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Market power and information effects in a multi-unit auction

Andreas Hefti, Peiyao Shen and Regina Betz∗

Abstract

We study the effects of different information structures (full information, supply uncertainty

and demand uncertainty) on equilibrium prices, allocative efficiency and bidding behavior in a

(supply-side) uniform-price multi-unit auction, using supply function competition and a novel

experimental design. Our setup integrates different types of market power and a varying level

of competition. We empirically find that average prices tend to be higher under full information

compared to the cases where bidders either have limited information about about the demand

level or rivals’ technologies or; the latter even leading to strictly lower average prices as the

exertion of market power and bid shading is strongly reduced. We explain this finding with

a behavioral equilibrium concept, where bidders behave as if competing against the average

market situation. Further, we address the problem of multiplicity of equilibria by exploiting

the equilibrium conditions to obtain an empirical selection of the average equilibrium supply

function. The respective predictions of the average prices exceed those by standard OLS in all

information treatments.
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1 Introduction

In many real-world markets auctions are the main mechanisms implemented to allocate multiple

units of an asset across bidders. Examples range from the private to the public sector, including

wholesale electricity markets, electromagnetic spectrum, treasury and central bank liquidity auc-

tions, refinancing, financial markets, real estate and pollution permits. The stakes at such auctions

are frequently tremendous.1 Market power of certain bidders is of great practical relevance in many

of these cases. For example, the top-five bidders in U.S. Treasury auctions were estimated to ac-

quire up to half of the issue, despite a large overall number of participants (Malvey and Archibald,

1998). Armantier and Sbai (2006), Hortaçsu and McAdams (2010), Kastl (2011), Cassola et al.

(2013) and Hortaçsu et al. (2018) provide similar evidence. In electricity markets, Borenstein et al.

(2002) attributed up to half of the increase in California’s electricity expenditure (from 2b$ to 9b$)

observed in the period 1999 - 2000 to bidders with market power. Similar findings are reported

by Wolfram (1998) for the British electricity market, and by Hortaçsu and Puller (2008) for the

Texas electricity market.2 Bidder-side market power was also reported in procurement markets,

for instance for school milk (Pesendorfer, 2000).

Tirole (1988) loosely describes market power as an agent’s ability to “make the price”, where

such market power may arise for various reasons. Some agents may have market power because

they face favorable conditions for their actions compared to others. Examples comprise of a cheaper

production technology, larger production capacities, lower transaction costs, scale advantages or

heterogeneous preferences. Such advantages may allow to influence the price in one’s favor. A well-

known and extreme instance is Bertrand competition with asymmetric firms, where the lowest-cost

firm fully exploits her “exclusive” market power by seizing the entire market at a price equal to the

marginal cost of the next-best competitor (Blume, 2003). A different form of market power arises

if some agents are pivotal for market clearing. Pivotal bidders have an incentive to shade their

bids in order to increase the equilibrium price. Such type of market power matters in electricity

markets, and multi-unit auctions more generally (Ockenfels, 2007; von der Fehr, 2013; Brandts

et al., 2014).

A central aspect related to market power is the bidder-side information about the market.

The relevant information set for a bidder can be roughly decomposed into information about id-

iosyncratic and aggregate market conditions. The cost or valuation structure of all bidders in the

1For example, the value of the US Treasury auctions in 2013 was 7.9 Trillion USD (Hortaçsu et al., 2018), or the
monetary value of 356 auctions (from 1980 to 2014) of government bonds on behalf of the Swiss treasury is 149’435
Billion CHF (Ranaldo and Rossi, 2016). Likewise, the value in Australia’s National Electricity Market (NEM) from
2016-2017 was 16.6 Billion AUD (https://www.aemo.com.au/Electricity/National-Electricity-Market-NEM).

2Also see Joskow and Kahn (2002); Wolak (2003); Ockenfels (2007); Bosco et al. (2012); von der Fehr (2013);
Dormady (2014); Holmberg and Wolak (2015) on the empirical relevance of market power in electricity markets.
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market, or the number of competitors active in certain price ranges are examples for the former,

while the overall level of demand in a supply-side auction is an example for the latter. Real-world

multi-unit auctions may differ in the information bidders have about such aspects. Moreover, the

prevailing information structure may change as a consequence of various current and near-future

developments. First, the developments in IT and computation may affect the quality of the indi-

vidually available information. For example, it is conceivable that artificial intelligence or big-data

mining can improve bidder-side information, and therefore reduce some uncertainty in markets

about idiosyncratic or aggregate conditions. Second, structural change may also affect the pre-

vailing information structure. Future electricity markets, for instance, most likely will feature a

much larger share of renewable energy generation, the supply of which depends directly on certain

weather patterns.3 Compared to current and past energy markets, which are typically thought of

as rather close to complete information,4 such a development adds a new source of uncertainty

about the effective number of competitors, their capacities and their supply costs. Third, the

information available to bidders may be affected by regulation. For example, the European Union

has recently adopted the Regulation on Wholesale Energy Market Integrity and Transparency

(REMIT, No 1227/2011), which requires individual facilities to make their planned and unplanned

capacity outages, e.g., due to maintenance, available to other bidders.

It is a largely open question how limited bidder information, or changes therein, affect market

power and strategic bidding in multi-unit auctions. In this paper we therefore study how strategic

bidding and equilibrium outcome in a supply-side multi-unit auction depend on market power,

varying levels of competition, and different information structure. In a nutshell, we seek to learn

if individual bidding becomes more or less competitive once bidders know more or less about the

other bidders or the number of units at auction. To this end, we construct an experimental design

that has the information structure as its main treatment variable, and allows for various bidder

constellations generating different levels of competition and market power. We concentrate on

the case of a sealed-bid seller-side uniform-price auction, and use the theory of supply function

competition to obtain a set of equilibrium predictions, which we can test in the data. The concept

of supply function competition fits closely with our experimental design, where participants enter

their quantities for the various possible price levels, thereby constructing a supply function. We

concentrate on the uniform-price auction because this is the prevalent auction format in many

3See, e.g., International Energy Agency 2016: World Energy Investment 2016, Executive Summary: https:

//www.iea.org/Textbase/npsum/WEI2016SUM.pdf.
4See, e.g., Hortaçsu and Puller (2008). These authors also note that already current energy markets may feature

more idiosyncratic uncertainty than commonly assumed, e.g., because of different forward contracts that are only
privately known.
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cases.5

In our framework, bidders can differ in their available production technology (costs and capac-

ities). Further, the demand level, i.e., the total number of units that bidders can sell, may vary.

The parameters of the design allow for situations with exclusive and pivotal market power, as well

as for a varying degree of competition as measured by the number of identical bidders. Depending

on the information structure, bidders may have full or only statistical information about the situ-

ation at hand. In particular, our design distinguishes between the cases of complete information,

asymmetric information about the technologies (costs and capacities) of the other bidders, and

identical but incomplete information about the level of demand.

This article makes a threefold contribution. First, we find that if demand is common knowledge

but own capacity and supply costs are bidders’ private information – a situation we refer to as

supply uncertainty – the empirical auction prices, averaged over all relevant market situations,

are significantly lower compared to the full information case: Supply uncertainty reduces average

markups by 13%. The main empirical source of this price decrease is a significant reduction of bid

shading in situations that would feature strong market power under full information. Specifically,

with supply uncertainty we observe an average reduction of markups by 29% in situations with

purely exclusive market power, and by 56% in situations with purely pivotal market power. We

explain this finding by means of a behavioral equilibrium concept, which we call Average Linear

Supply Function Equilibrium (A-LinSFE). In an A-LinSFE, each bidder resolves the uncertainty

by acting as if the expected number of competitors were present in the market for sure, while the

resulting aspired auction price must be correct on average. We show that the range of average

prices (averaged across all relevant market situations) that are supported as equilibrium outcomes

is strictly smaller than its full information counterpart. Particularly, the highest full information

equilibrium prices are not feasible as outcomes in any A-LinSFE. In this sense, the average-linear

thinking embodied in the equilibrium play of A-LinSFE tends to make bidders pessimistic about

high prices. The concept of A-LinSFE can also be applied if the auction features demand uncer-

tainty, and offers a similar pattern regarding equilibrium prices. The data confirms that average

prices are not higher with demand uncertainty. In contrast to supply uncertainty, however, the

data does not allow us to conclude that average prices are strictly lower with demand uncertainty

in general, except for situations with symmetric pivotal market power.

Second, the data shows that an increase in competition, as measured by a larger number of

symmetric competitors in a market, or a decease in demand have the intuitive effect of decreasing

5See, e.g., “Power market auction design: rules and lessons in market-based control for the new electricity
industry”, www.eei.org.
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auction prices, independent of the information structure. Adding a second competitor decreases

markups by about 50% on average, and increasing demand by 10% increases markups by about

16%. Also, we find that average prices are significantly above marginal costs in all information

treatments, consistent with a basic prediction of our symmetric linear supply function equilibria.

Moreover, in both uncertainty treatments the data mostly corroborates the A-LinSFE prediction

that average prices should reside within certain price intervals pooled across those situations which

cannot be discerned by the bidders due to their limited information.

Third, we exploit the theoretical restrictions imposed by supply function competition within

an otherwise standard OLS framework to obtain an empirical selection of the average equilibrium

supply function. Supply function competition can lead to multiple equilibria in many settings,

including ours. In situations with two or more symmetric bidders and full information every

affine-linear symmetric supply function equilibrium satisfies a uniquely determined constraint that

pins down the slope and intercept parameters of the equilibrium supply function with one degree

of freedom. A similar result also applies to A-LinSFE in the two uncertainty treatments. The

predictions of the average auction prices obtained from a restricted least squares estimation with

these constraints outperform their standard OLS counterparts, and in all cases are statistically

indistinguishable from the true average prices. Moreover, in both uncertainty treatments we even

find that the predicted prices implied by the restricted approach are statistically identical to the

true average prices in every market situation that is indistinguishable to bidders given their limited

information. We view these observations as additional support for the concept of supply function

equilibrium to be a useful framework for studying multi-unit auctions.

1.1 Related Literature

Our article contributes to the general literature on information effects in strategic models.6 To our

knowledge, we are the first to empirically assess the comparative effects of complete information,

private cost information and demand uncertainty on bidding behavior and equilibrium outcome

in the multi-unit auction context. The vast part of experimental studies on multi-unit auctions

are concerned with comparing different auction formats according to various criteria (see, e.g., the

survey by Kwasnica and Sherstyuk (2013)). Further, a large portion of the empirical literature

on (uniform-price) multi-unit auctions concentrates on eliciting to what extent individual bidders

best-respond to each other, while a different strand is concerned with recovering underlying funda-

mentals, such as costs, from bidding data (see the survey by Hortaçsu and McAdams, 2018). In the

single-unit auction case, Andreoni et al. (2007) conduct experimental first- and second price buyer

6The textbook by Vives (1999) provides a nice introduction.
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auctions, where they compare the full information with the private value case. The key theoretical

prediction is that there should be no difference in average revenues (and prices) across these two

information structures.7 Contrary to theory, they empirically find that first-price auction prices

(buyer revenues) are higher, and bidding thus more competitive, in the private value case. Related,

Buchanan et al. (2016) find that not revealing information about group size and already sold units

increases the average price in a Dutch clock auction, where n buyers can acquire at most a single

unit of m goods. Both findings resemble our own result that supply uncertainty leads to a more

competitive outcome.

On the pure theory side, Vives (2011) in a linear-Gaussian model and Holmberg and Wolak

(2015) in a single-bid duopoly are the only papers we are aware of that at least partly compare

private and full information in a multi-unit auction context.8 Vives (2011) considers (Bayesian)

linear supply function competition with private information (supply uncertainty) and possibly also

demand uncertainty, where bidder costs can be correlated, and bidders learn their own costs pos-

sibly with some noise. His setting allows for a unique equilibrium.9 In contrast, we study a setting

where multiple equilibria occur, but use the underlying equilibrium restrictions on all equilibria

identified by the model to estimate supply functions and equilibrium prices in a constrained re-

gression framework.10 One prediction is that if costs are independent, or own costs are observed

without noise then, if an equilibrium exists, the Bayesian equilibrium coincides with the full infor-

mation case. More generally, if there is an effect from changes in the available information, then

its main direction is that less information about costs (“more noise”) leads to higher prices.11 Our

experimental setting features independence of cost and demand shocks, but we find that average

prices are reduced in the case where costs are (perfect) private information. Finally, Vives (2011)

predicts that a decrease in (inelastic) demand or an increase in the number of competitors should

lead to lower expected prices, which we confirm theoretically and empirically.12

7Kim and Che (2004) prove revenue equivalence between the private and complete information case for the
first-price auction. Morath and Münster (2008) prove the same result for the second-price auction, and for arbitrary
convex combinations between the two. Additionally, equivalence of bidder surplus between the two information
formats is shown by Bergemann et al. (2017).

8Vives (2011) restricts attention to the uniform-price auction; Holmberg and Wolak (2015) also compare the
uniform-price to a discriminatory auction format.

9Uniqueness of supply function equilibria can be obtained under different conditions (see Klemperer and Meyer,
1989; Holmberg, 2008).

10The existence of multiple SFE are a well-known phenomenon, particularly if there is no uncertainty (Klemperer
and Meyer, 1989), which is among the information structures we consider.

11This may happen with correlated costs and noisy percepts of own costs. The intuition is that, in a Gaussian
world, the Bayesian equilibrium is privately revealing as the conditional expectation is a sufficient statistic for the
conditional distribution, such that the price begins to act as a “conveyor of information”. A high price conveys that
costs of other sellers are high and, by correlation, own costs must therefore also be high. Hence, a rational seller
reduces her quantity supplied more as the price increases. Less information, in the sense of more noisy signals about
costs, therefore tends towards causing higher prices. This channel is entirely absent with independent values. See
Holmberg and Wolak (2015) for a similar result.

12In our setting, the respective theoretical predictions are more subtle due to multiplicity of equilibria.
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Market power has been addressed by a number of papers in multi-unit auction research.13

In multi-unit auctions, market power is manifested through differential bid shading of different

bidders. Because incentives to shade bids increase in the quantity a bidder seeks to buy (or

to sell), bid shading by advantaged bidders, or bidders with pivotal market power, may have a

substantial impact on market outcome (Ausubel et al., 2014). Rassenti et al. (2003) find that

advantaged sellers exercise their market power in an experimental multi-unit auction, where both

demand and bidding costs are common knowledge. Hefti and Shen (2019) examine the case where

a bidder has exclusive market power, analogous to Bertrand competition with asymmetric costs,

in the same multi-unit auction studied by the present article. Pivotal market power has been

studied theoretically in the multi-unit auction context by Genc and Reynolds (2011) and also

experimentally by Brandts et al. (2014) in case of demand uncertainty. Genc and Reynolds (2011)

consider the case of symmetric pivotal market power, and show that the set of symmetric equilibria

is increasing in supply capacities in presence of pivotal suppliers. Brandts et al. (2014) predict that

pivotal market power in case of symmetrically pivotal firms and complete cost information relaxes

competition by restricting the range of possible supply function equilibria. Their experimental data

shows that pivotal market power is exerted; average prices are higher in treatments with pivotal

power, a result which our experiment also confirms.14 We differ from these studies by considering

how changes in the information available to bidders affect the degree of exerted symmetric or

asymmetric pivotal market power, and by also considering non-pivotal market power as well as a

varying level of competition.

Finally, we contribute to a number of papers arguing that supply function competition describes

the empirical bidding behavior well, even if true bidding is “discrete”. In particular, Bolle et al.

(2013) find that the shape of the supply functions are generally in line with theoretical predictions,

but behavior seems sensitive to theoretically irrelevant changes in demand uncertainty. Brandts

et al. (2014) find in their experiment with demand uncertainty that the supply function approach

tends to outperform the multi-unit auction model (Fabra et al., 2006), e.g., because empirical

supply functions are upward sloping and prices above marginal costs absent market power, a finding

we also confirm across information treatments. The constraint regression framework invoked by

our paper provides additional evidence supporting that supply function competition is a reasonable

framework to describe the average bidding behavior.

13See Davis and Holt (2008) for a general overview of market power research in laboratory experiments.
14Dormady (2014) also finds experimental evidence that pivotal market power inflates the average price in a

complete information multi-unit auction setting with heterogeneous bidders. Dormady (2016) further emphasizes a
problematic link between market power in energy markets and emission permission markets, particularly in times of
peak energy demand.
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1.2 Article structure

Section 2 develops the supply function equilibrium and derives the relevant empirical hypothesis.

The experimental design and the empirical results are presented in section 3.

2 Supply function competition

We consider a supply-side uniform-price multi-unit auction, where n > 1 bidders compete over

a quantity of Q̄ > 0 units of a good. Bidder j’s technology is the pair τj ≡ (cj , kj), where

cj : [0, kj ]→ R+ is a non-decreasing cost function, and kj > 0 the maximal capacity j can supply

to the market. Hence cj(qj) ≥ 0 are the costs bidder j incurs from producing and supplying

qj ∈ [0, kj ] units to the market. Every bidder chooses her supply function qj : P → [0, kj ], a non-

decreasing, continuous map defined on a compact price space P ⊂ R+ with smallest and largest

element P = 0 and P = Pmax > 0 (the price cap), respectively. In most of the theoretical part it

is analytically convenient to analyze the model by assuming a convex price space P = [0, Pmax].15

A price cap, capacity constraints and an inelastic demand are common characteristics, e.g., of

electricity markets (Stoft, 2002). Aggregate supply is q(P ) ≡
∑n

j=1 qj(P ), where q(·) ∈ [0,
∑

j kj ]

is non-decreasing and continuous. The auction price P ∗ is the lowest price for which q(P ) ≥ Q̄, or

P ∗ = Pmax if q(Pmax) < Q̄; the corresponding auction allocation is (qj(P
∗))j .

Information structure We differentiate between three prototypical types of information struc-

tures: Full information, supply uncertainty and demand uncertainty. Full information means that

all technologies (τ1, ..., τn) as well as demand Q̄ are common knowledge; hence all bidders play a

game of complete information. Supply uncertainty means that technologies are private informa-

tion, while demand is common knowledge. Hence bidders play a game of asymmetric information,

facing uncertainty about the other bidders’ technologies. Finally, demand uncertainty means that

technologies are common knowledge, but demand is unknown. Hence bidders play a game of

symmetric but incomplete information, facing an aggregate uncertainty about demand.

In the experiment, the information structure is the only treatment variable. Thus, the un-

derlying distribution of technologies and market demand remains the same throughout all three

information settings. This procedure allows us to elicit the effects of the specific type of uncertainty

induced by the corresponding information structures on bidding behavior and auction outcome.

15Our experiment features a discrete price space with many price steps (from 0 to 100 in steps of ∆ = 5) which
we view as approximating the convex-valued case. It is known that a given continuous supply function equilibrium
is robust to a “discretization” of the strategy space under certain conditions (Holmberg et al., 2013).
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2.1 Market power and competition

A market is described by the bidders j = 1, .., n with technologies (τ1, ..., τn), and by the auctioned

quantity Q̄. Depending on the distribution and specifications of the technologies relative to Q̄, two

different types of market power can arise in the multi-unit auction context.

Definition 1 (Market power) A bidder has pivotal market power if the market can clear only

with his capacity. A bidder has exclusive market power if she can profitably serve the entire market

at a price which is not profitable for any other bidder. A market features structural market power

if there is a bidder with exclusive or pivotal market power. A market is competitive if it does not

feature structural market power.

Our experimental design features both types of market power. Exclusive market power is not

a pure multi-unit auction phenomenon. It can arise in single-unit auctions and related models,

such as Bertrand competition.16 By contrast, there is no single-unit analogue of pivotal market

power. Further, one can distinguish between asymmetric or symmetric pivotal market power. A

market features symmetric pivotal power if all n bidders are identical (τ1 = ... = τn) and their

joint capacity clears the market, while the joint capacity of any n − 1 bidders does not. With

symmetric pivotal market power any single bidder is pivotal. Asymmetric pivotal power occurs

if not all bidders are identical but the capacity of a certain bidder is necessary for the market to

clear. Note that a market may simultaneously feature asymmetric pivotal and exclusive market

power, but not symmetric pivotal and exclusive market power.

2.2 Experimental setup

Conducting a multi-unit auction experiment naturally requires us to parametrize bidder technology.

In the following, we outline the type of technology we administer in the experiment. A bidder has

one of two possible technologies: τL = (cL, k), τH = (cH , k), where

cL(q) =

 c, q ≤ q̄

c̄, q̄ < q ≤ k
cH(q) = c̄, q ≤ k, (1)

with 0 < q̄ < k and k < k. We refer to a bidder with technology τL, τH as low-cost and high-cost

bidders, respectively. A low-cost bidder is characterized by a larger overall capacity, and can supply

at lower marginal costs up to a certain quantity.17

16Exclusive market power in the multi-unit auction context is the main topic of Hefti and Shen, 2019.
17Besides its simplicity, the motivation for such a cost-capacity structure comes from wholesale electricity markets.

We think of each supplier as endowed with a traditional generator (e.g., gas or coal), which can produce up to k̄
units at comparably high marginal costs. Additionally, some bidders may have a renewable generator (e.g., PV or

8



Whether a market features structural market power depends on bidder technologies and on Q̄.

In the experimental design, we chose the demand and cost levels such as to obtain the combination

of the various possibilities. Specifically, we let n = 3, Q̄ ∈ {60, 100, 180}, c = 10, c̄ = 50, q̄ = 80,

k = 120 and k = 40.18 With n = 3, two technologies and three demand levels, 12 possible market

situations emerge. Given the binary nature of technology, the number of low-cost bidders can be

used as the distinguishing aspect for the various situations for a fixed Q̄. The four possibilities are

indicated as s1 (only low-cost bidders), s2 (two low-cost bidders), s3 (one low-cost bidder) and s4

(only high-cost bidders), respectively. A specific market situation is labeled by a pair (s, Q̄). Table

1 presents an overview of all market situations covered by the experiment, jointly with their type

of market power (if any).

Table 1: Experimental market situations: Market power and competition

s1 s2 s3 s4

Q̄ = 60 C C SMP C

exclusive

Q̄ = 100 C C SMP SMP

exclusive sym. pivotal

asym. pivotal

Q̄ = 180 C SMP SMP

asym. pivotal asym. pivotal

SMP: Structural market power; C: Competitive. The last cell is empty because nk = 120 < 180 as an artifact of the
experimental design.

2.3 Full information

Section 2.3.1 derives the linear-symmetric Supply Function Equilibria (SFE) for competitive situ-

ations with full information. Section 2.3.2 considers situations with structural market power.

2.3.1 Symmetric SFE in competitive cases

Consider a competitive situation where n ≥ 2 symmetric bidders, each with a capacity k > 0,

can jointly serve the entire market at a constant marginal cost c ∈ (0, Pmax). Demand and all

technologies are common knowledge. As these bidders play a symmetric game, we concentrate the

equilibrium analysis on symmetric equilibria.19

wind), which produces up to q̄ at low marginal costs.
18One reason for why we chose n = 3 is that this is between competitive and collusive in oligopolistic markets

(Huck et al., 2004), which is a type of tension we do not want to rule out.
19This is the generic equilibrium type in such games (Hefti, 2017). There can be asymmetric SFE as well, but

any asymmetric equilibrium is subject to a “coordination dilemma” as any permutation across the players again is
an asymmetric equilibrium.
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In an SFE every bidder independently and non-cooperatively chooses her supply function qj to

maximize her profit, taking the market situation (s, Q̄) and the others’ supply functions as given.

To be precise, let F denote the set of all continuous supply functions q : [0, Pmax] → [0, k] with

q′(P ) > 0 whenever q(P ) > 0, and q′′(P ) ≥ 0 whenever q(P ) = Q̄/n.20 We first note that if

nk ≥ Q̄ and each qj ∈ F , then any SFE satisfies
∑

j qj(P
∗) = Q̄.

Lemma 1 Any SFE satisfies
∑

j qj(P
∗) = Q̄, and qj(P

∗) = Q̄/n, ∀j, in any symmetric SFE.

Definition 2 (SymSFE) A symmetric SFE (SymSFE) is a price P ∗ ∈ [0, Pmax] and a profile of

supply functions (qj)
n
j=1 such that qj = q, j = 1, ..., n, q ∈ F , q(P ∗) = Q̄/n, and

q(P ∗)(P ∗ − c) ≥ qj(P )(P − c)

for any qj ∈ F with qj(P ) + (n− 1)q(P ) = Q̄.

Any SymSFE is conveniently summarized by (P ∗, q(·)). We are particularly interested in the case

where q(P ) is an affine-linear function on the relevant price segment.

Definition 3 (LinSFE) An affine-linear symmetric SFE (LinSFE) is a SymSFE with the prop-

erty that q(P ) = max{α+ βP, 0}, where α ∈ R and β ≥ 0.

The parameter β captures the price sensitivity of bids, while α corresponds to the base-load of a

bid. To find a SymSFE, we can fix an arbitrary bidder j and assume that all other m ≡ n − 1

bidders choose an identical q̄(P ) ∈ F . Firm j’s payoff then is Πj(P ) = (Q̄−mq̄(P ))(P − c). The

optimal strategy of firm j is to choose qj(P ) ∈ F such that Πj(P ) is maximized. Because q̄(P ) ∈ F

a necessary and sufficient condition for (P ∗, q(·)) to be a SymSFE is that21

Q̄−mq(P ∗)− (P ∗ − c)mq′(P ∗) = 0, q(P ∗) =
Q̄

m+ 1
. (2)

The following theorem characterizes SymSFE and LinSFE.

Theorem 1 Let m ≡ n − 1 ≥ 1 denote the number of symmetric competitors of any bidder.

Suppose that k > Q̄
m , i.e., no single bidder is pivotal.

a) A price can be supported as a SymSFE if and only if P ∈ (c, Pmax]. For any given P ∗ ∈

(c, Pmax] the slope q′(P ) is uniquely determined at P ∗ for any supporting supply function

20The last qualification assures local convexity of q(P ) at symmetric equilibrium candidates, which helps to
establish equilibrium existence.

21Also see Klemperer and Meyer (1989), section 2.
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profile. Moreover

q′(P ∗0 ) > q′(P ∗1 )⇔ P ∗0 < P ∗1 ⇔ Π(P ∗0 ) < Π(P ∗1 ).

b) Any price P ∈ (c, Pmax] can be supported as a LinSFE, where the equilibrium supply function

parameters (α∗, β∗) verify β∗ > 0 and

α∗ + β∗c =
m− 1

m(m+ 1)
Q̄. (3)

While any feasible price above marginal costs can be a SymSFE,22 each price is characterized by

a unique equilibrium slope of the supporting supply function. In other words, any equilibrium

price has a unique linear supply function that implements it. The main implication is that LinSFE

constitute the best linear approximation of the supply function in any SymSFE at the corresponding

equilibrium price.

Corollary 1 If (P ∗, q(·)) is a SymSFE, then the LinSFE q(P ) = α∗ + β∗P with

β∗ =
Q̄

m(m+ 1)(P ∗ − c)
> 0 (4)

and α∗ determined by (3) is the best linear approximation to q(·) at P ∗. Moreover, in the LinSFE

with (α∗, β∗) as well as in any SymSFE (P ∗, q(P )) equilibrium profits are

Π∗ =
Q̄2

m(m+ 1)2q′(P ∗)
> 0. (5)

where q′(P ∗) = β∗.

The left panel of Figure 1 illustrates two SymSFE together with their linear approximations (grey

lines), which themselves constitute the two unique LinSFE for the prices P ∗0 , P
∗
1 . These can be

constructed by connecting point A with point B or B′, and the slope β(P ∗) then corresponds to

the slope q′(P ∗) of any SymSFE with equilibrium price P ∗. A central observation in Theorem 1 is

that any LinSFE has to obey a unique equilibrium restriction (3). In Figure 1 this is vindicated

by the fact that any two LinSFE intersect in the point A. We find a similar constraint in case of

demand or supply uncertainty, and later utilize these observations to obtain a structural estimate

of the average equilibrium bidding function.

22The multiplicity of SymSFE, ranging from quasi-competitive to collusive, reflects the general coordination
problem in supply function competition (Klemperer and Meyer, 1989). Uniqueness requires additional assumptions,
e.g., on the intercept α∗. Green (1996) analyzed linear SFE with heterogeneous bidders and demand uncertainty
under the assumption that each intercept was zero. Note from (3) that such a restriction annihilates the existence
of a LinSFE in case of m = 1.
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LEFT: Two different SymSFE q0(P ), q1(P ) with their two unique supporting LinSFE.
RIGHT: The black and gray lines depict the range of all LinSFE for two different levels of competition (m1 > m0 ≥ 1) using
the bounds in (6). Red lines: Obtaining the price P ∗ under m1 requires more bid shading than under m0 (β1 < β0).

Figure 1: SymSFE and LinSFE

It directly follows from (4) that β = Q̄
m(m+1)(P̄−c) constitutes the lower bound of all admissible

values of β∗ in a LinSFE. If prices increase in discrete steps of ∆ > 0, as is the case in the

experiment, Theorem 1 suggests P = c+ ∆ as the most competitive price in a LinSFE. By (4) this

yields an upper bound β for β∗, and hence

β∗ ∈ [β, β] =

[
Q̄

m(m+ 1)(P̄ − c)
,

Q̄

m(m+ 1)∆

]
(6)

The range of all LinSFE implied by (6) is illustrated in the right panel of Figure 1 for two different

market situations (black lines and gray lines, respectively).

Behavioral Market Power Comparing the various LinSFE identified by Theorem 1 and Corol-

lary 2 shows that these are Pareto-ranked for the firms, and coordination on a higher price requires

more bid shading (a lower slope coefficient β). Further, all LinSFE feature market power in the

sense of Holt, stating that a Nash equilibrium features market power whenever it yields supra-

competitive prices (Holt, 1989). This motivates the following minor qualification of Holt’s definition

in presence of multiple equilibria with behavioral market power (meaning that P ∗ > c).

Definition 4 (Behavioral market power ordering) Given two LinSFE (P0, q0(·)) and (P1, q1(·)),

and a fixed market situation (s, Q̄), (P1, q1(·)) features more behavioral market power than (P0, q0(·))

if P1 > P0.

The difference between behavioral market power and structural market power is that the former is

defined in terms of an equilibrium outcome. Hence behavioral market power matters even if there

is no structural market power. As we shall see below, pivotal market power results in SFE that

may vary according to their behavioral market power as well.
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In competitive situations, it is likely that exogenous bidder characteristics and certain structural

factors influence how much behavioral market power is exerted. In the empirical part, we control for

the former by allowing for group-specific effects in the relevant estimations. Regarding structural

factors, Figure 1 (right) illustrates how the set of LinSFE changes if the number of competitors

m varies. While the range of equilibrium prices itself is invariant to m ≥ 1, coordination on

higher prices requires more bid shading.23 In contrast, an increase in Q̄ allows to support a fixed

equilibrium price as a LinSFE with less individual bid shading. The following theorem makes these

observations explicit.24

Corollary 2 (Competition and demand effects) A decrease in competition from m to m′ ≥

1 or an increase in demand (dQ̄ > 0) leads to more behavioral market power in the respective

LinSFE’s if and only if β
β′ >

m′(m′+1)
m(m+1) , or dQ̄

Q̄
> dβ∗

β∗ , respectively.

The idea of Corollary 2 is to compare two specific LinSFE, characterized by β and β′, for two

different market situations, holding either Q̄ or m fixed. The corollary then states precise conditions

for how β and β′ must differ such that a decrease in competition or an increase in demand result

in a higher equilibrium price.25 The intuition for the competition effect in Corollary 2 is that as

long as the mere presence of more competitors does not make individual bidders overly optimistic

about the possibility to collude at a high price, an increase in competition leads to individually

more aggressive bidding. Likewise, an increase in Q̄, meaning that “there is more for everyone”,

leads to higher prices as long as individual bidders do not overly reduce their bid shading. The

constraint regression framework will allow us to empirically test whether changes in m or Q̄ affect

the average β’s in a way consistent with Corollary 2.

2.3.2 SFE with structural market power

Exclusive market power In case of exclusive market power with full information, Hefti and

Shen (2019) establish that in market situation such as (s3, 60) there is a SFE, where the bidder

with exclusive market power seizes the entire market at a clearing price equal to the second-lowest

marginal costs. This parallels a known result in a Bertrand market featuring at least two firms with

different marginal costs (Blume, 2003). By contrast, capturing the entire market is not necessarily

attractive to the low-cost bidder with non-constant marginal costs, despite exclusive market power.

23Note that heuristic equilibrium selection, such as the midpoint method or the bidder-favoring equilibria as
proposed by Brandts et al. (2014), would predict that the same price results independent of m and Q̄ in the current
context.

24We omit the obvious proof.
25Note that, conversely, a lower equilibrium price does not generally assure a reduction in β; in this sense a lower

price is necessary but not sufficient to conclude that bidding has become more competitive.
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As we show below, it may be better for such a bidder to share the market with high-cost firms to

avoid the higher costs required by fully capturing the market.

Pivotal market power We first consider the case, where each of n symmetric bidders is pivotal,

meaning that (n− 1)k̄ < Q̄ ≤ nk̄. In the experiment, this applies to market situation (s4, 100).

Proposition 1 (Symmetric pivotal market power) Consider the case of n > 1 symmetric

bidders with c > 0, and (n − 1)k̄ < Q̄ ≤ nk̄. There is P̂ ∈ (c, Pmax) such that no SFE exists with

P ∗ < P̂ . Further, any P ∈ [P̂ , Pmax] can be supported as a LinSFE, where (α∗, β∗), P ∗ and Π∗ are

described by (3), (4) and (5), respectively.

The intuition for the lower price bound P̂ is that pivotal market power works like an outside option

for any given bidder. Because of pivotality, a bidder can always shade her bids up to the price cap

and still supply a positive quantity. Hence any SFE must yield at least the same profit in order

to make such a deviation unprofitable. As illustrated in Figure 2 this implies that a certain range

of competitive prices cannot be supported as SFE compared to the situation where capacities are

such that no firm is pivotal.26 In this sense, pivotal market power can be thought of as increasing

the behavioral market power of the bidders.

�𝑄𝑄
𝑚𝑚 + 1

P

q(P)

𝑐𝑐 Pmax𝑐𝑐 + Δ

�𝑄𝑄(𝑚𝑚− 1)
𝑚𝑚(𝑚𝑚 + 1)

P

𝛽𝛽 𝛽𝛽𝛽̂𝛽

̂

The figure shows the equilibrium range of LinSFE without pivotal market power (β, β̄) and with pivotal power (β̂, β̄).

Figure 2: Symmetric pivotal market power

We next consider asymmetric pivotal market power. In the experiment, situations (s3, 100) and

(s3, 180) both feature asymmetric pivotal market power. The two situations further differ in thus

that the low-cost firm also has exclusive market power in the former but not in the latter.

26In case of demand uncertain, Brandts et al. (2014) show that symmetric pivotal market power reduces the range
of smooth SFE in a similar way.
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Proposition 2 (Asymmetric pivotal power) In situation (s3, 180) no price below P = 91.67

can result in an SFE. With price steps of ∆ = 5, this suggests P ∗ = 100 as equilibrium outcome.

The lower bound of P = 91.67 follows alone from pivotality, as the low-cost bidder can always

assure herself at least a quantity of q = 100 at the price cap.

We now turn to situation (s3, 100), which jointly features exclusive and (asymmetric) pivotal

market power of the low-cost bidder. In contrast to situation (s3, 60), seizing the market now

involves increasing marginal costs for the low-cost bidder. The parameters of the experiment were

chosen such that fully exploiting the pivotal market power is not optimal for the single low-cost

bidder, provided that the high-cost bidders supply enough quantity at prices below Pmax = 100.

This contrasts with the maximal bid shading of the low-cost bidder in situation (s3, 180) identified

by Proposition 2. However, it is also not optimal for the low-cost bidder to capture the market

at P = c, unless high-cost bidders supply a lot of their quantity at their marginal costs (which

is not profitable). The intuition is that the last units required by market capturing at P = c̄ are

not profitable due to the increased marginal costs. By contrast, if the low-cost bidder shades her

bids to reach a price above c̄ this allows her to sell at least her lower-cost units at a higher price.

The following proposition shows, for a discrete price space with price steps of ∆ = 5 as in the

experiment, that the first price above high marginal costs, P ∗ = c̄+ ∆ = 55, is part of a SFE once

high-cost bidders supply enough quantity at P = 55.

Proposition 3 Let c = 50, and j = 2, 3 indicate the two high-cost bidders in situation (s3, 100).

Any supply function qL(P ) of the single low-cost bidder with qL(c) = 80 and qL(P ) = 120 for

P > c together with any high-cost supply function profile (q2, q3) such that
∑

j≥2 qj(c) < 20 and

qj(P ) = 40 for j = 2, 3 and P > c is a SFE with P ∗ = 55 and q∗L = 80.

2.4 SFE with uncertainty

We now analyze the SFE in the two information treatments where bidders have limited information,

which requires them to form expectations about the possible scenarios.

2.4.1 Supply uncertainty: Averaged linear symmetric SFE

In this section, we consider the case where each bidder knows her own technology and the market

demand, but not the technologies of the other bidders. Consider a bidder j with marginal costs

c > 0, who is unsure about how many competitors are present in the market. Specifically, let

m ∈ {0, 1, ...,M} be the number of symmetric competitors (M ≡ n− 1 ≥ 1) of a firm, where m is

distributed according to F (·) with mean m̄. In our experiment, the relevant market situations are
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those, where at least one low-cost bidder is present (states s1 − s3). A low-cost bidder j then may

face m ∈ {0, 1, 2} identical other bidders, while 2−m bidders have high costs. Hence j is unsure

about how much competition from low-cost bidders she faces on the price range [0, Pmax), where

Pmax = c+ ∆ is the first price that is profitable to high-cost bidders.

If bidder j assumes that each other symmetric bidder present in the market bids according to

the same supply function q̄(P ), j faces a (random) residual demand Q̄−mq̄(P ), and her expected

payoff is

E[Π] = E
[
(Q̄−mq̄(Pm))(Pm − c)

]
. (7)

In a linear symmetric SFE, all bidders play the same supply function q(P ) = α+ βP . In such an

equilibrium, the state-wise market clearing conditions

α+ βPm =
Q̄

m+ 1
, m = 0, 1, ...,M, (8)

are satisfied, which further implies that the market must also clear on average

α+ βP̄ = Q̄µ, P̄ ≡ E[Pm], E[
1

m+ 1
] ≡ µ. (9)

Bayesian players would take into account that the optimal price in (7), Pm, depends on m. Given

q̄(P ), a higher price then conveys the “good” news to bidder j that there are not many symmetric

competitors present in the market. Working through this logic reveals that globally affine-linear

Bayesian SFE generally do not exist (see Appendix B.1). In the following, we show that an

affine-linear SFE exists under the behavioral assumption that each bidder resolves the uncertainty

by acting as if m̄ other bidders were in the market for sure. Loosely spoken, this means that

bidders play against the average market situation, rather than forming the precise beliefs about

the number of symmetric bidders present in the market for different possible prices. If bidder j

believes to compete against m̄ bidders, each of which chooses the same affine-linear supply function

q̄(P ), then j faces the residual demand Q̄−m̄q̄(P ). Accordingly, j chooses her own supply function

q(P ) such that P maximizes

Π(P ) = (Q̄− m̄(α+ βP ))(P − c). (10)

By the first-order condition, the aspired price is

P ∗ =
Q̄− αm̄+ cβm̄

2βm̄
. (11)
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A consistency requirement is that P ∗ = P̄ = E[P ∗m], meaning that the true average auction price

indeed corresponds to the aspired optimal price P ∗ by each bidder. We define an averaged linear

symmetric SFE (A-LinSFE) as a choice of identical affine-linear supply functions q(P ) = α∗+β∗P ,

β∗ > 0, such that i) P ∗ in (11) maximizes (10), ii) market clearing (9) holds, and iii) the consistency

condition P̄ = P ∗ is verified. Thus, in an A-LinSFE each “active” bidder plays as if m̄ identical

bidders were present, and her payoff maximizing price P ∗ corresponds to the expected auction

price.

A useful observation is that all supply functions satisfying the requirements of A-LinSFE must

also verify a linear constraint on (α∗, β∗) similar to full information.

Theorem 2 Let m̄
m+1 > 2µm̄ − 1 for m ∈ {0, 1, ...,M}. The parameters (α∗, β∗) constitute an

A-LinSFE q(P ) = α∗ + β∗P with positive profit in each state m = 0, 1, ...,M iff β∗ > 0 and

α+ cβ =
Q̄

m̄
(2µm̄− 1), (12)

β∗ ≥ Q̄(1 + m̄(1− 2µ))

m̄(Pmax − c)
. (13)

The average price is

P ∗ = c+
Q̄(1− µm̄)

m̄β∗
> c, (14)

any any average price

P ∗ ∈
(
c, c+

(Pmax − c)(1− m̄µ)

1 + m̄(1− 2µ)

]
(15)

can be supported as A-LinSFE. The state-specific prices P ∗m > c are given by

P ∗m = c+
Q̄

β

m̄− (m+ 1)(2µm̄− 1)

m̄(m+ 1)
. (16)

The parametric requirement at the outset of Theorem 2 implies that P ∗m > c in any A-LinSFE,

meaning that each bidder obtains a strictly positive profit in any state m.27 An important impli-

cation of Theorem 2 is that the highest possible state-wise price, Pmax
m , attainable in an A-LinSFE

is strictly below Pmax whenever m > 0.

Corollary 3 In any A-LinSFE, the state-wise price P ∗m is strictly decreasing in m, and P ∗m and

P ∗ both increase in Q̄ if and only if dQ̄
Q̄
> dβ∗

β∗ . The A-LinSFE featuring most behavioral market

power verifies P ∗0 = Pmax, and P ∗m < Pmax whenever m > 0.

27The condition holds with the parameters of our experiment, where M = 2 and m̄ = 1/4∗0+1/2∗1+1/4∗2 = 1
as well as µ = 1/4 ∗ 1 + 1/2 ∗ 1/2 + 1/4 ∗ 1/3 = 7/12.
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Figure 3 illustrates the range of possible A-LinSFE for the case where M = 2 as in the experiment.

The figure uses

β∗ ∈ [β, β] =

[
Q̄(1 + m̄(1− 2µ))

m̄(Pmax − c)
,
Q̄((1 +M)(1− 2m̄µ) + m̄)

(1 +M)m̄∆

]
(17)

as the range of admissible β∗. The upper bound β is such that P ∗M = c + ∆, i.e., the lowest
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The figure shows the equilibrium range of A-LinSFE if M = 2 (shaded area) and the state-wise equilibrium
range of prices (red lines). The dotted line illustrates a particular A-LinSFE (midpoint equilibrium).

Figure 3: A-LinSFE with supply uncertainty

price in the most competitive A-LinSFE is the first price just above c. Similar to full information,

any P ∗ that is supported as A-LinSFE has a uniquely defined supply function q(P ) = α∗ + β∗P

associated with it. Moreover, the state-wise prices P ∗m must reside on the same equilibrium supply

function in any given A-LinSFE, as illustrated in Figure 3 (dotted line). This simple property can

be empirically assessed with the bidding data of our experiment.

The central result in Corollary 3 is that there cannot be an A-LinSFE with P ∗m = Pmax for some

m > 0. The reason is that such an equilibrium would yield an average market price P̄ above the

aspired equilibrium price P ∗, contradicting the consistency condition that P̄ = P ∗. Further, P ∗m

always decrease strictly inm in any given A-LinSFE, because more identically behaving competitors

lead to a larger aggregate supply, which yields a strictly lower auction price. Combining these two

facts shows that the full information prices featuring high behavioral market power, with prices

close to or equal Pmax despite m > 0, are not attainable as outcomes of A-LinSFE. In Figure

3, this is illustrated with red lines, depicting all prices that are supported by A-LinSFE. Except

for m = 0, this is only a lower subset of the prices attainable as LinSFE under full information

([c+ ∆, Pmax], ∀m).

This simple analysis suggests that “playing against the average”, as embodied in the notion of
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A-LinSFE, tends to make bidders pessimistic about high prices. The main empirical conjecture

we form based on this is that with supply uncertainty the auction price averaged across all states

m = 0, ...,M should, at the very least, not exceed its full information counterpart. Indeed, it is

immediate to verify that heuristic equilibrium selection rules, such as the “midpoint equilibrium”

(dottet line in Figure 3) or the “bidder-preferred equilibrium” (Brandts et al., 2014), yield a strictly

lower average price in case of supply uncertainty with A-LinSFE as the solution concept, compared

to LinSFE in full information.28

Finally, we note that equilibrium prices P ∗m, m > 0, and P ∗ increase in Q̄ under the same

condition on β∗ as in Corollary 2. By contrast, P ∗m always decreases in m in any given A-LinSFE,

while we need an additional requirement on how β depends on m under full information to assure

a similar conclusion, because bidding then always is contingent on the number of competitors.

2.4.2 Demand uncertainty: Averaged linear symmetric SFE

We now turn to the case, where each of n > 1 identical bidders knows the number m = n − 1 of

competitors in the market and all technologies, but not the demand level. Such demand uncertainty

is a leading assumption in most of the literature on SFE. Let {Q̄1, ..., Q̄v} be the possible demand

states, where 0 < Q̄1 <, ..., < Q̄v and Γ ≡ E(Q̄) > 0. We analyze the auction by the concept of

A-LinSFE. Suppose that a bidder faces m > 0 symmetric competitors, each of which bids according

to q̄(P ) = α+ βP . The bidder seeks to find the price P ∗ that maximizes

Π(P ) = (Γ−mq̄(P ))(P − c), (18)

the first-order condition for the optimal price being

P ∗ =
Γ− αm+ cβm

2βm
. (19)

The state-wise and average market clearing conditions in a symmetric equilibrium are

α+ βPQ̄ =
Q̄

m+ 1
, Q̄ = Q̄1, ..., Q̄v, (20)

α+ βP̄ =
Γ

m+ 1
, P̄ ≡ E[PQ̄]. (21)

28It is a theoretical possibility that the average price under full information is lower than the one with supply
uncertainty. This could happen, e.g., if low-cost bidders coordinate on the most preferred A-LinSFE under supply
uncertainty, but play the most competitive LinSFE in cases m > 0 under full information. However, these two
outcomes seem contradictory. The second states that bidders respond aggressively to a competitive threat, which
means that they also should do so under supply uncertainty, as a competitive threat exists at least on expectation.
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Similar to section 2.4.1 we define an A-LinSFE with demand uncertainty as a selection of identical,

increasing supply functions q(P ) = α∗ + β∗P , such that i) P ∗ in (19) maximizes (18), ii) market

clearing (21) holds, and iii) P̄ = P ∗. The following theorem characterizes the A-LinSFE with

demand uncertainty given that there is no pivotal market power on average (mk > Γ).

Theorem 3 Let m > 0 and capacities be such that mk > Γ, and mQ̄1 − (m − 1)Γ > 0. The

parameters (α∗, β∗) are a A-LinSFE q(P ) = α∗ + β∗P with positive profit in each state Q̄ =

Q̄1, ..., Q̄v if and only if β∗ > 0 and

α∗ + cβ∗ =
m− 1

m(m+ 1)
Γ, (22)

β∗ ≥ mQ̄v − (m− 1)Γ

m(1 +m)(Pmax − c)
. (23)

The average price is

P ∗ = c+
Γ

m(m+ 1)β∗
, (24)

and any average price

P ∗ ∈
(
c, c+

Γ(Pmax − c)
mQ̄v − (m− 1)Γ

]
(25)

can be supported as an A-LinSFE, and the state-specific prices P ∗
Q̄

for Q̄ ∈ {Q̄1, ..., Q̄v} are

P ∗Q̄ = c+
mQ̄− (m− 1)Γ

β∗m(m+ 1)
> c. (26)

The A-LinSFE in Theorem 3 have similar properties as those from supply uncertainty.

Corollary 4 In any A-LinSFE, the state-wise price P ∗
Q̄

is strictly increasing in Q̄, and if β′(m) ≥

0, then P ∗ decreases in m. If additionally Γ(m(m− 2)− 1) < m2Q̄, then P ∗
Q̄

decreases in m. The

A-LinSFE featuring most behavioral market power verifies P ∗
Q̄v

= Pmax, and P ∗
Q̄
< Pmax for any

Q̄ < Q̄v.

Like with supply uncertainty, demand uncertainty limits the behavioral market power exerted in

A-LinSFE compared to the full information case, because bidders are forced to average across

different market situations. Consequently, the state-wise collusive equilibria are not attainable as

(state-wise) outcomes of A-LinSFE. Accordingly, our main conjecture is that demand uncertainty

does not lead to higher prices, averaged across demand levels, compared to the full information

counterpart. Further, the facts that aggregate supply in any A-LinSFE is strictly increasing implies

that a realization of Q̄ must automatically lead to a higher price. This contrasts with the full

information case (Corollary 2 and Corollary 4), where an additional condition on β is required for
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the same result. Finally, if c+ ∆ is the first price above c, (23) suggests

β∗ ∈ [β, β] =

[
mQ̄v − (m− 1)Γ

m(1 +m)(Pmax − c)
,
mQ̄1 − (m− 1)Γ

m(1 +m)∆

]
. (27)

as the range of admissible β∗. The upper bound β is such that P ∗
Q̄1

= c+ ∆, i.e., the lowest price

in the most competitive A-LinSFE is the first price just above c.

The A-LinSFE identified by Theorem 3 show certain similarities to the symmetric Bayesian SFE in

the case where demand uncertainty takes on the form of a continuous random variable with convex

support, as in Klemperer and Meyer (1989). Then, the symmetric Bayesian SFE with constant

marginal costs are described by a set of differential equations, the general solution of which has

the form q(P ) = γ(P − c)m, where γ > 0 is a constant (see, e.g., Holmberg, 2008). In the special

case where m = 1, it follows from (22) and β∗ > 0 that the functional forms of A-LinSFE and the

symmetric Bayesian SFE coincide. Further, Klemperer and Meyer (1989) and Holmberg (2008)

find that the market-clearing price must fall if the number of identical competitors is increased.

By Corollary 4, this result holds under reasonable conditions (the presence of more competitors

does not make individual bidders behave less competitively) in A-LinSFE as well.

Finally, given a fixed convex support of demand, the distribution of demand itself has no effect

at all on the symmetric Bayesian SFE in a symmetric constant marginal cost setting. Bolle et al.

(2013) test this hypothesis experimentally, and find significant differences in the average supply

functions if the demand distribution is varied on a fixed support. Specifically, the three empirical

demand distributions implemented in that paper yield different means Γ, and the average em-

pirical bidding becomes less competitive in treatments with higher Γ, contradicting the Bayesian

SFE prediction. In contrast, the average demand Γ may affect equilibrium bidding in A-LinSFE

whenever m > 1 by (22). As with full information, an increase in (expected) demand Γ makes it

rather unlikely that bidders coordinate on an equilibrium involving less bid shading (higher β∗).

Indeed, (24) shows that P ∗ increases in Γ iff dΓ
Γ > dβ∗

β∗ . In this sense, the finding by Bolle et al.

(2013) appears reasonable from the perspective of A-LinSFE.

Demand uncertainty may limit the extent of strategic bid shading due to pivotal market power.

To see this in the specific context of the experiment, note that in case of only symmetric bidders

with high costs (state s4), there is no pivotal market power on expectation,29 while situation

(s4, 100) entails symmetric pivotal market power with full information. We therefore conjecture

29As a consequence of the experimental design, each bidder can sell her full capacity at the maximal price in
situation (s4, 180). Given s4, therefore only the case Q̄ = 60, 100 matters for strategic bidding, where each demand
level occurs with equal probability.
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that equilibrium prices in situation (s4, 100) are lower with demand uncertainty than with full

information. In contrast, an advantaged bidder may still exert substantial market power despite

demand uncertainty. As the next proposition exemplifies, such a bidder may shade bids in a way

that allows her to fully exploit her market power despite demand uncertainty.

Proposition 4 Consider state s3 of the experimental setup with demand uncertainty. The follow-

ing supply functions then constitute a SFE. Each high-cost bidder sets qH(P ) = 40 for P > c̄ and

qH(P ) = 0 else. The low-cost bidder sets

qL(P )


< 60, P < c̄

= 80, Pmax > P ≥ c̄

= 120, P = Pmax.

(28)

The resulting equilibrium prices for the various possible demand levels are P ∗60 = c̄ = 50, P ∗100 =

c̄+ ∆ = 55 and P ∗180 = Pmax = 100.

Recall from the analysis under full information that in state s3 the single low-cost bidder wishes

to exploit either her exclusive or her pivotal market power, depending on the demand level. By

Proposition 4 this is still possible, despite demand uncertainty, as the low-cost bidder can effectively

balance the partial bid shading required by market capturing with the pivotal price cap strategy.

Key for the equilibrium in Proposition 4 is that the bidder can submit an entire function to the

market, which allows her to effectively shade bids, and secure demand, over the entire price range.

2.5 Empirical hypothesis

Information effects and market power Our primary interests is the comparison between auc-

tion outcome and strategic bidding under the various information treatments. We now summarize

the main observations from sections 2.3-2.4 as testable empirical hypotheses below, starting with

the case of pivotal market power under full information.

H1: Pivotal market power with full information

In situation (s4, 100) the average price is P ∈ [80, 100], in situation (s3, 180) the average price is

P = 100, and in situation (s3, 100) the average price verifies P = 55.

Hypothesis H1 refers to the two situations without exclusive but either with symmetric (s4, 100)

or asymmetric (s3, 180) pivotal power, and to the mixed situation (s3, 100), where both pivotal

and exclusive market power coexist. In (s4, 100) and (s3, 180) we expect to observe high prices

as a consequence of strategic bid shading due to pivotal market power (Propositions 1 and 2).30

30Situation(s2, 180) also features symmetric pivotal market power in such that the two low-cost bidders can jointly
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In situation (s3, 100), it is optimal for the low-cost bidder to share the market with her high-cost

rivals (Proposition 3), leading to a price P ∗ = c+ ∆ = 55.

The comparison between full information (Theorem 1, Corollary 1) with cost and demand

uncertainty (Corollaries 3 and 4) suggests that limited information should not lead to higher

equilibrium prices on average if the (A)-LinSFE approach provide an appropriate description of

the average bidding behavior. The reason is that if bidders internalize the respective uncertainty

by averaging the various market situations, the range of average prices that can be supported as

equilibrium outcomes is reduced. For example, if bidders coordinate on an intermediate price in

all information treatments, the corresponding average price in each uncertainty treatments must

be strictly lower than its full information counterpart. The specific predictions are as follows.

In case of supply uncertainty, the theory in section 2.4.1 applies to market situations involving

at least one low-cost bidder and a demand level Q̄ ∈ {60, 100}, assuring that there is no pivotal

market power on average.31 Our primary hypothesis is that the price averaged across all relevant

market situations is (at least weakly) lower with supply uncertainty than with full information. In

particular, supply uncertainty most likely leads to lower prices in the specific situations (s3, 60),

(s3, 100). These situations feature a single low-cost bidder with exclusive market power and, by the

analysis of Section 2.3.2, we should observe average prices around P = c = 50 with full information.

By contrast, obtaining such a price in either situation with supply uncertainty requires bidders

to coordinate on the A-LinSFE with maximal behavioral market power (Corollary 3). This is

an unlikely outcome, provided that we do not observe a similar cooperative tendency with full

information. We further expect supply uncertainty to break the pivotal market power of situation

(s4, 100) with full information. It is conceivable that high-cost bidders play more aggressively under

supply uncertainty to eventually seize some residual demand provided that the low-cost bidders,

if present, fail to capture the market at P ≤ 50. Then, we should observe prices close to P = 50

if situation (s4, 100) occurs, where actually no low-cost bidder is present. In contrast, the pivotal

market power in (s4, 100) under full information pushes prices above P = 80 by Hypothesis H1.

H2: Supply uncertainty effects

H2a: Let Q̄ ∈ {60, 100}. The price averaged over all market situations involving at least one

low-cost bidder with supply uncertainty does not exceed its full information counterpart.

H2b: The average prices in situations (s3, 60), (s3, 100) and (s4, 100) with supply uncertainty do

not exceed their full information counterparts.

We now turn attention to demand uncertainty; the relevant theoretical underpinning is provided

serve the market. However, any such equilibrium involves that at least one bidder experiences increasing marginal
costs which was not part of the equilibrium analysis.

31For Q̄ = 180, a low-cost bidder has pivotal market power on average, as she can expect to compete with one
other low-cost competitor on average.
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by Theorem 3 and Corollary 4.

H3: Demand uncertainty effects

H3a: In states s2 or s4 the price averaged across all demand states with demand uncertainty does

not exceed its full information counterpart.32

H3b: The average price in situation (s4, 100) with demand uncertainty does not exceed its full

information counterpart. In contrast, the average price in all states (s3, Q̄), Q̄ ∈ {60, 100, 180}, is

the same with demand uncertainty and full information.

The basis for Hypothesis H3b are expression (26) and Proposition 4. The former implies a price

range of [65, 100] by (27) in situation (s4, 100) with demand uncertainty, which contrasts to the

price interval [80, 100] predicted with full information (H1).

Competition and demand effects The second main prediction pertains to competition and

demand effects in competitive situations as identified by Corollary 2 (full info) and Corollaries 3,

4 (cost and demand uncertainty, respectively). The overarching prediction is that an increase in

competition (dm > 0) or a decrease in demand (dQ̄ < 0) should lead to lower equilibrium prices.

H4: Competition and demand effects

Denote by P (s, Q̄) the average price if the state is s and demand is Q̄.

H4a (Full information): P (s1, Q̄) < P (s2, Q̄) for Q̄ ∈ {60, 100}, P (s, 60) < P (s, 100) for

s ∈ {s1, s2, s4} and P (s1, 100) < P (s1, 180).

H4b (Supply uncertainty): P (s1, Q̄) < P (s2, Q̄) < P (s3, Q̄) for Q̄ ∈ {60, 100}, and P (s, 60) <

P (s, 100) for s ∈ {s1, s2, s3}

H4c (Demand uncertainty): P (s2, 60) < P (s2, 100) < P (s2, 180) and P (s4, 60) < P (s4, 100).

Supra-competitive equilibria The SFE analysis in competitive situations broadly predicts

equilibrium prices to be above marginal costs, because marginal-cost pricing would require an

infinitely steep supply function, which is not viable as LinSFE or A-LinSFE, respectively.33 In

the experiment, the first price above marginal costs is c + ∆, where c ∈ {c, c̄} depending on the

market situation. The theory of LinSFE with full information developed in section 2.3.1 applies

to states s1, s2, s4 with Q̄ = 60, 100 in the experiment, and to (s1, 180).34 Specifically, states s1, s4

feature n = 3 symmetric bidders, either all with c = 10 or c = 50 in the relevant quantity range,

and Pmax = 100. State s2 features two low-cost and one high-cost bidder, where for Q̄ ∈ {60, 100}

the relevant marginal costs and price range are c = 10 and [0, 50], respectively.

32State s1 together with the parameters of the experiment violate condition (27).
33Also see Klemperer and Meyer (1989), who find that all SFE involve non-negative price-cost markups in case

of demand uncertainty.
34In (s2, 180) a symmetric equilibrium would involve a quantity of q = 90 > 80 for both low-cost bidders, which

invalidates the assumption of constant marginal costs on the relevant range.
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With demand or supply uncertainty, bidders cannot condition their supply function on the

exact market situation (s, Q̄). In case of supply uncertainty, the theory from section 2.4.1 applies

to situations (s, Q̄) with s ∈ {s1, s2, s3} and Q̄ ∈ {60, 100}. In this respect, we can check whether

the average empirical prices belong to the interval (15), which evaluates to P ∗ ∈ [22.5, 32.5].35 In

case of demand uncertainty, the results in Theorem 3 apply to situations (s4, Q̄) and (s2, Q̄), and

the relevant price interval (25) evaluates to P ∗s2 ∈ [19.44, 38.33] and P ∗s4 ∈ [60, 83.33].36

In both uncertainty treatments, the supply functions in A-LinSFE impose additional structure

on all state-wise prices, as they must lie on the same linear supply function. Two testable impli-

cations emerge. First, if the most competitive A-LinSFE is played, this yields the minimal prices

of 15, 20 and 35 in states s1 − s3, respectively, with supply uncertainty. These numbers give a

lower bound on average prices, and as such a simple consistency test for A-LinSFE. With demand

uncertainty, similar lower bounds emerge. Evaluating Theorem 3 in situation (s2, Q̄) shows that

P ∗
Q̄
≥ 10 + Q̄

12 . In case of s4, the relevant uncertainty between bidders reduces to Q̄ = 60, 100,

where each happens with equal probability, and it follows that P ∗
Q̄
≥ 50 + Q̄−40

4 in these cases.

Second, we can verify whether the true state-wise average prices indeed lie on the A-LinSFE that

empirically best matches the data.

H5: Supra-competitive equilibria

Average equilibrium prices satisfy the boundary requirements summarized in Table 2.

Table 2: Supra-competitive equilibria hypothesis

s1 s2 s3 s4 Pooled (s1, s2, s3)

Q̄ = 60
TB ≥ 15 ≥ 15 - ≥ 55 -
TD - ≥ 15 - ≥ 55 -
TS ≥ 15 ≥ 20 ≥ 35 - ∈ [22.5, 32.5]

Q̄ = 100
TB ≥ 15 ≥ 15 - ≥ 55 -
TD - ≥ 18.33 - ≥ 65 -
TS ≥ 15 ≥ 20 ≥ 35 - ∈ [22.5, 32.5]

Q̄ = 180
TB ≥ 15 - - - -
TD - ≥ 25 - - -
TS - - - - -

Pooled
TB - - - - -
TD - ∈ [19.44, 38.33] - ∈ [60, 83.33] -
TS - - - - -

Numbers in cells are the theoretical predictions for the average prices P in the corresponding market situation.
States are s1: 3 low-cost bidders, s2: 2 low-cost bidders, s3: 1 low-cost bidder, s4: 3 high-cost bidders.
Information treatments are TB : full info, TD: demand uncertainty, TS : supply uncertainty.

35Using Pmax = 50 + ∆ = 55 as the first price which is profitable for a potential high-cost bidder.
36Using Pmax = 50 + ∆ = 55.
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3 Empirical results

3.1 Experimental design and procedure

We implemented a uniform-price auction on a zTree platform (Fischbacher, 2007). We conducted

three treatment variations, with the three information structures (full information, supply uncer-

tainty and demand uncertainty) as the only treatment variable. In each session, the subjects were

randomly and anonymously matched into groups of n = 3 bidders forming a market. The group

and the information structure remained unchanged during a session. A session lasted for about 24

periods. In all treatments, the computer always executed the following two random assignments at

the beginning of each period. First, a level of market demand Q̄ ∈ {60, 100, 180} was determined

in each market with uniform probability 1/3. Second, the computer randomly assigned one of the

two possible technologies (1) to each bidder with probability 1/2. Table 3 summarizes the resulting

likelihoods of all possible market situations. Each bidder always knew the own technology in every

period prior to bidding and independent of the information treatment. The three information

Table 3: Market situations: Probabilities of occurrence

s1 s2 s3 s4

3× cL 2× cL, 1× cH 1× cL, 2× cH 3× cH
Q̄ = 60 1/24 1/8 1/8 1/24
Q̄ = 100 1/24 1/8 1/8 1/24
Q̄ = 180 1/24 1/8 1/8 1/24

See (1) for the definition of cL, cH . Number in cells are the probabilities of occurrence.

structures were as follows.

• In the full information treatment, all technologies in a market and demand were common

knowledge in each period prior to bidding.

• In the supply uncertainty treatment, only demand and the own technology were common

knowledge in a market, while subjects had only the statistical information about technologies.

• In the demand uncertainty treatment, all technologies were common knowledge in a market,

while subjects had only the statistical information about demand.

In each period, each subject first received the period and treatment-specific information about

demand and technology. Then, every subject entered the number of units s/he would like to offer

for each price ranging from 0 to 100 in steps of ∆ = 5 in the current period.37 The computer only

37Subjects could enter their desired quantity at each price either by using a slider or by directly typing the number.
Quantities had to be natural numbers no larger than the capacity of the subject’s current capacity.
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accepted weakly increasing quantity numbers. After all three subjects in a market submitted their

bids, the computer determined the uniform auction price and the equilibrium allocation in that

period, using the pro-rata rationing protocol to split the residual quantity.38 Intuitively, pro-rata

allocates the own offered quantity just below the auction price to each bidder plus possibly some

residual quantity that depends on the relative bids at the auction price. At the end of each period,

the market price, the own quantity sold, the own period profit and the supply schedules including

costs of all subjects in the market were displayed to each subject.39

Experimental instructions were distributed in written form prior to the experiment. Addition-

ally, a video tutorial was displayed. Subjects then could spend 10 minutes on a trial phase, where

they could choose the supply schedules of all three bidders. This allowed them to test different

strategies under different demand and cost constellations, and to familiarize themselves with the

interface. Subsequently, subjects had to answer a test, assuring that all subjects understood the

rules of the auction and the incentives (maximize own payoffs). No communication with other sub-

jects was allowed, and the anonymity of participants’ ID’s was assured throughout each session.

Sessions were conducted with university students between July 2015 and December 2016 at UNSW

Australia, the Zurich University of Applied Sciences and the University of Zurich. Each session

consisted of about 30 subjects, and each student participated in only one session and treatment.40

At the end of a session, one of the periods was randomly selected for payment, which consisted of

the individual payoffs (points) realized in the respective period (converted into the local currency)

and a lump-sum participation fee.41 On average, a session lasted about 2 hours, and participants

earned around AUD 26 in Australia and CHF 45 in Switzerland.

3.2 Main empirical results

Table 4 shows the average prices of all treatment variations and all market situations (s, Q̄). These

averages, and the subsequent regression results, are obtained from stratified data, which limits the

38This is a standard protocol in empirical multi-unit auctions. See Brandts et al. (2014) and Appendix B.2 for
the details. In practice, the National Electricity Market (NEM) in Australia invokes a very similar protocol.

39The idea for showing the bidding of all subjects was that this should facilitate the understanding of the auction,
and strengthen the strategic thinking of the subjects. Such a procedure is not uncommon in experiments. E.g., Boone
et al. (2012) also let all bidders in a Bertrand market (which is similar to a single-unit first-price auction) observe the
competitors’ costs and price bids by the end of each period. It is understood that if displaying such information has
an effect, it is likely to foster competition (Huck et al., 2000). Note that because all probabilities were iid between
periods, the issue of strategic learning with uncertainty, which matters in other auction environments (Bergemann
and Horner, 2010), does not apply here. Moreover, learning seems no to be important; controlling for time periods
does not affect any of our regression results in a significant way.

40Recruitment was conducted with ORSEE (Greiner, 2004). The subject pool consisted of Bachelor and Master
students of quantitative subjects (including Economics and Business Administration).

41The conversion rates were AUD 6.70 per 1000 points in Australia and CHF 6.70 per 1000 points in Switzerland.
The lump-sum participation fee (which insured subjects against losses) amounted to 4500 points in Australia and
6000 points in Switzerland.
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influence of (rare) outliers.42 Table 4 reveals sometimes substantial differences between the average

prices across market situations and information treatments. We use a standard OLS framework

Table 4: Average price, by demand, competition state and treatment

s1 s2 s3 s4

Q̄ = 60

TB 15.96 [8.13] 23.06 [29.74] 47.03 [14.04] 59.26 [15.70]
TD 17.37 [13.03] 24.5 [28.84] 43.21 [31.09] 61.05 [15.43]
TS 15.4 [7.04] 22.24 [19.24] 36.34 [29.22] 56.25 [7.77]

Q̄ = 100

TB 18.96 [10.83] 31.23 [32.33] 56.98 [28.01] 95M [45.08]
TD 24.74 [24.06] 33.73 [33.92] 56.19 [18.23] 79.25 [30.04]
TS 20.63 [14.52] 32.36 [29.53] 51.74 [19.30] 73.54 [27.32]

Q̄ = 180

TB 34.82 [28.23] 60.65 [44.75] 83.33 [46.05] 100
TD 32.63 [22.24] 59.17 [36.65] 83.5 [45.56] 100
TS 41.25 [24.31] 60 [24.26] 80.59 [39.24] 100

Average prices with standard deviations in square brackets.
States are s1: 3 low-cost bidders, s2: 2 low-cost bidders, s3: 1 low-cost bidder, s4: 3 high-cost bidders.
Information treatments are TB : full info, TD: demand uncertainty, TS : supply uncertainty.
P = 100 in bottom right corner is an artifact of the experimental design. M indicates “median price”.

to assess these differences from the viewpoint of our empirical hypothesis.43 In all regressions, we

adjust standard errors for clustering at the market level.

3.2.1 Market power and information effects

In this section, we test whether the data supports our central hypothesis that limited information

should tend to lower average auction prices compared to full information.

Market power with full information We first assess hypothesis H1 regarding pivotal market

power under full information. The middle part of columns “s3” and “s4” of Table 5 display the

relevant regression outcomes for situations (s3, 100) and (s4, 100), and the bottom part of that

table reports the respective statistical test results. The following illustration for situation (s4, 100)

may help to interpret the table. The middle part of column “s4” implies that the average estimated

price in situation (s4, 100) under full information is 59.259 + 24.312 = 83.571. By the bottom part

of column “s4”, the probability that the average price verifies P ≥ 80 in situation (s4, 100) in the

full information treatment (denoted as P (s4, 100;TB) ≥ 80 in the table) is p = 0.824. Such a large

p-value indeed suggests that we cannot reject P ≥ 80, consistent with H1. A more detailed analysis

reveals that almost 50% of the prices even equal the maximal price of 100. Indeed, the median

price in (s4, 100) is Pmed = 95 (see Table 4), and a median regression (not reported) shows that

42The stratification aimed at excluding rare outlying prices that most likely are due to mistakes, such as P = 10
in the full information monopoly setting (s3, 60). In sum, the stratification retains about 93% of the observations;
see Table 12 in Appendix B for details. Using unstratified data does not change the main results qualitatively, but
typically leads to noisier estimates with larger standard errors.

43Controlling for time (not reported) does not affect the empirical results. Further, we also use quantile regression,
at the very least for robustness concerns.
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we cannot reject the null that Pmed = 100 (p-value = 0.8).44

Table 5: Supply uncertainty effects and market power (Q̄ ∈ {60, 100})

(s1 − s3) (s1 − s4) s3 s4

TS -3.408* -3.895** -8.071*** -6.741**
(1.761) (1.788) (1.835) (3.088)

Constant 36.448*** 41.045*** 52.226*** 71.636***
(1.297) (1.361) (1.145) (2.503)

TS -4.782*** -4.530*** -10.684*** -3.009
(1.773) (1.656) (2.248) (1.959)

Q̄100 8.971*** 10.990*** 9.948*** 24.312***
(1.166) (1.186) (1.818) (3.288)

TS × Q̄100 2.679* 1.256 5.448** -7.021
(1.572) (1.603) (2.697) (4.561)

Constant 31.889*** 35.459*** 47.027*** 59.259***
(1.253) (1.181) (0.936) (1.736)

N 690 793 291 103
Null Tests H2a Tests H1,H2b Tests H1,H2b

P (s3, 100;TB) = 55 p = 0.27
P (s3, 100;TB) ≥ 60 p = 0.048
P (s4, 100;TB) ≥ 80 p = 0.824
P (TS) ≥ P (TB) p = 0.029 p = 0.017 p < 0.01 p = 0.017
P (TS , 60) ≥ P (TB , 60) p < 0.01 p < 0.01 p < 0.01 p = 0.065
P (TS , 100) ≥ P (TB , 100) p = 0.152 p = 0.069 p = 0.011 p = 0.024

OLS regressions with clustered SE (market level). Unit of observation: Matching group. Dependent variable:
Auction price. Independent variables: TB , TS : treatment dummies indicating full information and supply
uncertainty, respectively. First column: Pooled regression across states s1 − s3. Second column: pooled
regression across states s1 − s4. Significance levels (two-sided tests): * p<0.1, ** p<0.05, *** p<0.01.

In case of situation (s3, 100), the middle part of column “s3” predicts an average price of

P = 56.975. The first two tests in the bottom part of column “s3” then show that i) we cannot

reject P = 55 (p-value = 0.27), while ii) P ≥ 60 is unlikely (p-value = 0.048). Both findings are

consistent with H1.

To test whether P = 100 in situation (s3, 180), we use a median regression (not reported) to

account for bunching at the price ceiling Pmax = 100. The estimate price is Pmed = 95, with

95%-CI [91.1, 98.9], which means that the price is close to but statistically still a bit below the

theoretical prediction. Upon closer inspection, we find the reason to be that P = 55 for about 20%

of the observed prices, which cannot be explained by the SFE in Proposition 2, while P = 100 in

about 44% of all cases. If the median regression is trimmed to P > 55, Pmed = 100 results.45 We

conclude that a substantial portion of the data favors H1 in situation (s3, 180), acknowledging that

the evidence for H1 is slightly weaker in (s3, 180) compared to the other market situations.

Result 1 The average estimated prices in market situations featuring full information and pivotal

44We apply the approach by Parente and Silva (2016) to calculate clustered robust standard errors also for the
median regression.

45A Tobit regression (not reported) with upper limit 100 yields an estimated price of 93.1, and the hypothesis
P (s3, 180) = 100 yields a p-value of 0.23.
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power are mostly as conjectured by Hypothesis H1.

Hefti and Shen (2019) analyze the case of purely exclusive market power, as it occurs in situation

(s3, 60) in detail. The single low-cost bidders fully exploits her market power, and captures the

entire market at a price close to the marginal costs of the next-best competitor.46 In sum, the

above empirical observations show that bidders strongly exert their structural market power in the

full information treatment.

Supply uncertainty We now turn to hypothesis H2, according to which we should observe lower

average prices with supply uncertainty. Figure 4 (LEFT) compares the distribution of auction

prices for full information (gray) and supply uncertainty (red) for all states with at least one low-

cost bidder (s1 − s3) and Q̄ ∈ {60, 100}. The figure suggests a shift from high to low prices in

case of supply uncertainty. This visual impression is corroborated by a pooled regression for states
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Figure 4: Supply uncertainty effects
LEFT: States s1 − s3 and Q̄ ∈ {60, 100}. MIDDLE: Exclusive market power (s3, 60). RIGHT: Pivotal market power
(s4, 100).)

s1−s3 and Q̄ ∈ {60, 100}, reported in the top of column 1, Table 5. The average price with supply

uncertainty is 3.4 units lower than the respective average price with full information (P = 36.4).

This difference is significant at the 5% level (p-value = 0.029; bottom of Table 5), and corresponds

to a reduction in the markup P − c by about 13% on average.

We check the robustness of this result in two ways. First, estimating the specification in the top

of column 1 with quantile regression (not reported) yields a median prices of Pmed = 40 under full

information, and of Pmed = 30 under supply uncertainty; the difference of 10 is significant at the

1% level. Second, we consider a regression that pools all states s1− s4 (column 2). This regression

also estimates a lower average price in case of supply uncertainty (p-value = 0.017).

The middle part of Table 5 additionally distinguishes between Q̄60 and Q̄100. This analysis

shows that the strictly lower average price under supply uncertainty is mainly caused by Q̄ = 60.

46The average price is 47.027. Hefti and Shen (2019) show that the median price in this situation equals Pmed = 45,
corresponding to a SFE, where the low-cost bidder wants to “play it safe”.
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While the price is also lower under supply uncertainty for Q̄ = 100, the difference of 2.1 units

is not statistically significant (p-value = 0.152). In any case, we can soundly reject that supply

uncertainty induces higher auction prices, consistent with Hypothesis H2a.

We now turn to Hypothesis H2b. The distribution of prices is illustrated in Figure 4 in situ-

ations (s3, 60) (MIDDLE) and (s4, 100) (RIGHT). In both cases, the price distribution is clearly

shifted towards lower prices in case of supply uncertainty. The corresponding statistical evidence

is presented in columns 3 and 4 of Table 5. In situations (s3, 60) and (s3, 100), supply uncertainty

leads to significantly lower prices, and thus breaks the exclusive market power exerted by the

low-cost bidder under full information. Likewise, supply uncertainty breaks the symmetric pivotal

market power of the high-cost bidders in (s4, 100) under full information. The latter becomes even

more evident, if we use a median regression (not reported) instead of OLS.47 We find Pmed = 70

with supply uncertainty, which is 25 units below the full information median price (Pmed = 95);

the difference is significant at the 1% level. Thus, we conclude that supply uncertainty breaks

both pivotal and exclusive market power as predicted by H2b. Additionally, we find evidence for

lower average prices with supply uncertainty even in the situations with only high-cost bidders

(last column of Table 5).

Result 2 Supply uncertainty leads to significantly lower average prices, consistent with Hypothesis

H2 in the strict sense. Specifically, the markup is reduced by about 13% averaged over all situations

involving at least one low-cost bidder and Q̄ ∈ {60, 100}. Further, supply uncertainty breaks both

exclusive and pivotal market power, with a reduction of about 29% in average markup in case of

purely exclusive market power (s3, 60), and a reduction of about 56% in the median markup in case

of purely pivotal market power (s4, 100).

Demand uncertainty We proceed similarly to test the effects of demand uncertainty (Hypoth-

esis H3). The OLS results are summarized in Table 6. In the bottom part of column 1, Table

6, we test whether demand uncertainty leads to (weakly) lower average prices in a pooled OLS

regression over all demand levels and both states s2, s4 as claimed by H3a. The null that the

price is higher with demand uncertainty is rejected (p-value 0.49). This p-value also indicates that

the price is also not strictly lower under demand uncertainty, in contrast to our observation with

supply uncertainty. A similar pattern is revealed by column 2, where s2 and s4 are discerned.

The data thus suggests that the average price under demand uncertainty and full information are

statistically indistinguishable, thereby confirming hypothesis H3a in its weak sense.

For H3b, a median regression (not reported) is more appropriate than OLS in case of (s4, 100),

47This makes particularly sense in view of the observed bunching at P = 100 under full information.
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Table 6: Demand uncertainty effects

(s2, s4) pooled s2, s4 s3

TD 0.048 0.509 -1.759
(2.371) (2.499) (2.018)

s4 32.983***
(1.910)

TD × s4 -1.761
(3.241)

Constant 44.700*** 38.653*** 63.159***
(1.808) (1.782) (1.386)

N 518 518 414
Null Tests H3a Tests H3a Tests H3b

P (TB) ≥ P (TD) 0.49
P (TB ; s2) ≥ P (TD; s2) 0.42
P (TB ; s4) ≥ P (TD; s4) 0.64

P (TD) = P (TB) 0.388

OLS regressions with clustered SE (market level). Unit of observation: Matching group. Dependent variable:
Auction price. Independent variables: TB , TD: treatment dummies indicating full information and demand
uncertainty, respectively. First column: Pooled regression across all demand levels and states s2, s4. Second
column: Pooled regression across all demand levels. Third column: pooled regression across all demand
levels for s3. Significance levels (two-sided tests): * p<0.1, ** p<0.05, *** p<0.01.

as full information prices are bunched at P = 100. Consistent with H3b, we find that Pmed = 80 in

case of demand uncertainty, which is strictly below its full information counterpart of Pmed = 95

(p-value = 0.09). Finally, column 3 of Table 6 shows that we cannot reject the equality of average

prices in the monopoly state s3. We find the same result in OLS and median regressions if all three

demand levels are discerned (not reported), supporting H3b.

Result 3 Average prices in states s2, s4 with demand uncertainty are statistically indistinguishable

from the corresponding full information prices, which matches Hypothesis H3a in the weak sense.

Consistent with H3b, prices in the monopoly state s3 are similar with demand uncertainty and full

information, and the median price in situation (s4, 100) is strictly lower than its full information

counterpart.

Allocative efficiency We also consider whether limited information affects the allocative ef-

ficiency of the auction. Such inefficiency would occur if low-cost bidders share the market with

high-cost bidders when low-cost bidders themselves are able to seize the entire market. The fact

that, by H2 and H3, limited information should make biding more competitive, suggests that the

allocative efficiency does not diminish under limited information. Indeed, we find that the median

supply of high-cost bidders in situations (s2, 60), (s3, 60) and (s2, 100) is zero in all information

treatments. In other words, the low-cost bidders seize the market in all information treatments.
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3.2.2 Demand and competition effects

Table 4 suggests that more demand or a decrease in competition leads to higher average prices

in each information treatment, as conjectured in Hypothesis H4. We test H4 formally by running

regressions for each information treatment, using an OLS dummy variable specification to distin-

guish between the competition states and the demand levels, with situation (s1, 60) as base group.

The outcome is reported in the three columns of Table 7. The following illustrative calculations

Table 7: Competition effects by information structure

Full Supply Demand
s2 9.40*** 6.84*** 6**

(2.44) (1.32) (2.04)
s3 31.82*** 20.94*** 29.54***

(1.51) (2.03) (3.14)
s4 44.95*** 40.85*** 44***

(2.06) (1.01) (2.23)
Q̄100 3.45** 5.23*** 8*

(1.61) (1.51) (3.98)
Q̄180 19.91*** 25.85*** 14.5***

(3.76) (3.13) (3.71)
s2 × Q̄100 4.69* 4.90* 4.5

(2.69) (2.49) (4.52)
s2 × Q̄180 16.65** 11.91*** 24.83***

(5.92) (3.39) (5.87)
s3 × Q̄100 6.53*** 10.17*** 2.13

(2.14) (2.37) (4.59)
s3 × Q̄180 16.08*** 18.40*** 20.96***

(3.42) (3.84) (6.26)
s4 × Q̄100 22.56*** 12.07*** 9

(3.73) (3.61) (6.83)
Constant 15.88*** 15.4*** 16***

(1.23) (0.81) (2.89)
N 413 540 228

Null Competition effect
P (s1, 100)≥P (s2, 100) p < 0.01 p < 0.01
P (s2, 60)≥P (s3, 60) p < 0.01
P (s2, 100)≥P (s3, 100) p < 0.01

Null Demand effect
P (s2, 60) ≥ P (s2, 100) p < 0.01 p < 0.01 p < 0.01
P (s4, 60) ≥ P (s4, 100) p < 0.01 p < 0.01
P (s1, 100) ≥ P (s1, 180) p < 0.01
P (s3, 60) ≥ P (s3, 100) p < 0.01
P (s2, 100) ≥ P (s2, 180) p < 0.01

OLS regressions with clustered SE (market level). Unit of observation: Matching group.
Dependent variable: Auction price. Independent variables: “s2, s3, s4”: state dummies; “Q̄100, Q̄180”:
demand dummies; Constant: (s1, 60). s4 × Q̄180 was omitted because P = 100 by design in this situation.
Significance levels (two-sided tests): * p<0.1, ** p<0.05, *** p<0.01.

should facilitate its reading. The first column presents results for the full information treatment

(Hypothesis H4a). We can directly assess whether P (s1, 60) < P (s2, 60) from the first entry in

the column, which shows that the price increases significantly (1% level) by 9.4 if an additional
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low-cost competitor is present and Q̄ = 60.48 Similarly, the average price increases significantly

(5% level) by 3.45 if demand increases from 60 to 100 in presence of a total of three low-cost

competitors (state s1). We can test the remaining claims in hypothesis H4a by appropriately com-

bining the regression results; the respective test outcomes are in the bottom part of the column.

To test whether P (s1, 100) < P (s2, 100), we seek to reject the null that P (s1, 100) ≥ P (s2, 100)

with sufficient confidence. The corresponding p-value is < 0.01, meaning that the null can be

rejected almost certainly.49 Likewise, to test whether P (s2, 60) < P (s2, 100), we seek to reject the

null that P (s2, 60) ≥ P (s2, 100). The corresponding p-value of < 0.01 again allows us to reject the

null in favor of P (s2, 60) < P (s2, 100). Hypotheses H4b and H4c are tested in columns 2 and 3,

respectively, of Table 7. We conclude from this analysis that H4 is entirely supported by the data.

Result 4 Average prices increase in demand and decrease in the number of effective competitors

as predicted by Hypothesis H4. Averaged across all information treatments and demand levels,

adding an additional competitor (s2 → s1) reduces the markups earned by low-cost competitors

by 50%. Averaged across all information treatments and states s1, s2, a 10% increase in demand

increases markups of low-cost bidders by 15.9%.

3.2.3 Supra-competitive equilibria

Regarding Hypothesis H5, Table 4 directly reveals that all average prices are above their respective

lower bounds given in Table 2. Hence the probabilities of observing prices at least as extreme as

these lower bounds must be above 0.5. The data thus is consistent with the supra-competitive

equilibrium prediction under full information, as well as with the increasing bounds as predicted

by A-LinSFE in case of supply and demand uncertainty. This result is also confirmed if the means

in Table 4 are replaced by medians (output omitted). We next assess with pooled regressions

whether the average prices under supply and demand uncertainty reside in the intervals in the

right column and bottom row of Table 2, respectively. With supply uncertainty, the estimated

average price for Q̄ = 60 is 27.1, with 95% CI [24.5, 29.7], and for Q̄ = 100 it is 38.6 with 95%

CI [36.2, 41.0]. Thus, the pooled average price matches well with the A-LinSFE prediction for

Q̄ = 60, but is too high in case of Q̄ = 100. With demand uncertainty, the estimated average price

for states s2, s4 is 36.6 with 95% CI [32.7, 40.4], and 70.3 with 95% CI [65.6, 75.1], respectively.

The pooled average price thus fits well with the A-LinSFE prediction in state s4, and is rather

close to the upper bound for state s2. The above evidence can be summarized as follows.

48Recall that Hypothesis H4 is of a one-sided nature. In the example, the null (which we seek to reject) thus is
P (s1, 60) ≥ P (s2, 60), meaning that we can divide the corresponding p-values by 2.

49In the regression specification of Table 7, this null states that s2 + s2 × Q̄100 ≤ 0, from which the p-value can
be derived.
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Result 5 All average prices are above their respective lower bounds in Table 2, consistent with

H5. In case of supply and demand uncertainty, the average prices reside within the predicted price

intervals of Table 2, except for Q̄ = 100 with supply uncertainty, where the price is too high.

3.3 Bidding behavior

In competitive situations, the SFE analysis reveals that the parameters α, β of all LinSFE or A-

LinSFE verify certain equilibrium constraints. While the theory predicts multiple equilibria, we can

use restrictions (3), (12) and (22) to estimate the average empirical supply function q(P ) = α̂∗+β̂∗P

with a Constrained Least Squares (CLS) approach.50 Specifically, we use CLS to estimate the

parameters (α, β) of the supply functions for the competitive situations in the full information

treatment, as well as for the two uncertainty treatments. In the latter cases, we estimate on the

bidding data pooled across all situations which bidders cannot distinguish due to their limited

information. The CLS estimator selects among all linear supply functions verifying the respective

equilibrium restriction the one that best describes the average bidding behavior.

We use the resulting estimates in three ways to assess whether (A)-LinSFE delivers a sensible

description of the equilibrium bidding behavior on average. First, the estimated average bid

function yields a predicted price P̂CLS , which must be statistically identical with the true average

price P ∗, provided that (A)-LinSFE is an adequate description of equilibrium bidding behavior.

Additionally, we can compare P̂CLS to the price P̂OLS predicted from a standard OLS estimation

of the same data. Intuitively, the restriction imposed by (A)-LinSFE increases efficiency of the

estimator, provided that the restriction itself is empirically adequate. Thus, if (A)-LinSFE is a

reasonable behavioral framework, then the CLS prices should not perform worse than their OLS

counterparts in predicting the true average prices. Second, we can check whether the CLS estimates

of β∗ are consistent with the respective bounds given by (6), (17) and (27). Third, we can verify

whether the estimated β∗ match the requirements in Corollaries 2 and 3 that are needed to support

the competition and demand effects on auction prices as observed in the data.

Figure 5 exemplarily shows the estimated supply functions using CLS and OLS for the three

information treatments. The CLS estimates of the supply functions (black lines), together with

their 95% CI’s reside within the theoretical bounds (blue lines). Moreover, the true average price

lies within the 95%-CI of the predicted CLS-price, while OLS seems less accurate in this respect.

A direct comparison of the price estimates, as visualized by Figure 6 in case of full information,

indicates that the CLS prices indeed are closer than the OLS prices to the true average prices.

The graphical impressions in Figures 5 and 6 are corroborated by statistical evidence. Table

50See, e.g., Greene (2012) for a general treatment of this estimator.
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Figure 5: Constrained Linear SFE estimation

Figure 5 plots the CLS estimation of LinSFE in various cases with their 95%-CI’s (gray areas). Blue lines are the boundaries
of all possible (A)-LinSFE. Red dots are market prices predicted by the estimated (A-)LinSFE for CLS, and green dots mark
the observed average market prices. Orange lines correspond to the (unrestricted) OLS estimation on the same data.
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Figure 6: CLS and OLS price predictions (full information)

8 presents the CLS estimation of the supply function α + βP for the full information treatment,

jointly with the predicted prices obtained from CLS and OLS estimations using exactly the same
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data. The middle part of Table 8 directly shows that P̂CLS is closer to P ∗ than P̂OLS in all cases.

Table 8: CLS Supply function estimation: Full information

(s1, 60) (s2, 60) (s4, 60) (s1,100) (s2,100) (s4, 100) (s1, 180)
α̂∗ -9.70 -20.85 -45.26 -0.59 -22.55 -3.07 17.91

(1.43) (1.32) (1.73) (1.28) (1.03) (2.14) (1.43)

β̂∗ 1.97 2.09 1.11 1.73 2.26 0.39 1.21
(0.14) (0.13) (0.09) (0.13) (0.1) (0.04) (0.14)

[β, β] [ 1
4 , 2] [ 3

4 , 6] [ 1
5 , 2] [ 5

12 ,
10
3 ] [ 5

4 , 10] [ 1
3 ,

10
3 ] [ 3

4 , 6]

N 672 1344 924 756 1512 1008 756

P̂CLS 15.08 24.39 59.05 19.66 32.17 92.21 34.82
(0.37) (0.91) (0.74) (0.72) (1.01) (4.59) (2.93)

P ∗ 15.96 23.06 59.26 18.96 31.23 95M 34.82

P̂OLS 2.06 17.47 57.67 14.21 28.55 91.61 34.94
(2.82) (2.24) (1.32) (2.97) (1.96) (3.61) (3.19)

Tests

P̂CLS = P ∗ 0.38 0.53 0.91 0.63 0.67 0.61 0.99

P̂OLS = P ∗ < 0.01 0.06 0.47 0.14 0.35 0.51 0.98

Unit of observation: Subject. α̂∗ and β̂∗ are estimated parameters of LinSFE, and P̂CLS is the predicted
price by the CLS estimates, with clustered SE in parentheses. Restriction (3) was used state-wise. [β, β] is

the range of admissible values for β in LinSFE obtained from (6). P̂OLS is the predicted price by the OLS
estimates of α + βP for the same data. P ∗ is the true average price. For s < 4(= 4) only bids of low-cost
(high-cost) types were estimated. The last two rows reported the p-values of t-tests for the null hypotheses
of no significant difference between the predicted prices and the true average prices. M Median used (instead
of mean) due to data concentration at P = 100.

Moreover, the large p-values in the bottom part of Table 8 imply that the predicted CLS prices are

statistically indistinguishable from the true average prices, while this is not always true for OLS

prices. The most dramatic deviation occurs in situation (s1, 60), where the OLS estimation yields

a predicted price of P = 2.06, which is very far from the actual mean price of 15.96.51

The same conclusion holds for the two uncertainty treatments. With supply uncertainty, the

relevant A-LinSFE estimates (α̂∗, β̂∗) are obtained by estimating q = α + βP from individual

bidding data of all low-cost bidders pooled across states s1 − s3, conditional on restriction (12).

Then, the predicted average price P̂CLS follows from using β̂∗ in (14). Likewise, in case of demand

uncertainty, (α̂∗, β̂∗) are obtained by estimating q = α + βP from individual bidding data of all

low-cost bidders in state s2, and all high-cost bidders in state s4, pooled across demand levels,

conditional on restriction (22). Then, P̂CLS is obtained by using the respective β̂∗ in (24). The

regression results are summarized in Appendix B.3, Tables 9 and 10. In both cases, P̂CLS is strictly

closer to the true average price P ∗ (pooled across the market situations that cannot be discerned

by bidders) than the corresponding P̂OLS .

There is another consistency test for A-LinSFE as an equilibrium concept: We can check whether

the state-wise prices implied by the CLS estimation also match the true average prices in each state

51Specifically, OLS yields q(P ) = 17.55 + 1.19P which, by (3), cannot be part of a LinSFE.
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separately (rather than just averaged across all relevant states). Notably, this hypothesis could

fail, despite a match of the CLS prediction of the average pooled price with the corresponding

true average price, if the average bidding function displays sufficient non-linearity (contradicting

A-LinSFE). As we show in Appendix B.3 (Tables 9 and 10), the data confirms that the state-wise

CLS prices statistically range close to the average true state-wise prices, speaking in favor of the

A-LinSFE concept.

Further, Table 8 shows that all estimates for β̂∗ are consistent with the admissible values of β

in LinSFE as identified by (6).52 The same holds for the two uncertainty treatments (see Tables

9 - 10). Finally, we assess whether the estimates of β∗ match the comparative-static requirements

of Corollaries 2 and 3 as m or Q̄ increases. The corresponding analysis is summarized in Table

11 of Appendix B.3, showing that this indeed is the case. Hence the average bidding behavior, as

estimated by CLS, responds to changes in m and Q̄ in a way that is consistent with the sufficient

conditions required to explain the observed patterns of the auction prices.

Result 6 With full information the predicted CLS prices P̂CLS are closer to the true average price

P ∗ than P̂OLS. Likewise, averaged over all respective market situations, P̂CLS is closer to P ∗ than

P̂OLS in case of supply and demand uncertainty. Additionally, all state-wise prices predicted by

CLS are statistically close to the true average state-wise prices in both uncertainty treatments. The

estimated values of β are consistent with the bounds identified by the (A)-LinSFE approach in all

information treatments. Finally, β̂∗ as estimated by CLS, varies with m and Q̄ in a way consistent

with the empirical patterns of the true average prices P ∗.

3.4 Practitioners vs. student subjects

To assess the reliability of the bidding data generated by student subjects, we conducted a limited

session with practitioners, some of which were former electricity traders.53 The main aim was to see

whether the bidding behavior of practitioners deviates in a meaningful way from student behavior.

We did not detect such a statistical difference, see Figure 7 (Appendix B.5) for an illustration.

4 Conclusion

This article studied market power and competition in a supply-side uniform-price multi-unit auc-

tion under different information structures, featuring either idiosyncratic or aggregate market un-

52The intervals [β, β] are obtained from (6) with parameter values Q̄ ∈ {60, 100, 180}, m ∈ {1, 2}, and c = 10,

P̄ = 50 for states s1 and s2, and c = 50, P̄ = 100 for state s4.
53The session was conducted at Swissgrid, the Swiss electricity transition grid operator, with 14 traders in the full

information and supply uncertainty treatment. We did not use monetary incentives, but instead Swissgrid awarded
three physical prices to the best three traders (a bottle of champagne, Swiss chocolate and alike).
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certainty. Specifically, we considered the cases of complete information, private but perfect cost

information in an independent values setting, and symmetric but incomplete information about

market demand. To our knowledge, no previous study has attempted to elicit how these various

information structures interact with the exerted market power and competition in the context of a

multi-unit auction, and what the resulting consequences for market prices and allocative efficiency

are. Our design encompasses both exclusive and pivotal market power, as well as different levels of

competition as measured by the number of symmetric competitors on the relevant price domains.

The experimental approach gives us the necessary degree of control to assure that any observed

change in auction outcome can be attributed to the changes in the information structure.

We found that average prices are not higher under both forms of uncertainty. In case of supply

uncertainty, the average prices were even significantly, and substantially, below their full informa-

tion counterparts. This contrasts with the theoretical prediction of the single-unit auction case,

according to which there should be no difference in auction prices and revenues on average. It is

already known that multi-unit auctions differ in important respects from their single-unit counter-

parts. For example, Ausubel et al. (2014) show that revenue equivalence across different auction

formats or truthful bidding do not extend to the multi-unit auction case as a consequence of

strategic differential bid shading, which is intrinsic to multi-unit auctions. Likewise, the “linkage

principle”, according to which more information about competitors should lead to more competi-

tive bidding in a single-unit first-price auction with affiliated values (Milgrom and Weber, 1982),

does not extend to the multi-unit auction case (Perry and Reny, 1999).54 Our finding suggests to

add the outcome equivalence between private and complete information to the list of properties

that seem not to transfer easily from the single-unit to the multi-unit auction case.

More generally, our findings caution against market policies aimed blindly at increasing “market

transparency” about the various competitors. If such policies mainly have the effect of increasing

the knowledge of competitors about each other, this could result in a less competitive auction

outcome according to our results. In this respect, the influence of idiosyncratic information on

the multi-unit auction outcome is not fully explored by this article. In particular, we have not

studied the case of correlated costs, nor have we considered that the knowledge about the own

possibilities could be noisy. Theoretical research indicates that improvements in the idiosyncratic

information about the own technology may have a pro-competitive equilibrium effect (Vives, 2011;

Holmberg and Wolak, 2015). A further limitation of our study, as with most experiments, is that

we needed to assume specific and parametrized cost functions. It would be interesting to see future

54As emphasized by Perry and Reny (1999) or Buchanan et al. (2016), the linkage principle has sometimes been
(sloppily) equated with a general sentiment that increasing bidder-side information tends to increase auction revenues
and efficiency by making strategic bidding more competitive.
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empirical studies that assess whether the pro-competitive effect of supply uncertainty we determine

is robust to other multi-unit auction settings. Likewise, future studies could seek to disentangle

the effects of better information about the own technology, as opposed to better information about

the competitors.

Finally, the broad idea behind our behavioral equilibrium concept in case of the two uncertainty

treatments (A-LinSFE), stating that bidders play as if they faced the average market situation with

certainty, could be studied as an alternative to the cognitively demanding structure imposed by

Bayesian Nash Equilibria in other strategic models, such as Cournot or Bertrand competition.
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A Proofs

Proof Lemma 1 Clearly,
∑

j qj(P ) < Q̄ cannot be a SFE, as then P ∗ = Pmax, and any un-

constrained bidder could marginally increase her quantity without reducing the price. Further,∑
j qj(P ) > Q̄ is not possible in any SFE. To see why, note that if

∑
j qj(P ) > Q̄ we either have

that
∑

j qj(P
′) = Q̄ for some P ′ ∈ [0, P ), or

∑
j qj(0) > Q̄. In the former, P cannot occur in a

SFE as the auction mechanism would select P ′ instead, while in the later the equilibrium price is

P = 0, which implies a loss for all bidders with qj(0) > 0. The claim about symmetric SFE then

is obvious. �

Proof Theorem 1 a) “If”. Let P ∈ (c, Pmax]. We need to show that we can find q ∈ F such

that (2) is satisfied. By (2), (P, q(P )), q(P ) ∈ F , is a SymSFE iff q(P ) = Q̄
m+1 and

q′(P ) =
Q̄

m(m+ 1)(P − c)
> 0 (29)

by (2). As these two are the only equilibrium requirements, any q ∈ F that complies with them

forms a SymSFE.

“Only if” Suppose that P ≤ c. Obviously, P < c can never be part of any symSFE because such

a price would entail a loss. Hence suppose that P = c is part of a symSFE, thus q(c) = Q̄
m+1 > 0

and q′(c) > 0. Then, an individual firm j could deviate by marginal bid shading at P = c and

earn a positive payoff. In particular, the continuity of q(P ) assures that there is a P > c such

that 0 < qj(P ) < Q̄
m+1 .55 The remaining claims then follow directly from (29) and the fact that

Π(P ∗) = Q̄
m+1(P ∗ − c).

b) We show that given any symSFE (P ∗, q(P )) a LinSFE can be constructed from it. Let

P ∗ ∈ (c, Pmax] be part of a symSFE, and set β∗ = q′(P ∗) > 0 in (29), which implies that

P ∗ − c =
Q̄

m(m+ 1)β∗
(30)

Using this in α∗ + β∗P ∗ = Q̄
m+1 yields (3). �

Proof Corollary 1 Note that (4) is equivalent to (30), and the first claim follows because

β∗ = q′(P ∗) > 0 and α∗ + β∗P is the first-order Taylor polynomial of q(P ) evaluated at P ∗.

Further, (5) follows from (4), because Π∗ = Q̄
m+1(P ∗ − c), and P ∗ > c because β∗ > 0 by Theorem

1. Because in any symSFE equilibrium profits are determined only by P ∗, any possible symSFE

55While c cannot be supported as a symSFE with a differentiable q(P ) as required by Definition 2, P = c could
be a symmetric SFE if one considers more general supply functions.
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with equilibrium price P ∗ generate the same level of equilibrium profits. �

Proof Proposition 1 Let m = n− 1. By pivotality, a single bidder can always shade bids such

that P ∗ = Pmax results. By playing such a strategy, the bidder can assure herself at least the

minimal pivotal payoff (Q̄−mk̄)(Pmax − c). Now, suppose that c < P ∗ < Pmax is the equilibrium

price of a SFE, hence
∑

j qj(P
∗) = Q̄. In any such SFE the max-min payoff is Q̄

m+1(P ∗−c). For P ∗

to be an equilibrium price, this payoff cannot be below the minimal pivotal payoff, which implies

that

P ∗ ≥ c+ (m+ 1)(Pmax − c)
Q̄−mk̄

Q̄
≡ P̂ .

Hence any P < P̂ cannot be part of a SFE which, together with the observation that c < P̂ < Pmax,

proves the first claim. Given that all bidders are symmetric, Theorem 1 and Corollary 1 both apply

to the price range
[
P̂ , Pmax

]
, meaning that restriction (3) and conditions (4), (5) apply, proving

the second claim. �

Proof Proposition 2 By pivotality, the low-cost bidder can assure herself a quantity of qL(100) =

100, and thus a payoff ΠL = 8200. For P ∗ < 100 to be supported as a SFE, the low-cost bidder

needs at least this payoff. The most favorable condition is where the low-cost bidder can supply

the full 120 units. Direct calculation shows that for this to exceed Π = 8200, a price above 91.67 is

needed, which proves the first claim. Given ∆ = +5, the only deviation candidate is P ∗ = 95, so

suppose that indeed P ∗ = 95 is a SFE with q∗L = 120. Thus the two high-cost bidders jointly sell 60.

Note that each high-cost seller is likewise pivotal, and cannot sell less than 20 units. We now claim

the the high-cost seller with the smallest supposed equilibrium quantity q∗H always has an incentive

to deviate to the price cap. Indeed, this bidder could marginally reduce her quantity, exploiting

her pivotality to push the price to ¯100; the price jump of 5 always compensates such a small loss of

quantity, which shows that P ∗ = 95 cannot be supported as a SFE. A simple and intuitive example

that supports the P ∗ = 100 as a SFE is where both high-cost bidders set qH(P ) = 40 for any P > c,

while the low-cost bidder completely shades his bids up to P = 100, where he sets q1(100) = 120. �

Proof Proposition 3 The proof builds on the following insight.

Lemma 2 Let j = 2, 3 indicate the two high-cost bidders in situation (s3, 100). If the high-cost

supply function profile is such that q2(c) + q3(c) < 20, then seizing the market at P = c is never

optimal for the low-cost firm.
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Proof: A strategy with qL(c) ≥ 100 assures the single low-cost bidder a payoff 80(c − c) = 3200.

Given the profile of the two high-cost types, the low-cost bidder can alternatively choose to shade

bids to achieve P ∗ > c. By pro-rata rationing and given the stated high-cost profiles he can always

assure himself at least qL = 80 in any such equilibrium. The worst possible outcome payoff of such

a strategy for the low-cost bidder then occurs if P ∗ = 55, in which case he still earns a payoff of

45 ∗ 80 = 3600. Hence seizing the market at P ∗ = c cannot be optimal. �

We now prove Proposition 3. If all bidders play the stated strategy, the market clearing price is

P ∗ = c+∆, and the low-cost bidder sells more than qL = 80 by the pro-rata rationing rule, earning

a payoff of more than 80(c+ ∆− c) = 3600. The possible deviations of the low-cost bidder are i)

either to capture the market at P = c or ii) to shade bids beyond P = c+ ∆, which implies higher

marginal costs. Neither of these strategies is a profitable deviation, as we show next. First, market

capturing qL(c) ≥ 100 fails to be a profitable deviation by Lemma 2. Second, the most favorable

situations for the low-cost bidder, given the stated strategy profile of the high-cost bidders, is to

shade bids up to P = 100. This yields a payoff Π̂ = (100− 80) ∗ 90 = 1800 < 3600, showing that

the deviation is not profitable. In turn, high-cost bidders can make positive profits only if P ∗ > c.

Given the stated supply function qL it thus is a best response of the high-cost bidders to bid their

full capacity already at P = c+ ∆. �

Proof Theorem 2 Note first that m̄
m+1 > 2µm̄− 1 implies 1 > m̄µ. “If”. Suppose that β∗ > 0,

and (α∗, β∗) are such that condition (12) holds. Solving (12) for α∗ and using this in (11) yields

(14). This price P ∗ is uniquely determined given (α∗, β∗), and P ∗ > c follows from 1 > µm̄. As

P ∗ yields a strictly positive payoff, P ∗ in (11) indeed maximizes (10). As the aggregate supply

function is (m+ 1)(α∗+ β∗P ), condition (12) together with the state-wise market clearing implies

that the state-wise prices P ∗m are

P ∗m = min

{
c+

Q̄

β

m̄− (m+ 1)(2µm̄− 1)

m̄(m+ 1)
, Pmax

}
. (31)

We claim that E[P ∗m] = P ∗ as a consequence of (13). Let P̂m ≡ c+ Q̄
β
m̄−(m+1)(2µm̄−1)

m̄(m+1) in (31), and

note that P̂m is strictly decreasing in m and E[P̂m] = P ∗. It is easy to verify that P ∗m = P̂m for

m ≥ 0 if and only if (13) holds. Thus (13) immediately assures that E[P ∗m] = P ∗, and (9) holds

because all state-wise markets clear. Thus all requirements of an A-LinSFE are met.

“Only if”. First, β∗ = 0 is impossible in an A-LinSFE because of (11). Hence β∗ > 0 in any

A-LinSFE. By presumption, P̄ = P ∗ and (9) hold, hence also α∗ + β∗P ∗ = Q̄µ. This equation
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together with (11) implies (12). Therefore, P ∗m must be given by (31). Moreover, the presumption

that E[P ∗m] = P ∗ implies (13). For if (13) is violated by some β∗, then this value of β∗ implies

P ∗0 = Pmax < P̂0 and P ∗m ≤ P̂m, which implies E[P ∗m] < E[P̂m] = P ∗, contradiction.

For the remaining claims, note that the range of average prices (15) follows from (14), β∗ > 0

and (13). Finally, (16) follows from (31) and the fact that P̂m = P ∗m, and P ∗m > c follows from

m̄
m+1 > 2µm̄− 1. �

Proof Corollary 3 The first claim follows, as by the proof of Theorem 2 we have P ∗m = P̂m,

where the latter is strictly decreasing in m. Next, the claimed monotonicity in Q̄ can be directly

verified from (14) and (16). Finally, the least competitive bidding is the one where β∗ is as small

as possible, which requires that inequality (13) binds. Then, (16) implies that P ∗0 = Pmax. �

Proof Theorem 3 The proof essentially mimicks the one from Theorem 2. “If” Suppose that

β∗ > 0, and (α∗, β∗) are such that condition (22) holds. Solving (22) for α∗ and using this in (19)

yields (24). This price P ∗ is uniquely determined given (α∗, β∗). As P ∗ yields a strictly positive

payoff (18), P ∗ in (24) indeed maximizes (18). As the aggregate supply function is (m+ 1)(α∗ +

β∗P ), condition (22) together with the state-wise market clearing implies that the state-wise prices

P ∗
Q̄

are

P ∗Q̄ = min

{
c+

mQ̄− (m− 1)Γ

β∗m(m+ 1)
, Pmax

}
. (32)

We claim that E[P ∗
Q̄

] = P ∗ as a consequence of (23). Let P̂Q̄ ≡ c + mQ̄−(m−1)Γ
β∗m(m+1) in (32), and note

that P̂Q̄ is strictly increasing in Q̄ and E[P̂Q̄] = P ∗. It is easy to verify that P ∗
Q̄

= P̂Q̄, ∀Q̄, if and

only if (23) holds. Thus (23) immediately assures that E[P ∗
Q̄

] = P ∗, and (21) holds because all

state-wise markets clear. Thus all requirements of an A-LinSFE are met.

“Only if” First, β∗ > 0 in any A-LinSFE as a consequence of (19). By presumption, P̄ = P ∗ and

(21) hold, hence also α∗+ β∗P ∗ = Γ
m+1 . This equation together with (19) implies (22). Therefore,

P ∗
Q̄

must be given by (32). Moreover, the presumption that E[P ∗
Q̄

] = P ∗ implies (23). For if (23) is

violated by some β∗, then this value of β∗ implies P ∗
Q̄v

= Pmax < P̂Q̄v
and P ∗

Q̄
≤ P̂Q̄, which implies

E[P ∗
Q̄

] < E[P̂Q̄] = P ∗, contradiction.

For the remaining claims, note that the range of average prices (25) follows from (24), β∗ > 0

and (23). Finally, (26) follows from (32) and the fact that P̂Q̄ = P ∗
Q̄

, and P ∗
Q̄
> c follows from

mQ̄1 − (m− 1)Γ > 0, which implies a positive payoff in each state. �

Proof Corollary 4 The first claim holds, as by the proof of Theorem 3 we have P ∗
Q̄

= P̂Q̄,

where the latter is strictly increasing in Q̄. Next, the claimed monotonicity in m can be directly
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verified by differentiating (24) and (26) accordingly. Finally, the least competitive bidding is the

one where β∗ is as small as possible, which requires that inequality (23) binds. Then, (26) implies

that P ∗
Q̄v

= Pmax. �

Proof Proposition 4 Given the stated high-cost supply functions, (28) is a best response for

any possible realization of Q̄. This follows directly from the fact that the low-cost bidder wishes

to seize the entire market in case of exclusive market power (Hefti and Shen, 2019; Prop. 1), and

from Propositions 2 and 3. Offering the full capacity at P > c is a best response of the high-cost

bidders to (28). �

B Further results

B.1 Inexistence of linear symmetric (Bayesian) SFE with supply uncertainty

Suppose that q̄(P ) is a C2-function. Maximizing (7) for a given value of m then yields the first-order

condition

q(P (m)) = mq̄′(P (m))(P (m)− c).

Using q(P ) = α+ βP and market clearing (8) in this equation yields Q̄
m+1 = mβ(P (m)− c), or

P (m) = c+
Q̄

m(m+ 1)β
, ∀m.

At the same time, we need that α + βP (m) = Q̄
m+1 for each m. Jointly, with the last equation,

this yields

α+ βc =
Q̄(m− 1)

m(m+ 1)
, ∀m

which is impossible if α, β are constant.56

B.2 Pro-rata protocol

Let A ≡ {P ∈ [0, Pmax] : q(P ) ≥ Q̄}, and q̂j(P0) = sup{qj(P ) : qj(P ) < qj(P0)}. The auction price

P ∗ either is the lowest price for which q(P ) ≥ Q̄, or the price cap: P ∗ = inf A if q(Pmax) ≥ Q̄;

P ∗ = Pmax else. Given P ∗, the pro-rata auction allocation (q∗1, ..., q
∗
n) is: If q(Pmax) < Q̄ then

q∗j = qj(Pmax); otherwise if q(P ∗) ≥ Q̄ then i) q∗j = q̂j(P
∗) if

∑
j q̂j(P

∗) = Q̄, and ii) q∗j =

q̂j(P
∗) +

qj(P ∗)∑
j qj(P ∗)(Q̄−

∑
j q̂j(P

∗)) if
∑

j q̂j(P
∗) < Q̄.

56While globally linear symmetric Bayesian SFE fail to exist, one could principally seek to derive Bayesian SFE
which are piecewise linear, e.g., using constructions similar to those Baldick et al. (2004) or Genc and Reynolds
(2011) invoke in case of demand uncertainty.
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B.3 CLS estimation in uncertainty treatments

The top parts of Tables 9 and 10 show the CLS estimates in case of supply and demand uncertainty,

respectively. The middle parts of these tables display the corresponding price predictions, P̂CLS ,

jointly with their unrestricted OLS counterparts P̂OLS , and the corresponding true average prices

P ∗. With supply uncertainty, P ∗ is the true average price pooled across competition states s1−s3.

A comparison of P̂CLS , P ∗ and P̂OLS shows, similar to the full information case, that the CLS price

prediction is statistically close to the true average price, and tends to outperform the OLS price

prediction in this respect. With demand uncertainty, P ∗ is the true average price pooled across

demand levels Q̄ = 60, 100, 180 for state s2, and Q̄ = 60, 100 for state s4 (as Q̄ = 180 is degenerate

in s4 due to the design). Again, the CLS price predictions are closer to the true average prices

than their OLS counterparts.

Any given A-LinSFE uniquely determines all state-wise prices in each of the two uncertainty

treatments (see (16) and (26)). Hence a comparison between the state-wise CLS price predictions

with the corresponding true average prices delivers an additional consistency check for whether

A-LinSFE yields reasonable predictions about the average equilibrium outcomes. Specifically, if

average bidding corresponds to an A-LinSFE, then the related state-wise average prices should sit

on the same linear supply function (see Figure 3). The necessary estimation results are summarized

in the bottom parts of Tables 9 and 10. For supply uncertainty, the three possible states are

s = s1, s2, s3. In all three states, we cannot reject the null that the state-wise CLS prices, P̂s, and

the true average prices, P ∗s , are the same (last row of Table 9). Likewise, we cannot reject that the

predicted CLS prices in the various demand states are the same as the corresponding true average

prices in case of demand uncertainty. Moreover, we compared the state-wise prices predicted by

standard OLS (not reported) to their CLS and true average counterparts. We found the CLS

predictions to be closer to the true average prices than their OLS counterparts in all cases.

Next, we verify whether the CLS estimates of β̂∗ are consistent with the admissible values of

β in A-LinSFE. The top part of Tables 9 and 10 contain the range of β identified by (17) in case

of supply uncertainty, and by (27) with demand uncertainty.57 With one exception, all estimated

values of β̂∗ reside in the corresponding interval. In case of s2 and demand uncertainty, the value

β̂ = 1.94 is slightly below the lower bound β = 2. However, this difference is not significant (p-value

0.49 for the t-test that β̂ = 2). Hence we conclude that the estimated β̂∗ are consistent with the

admissible values identified by A-LinSFE.

57The intervals [β, β] are obtained from (17) with parameter values µ = 5/12, m̄ = 1, c = 10, P̄ = 55 and

Q̄ ∈ {60, 80}. We used Q̄ = 80 instead of Q̄ = 100 because low-cost bidders aim at maximally supplying 80 units in
this market situation given their increase in marginal costs.
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Table 9: CLS Supply function estimation: Supply uncertainty

Pooled regression Q̄ = 60 Q̄ = 100

α̂∗ -6.68*** 1.52

(1.02) (1.04)

β̂∗ 1.67*** 1.52***

(0.10) (0.1)

[β, β] [1.11, 2] [1.48, 2.67]

N 2440 2736

P̂CLS 24.98 37.5

(0.91) (1.89)

P ∗ 27.11 38.76

P̂OLS 18.98 37.44

(2.84) (2.07)

P̂CLS = P ∗ 0.17 0.58

P̂OLS = P ∗ < 0.01 0.59

State-wise (s1,60) (s2,60) (s3,60) (s1,100) (s2,100) (s3,100)

P̂s 15.99 21.99 39.96 21 32 51.8

(0.37) (0.73) (1.83) (0.76) (1.51) (2.87)

P ∗
s 15.4 22.24 36.34 20.63 32.36 51.74

P̂CLS = P ∗ (state-wise) 0.51 0.87 0.19 0.83 0.89 0.98

Unit of observation: Subject. α̂∗ and β̂∗ are estimated parameters of A-LinSFE, and P̂CLS is the predicted
price by the CLS estimates, with clustered SE in parentheses. Restriction (12) was used, where the data was

pooled over states s1 - s3. P̂OLS is the predicted price by the OLS estimates of α+ βP for the same data.
P ∗ is the true average price pooled over s1 - s3. [β, β] is the range of admissible values for β in A-LinSFE

obtained from (17). P̂s and P ∗s indicate the state-wise CLS prediction and the true average state-wise price,
respectively. Significance level: ***p < .01.
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Table 10: CLS Supply function estimation: Demand uncertainty

Pooled regression s2 s4

α̂∗ -19.43*** -22.43***

(0.82) (3.17)

β̂∗ 1.94*** 0.72***

(0.08) (0.06)

[β, β] [2, 6] [0.4, 1.33]

N 3960 1080

P̂CLS 39.16 68.64

(1.23) (1.65)

P ∗ 39.16 70.38

P̂OLS 37.40 67.07

(1.88) (3.26)

P̂CLS = P ∗ 0.50 0.54

P̂OLS = P ∗ 0.50 0.41

Demand-wise (s2, 60) (s2, 100) (s2, 180) (s4, 60) (s4, 100)

P̂Q̄ 25.44 35.73 56.32 59.32 77.97

(0.65) (1.09) (1.95) (0.83) (2.48)

P ∗
Q̄

24.5 33.73 59.17 61.05 79.25

P̂CLS = P ∗ (demand-wise) 0.68 0.47 0.40 0.44 0.78

Unit of observation: Subject. α̂∗ and β̂∗ are estimated parameters of A-LinSFE, and P̂CLS is the predicted
price by the CLS estimates, with clustered SE in parentheses. Restriction (22) was used, where the data

was pooled over demand levels 60-180. P̂OLS is the predicted price by the OLS estimates of α+ βP for the
same data. P ∗ is the true average price pooled over 60-180. [β, β] is the range of admissible values for β in
A-LinSFE obtained from (27). The demand-wise CLS prediction and the corresponding true average prices

are indicated by P̂s and P ∗s , respectively. Significance level: ***p < .01.

Table 11: β: Comparative-statics

Condition 1: β′

β > m(m+1)
m′(m′+1)

state state′ β β′ β′

β
m(m+1)
m′(m′+1)

Full information

(s2, 60) (s1, 60) 1.326 1.176 0.887 0.33

(s2, 100) (s1, 100) 1.545 1.307 0.846 0.33

Condition 2: dQ̄
Q̄
> dβ∗

β∗

state state′ β β′ dQ̄
Q̄

dβ∗

β∗

Full information

(s1, 60) (s1, 100) 1.176 1.307 0.667 0.112

(s2, 60) (s2, 100) 1.326 1.545 0.667 0.166

(s4, 60) (s4, 100) 0.484 0.401 0.667 -0.172

(s1, 100) (s1, 180) 1.307 1.085 0.8 -0.170

Supply uncertainty

(s1 − s3, 60) (s1 − s3, 100) 1.178 1.218 0.667 0.035

The table summarizes the estimated values of β and the comparative-static requirements for competition
and demand effects as identified by Corollaries 2 - 3.
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Finally, Table 11 shows that the estimated values of β, as m and Q̄ change, are consistent with

the comparative-static requirements identified by Corollaries 2 and 3, given that we empirically

found the true average prices to significantly increase in Q̄ and decrease in m.

B.4 Data stratification

Table 12: Data stratification

Panel A: Q̄ = 60

s1 s2 s3 s4

TB P < 10; P > 60 P < 10; P > 60 P <= 20; P > 55 P < 40; P > 90

7.10% 4.80% 11.90% 3.60%

TD P < 10 None P > 55 P >= 90

5% 6.70% 5%

TS P < 10; P > 30 P < 10; P > 45 P < 10; P > 55 P < 50; P > 80

7.40% 10.70% 9.50% 4%

Panel B: Q̄ = 100

s1 s2 s3 s4

TB P < 10; P > 45 P < 10; P > 60 P <= 25 None

10.70% 3.60% 3.60%

TD P < 10; P > 60 P = 100 P < 20 None

5% 1.60% 1.70%

TS P < 10; P > 45 P < 10; P > 55 P > 70 None

7.70% 5.30% 6.80%

Panel C: Q̄ = 180

s1 s2 s3 s4

TB None None None None

TD P < 10; P > 65 None None None

5%

TS P < 10; P > 55 P <= 15 None None

16.70% 1.40%

In each cell we show 1) the extreme prices that were excluded (if any); 2) the percentage of the exclusion
for each cell.
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B.5 Practitioners and students
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Figure 7: Comparison between practitioner and student bidding

The figure compares the median bids of students to the median bids of Swissgrid practitioners (full information treatment) in
case of all demand levels. The figure suggests no notable difference in the average bidding schedule.
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