step: instead of directly obtaining binomial

responses with conditional (on xit and αi) success probability pit = Λ(β0 + β1xit + αi), p̃it is now

drawn from a beta distribution with mean pit:

p̃it ∼ beta(φΛ(β0 + β1xit + αi), φ(1− Λ(β0 + β1xit + αi)))

From (11), we know that the multiplicative variance inflation factor depends on both K and φ. To

keep the degree of overdispersion the same for K = 2, 5, 10, we adjust φ accordingly. For example,

for 10% overdispersion and K = 2, we have 1 + (K − 1)/(φ+ 1) = 1.1, so φ = 9.

−−−−−−−−− Table 2 about here −−−−−−−−−

From Table 1 (for N = 100) and Table 2 (for N = 500), three key patterns emerge. First,

overdispersion leads to an upward bias of both the Blogit CML and the Blogit DV estimators. The

bias increases in the amount of overdispersion. Second, the Blogit CML estimator always dominates

the Blogit DV estimator, both in terms of bias and standard error. This result did already hold

for the binomial case, and it persists in the presence of overdispersion. Third, for a given degree of

overdispersion, the bias is decreasing in T as well as in K.

The overall conclusion is that the Blogit CML estimator maintains a rather good performance even

if the binomial model is misspecified, as long as the degree of overdispersion is modest, or else, as

long as T and / or K are large. To take the two polar cases, for N = 100, if K = T = 2 the mean

estimate with 10% overdispersion is 2.1, a 5% upward bias. For K = T = 10 the mean estimate

with 100% overdispersion is 2.025, a 1.25% upward bias.
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3 A test for overdispersion

Existing methods to test the binomial assumption for yit, e.g. Dean’s (1992) score test, require

estimates of the expectation Λit under the null hypothesis of the binomial model. However the

Blogit CML approach does not estimate αi, so Λit is not complete. To ascertain the validity of the

Blogit CML model assumption, we construct a novel statistic test as follows.

We observe panel data (yit, xit), i = 1, . . . , N , t = 1, . . . , T , where T ≥ 2. Consider the case

T = 2 first. The response variable yit ∈ {0, 1
K ,

2
K , . . . , 1} can be at the endpoint, zero or one,

with increment 1/K. To test whether non-binomial variance dispersion exists, a binary random

variable Mit is drawn from a Bernoulli distribution with mean yit, Mit ∼ Bernoulli(yit),∀t = 1, 2.

Equivalently, we can draw a random element from the dij-sequence defined in (4). The basic idea

of the test will be a comparison between the variances of the differences Yi1 − Yi2 and Mi1 −Mi2.

If the underlying probabilities pit are the same across periods, then the outcomes Yi1, . . . , YiT can

be regarded as random draws from i.i.d binomial distributions and the variance of Yi1− Yi2 should

be equal to the sum of binomial variances, under assumptions A1 and A3. On the other hand, the

Bernoulli draws from the same distributions have standard variances. If there is over- or under-

dispersion, the variance of Yi1 − Yi2 will be larger or smaller than the variance calculated from

Bernoulli draws. Since we do not observe pit, the probability of success for the binomial draws is

estimated using yit.

More specifically, consider the variable

zi =
(Yi1 − Yi2)2 −K(Mi1 −Mi2)2

K(K − 1)
(15)

Conditional on yi1, yi2,

E[(Mi1 −Mi2)2|yi1, yi2] = yi1(1− yi1) + yi2(1− yi2) + (yi1 − yi2)2

= yi1 + yi2 − 2yi1yi2

Therefore, under A1, A2 and A3, the expectation of zi is given by

E(zi) =
1

K(K − 1)

[
Var(Yi1) + Var(Yi2) + (EYi1 − EYi2)2 −K(Λi1 + Λi2 − 2Λi1Λi2)

]
Under the binomial assumption, Var(Yit) = KΛit(1− Λit), and it follows that

E(zi) =
1

K(K − 1)

[
KΛi1(1− Λi1) +KΛi2(1− Λi2) +K2(Λi1 − Λi2)2

−K[Λi1(1− Λi1) + Λi2(1− Λi2) + (Λi1 − Λi2)2]
]

= (Λi1 − Λi2)2.

(16)
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Hence, the expected value of zi is zero under the null hypothesis of binomial dispersion as long as

Λi1 = Λi2. From (2), this is the case for observations for which the regressors xit do not change

over time, i.e., xi1 = xi2. With overdispersion, E(zi) is greater than zero, with underdispersion

smaller than zero.

3.1 Case I : a test for discrete covariates

Define the set of individuals with the same expectations over time, A = {i : Λi1 = Λi2}, for which

E(zi|i ∈ A) = 0 holds. With time invariant fixed effect αi, the set A is equal to {i : xi1 = xi2}. It is

feasible to find such a set A if all covariates are finite discrete variables. The test term for discrete

xit is defined as

τA = Ê(zi|i ∈ A) =

∑
i∈A zi

|A| , (17)

where |A| represents the number of elements in A. Under H0, τA
p−−→ 0. Further, by the central

limit theorem (CLT), the statistic τA converges to a normal distribution,√
|A|(τA − 0)

d−−→ N(0, σ2
A), (18)

where σ2
A = Var(zi|i ∈ A). In practice, σ2

A is replaced by the sample variance σ̂2
A. So we reject the

binomial distribution assumption at the α% significance level if

∣∣∣∣ τA
σ̂A/
√
|A|

∣∣∣∣ ≥ Z1−α
2
.

Note that individuals in the setA do not contribute to the estimation of the Blogit CML model, since

xit are canceled out as fixed effects. Nonetheless, they are needed for generating our dispersion

test. This non-parametric method to build a test is similar to finding proper cell estimators in

matching theory, but likewise faces the curse of dimensionality. It is hard to find the set A when

the dimension of xit becomes larger. If |A| shrinks, the convergence rate
√
|A| will decrease and

the estimator τA will converge more slowly.

3.2 Case II: a kernel test for continuous covariates

The set A = {i : Λi1 = Λi2} is empty or very small when Λi1 and Λi2 are continuous. A more

general method uses a kernel estimator for the conditional expectation E(zi|Λi1 − Λi2 = 0). The

main idea is to put more weight on individuals with smaller |Λi1 − Λi2|. Since we do not observe

the underlying expectations Λit directly, we find the set A according to observables xit. Under
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the assumption of a single scalar regressor and time-invariant unobserved heterogeneity, we can

decompose the conditional expectation (16) by a Taylor expansion at xi2,

(Λi1 − Λi2)2 = [Λ(xi1β + αi)− Λ(xi2β + αi)]
2

= [Λ′(xi2β + αi)β (xi1 − xi2) +
Λ′′(xi2β + αi)

2!
β2 (xi1 − xi2)2 + o((xi1 − xi2)2)]2

= [Λ′(xi2β + αi)β (xi1 − xi2)]2 + o(β2(xi1 − xi2)2),

Denote ∆i = (xi1 − xi2)β,

E(zi|Λi1 − Λi2) = (Λi1 − Λi2)2 = (Λ′i2∆i)
2 + o(∆2

i ).

As the fixed effect αi is canceled out, an alternative conditional expectation function is given by

∆i,

τ(∆) = E(zi|∆i = ∆, Xi) = (Λ′i2∆)2.

Then, under the binomial assumption,

E(zi|Λi1 − Λi2 = 0) = τ(0) = 0.

The result generalizes to a vector-valued x, in which case ∆i = (xi1 − xi2)′β.

The next step is to build a kernel estimator for τ(0). One conditional moment estimator for τ(∆) is

τ̂(∆) =
∑N
i=1 K(

∆i−∆

h
)zi∑N

i=1K(
∆i−∆

h
)

, where h is the kernel bandwidth for ∆i and K(∆i−∆
h ) is the kernel function.

For a given sample, ∆i needs to be replaced by ∆̂i = (xi1 − xi2)β̂, where β̂ is estimated. We can

use the Blogit CML estimator for estimation, as it is consistent under the binomial null hypothesis.

We construct a local estimate τ̂ for the object of interest τ(0) (see Pagan and Ullah, 1999):

τ̂ =

∑N
i=1K( ∆̂i

h )zi∑N
i=1K( ∆̂i

h )
=

N∑
i=1

wnizi, wni =
K( ∆̂i

h )∑N
i=1K( ∆̂i

h )
,

We chose the Gaussian function K( ∆̂i
h ) = 1√

2π
exp(− (∆̂i/h)2

2 ) for simplicity.

Asymptotic property and kernel bandwidth choice

Let f = f(∆ = 0) denote the continuous density function of the random variable ∆ at point 0.

The kernel density estimator f̂ for f is

f̂ =

N∑
i=1

K( ∆̂i
h )

nh
.
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In addition, rewrite zi as the sum of its conditional expectation E(zi|∆i) = τ(∆i) and an error

term ui, such that

zi = τ(∆i) + ui = (Λ′i2∆i)
2 + ui

where E(ui|∆i, Xi) = 0 and Var(ui|∆i, Xi) = σ2.

The estimator τ̂ is a combination of f̂ and zi

τ̂ =

∑N
i=1

1
nhK( ∆̂i

h )zi∑N
i=1

1
nhK( ∆̂i

h )
=

1

f̂

N∑
i=1

1

nh
K

(
∆̂i

h

)
zi =

1

f̂

N∑
i=1

1

nh
K

(
∆̂i

h

)
(Λ′i2∆i)

2 + ui.

The expectation of τ̂ is

E(τ̂) = E(
1

f̂

N∑
i=1

1

nh
K(

∆̂i

h
)(Λ′i2∆i)

2 +
1

f̂

N∑
i=1

1

nh
K(

∆̂i

h
)ui)

=

∫ ∫
1

hf̂
K(ν)(Λ′i2)2(hν)2f(hν,Λi2)hdνdΛi2 + Ê(ui|∆̂ = 0), where we replace ∆ = hν

= h2

∫ ∫
K(ν)(ν)2(Λ′i2)2 f(ν,Λi2)

f̂
dνdΛi2

= h2µ2E[(Λ′i2)2|∆ = 0], where µ2 =

∫
K(ν)(ν)2dν

We therefore obtain a bias

Bias(τ̂) = E(τ̂)− τ(0) = E(τ̂) = h2µ2E[(Λ′i2)2|∆ = 0], (19)

that is proportional to h2.

To guarantee consistency of the estimator τ̂n, convergence of the mean square error to zero is

required. The MSE is equal to MSE(τ̂) = Bias(τ̂)2 + Var(τ̂). So the bias for τn should decrease to

zero, as n increases:

h2 −→ 0, as n −→∞. (20)

Besides the convergence condition for bias, we also consider the asymptotic performance of the

variance of τ̂ . Using a result on the variance of conditional expectations from Pagan and Ulah

(1999), we obtain:

Var(τ̂) =
σ2

nhf

∫
K2(ν)dν, Var(τ̂) ∝ 1

nh
. If n −→∞, 1

nh
−→ 0. (21)

To make sure that the MSE converges at the fastest speed, bias2 and variance should converge at

the same rate: h4 ∝ 1
nh . Otherwise, the slower speed dominates the convergence rate. Thus, h is
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of order h ∝ n− 1
5 and by the central limit theorem,

√
nh(τ̂ − E(τ̂))

d−−→ N(0, f−1σ2

∫
K2(ν)dν) (22)

Here σ2 = Var(z2
i |∆ = 0), with the same definition in the discrete case (eq 18). In practice,

the approximate bias is calculated by Ê(τ̂) =
∑N

i=1wni(yi2(1 − yi2)∆̂)2, σ2 is replaced by σ̂2 =∑
wni(zi − τ(∆̂i))

2 and V̂ar(τ̂) = σ2

f̂2

∑N
i=1 K

2(ν)
n2h2 . Hence,

∣∣∣∣∣ τ̂− ˆE(τ̂)√
V̂ar(τ̂)

∣∣∣∣∣ can be used as a t-test.

To shrink the bias, in other words, to undersmooth, h should be h ∝ o(n−
1
5 ). But this involves

a trade-off between bias and variance, i.e., smaller bandwidth decreases the convergence rate and

decreases the asymptotic variance, making rejection much harder under the alternative assumptions.

By Silver’s rule of thumb, the bandwidth for the Gaussian kernel function is set to h = 0.9σ∆in
− 1

5 ,

where σ∆i is the standard deviation of ∆i. In practice, we obtain the sample standard deviation

σ̂∆̂i
at first and divide ∆̂i by σ̂∆̂i

. Hence, the standard deviation of ∆̂i
σ∆̂i

is 1. The standardized ∆̂i
σ∆̂i

is the argument of the Gaussian kernel function, k( ∆̂i
h ) = k(

∆̂i/σ∆̂i
h/σ∆̂i

) = k(
∆̂i/σ∆̂i
h′ ). So the bandwidth

can be simplified to h′ = 0.9n−
1
5 .

Sign of test

Under the alternative hypothesis, the dependence between binary outcomes ditj is not equal to

0, corr(ditj , ditj′) 6= 0, ∀j, j′ = 1, ...K, j 6= j′. The dependence can be measured by the dispersion

degree η in the variance function,

Var(Yi) = KΛit(1− Λit) (1 + η) (23)

For the beta-binomial model, η is equal to η = K−1
φ+1 > 0. If η < 0, Yi is under-dispersed relative to

the binomial model. When η = 0, Yi has a the binomial distribution. Overdispersion describes pos-

itive correlations at off-diagonal entries in the variance matrix of dit,∀i, t, while underdispersion is

generated from negative correlations. If yit does not follow H0, the test statistic will be statistically

significant with positive sign in overdispersed samples and with negative sign for underdispersed

ones. Underdispersed data are hard to simulate by usual methods, but prevalent in empirical data.

One example of an underdispersion DGP can be found in Ahn and Chen (1995). Here, we focus

on over-dispersed data as are obtained from the beta-binomial distribution.
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3.3 Case III: conditional moment test for multiple periods

The test can be extended to multiple time periods. With T = 2, there is a single moment condition

for E(zi|∆i = 0) that can be tested. For T > 2, one possibility is to combine T − 1 such moment

conditions into a single test statistic.

In the discrete case, let gi,t = 1(xi,t = xi,t+1)zi,t,

gi,t = 1(xi,t = xi,t+1)
(Yi,t − Yi,t+1)2 −K(Mi,t −Mi,t+1)2

K(K − 1)
, t = 1, ..., T − 1

As we derived before, E(gi,t) = 0

In the continuous case, moment conditions are

gi,t =
K(

∆̂i,t

h )(zi,t − τ(∆̂i,t))∑N
i=1

1
nK(

∆̂i,t

h )
, t = 1, ..., T − 1

where ∆̂it = (xit − xi,t+1)β̂ and τ(∆̂i,t) = (yi,t+1(1 − yi,t+1)∆̂it)
2. Under the null hypothesis,

E(gi,t) = 0.

These moment conditions can be written in matrix form for individual i = 1, ..., N as :

gi =


gi,1

. . .

gi,T−1

 , and the sample mean is ḡn =


1
n

n∑
i=1

gi,1

. . .

1
n

n∑
i=1

gi,T−1

 .

Let Ŝ denote the sample variance:

Ŝ =
1

n

n∑
i=1

gig
′
i − ḡnḡ′n,

Since ḡn
p−−→ E(gi) = 0, a test statistic is given by

J = n · ḡ′nŜ−1ḡn = (
√
n · ḡn)′Ŝ−1(

√
n · ḡn)

Theory:
√
n · ḡn d−−→ N(0, S) and Ŝ

p−−→ S, then J
d−−→ χ2

T−1.

This chi-square test rejects the binomial distribution assumption at the α% significance level if

J ≥ χ2
α(T − 1).
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3.4 Simulation study

We conduct simulation experiments to examine the performance of these tests under two scenarios.

In the first setting, explanatory variables are discrete (in fact, there is a single binary regressor,

to keep things as simple as possible), while the explanatory variable is continuous in the second.

The remaining aspects of the DGP regarding fixed effects, expectation functions and parameters

setting are kept the same as those in section 2.3.

−−−−−−−−− Table 3 about here −−−−−−−−−

Table 3 presents rejection rates, the probability that our test rejects the binomial assumption, over

1000 replications for a binary xit. xit is either 0 or 1 with equal probability of 50%. In this case, the

probability of xi1 = xi2 is also 50%, which means that on average half of the observations will be in

the set A of individuals with the same expectations over time and thus informative for computing

the test statistic. As before, simulations are conducted for T = 2, 5, 10 and for K = 2, 5, 10.

The first row of each sub-panel shows results for 0% overdispersion, i.e. for sampling from a

binomial DGP applies. In this case, the rejection rates are equivalent to the proportion of type-I

errors and ideally should be close to the nominal size of the test, in this case 5%. We find that

this is mostly the case. The smallest empirical rejection rate is 3.7 percent, the largest one is 9%.

If anything, there is overall a slight tendency to overreject in these small samples, more so in the

multivariate (T > 2) version of the test than in the scalar version (T = 2).

In the current set-up, where we test the validity of a specific model assumption, we would be

more worried about under- than overrejection. Also, the power properties are very important in

this context. The lower part of each subpanels shows the rejection rates for misspecified binomial

models, and hence the power. Reassuringly, we find that the test has some power already against

the alternative of rather modest overdispersion (10%), in particular for N = 500 and T = 10,

where close to 30% of wrong null hypotheses are rejected. As the dispersion degree increases, the

power of the test also grows, and it reaches 100% for DGPs where overdispersion, the number of

observations and the number of time periods are large.

−−−−−−−−− Table 4 about here −−−−−−−−−
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In Table 4, we show the results for the kernel weighted test statistics appropriate for continuous

variables. xit is drawn from a uniform distribution between -1 and 1, with mean 0 and variance

1/3. The general patterns regarding type-I errors and power of the tests are mostly similar to those

of Table 3. As in Table 3, the power of the test tends to decrease in K, for a given overall degree of

overdispersion, but this tendency is more uniform in the continuous version of the test. It indicates

that the power of the test reacts differently to the two parameters driving overdispersion, and in

particular that it is more sensitive to increases in φ rather than K.

The combined results from our simulation experiments are re-assuring: on one hand, modest

amounts of overdispersion cause only minor bias of the BLogit CML estimator; on the other hand,

the test we derive has good power properties against medium or high-dispersion alternatives to the

binomial assumption.

4 Application to labor supply

In this illustrative application, we consider the interplay between fertility and female labor supply

in the context of Switzerland, using data from the Swiss Household Panel (SHP) for the years 2012-

2016. The SHP is an ongoing longitudinal survey of households and people living in Switzerland

that covers a large range of topics on living conditions, both objective and subjective, including

work, fertility and health. We restrict the analysis to women aged 25-45, who participated in

the survey at least twice during the five-year period. This gives us a sample of 5,854 person-year

observations for 1,712 different women.

There is a long literature on female labor supply (see e.g. Mroz, 1987) that has mostly focussed

on the binary participation decision, i.e. the extensive margin, or on annual hours of work. In the

Swiss context, it is more natural to model the work-time percentage, which is a number between

0 and 100%. These work-time percentages are written into contracts and also advertised in job

vacancies. For instance, 60 percent work-time means that the worker works the equivalent of 3

days per week and also is paid only 60% of a full-time salary. In practice, the large majority

of agreed-upon work-time percentages are multiples of 10%. Figure 1 shows the distribution of

work-time percentages in our sample. The relative frequency of zeros is 14.4%, meaning that the

estimated participation rate in our sample for this age group is 85.6%, a number very close to the

offical numbers published by the Federal Statical Office (BfS, 2016).
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The graph reveals one frequently noted “puzzle” of female labor supply in Switzerland: while

the participation rate of women is one of the highest among OECD countries, there is a large

prevalence of part-time work, varying from very small amounts to more substantial ones, but the

proper full-time rate (say 100% or 90%) is actually not that high (here 21%). As a consequence quite

substantial male-female gaps emerge over the life-cycle regarding earnings, eligiblity for retirement

benefits and career development more generally. Clearly, the move to part time work for women

with children provides a main explanation for this pattern. The Box-plots in Figure 2 show, for

our data, how the median work-time percentage drops from 80 percent or higher for those aged 30

or below to 50 percent for women in their early 40s. Figure 3 documents how the probability of

having at least one child increases with age. Around 10 percent of Swiss women remain childless.

Table 5 provides some descriptive statistics (means and standard deviations) for both the dependent

and the explanatory variables used in the following empirical analysis. The average work-time

percentage is 55%, with a standard deviation of 0.34. We have re-coded the work-time percentage

as a strict multiple of 0.1, by moving the few intermittent values to the decile below. Hence,

we can treat 10-times the work-time percentage as a binomial variable with outcomes 0, 1, . . . , 10.

Under the binomial assumption, the standard deviation for a fraction with a mean of 0.56 is

equal to
√

0.56(1− 0.56)/10 = 0.157, substantially below the observed standard deviation of 0.346.

Hence, there is evidence of over-dispersion at the marginal level. However, this does not necessarily

invalidate the key assumption of the binomial distribution conditional on covariates and individual

specific fixed effects.

−−−−−−−−− Table 5 about here −−−−−−−−−

Women have an average age of 36.3 years and 63.1 percent report having at least one child in the

year they are surveyed. For 58.4 percent of person-year observations, there is a partner present

in the household. The health status is captured by a 5-point scale for self assessed health, where

0 means “not well at all” and 4 means “very well”. We treat it as a cardinal scale for simplicity,

and also abstract from its potential endogeneity to working or having children. Finally, we include

information on language region. There is quite a bit of evidence that work-norms differ between

the French and the German speaking part of Switzerland, with some stigma attached to working

mothers, in particular for the first years of the child and full-time work, in the German-speaking

part of Switzerland (65% or our sample) but much less so in the French-speaking part (29% of our

sample) (Steinhauer, 2018).
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Our final estimation model includes four year effects, age-squared (the linear age term is dropped;

alternatively, one could identify the linear age effect by setting a second year effect equal to zero),

indicators for the presence of a child and partner, and the health variable. Since language region

is mostly constant over time, it is near-collinear with the fixed effects when applying the BLogit

CML or Blogit DV estimators, and we therefore only include its interaction with the child-indicator

variable.

Results are given in Table 6. The first column shows the estimated coefficients from the BLogit

CML and the second that from the BLogit DV model. The last two columns add corresponding

(binary) logit models for the extensive margin model (work yes/no), again using alternatively the

CML or DV estimators. Standard errors are clustered at the individual level throughout.

As is the case for the binary logit model with fixed effects, DV estimation of the binomial model is

subject to the perfect prediction problem (see e.g. Kunz, Staub and Winkelmann, 2018). Outcomes

for women, whose work-time percentage is either zero or one in each year are perfectly predicted,

meaning that the associated dummy coefficient will tend to minus or plus infinity, respectively. For

the Blogit CML, perfectly prediction formally does not arise as the αi’s are not estimated. However,

all such observations have mechanically a log-conditional likelihood contribution of zero and thus do

not contribute to estimation of β as well. To use the same estimation sample everywhere, we drop

all perfectly predicted outcomes, leading to a final sample size of 4,661 person-year observations

for the work-time percentage model.

−−−−−−−−− Table 6 about here −−−−−−−−−

When interpreting magnitudes, we note the recent suggestion by Kemp and Santos Silva (2016)

to focus on expected (semi-) elasticities. These can be estimated without knowledge of αi and are

thus very suitable for our conditional maximum likelihood approach. For the binomial proportion

model with E(yit|xit, αi) = Λit, we get

∂ logE(yit|xit, αi)/∂xit = β(1− Λit)

A good estimator of the overall mean of Λit is the sample mean of the outcome, Λ̄ = ȳ = 0.55, so

that the CML estimators β̂ can be multiplied by 0.45 to obtain average semi elasticities with respect

to changes in the associated covariate. From columns (1) and (2) of Table 6, we find a large negative

association between having a child and the amount of work. The point estimate of the main effect
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is about -2, which means that not having a child increases the expected work-time percentage by

about 90 percent, i.e., by a factor of close to two. This effect is highly statistically significant,

as are two of the three interaction effects: having a child reduces the work-time percentage more

if a partner is present than otherwise, suggesting the presence of pecuniary motives for work, or

needing to “make ends meet”. The labor supply response of women to having children is about half

as large for French speaking women as it is for German speakers, corroborating the social norm

results found in the earlier literature.

In this application, the BLogit CML and the Blogit DV results are very similar. The DV results are

always a bit larger in absolute value, but the difference never exceeds five percent. This resonates

with our simulation results, because both T and K are both relatively large. Nevertheless, and

perhaps surprisingly, the joint test for the binomial assumption derived in section 3.3. indicates a

clear rejection (test value of 37.7 with a χ2 5% critical value of 9.5). However, we know from the

simulation results (Tables 1 and 2) that even with 50% overdispersion, the bias of the Blogit CML

is very small for K = 10 and T = 5, a setting similar to the current application. At the same time,

the probability of rejecting the wrong H0 is very close to 1 (see Table 4). On a practical note, the

CML estimator can be computed much faster than the DV estimator, by a factor of about 10 in

our case. Of course, this problem would be exacerbated in applications with more cross-sectional

units, to the point where computation of the Blogit DV estimator may become unfeasible.

In the last two columns of Table 6, we allow for a comparison with results from a more conventional

binary logit extensive margin estimator. A first point to note is that the sample becomes much

smaller, since all observations with variation in the positive range only, i.e., percentages between

10% and 100%, are now coded as “1” and thus become perfectly predicted. Their variation does

not contribute to estimation, the usable sample size drops by 3/4, and the standard errors of the

estimated coefficients increase accordingly. We had to drop the Italian times children interaction,

as it could not be estimated in the reduced sample.

Second, we note that the estimated coefficients tend to be substantially larger. This needs to

be relativized, though, as the implied expected semi-elasticities for the probability of work are

obtained using a much smaller factor, as (1 − ȳ) is equal to the non-participation rate of 0.145 in

this case. In terms of statistical significance, we find that the health and partner coefficients were

not statistically in the work-time percentage model, but they are in the participation model. In

terms of point estimate, the interaction between French and children just offsets the main effect

of having at least one child, meaning that there is no difference in participation probabilities for
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French speaking mothers and non-mothers, although some labor supply responsiveness was found

in the work-time percentage model for the combined extensive and intensive margin effect. In terms

of estimation method, and in contrast to the work-time percentage model, the participation model

suffers from a massive incidental parameters bias, since the point estimates for the DV estimator

exceed those of the CML estimator by fifty percent on average.

5 Concluding remarks

Machado (2004) introduce the fixed effects binomial model as a method for proportions or discrete

bounded outcomes more generally. However, there are no existing results showing that the condi-

tional binomial logit maximum likelihood estimator is robust to misspecification. In this paper, we

focus on the consequences of overdispersion as it originates for instance from neglected unobserved

heterogeneity. We show in simulations experiments that the Blogit CML estimator maintains a

rather good performance even if the binomial model is misspecified as long as one of three condi-

tions is met: either is the degree of overdispersion modest, or else, the length of the panel T or the

number of Bernoulli trials K must be large.

We then derive a test of the null hypothesis that the binomial assumption is valid, against the

alternative hypothesis of overdispersion. The test computes the variance of within-individual out-

come differences. For the subset of observations with regressors that do not change over time, the

mean difference is zero (or close to zero if regressors do not differ “too much”) and it is possible

to compute variances with and without the binomial assumption that do not depend on the fixed

effects. This is essential as fixed effects are not estimated by the Blogit CML estimator. Our simu-

lation experiments show that the test has good power properties under the alternative of medium

or large degrees of overdispersion. But these are exactly the case, where the bias of the Blogit CML

estimator becomes noticeable.

Proportions data are ubiquitous in empirical economic research. We study in our empirical applica-

tion an outcome related to women’s work behavior, namely the contracted work-time percentage. In

our sample of mid-aged women obtained from the Swiss Household Panel, 65% of all women report

working part-time, i.e. a percentage between 10 and 90%. The empirical analysis using the fixed

effects binomial logit estimator estimates substantially different work-time percentages for mothers

and non-mothers. Having a partner makes the effect more pronounced, whereas speaking French

reduces it. We show how these coefficients can be interpreted in terms of expected semi-elasticities
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even if the fixed effects are not estimated. In comparison to the fixed-effects logit estimation for the

participation model, much fewer observations are lost in the work-time percentage model due to

perfect prediction, contributing to its overall much more precise estimation of the model parameters

.

In future work, we will consider alternative estimators that could be pursued if the binomial null

hypothesis is rejected. If the logit conditional expectation function is to be kept, a binomial logit

correlated random effects model is a possible approach. Such a model would explicitly account for

overdispersion, by assuming for instance that unobserved heterogeneity follows a normal distribu-

tion with mean depending on the regressors.
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Table 1: Simulation Results N=100
N=100 overdispersion T=2 T=5 T=10

Blogit CML Blogit DV Pooled logit Blogit CML Blogit DV Pooled logit Blogit CML Blogit DV Pooled logit

K=2 0% 2.049 2.880 2.242 2.003 2.280 1.986 2.006 2.134 1.877

(0.419) (0.621) (0.255) (0.178) (0.211) (0.145) (0.118) (0.128) (0.101)

10% 2.100 2.968 2.225 2.036 2.320 1.988 2.010 2.138 1.876

(0.419) (0.632) (0.263) (0.192) (0.227) (0.156) (0.121) (0.131) (0.105)

50% 2.516 3.674 1.898 2.179 2.484 1.908 2.073 2.204 1.937

(0.822) (1.283) (0.399) (0.360) (0.429) (0.279) (0.246) (0.266) (0.222)

overdispersion T=2 T=5 T=10

Blogit CML Blogit DV Pooled logit Blogit CML Blogit DV Pooled logit Blogit CML Blogit DV Pooled logit

K=5 0% 2.012 2.279 2.243 2.000 2.101 1.990 2.002 2.051 1.872

(0.233) (0.272) (0.190) (0.111) (0.118 ) (0.104) (0.073) (0.075) (0.076)

10% 2.033 2.303 2.239 2.013 2.115 1.990 2.010 2.059 1.875

(0.252) (0.295) (0.184) (0.120) (0.128) (0.115) (0.079) (0.081) (0.078)

50% 2.139 2.431 2.205 2.054 2.159 1.971 2.032 2.081 1.882

(0.300) (0.354) (0.214) (0.139) (0.149) (0.122) (0.086) (0.088) (0.083)

100% 2.320 2.657 2.140 2.111 2.219 1.958 2.052 2.102 1.898

(0.402) (0.485) (0.253) (0.176) (0.188) (0.147) (0.116) (0.119) (0.104)

overdispersion T=2 T=5 T=10

Blogit CML Blogit DV Pooled logit Blogit CML Blogit DV Pooled logit Blogit CML Blogit DV Pooled logit

K=10 0% 2.005 2.129 2.241 2.001 2.050 1.989 2.000 2.025 1.871

(0.157) (0.169) (0.153) (0.078) (0.081) (0.091) (0.052) (0.052) (0.063)

10% 2.017 2.142 2.237 2.004 2.053 1.986 2.002 2.026 1.868

(0.174) (0.187) (0.158) (0.082) (0.084) (0.091) (0.055) (0.055) (0.063)

50% 2.065 2.195 2.241 2.026 2.076 1.984 2.012 2.036 1.869

(0.202) (0.219) (0.175) (0.098) (0.101) (0.100) (0.064) (0.065) (0.072)

100% 2.139 2.275 2.214 2.051 2.102 1.979 2.025 2.049 1.876

(0.239) (0.260) (0.183) (0.109) (0.113) (0.106) (0.074) (0.075) (0.076)

Results for 1000 Monte Carlo replications; Standard deviations in parentheses. In each period, the number

of observation is 100. xit ∼ U [−1, 1] . β1 = 2 and αi =
√
T x̄i + N(0, 1). Overdispersion factor k−1

φ+1

represents dispersion degree of variance. Overdispersion degree 0% is generated by binomial distribution and

postive dispersion degree is generated by a beta-binomial DGP.



Table 2: Simulation Results N=500
N=500 overdispersion T=2 T=5 T=10

Blogit CML Blogit DV Pooled logit Blogit CML Blogit DV Pooled logit Blogit CML Blogit DV Pooled logit

K=2 0% 2.013 2.826 2.234 2.002 2.278 1.987 2.002 2.130 1.870

(0.170) (0.254) (0.112) (0.082) (0.097) (0.068) (0.053) (0.057) (0.046)

10% 2.078 2.936 2.214 2.026 2.307 1.975 2.011 2.139 1.870

(0.195) (0.293) (0.120) (0.084) (0.099) (0.070) (0.058) (0.062) (0.050)

50% 2.361 3.424 1.849 2.142 2.438 1.881 2.062 2.191 1.926

(0.311) (0.489) (0.175) (0.151) (0.180) (0.120) (0.102) (0.110) (0.092)

overdispersion T=2 T=5 T=10

Blogit CML Blogit DV Pooled logit Blogit CML Blogit DV Pooled logit Blogit CML Blogit DV Pooled logit

K=5 0% 2.003 2.268 2.232 2.001 2.102 1.986 2.000 2.049 1.867

(0.102) (0.119) (0.078) (0.051) (0.054) (0.050) (0.033) (0.034) (0.033)

10% 2.032 2.302 2.237 2.007 2.109 1.984 2.006 2.055 1.868

(0.108) (0.126) (0.088) (0.052) (0.055) (0.051) (0.035) (0.036) (0.034)

50% 2.143 2.435 2.204 2.052 2.157 1.973 2.023 2.073 1.871

(0.132) (0.156) (0.090) (0.063) (0.068) (0.055) (0.041) (0.043) (0.040)

100% 2.289 2.617 2.121 2.103 2.211 1.951 2.050 2.100 1.895

(0.168) (0.203) (0.107) (0.080) (0.085) (0.063) (0.049) (0.051) (0.046)

overdispersion T=2 T=5 T=10

Blogit CML Blogit DV Pooled logit Blogit CML Blogit DV Pooled logit Blogit CML Blogit DV Pooled logit

K=10 0% 1.997 2.121 2.235 1.999 2.049 1.984 2.000 2.024 1.867

(0.071) (0.076) (0.067) (0.034) (0.035) (0.042) (0.023) (0.023) (0.029)

10% 2.014 2.140 2.233 2.003 2.053 1.986 2.002 2.026 1.869

(0.075) (0.081) (0.073) (0.038) (0.039) (0.043) (0.025) (0.025) (0.031)

50% 2.066 2.195 2.228 2.023 2.073 1.980 2.013 2.037 1.868

(0.092) (0.099) (0.076) (0.043) (0.044) (0.044) (0.029) (0.029) (0.033)

100% 2.134 2.269 2.206 2.050 2.100 1.974 2.024 2.048 1.871

(0.108) (0.117) (0.083) (0.050) (0.051) (0.048) (0.035) (0.035) (0.035)

Notes: see Table 1



Table 3: Simulation Results for Rejection Rates when x is discrete

N=100 overdispersion T=2 T=5 T=10 N=500 overdispersion T=2 T=5 T=10

K=2

0% 0.059 0.058 0.09

K=2

0% 0.053 0.037 0.056

10% 0.071 0.097 0.133 10% 0.155 0.236 0.293

50% 0.483 0.408 0.325 50% 0.991 0.937 0.859

K=5

0% 0.054 0.073 0.075

K=5

0% 0.05 0.063 0.049

10% 0.061 0.06 0.099 10% 0.094 0.128 0.148

50% 0.218 0.343 0.449 50% 0.866 0.996 1

100% 0.54 0.735 0.849 100% 1 1 1

K=10

0% 0.049 0.063 0.078

K=10

0% 0.047 0.048 0.061

10% 0.049 0.060 0.086 10% 0.084 0.108 0.122

50% 0.181 0.315 0.445 50% 0.809 0.987 1

100% 0.468 0.815 0.907 100% 0.999 1 1

Notes: xit is binary variable with 50% probability equal to 0 or 1. The rest DGP is same as in Table 1; The null

hypothesis is that of binomial dispersion.

Table 4: Simulation Results for Rejection Rates when x is continuous

N=100 overdispersion T=2 T=5 T=10 N=500 overdispersion T=2 T=5 T=10

K=2

0% 0.053 0.063 0.097

K=2

0% 0.062 0.047 0.056

10% 0.07 0.095 0.185 10% 0.138 0.223 0.394

50% 0.424 0.684 0.899 50% 0.948 1 1

K=5

0% 0.05 0.053 0.078

K=5

0% 0.042 0.05 0.057

10% 0.044 0.063 0.110 10% 0.083 0.105 0.190

50% 0.239 0.512 0.805 50% 0.772 0.992 1

100% 0.608 0.958 0.999 100% 0.996 1 1

K=10

0% 0.041 0.062 0.091

K=10

0% 0.052 0.056 0.043

10% 0.041 0.057 0.086 10% 0.073 0.094 0.179

50% 0.190 0.402 0.673 50% 0.677 0.988 1

100% 0.482 0.908 0.997 100% 0.991 1 1

Note: see Table 1 DGP.



Table 5. Descriptive statistics (NT = 5, 854)

mean std. dev.

Work-time percentage 0.557 0.346

Age 36.30 6.01

Children (yes=1) 0.631 0.482

Partner (yes=1) 0.584 0.492

Self-rated health 3.114 0.610

Years of schooling 14.43 3.09

French speaking (yes=1) 0.293 0.455

Italian speaking (yes=1) 0.043 0.204

Source: Swiss Household Panel 2012-2016, own calculations.



Table 6. Determinants of female labor supply (SHP 2012-2016)

Work-time Percentage Work (yes/no)
Blogit CML Blogit DV Logit CML Logit DV

Age squared -0.001 -0.001 0.005 0.007
(0.002) (0.002) (0.005) (0.008)

Self-rated health 0.071 0.073 0.448 0.642
(0.038) (0.039) (0.153) (0.220)

Partner (yes=1) 0.322 0.333 1.371 1.927
(0.253) (0.260) (0.658) (0.952)

Children (yes=1) -2.097 -2.160 -1.975 -2.771
(0.276) (0.286) (0.956) (1.381)

Children × Partner -0.824 -0.848 -2.216 -3.188
(0.260) (0.268) (1.056) (1.510)

Children × French 1.152 1.194 1.876 2.777
(0.405) (0.418) (1.089) (1.619)

Children × Italian -0.247 -0.266
(0.720) (0.754)

Year 2013 0.143 0.147 -0.018 -0.018
(0.147) (0.151) (0.465) (0.647)

Year 2014 0.246 0.253 -0.147 -0.265
(0.278) (0.285) (0.820) (1.143)

Year 2015 0.338 0.347 -0.247 -0.408
(0.412) (0.423) (1.205) (1.677)

Year 2016 0.387 0.397 -0.449 -0.717
(0.545) (0.560) (1.577) (2.204)

Number of person-years 4,661 4,661 1,071 1,071
Number of persons 1,334 1,334 295 295
Log pseudolikelihood -23,183.6 -1,838.3 -358.8 -595.9
Fixed effects yes yes yes yes
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Figure 1: Distribution of Work-time percentage in 2016
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Figure 2: work-time percentage by age in 2016
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Figure 3: Probability of having at least one child by age


