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Abstract. This paper examines multi-battle contests whose extensive form can be represented in terms

of a finite state machine. We start by showing that any contest that satisfies our assumptions decomposes

into two phases, a principal phase (in which states cannot be revisited) and a concluding tie-breaking

phase (in which all non-terminal states can be revisited). Degenerate cases are the finite-horizon contests

on the one hand (e.g., the match race), and the tug-of-war on the other. Next, assuming a probabilistic

technology in each battle, we show that any contest satisfying our assumptions, with either finite or

infinite horizon, admits a unique symmetric and interior Markov perfect equilibrium. This entails, in

particular, a complete characterization of the equilibrium in the tug-of-war. Finally, we explore, both

analytically and numerically, the intricate problem of a contest designer that maximizes expected total

effort. In the absence of a complexity constraint, the revenue-maximizing contest is always a match

race, where the optimal length of the race increases as the technology of the component contest becomes

more noisy. If, however, the complexity constraint is binding, then the optimal contest is typically (but

not always) a tug-of-war.
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1. Prerequisites

1.1 Introduction

In a large variety of environments, dynamic contests arise as a natural form of interaction between two

competing parties (Fudenberg et al., 1983; Harris and Vickers, 1987; Roberts and Samuelson, 1988;

Hörner, 2004; Konrad and Kovenock, 2005, 2009; Agastya and McAfee, 2006; Klumpp and Polborn,

2006; Doraszelski and Markovich, 2007; Fu et al., 2015; Häfner, 2017; Karagözoglu et al., 2018). Given

the temporal dimension of the interaction, the winner of the bilateral competition is not determined

immediately, but through a potentially indefinite sequence of individual battles. While the literature

has focused mainly on the important special cases of the match race and the tug-of-war, a dynamic

contest may in general be governed by a more elaborate set of rules. For example, while initially, a

start-up may be able to use its seed capital for cost-intensive R&D, it may be forced to give up at

a later stage if lagging behind too much. Similar forms of dynamic contests, in which the conditions

for winning change over time, can be found, for instance, in prolonged political conflict (e.g., Organski

and Lust-Okar, 1997), biological struggles (e.g., Reeve et al., 1998), and warfare (e.g., Edwards, 2000).

Still, a flexible way to model general dynamical conflicts has, to our knowledge, been lacking in the

literature. Moreover, the way in which contestants’incentives for effort provision depend on the “rules”

of the conflict is, overall, not particularly well-understood.

In this paper, we consider a class of dynamic games in which two players repeatedly face each

other in the same type of contest. Following the literature, we will refer to the individual encounter

as a component contest (or battle), and to the overall interaction as a (multi-battle) contest. It will be

assumed that, at each stage of the contest, the history of victories in prior battles determines if the

contest ends and is won by one of the players, or if the contest continues. If the contest ends, then

the prize is allocated. Extending the before-mentioned literature on dynamic contests, we assume that

the contest rules can be defined in terms of a finite state machine (Moore, 1956; Rubinstein, 1986;

Salant, 2011). Since the class of such rules is still quite flexible (in particular, too flexible to guarantee

the existence of an equilibrium), we impose three assumptions. These assumptions, referred to as

Exchangeability, Monotonicity, and Centeredness, actually impose some structure on the multi-battle

contest. Indeed, as our first main result shows, any contest that satisfies our assumptions decomposes

naturally into two phases. In the principal phase that is entered into at the start of the contest, every

state is visited at most once. In the subsequent tie-breaking phase, however, every non-terminal state
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may be revisited any number of times. Multi-battle contests with finite horizon, such as the match race,

are degenerate in the sense that there is no tie-breaking phase. Another class of degenerate examples

is composed of tug-of-wars that begin directly with the tie-breaking phase. In fact, it turns out that,

under the assumptions that we impose, any tie-breaking phase is “isomorphic”to a tug-of-war.

Given the salience of the tug-of-war in our characterization result, we consider this particular type of

dynamic contest in some detail. Assuming a battle technology with constant or declining returns, it is

shown that the tug-of-war admits a unique symmetric Markov perfect equilibrium, which is necessarily

interior. We also characterize the equilibrium. While the endogenous quantities such as strategies,

conditional winning probabilities, and expected continuation payoffs may be represented in explicit

form only in special cases, we identify a general (and quite useful) similarity principle of the Markov

perfect equilibrium. This property says that the continuation payoffs in a tug-of-war with any given

number of states can be easily derived from the continuation values in a tug-of-war with more states.

More generally, we prove the existence of a unique symmetric Markov perfect equilibrium for any

multi-battle contest that satisfies our assumptions. Provided that the contest has a finite horizon, it

is of course the standard backward induction argument that is used to determine equilibrium efforts.

The case of contests with a potentially infinite horizon is more complicated. Based upon the structural

description of our multi-battle contests, however, the problem reduces to finding an equilibrium in the

tie-breaking phase. Since we know that this is always a tug-of-war, we may build on our previously

obtained structural results for that case. Thereby, we determine expected payoffs in a large class of

dynamic contests with a potentially infinite horizon.

Equipped with the assurance that the Markov perfect equilibrium is unique and with an effective

method to compute the equilibrium for any functional assumption on the battle technology, we examine

the properties of multi-battle contests from the perspective of a designer that aims at maximizing

total expected effort in the multi-battle contest (i.e., across players and across stages, and without

discounting). Blending our limited theoretical results with findings from extensive numerical analysis,

we arrive at four main conclusions. First, the one-shot contest is actually worse than any dynamic

contest. Second, the optimal unrestricted multi-battle contest is always a match race. Third, the length

of the optimal race is monotonically declining in the decisiveness of the contest technology. Fourth,

if complexity is costly and there is suffi cient noise, then the tug-of-war tends to dominate any other

contest.
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1.2 Related literature

For an introduction to dynamic contests, see Konrad (2009, Ch. 8) or Szymanski (2003, Sec. 2.6).

Following the ground-breaking work by Fudenberg et al. (1983), a key contribution to the literature

has been Harris and Vickers (1987) who studied the match race and the tug-of-war assuming that each

battle is a probabilistic contest as in Lee and Wilde (1980). They showed existence of a Markov Perfect

Equilibrium for the tug-of-war, and also offer conditions suffi cient for uniqueness.1 Below, we build

on their insights, yet using a different contest technology. Grossman and Shapiro (1987, first draft

1985) considered a related model of a race with uncertainty, yet restricted attention to the case of two-

stages. Judd (2003, likewise, first draft 1985) offers an interesting model of a multi-stage race in which

stochastic progress is measured on a continuous scale. Taylor (1995) allows for incomplete information

in a dynamic research tournament.

After this initial period, both the match race and the tug-of-war have been studied quite thoroughly

under the assumption of a deterministic contest technology. In this case, tie-breaking rules may matter

for the equilibrium outcome. Stipulating that the player with the positive continuation value wins,

Konrad and Kovenock (2005) identified an intuitive equilibrium outcome in which positive levels of

effort are expended only at the initial state. In contrast, Agastya and McAfee (2006), see also McAfee

(2000), assumed that a state is revisited if both efforts are zero, and showed that a stalemate of this

type may occur in a Markov perfect equilibrium. In an applied variant of the tug-of-war, McBride and

Skaperdas (2006) assumed that an additional bias supports the initial victor. Fu et al. (2015) point

out that dynamic team contests behave entirely different than contests between individuals. Häfner

(2017) considered a tug-of-war between groups, where in each stage, a pair of agents is matched under

incomplete information. He finds a unique Markov-perfect equilibrium with interesting comparative

statics. Karagözoglu et al. (2018) were first in proving existence and uniqueness of a Markov perfect

equilibrium of a tug-of-war with a lottery technology and quadratic costs, which corresponds in our

setting to the special case of a Tullock contest with parameter R = 1
2 .
2 Correspondingly, our Theorem 2,

including also the similarity principle for continuation payoffs, extends their equilibrium characterization

1See also the working paper version (Harris and Vickers, 1986), as well as the stochastic-process difference-form formu-
lation of the tug-of-war (Budd et al., 1993).

2Karagözoglu et al. (2018) multiply the first-order conditions with each other and solve for the equilibrium effort. As
they note, however, that trick works only for the case of quadratic costs. Karagözoglu et al. (2018, p. 22) conclude:
“Whether our results generalize to an impact function of the form, f(x) = xr, where r < 1 or 1 < r ≤ 2 is far from
trivial, and hence left as an open question.”Since their r corresponds to 2R in our notation, Section 4 of the present paper
addresses precisely this open research question.
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in a number of ways. Klumpp and Polborn (2006) considered races with Tullock technology. Assuming

a deterministic contest technology, Konrad and Kovenock (2009) studied races with heterogeneous

deadlines, a potential headstart for one player, and positive intermediate prizes. Multi-player races have

been considered by Doğan et al. (2018). None of these contributions, however, uses finite automata to

define a flexible class of dynamic multi-battle contest structures. Neither does any of these contributions

characterize the Markov perfect equilibrium in the tug-of-war for a general class of contest technologies.3

In our setting, the effort provision is the lower the more unbalanced the state. This is in line with

contest models in the tradition of Dixit (1987), for instance. However, in a framework with infinitely

many stages and no premature end, Hörner (2004) shows that the leader in a highly unbalanced state

may exert excessive effort so as to keep the follower at a safe distance.

The type of finite state machine introduced below is known as Moore (1956) machines. Rubinstein

(1986) used finite automata to model the strategy choice of boundedly rational players in infinitely

repeated non-cooperative games. Salant (2011) employed finite automata to model boundedly rational

choice. In contrast to those papers, we use the Moore machine to model a system of rules for a multi-

battle contest.

1.3 Overview over the paper

The remainder of this paper is structured as follows. Multi-battle contests are introduced in Section

2. Section 3 presents the characterization result for multi-battle contests that satisfy our definitions.

The tug-of-war is discussed in Section 4. Section 5 deals with the existence of a unique Markov perfect

equilibrium. Revenue-maximizing contests are studied in Section 6. Section 7 concludes. The analysis

of the tug-of-war and other technical derivations have been relegated to an Appendix.

2. Multi-battle contests

2.1 Finite state machines

Two risk-neutral contestants i ∈ {1, 2} repeatedly face each other in the same type of component contest

(or battle), until the rules of the game determine that the contest ends, in which case one of the players is

declared the winner and the other is declared the loser. The winner of the multi-battle contest receives
3Dynamic contests are nice objects for experimental analysis as well. Zizzo (2002) tests the race (best-of-19) in the lab.

Deck and Sheremata (2015) offer an experimental analysis of the tug-of-war with all-pay technology. Mago and Sheremeta
(2017) implement the race (best-of-three) as an experiment with the all-pay auction as CSF. Dechenaux et al. (2015)
survey the literature.
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a prize of value V > 0, while the loser obtains no prize. Without loss of generality, the prize will be

normalized to one, i.e., V = 1. As mentioned in the Introduction, we will consider multi-battle contest

rules that may be expressed in terms of a finite deterministic state machine.

Definition 1. A multi-battle contest M is composed of:

(i) a finite set of states Ω, including an initial state ωinit ∈ Ω;

(ii) a partition Ω = Ωact ∪ Ω1 ∪ Ω2 of Ω into three pairwise disjoint and nonempty subsets Ωact, Ω1,

and Ω2; and

(iii) a transition map α : Ωact × {1, 2} → Ω.

Any state ω ∈ Ωact will be referred to as an active state, and any state ω ∈ Ωi, with i ∈ {1, 2}, will be

called a winning state for player i. The interpretation is that the multi-battle contest starts (i.e., the

machine begins to run) at time t = 1 at state ω1 = ωinit. Then, for any t ≥ 1 such that ωt ∈ Ωact, there

is a battle at time t. Depending on the winner it ∈ {1, 2} of the battle at time t, the machine transits

into a new state ωt+1 = α(ωt, it). The multi-battle contest ends (i.e., the machine stops) when ωt ∈ Ωi

for some i ∈ {1, 2}. Then, player i (player j ∈ {1, 2}, j 6= i) is declared the winner (the loser) of the

multi-battle contest.

The following two examples illustrate the definition.

Example 1 (“Match race”or “Win-with-M”). LetM ≥ 1 be an integer. In a match race of length

M , the set of active states is given by Ωact = {ω(m1,m2) : m1,m2 ∈ {0, ...,M − 1}}, and the initial state

by ωinit = ω(0,0). Terminal states are collected in sets Ω1 = {ω(M,m2) : m2 ∈ {0, ...,M − 1}}, and Ω2 =

{ω(m1,M) : m1 ∈ {0, ...,M − 1}}. Further, the transition map is given by α(ω(m1,m2), 1) = ω(m1+1,m2)

and α(ω(m1,m2), 2) = ω(m1,m2+1), respectively, where m1,m2 ∈ {0, ...,M − 1}.

Example 2 (“Tug-of-War” or “Win-by-N”). Let N ≥ 1 be an integer. In a tug-of-war of (equi-)

distance N , or with (2N − 1) active states, it is specified that Ωact = {ω−(N−1), ..., ωN−1}, ωinit = ω0,

Ω1 = {ωN}, and Ω2 = {ω−N}. In this case, the transition map is given by α(ωn, 1) = ωn+1 and

α(ωn, 2) = ωn−1, for any n ∈ {−(N − 1), ..., N − 1}.

Thus, in a match race of length M , a player having won M battles wins the multi-battle contest, where

the improper case M = 1 corresponds to the one-shot contest. We will refer to a race of length M

alternatively as a win-with-M . It is easy to see that the maximum number of consecutive battles in
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a race of length M is (2M − 1). Therefore, for instance, a race of length M = 2 (of length M = 3)

corresponds to what is known in the literature as a best-of-three (best-of-five) multi-battle contest. In

the tug-of-war of distance N , however, a player needs to win N battles more than the opponent. Again,

the improper case N = 1 corresponds to the one-shot contest. Note that, for N ≥ 2, the tug-of-war has

a potentially infinite horizon. We will refer to a tug-of-war of distance N alternatively as a win-by-N .

2.2 Symmetric and minimal contests

It is not diffi cult to see that two distinct automata may describe multi-battle contests that are “iso-

morphic”for the contestants. For example, there could be states in the Moore machine that are never

reached in finite play. Even if all states are reachable, there may be redundancies in the representation.

To make this precise, we introduce the following definitions. Given a multi-battle contestM, let Hi(M)

denote the set of finite histories for each player i ∈ {1, 2} that end in a state ωT+1 ∈ Ωi. We say that

two multi-battle contests M and M′ are equivalent (M ∼ M′ in short) if H1(M) = H1(M′) and

H2(M) = H2(M′).

For a given multi-battle contest M with state space Ω, we call the number of elements of Ω the

complexity γ(M) ofM. Note that the complexity counts not only active, but also terminal states. For

example, the win-with-two (i.e., a race of length two) has a complexity of eight states, because there

are four active and four terminal states. Clearly, by merging terminal states, an equivalent contest can

be found with no more than γ = 6 states. This motivates the following definition.

Definition 2. A multi-battle contest M is minimal if, for any multi-battle contest M′ equivalent to

M, we have γ(M) ≤ γ(M′).

Assumption 1. The contest is minimal.

This assumption will be tacitly used in the proofs. However, in our illustrations of specific contests, it

proves useful to work with non-minimal contests. Obviously, Assumption 1 is not a limitation at all in

the sense because it is not structural but only about the representation of contests. Note also that, in a

minimal contestM in which both contestants have the opportunity to win, the number of active states

equals γ(M)− 2.

We will focus on multi-battle contests that are ex-ante symmetric for the players.

Definition 3. A multi-battle contest M is called symmetric if there is a bijection π : Ω → Ω such
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that (i) π(ωinit) = ωinit, (ii) π induces a bijection from Ω1 onto Ω2, and (iii) π(α(ω, i)) = α(π(ω), j)

for any ω ∈ Ωact and i, j ∈ {1, 2} with j 6= i.

The interpretation of the symmetry condition is straightforward. Since, by Assumption 1, every state is

reachable from the initial state ωinit, a straightforward induction argument may be used to show that, if

a multi-battle contest is symmetric, then the bijection π is unique. We will call a state ω ∈ Ω balanced

if π(ω) = ω.

For instance, in Example 1, the mapping π maps any state ω(m1,m2) ∈ Ω to ω(m2,m1). In particular,

a state ω(m1,m2) is balanced if and only if m1 = m2 ∈ {0, ...,M − 1}. Similarly, in Example 2, the

mapping π maps any state ωn ∈ Ω to ω−n. Moreover, state ωn is balanced if and only if n = 0.

Assumption 2. The contest is symmetric.

2.3 Component contests

Given effort levels x1 ≥ 0 for player 1 and x2 ≥ 0 for player 2, consider a battle with stage payoffs

Π1(x1, x2) = p(x1, x2)V1 − x1 (1)

Π2(x1, x2) = (1− p(x1, x2))V2 − x2, (2)

where V1 and V2, respectively, are player 1’s and player 2’valuations, and p : R+ × R+ → [0, 1] is the

contest success function (CSF), capturing the probability that contestant 1 wins the battle. Constant

unit costs are assumed for expositional simplicity. Indeed, as usual, the consideration of continuously

differentiable, convex and strictly increasing cost functions that vanish at zero effort can be accomplished

by a simple transformation of the effort variable.

A CSF is called concave if p(·, x2) is concave on R+, for any x2 ≥ 0; and strictly concave (in the

interior) if p(·, x2) is strictly concave on R+, for any x2 > 0. The CSF p is strictly monotone (in the

interior) if p(x̂1, x2) > p(x1, x2), for any x̂1 > x1 ≥ 0, and x2 > 0; anonymous if p(x2, x1) = 1−p(x1, x2),

for any x1 ≥ 0 and x2 ≥ 0; differentiable (in the interior) if ∂p(x1, x2)/∂x1 exists and is continuous

for any x1 ≥ 0 and x2 > 0; competitive if p(0, x2) = 0 for any x2 > 0; homogeneous (of degree zero)

if p(λx1, λx2) = p(x1, x2) for any λ > 0, x1 ≥ 0, and x2 ≥ 0. Following the elegant treatment of Baik

(2004), Malueg and Yates (2005, 2006), amongst others, we will impose the following assumption.

Assumption 3. The component CSF is concave, strictly monotone, anonymous, continuously differ-

entiable, competitive, and homogeneous.
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Define auxiliary functions f(y) = p(y, 1) and φ(y) = f(y)− yf ′(y). Then, f is strictly increasing, twice

differentiable, and concave, and satisfies the functional equation f(1/y) = 1− f(y).4 Moreover, φ(·) is

continuous and strictly increasing, with φ(0) = 0 and σ ≡ φ(1) ∈ (0, 1
2).

We may express equilibrium efforts and payoffs in terms of the CSF as follows.

Lemma 1. Impose Assumption 3. Then the probabilistic contest admits a pure-strategy Nash equilibrium

if and only if either (i) V1 > 0 and V2 > 0, or (ii) V1 ≤ 0 and V2 ≤ 0. If the equilibrium exists, it is

unique. In case (i), equilibrium effort levels are given by

x∗1 = V2f
′
(
V2

V1

)
and x∗2 = V1f

′
(
V1

V2

)
, (4)

and equilibrium payoffs are given by

Π∗1 = V1φ(
V1

V2
) and Π∗2 = V2φ(

V2

V1
). (5)

In particular, equilibrium payoffs are positive. In case (ii), x∗1 = x∗2 = 0, Π∗1 = V1/2 and Π∗2 = V2/2.

There is a wide variety of probabilistic specifications that are consistent with Assumption 3. Some

examples are listed below.

Tullock CSF. Following Tullock (1980), one may assume that player 1’s probability of winning is given

as pTUL(x1, x2) = xR1 /(x
R
1 + xR2 ) for some R ∈ (0, 1], with the convention that the ratio is read as

1/2 if x1 = x2 = 0. For the Tullock case, fTUL(ξ) = ξR

1+ξR
with derivative f ′TUL(ξ) = RξR−1

(1+ξR)2
, and

φTUL(ξ) = ξR(ξR+1−R)

(1+ξR)2
. For R = 1, this CSF is a simple lottery.5

Serial CSF . Let α ∈ (0, 1). Player 1’s probability of winning is given as pSER(x1, x2) = 1− 1
2 (x2/x1)α

if x1 ≥ x2, and by pSER(x1, x2) = 1
2 (x1/x2)α if x1 < x2. Again, we have the convention that the ratio

x1/x2 is read as 1/2 if x1 = x2 = 0. This specification has been introduced by Alcalde and Dahm

(2007).

Relative-difference CSF . Finally, let pRD(x1, x2) = (1+τ)x1+(1−τ)x2
2(x1+x2) , where τ ∈ (0, 1]. This specification

is a special case of a functional form introduced by Beviá and Corchón (2015). It corresponds to a
4 Indeed,

f(
1

x
) = p(

1

x
, 1) = p(1, x) = 1− p(x, 1) = 1− f(x). (3)

5The case R ∈ (1, 2) may lead to battles in which one of the players randomizes, while the case R ≥ 2 renders each
battle equivalent to an all-pay auction. In both cases, one of the two players ends up with a zero expected payoffs, which
leads to strategic considerations covered, in essence, already by Agastia and McAfee (2006) and Konrad and Kovenock
(2005).
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convex combination of a Tullock contest with parameter R = 1, which receives a weight of τ , and a coin

toss, which receives a weight of 1− τ .

However, the differentiability condition in Assumption 3 excludes the all-pay auction, which has been

studied before by Agastya and McAfee (2006) and Konrad and Kovenock (2005). The homogeneity

assumption excludes lotteries with noise, as studied by Blavatskyy (2010), for instance. Homogeneity

is crucial for our analysis of the tug-or-war, so we have presently no way of including such cases, even

though it seems plausible that our results should extend. The main reason for Assumption 3 is that we

can thereby ensure existence of a unique pure-strategy Nash equilibrium.

2.4 Histories, strategies, and Markov perfect equilibrium

By a finite history h, we mean a finite sequence (i1, i2, ..., iT ) of players in {1, 2} (where it is interpreted

as the winner of the t-th battle), such that there is a finite sequence (ω1, ω2, ..., ωT+1) of states in Ω

satisfying (i) ω1 = ωinit, and (ii) ωt ∈ Ωact with ωt+1 = α(ωt, it), for any t ∈ {1, ..., T}. In this case, we

will say that h is of length T ≥ 0 and ends in state ωT+1. Denote by H the set of all finite histories

h. Similarly, an infinite history h consists of a sequence {it}∞t=1, such that there is a sequence {ωt}∞t=1

satisfying (i) ω1 = ωinit, and (ii) ωt ∈ Ωact with ωt+1 = α(ωt, it), for any t ∈ N ≡ {1, 2, ...}. A terminal

history h is either a finite history of length T such that ωT+1 ∈ Ω1 ∪ Ω2, or an infinite history. A

finite history h ∈ H given by finite sequences (i1, i2, ..., iT ) is a subhistory of some history h′ of length

T ′ ∈ {T, T + 1, ...}∪{∞} given by (finite or infinite) sequences (i′1, i
′
2, ...) if it = i′t for any t ∈ {1, ..., T}.

We call a state ω ∈ Ω reachable if there is a finite history h ∈ H ending in ω = ωT+1. A recurrent state

ω ∈ Ω is a state that can be visited more than once during play.

Let Hact ⊆ H denote the set of histories h ∈ H that end in an active state ωT+1 ∈ Ωact. A pure

strategy ξi : Hact → R+ ≡ [0,∞) for player i specifies an action xi = ξi(h) ≥ 0 for any h ∈ Hact.

We denote by Si the set of pure strategies for contestant i ∈ {1, 2}. Given a finite history h ∈ H,

we consider the set Hterm(h) of terminal histories that have h as a subhistory. Then, given a pair of

pure strategies (ξ1, ξ2) ∈ S1 × S2, and given a contest success function {pi(·, ·)}i=1,2, we may define the

outcome of the game as the probability distribution over Hterm(h) induced by (ξ1, ξ2).6

6While Hterm (h) is an infinite set, there are no hidden technical obstacles here. To understand why, note that Hterm (h)
may be understood as a projection of the product space {1, 2}N, where we identify two points if they go through the same
terminal state. Since the projection is surjective, we obtain a sigma field on Hterm (h) in a natural way, and may consider
the push-forward measure on the image space Hterm (h).
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Given a finite terminal history and a finite sequence of effort choice

((x1
1, x

1
2), ..., (xT1 , x

T
2 )) ∈ R2T

+ , (6)

we assign payoff 1 −
∑T

t=1 x
i
t to a multi-battle contest-winning player i, and similarly, −

∑T
t=1 x

i
t to a

multi-battle contest-loser player i, at any finite terminal history of length T . Further, payoff 1
2−
∑∞

t=1 x
i
t

is assigned to player i from any infinite terminal history.

Given a finite history h ∈ H, and a pair of pure strategies (ξ1, ξ2), player i’s continuation payoff at

h is the expectation of terminal payoffs over the resulting outcome.7 A pair of pure strategies (ξ1, ξ2) is

a subgame-perfect equilibrium if, for any finite history h ending in ωT+1 ∈ Ωact, each player i ∈ {1, 2}

maximizes her continuation payoff at ωT+1 by choosing ξi(h). A pure strategy is Markovian if ξi(h)

may depend on the finite history h only through the most recent state ωT+1 (Ericson and Pakes, 1995;

Maskin and Tirole, 2001). A subgame-perfect equilibrium is a Markov perfect equilibrium (MPE) when

it employs Markovian strategies. We call an MPE interior if players exert a positive effort at all active

states.

3. Characterization result

3.1 Assumptions

It turns out that, for general multi-battle contests, a MPE need not exist (for examples, see Section 5).

To avoid this non-existence problem, and also because we had the impression that not all multi-battle

contests make sense (i.e., the definition appeared to us as being still too flexible), we will impose the

following three assumptions.

Assumption (E for Exchangeability). For any ω ∈ Ωact such that ω′ ≡ α(ω, 1) ∈ Ωact and

ω′′ ≡ α(ω, 2) ∈ Ωact, we have α(ω′, 2) = α(ω′′, 1).

Assumption (M for Monotonicity). For any ω ∈ Ωact and i ∈ {1, 2}, there is a finite sequence

ω1, ..., ωL with L ≥ 1 such that (i) ω1 = ω, (ii) ωl ∈ Ωact with ωl+1 = α(ωl, i), for l ∈ {1, ..., L − 1},

and (iii) ωL ∈ Ωi.

7This expected payoff exists in the extended real line R ∪ {−∞} because a contestant’s expected revenues are finite.
Indeed, a contestant may not collect more prize money than V = 1. However, since the contest is repeated, and the outcome
of each battle uncertain, there is no upper limit to the contestant’s total of ex-post delivered efforts. Economically, it should
be obvious that no player ever finds it optimal to choose a pure strategy that leads to a negative expected payoff. We may
therefore assume, without loss of generality, that the continuation payoff is finite.
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Assumption (C for Centeredness). There is at most one state ω ∈ Ω that is both recurrent and

balanced.

Exchangeability captures the requirement that any two finite histories that differ only in the order in

which the last two contests have been won end up in the same state. For instance, Exchangeability

would hold within a tennis game, but it would fail to hold in a tennis match considering points as

battles. To understand why, suppose that, at a score of 40:15 in the first game of the match, the server

makes a point and wins the game, but loses the first point of the next game, so that the score is 1:0

0:15. This is certainly a situation that strategically differs from the one reached if the server first loses

and then wins a point, resulting in the score 1:0 0:0. The possibility that a tennis match can be won

with less than half of the total points is well-known, of course.8

Next, Monotonicity says that, starting from any active state, winning all battles in a row will let you

win the multi-battle contest. Monotonicity implies, in particular, that in order to win the multi-battle

contest, a player must necessarily win the last battle. We will later see that this assumption is crucial for

equilibrium existence. It may also be noted that Monotonicity combined with Exchangeability excludes

multi-battle contests in which the outcome is determined by simple majority. Indeed, this would be

pointless because the winner may be determined before the last battle.9

Finally, Centeredness says that there is at most one balanced state that may be revisited after a

sequence of battles. As we show below, both Exchangeability and Monotonicity are indispensable for

equilibrium existence. Centeredness, however, does not seem crucial for existence but dropping it leads,

as will become clear below, to a less intuitive class of multi-battle contests.

3.2 Strongly connected components

A state ω ∈ Ω is called finite if there exists T ∗ = T ∗(ω) ≥ 0 such that, for any finite history h ending

in ω = ωT+1, we have T ≤ T ∗ We will say that a multi-battle contest has a finite horizon if each state

is finite. Conversely, a multi-battle contest that does not possess a finite horizon will be referred to as

having an infinite horizon. A strongly connected component (SCC) is a maximal subset C ⊆ Ωact with

the properties that (i) C has at least two elements, and (ii) any state ω ∈ C can be reached from any

other state ω′ ∈ C. Clearly, an SCC consists of recurrent states only.

Lemma 2. A multi-battle contest has an infinite horizon if and only if it has an SCC.
8Wright et al. (2013) estimate that this anomaly occurs in approximately 5 percent of all tennis matches.
9This would change, however, if stage prizes are admitted. See Section 7 for discussion.
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Proof. Immediate from the definitions. �

3.3 Statement of the result

The following is the first main result of this paper. It is crucial for our analysis of general multi-battle

contest structures.

Theorem 1. Impose Assumptions (E), (M), and (C). Then, either the multi-battle contest has a finite

horizon, or there is precisely one multi-battle contest-ending tug-of-war that is reached after a maximum

finite number of steps.

Two simple classes of contests that are consistent with the prediction of Theorem 1 are the following.

Example 3 (“Win-with-M-or-by-N”) This finite-horizon contest may be thought of as a match

race of length M ≥ 2 that is ended prematurely if one of the contestants has an advantage of at least N

points over the opponent. Note that for N ≥ M , this is equivalent to a race of length M . Conversely,

if N = 1, then we have a one-shot contest. Therefore, we will assume that N ∈ {2, ...,M − 1}. The

simplest non-trivial case is the win-with-three-or-by-two, which is illustrated in Figure 1(a).

Example 4 (“Win-with-M-and-by-N”) This infinite-horizon contest may be thought of as a match

race of length M ≥ 2 that is continued until one of the contestants has an advantage of at least N

points over the opponent. For N ≥ M , this is equivalent to a tug-of-war of distance N . Conversely,

if N = 1, then we have a match race. Therefore, we will assume again that N ∈ {2, ...,M − 1}. The

simplest non-trivial case, the win-with-three-and-by-two, is illustrated in Figure 1(b).10

Figure 1. (a) Win-with-3-or-by-2; (b) Win-with-3-and-by-2

10A another example is the win-with-four-and-by-two, which captures the counting system in a tennis game.
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In the remainder of this subsection, we prove Theorem 1. The proof is based on a sequence of lemmas.

Suppose first that the multi-battle contest has an infinite horizon. Then, by Lemma 2, there exists an

SCC.

For states ω, ω′ ∈ Ω and a player i ∈ {1, 2} such that α(ω, i) = ω′, we say that the move from ω to ω′

is irreversible if there is no finite sequence (i1, i2, ..., iT ) of players in {1, 2} (where it is the winner of the

t-th battle) and a finite sequence (ω1, ω2, ..., ωT+1) of states in Ω such that (i) ω1 = ω′, (ii) ωT+1 = ω,

and (iii) ωt ∈ Ωact with ωt+1 = α(ωt, it), for any t ∈ {1, ..., T}. The following lemma shows that any

irreversible move leading away from any state in an SCC leads to a terminal state.

Lemma 3. Impose Assumptions (E) and (M). Suppose that ω ∈ Ω is recurrent and that the move to

ω′ ≡ α(ω, 1) is irreversible. Then ω′ is terminal.

Proof. Since ω is recurrent, it is contained in some SCC C (see Figure 1 for illustration). We claim

that ω′ = α(ω, 1) is terminal. Suppose not. Then ω′ ∈ Ωact. Moreover, since ω is recurrent, and

the move to ω′ is irreversible, ω′′ = α(ω, 2) ∈ C must be recurrent. In particular, ω′′ ∈ Ωact. By

Exchangeability, α(ω′, 2) = α(ω′′, 1) ≡ ω′′′. Further, by Monotonicity, a player winning a battle and

ending the multi-battle contest must win the multi-battle contest. Hence, it is impossible that ω′′′ is

a terminal state. Hence, ω′′′ ∈ Ωact. Next, since the move from ω to ω′ is irreversible, so is the move

from ω to ω′′′. But, ω and ω′′ lie in the same SCC. Hence, the move from the recurrent state ω′′ to

ω′′′ = α(ω′′, 1) is irreversible. By induction, and the finiteness of the state space, there is an iteration,

at which a repeated win for player 2 leads back to ω. This, however, is in conflict with Monotonicity.

The claim follows. �

Figure 2. Proof of Lemma 3.

Thus, any state that is reached by an irreversible move from a recurrent state is terminal. To prove

the Theorem, it remains to be shown that (i) there cannot be more than one SCC in the multi-battle

contest, and (ii) any symmetric SCC is a tug-of-war.
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Lemma 4. Impose Assumptions (E) and (M). Let C be an SCC. Then C can be reached from any

active state ω ∈ Ωact. In particular, there is at most one SCC in the multi-battle contest.

Proof. Note that Monotonicity implies that ω0 ∈ Ωact. To provoke a contradiction, suppose that there

is some active state ω ∈ Ωact such that C cannot be reached from ω. By Assumption 1, however, ω can

be reached from ω0, i.e., there is a finite sequence of states ω1, ..., ωK and of players i0, .., iK−1 ∈ {1, 2}

such that (i) ωk ∈ Ωact for k = 1, ...,K − 1, (ii) ωk+1 = α(ωk, ik) for k = 0, ...,K − 1, and (iii)

ωK = ω. Since C can be reached from ω0, but cannot be reached from ω, there must be some index

k ∈ {0, ...,K − 1} such that C can be reached from ωk but not from ωk+1. Without loss of generality,

ik = 1. Since ωk ∈ Ωact, and invoking Monotonicity, there is a finite sequence ω̂1, ..., ω̂L with L ≥ 1

such that (i) ω̂1 = ωk, (ii) ω̂l+1 = α(ω̂l, 2) for l ∈ {1, ..., L − 1}, and (iii) ω̂L ∈ Ω2. Note now that

ωk+1 = α(ωk, 1) ∈ Ωact. If α(ωk, 2) is terminal, then we have a contradiction (because there is no SCC

at all reachable from ωk). Therefore, ω̂2 = α(ωk, 2) is active, and we have by Exchangeability a state

α(ω̂2, 1). By Monotonicity, the state α(ω̂2, 1) is active. From α(ω̂2, 1), we cannot reach C, because this

would imply we can reach C from ωk+1, which is not true. However, we can reach C from ω̂2. By

induction, we see that only repeated battle wins by player 2 can bring us from ωk to C, and that just

one battle win of player 1 on the way leads us to states from which C cannot be reached anymore. But

this means that any path in C consists of wins of player 2 exclusively. However, this is inconsistent with

Monotonicity! This proves the first assertion. The second assertion follows directly from the first using

Lemma 3.

Figure 3. Proof of Lemma 4.

The following lemma, which crucially exploits the symmetry of the contest, identifies an important

14



structural property of the tie-breaking phase.

Lemma 5. Impose Assumptions (E) and (M). Then any SCC contains a balanced state. If, in addition,

Assumption (C) holds, then the SCC is a tug-of-war.

Proof. Recall that ω0 has the property that π(ω0) = ω0. If α(ω0, 1) is terminal, then there is no

SCC, and we are done. Therefore, α(ω0, 1) is active. By Symmetry, the same is true for α(ω0, 2).

Therefore, by Exchangeability, ω1 ≡ α(α(ω0, 2), 1) = α(α(ω0, 1), 2). By monotonicity, ω1 is active.

Moreover, π(ω1) = ω1. If α(ω1, 1) is terminal, then there is no SCC, and we are done (indeed, if

α(ω1, 1) is terminal, then α(α(ω0, 1), 1) is terminal by Monotonicity. By a symmetry argument, α(ω1, 2)

is terminal as well and hence again, α(α(ω0, 2), 2) is terminal by Monotonicity. This shows that all

paths lead to a terminal state in finitely many steps, i.e., there indeed exists no SCC in this case).

Thus, α(ω1, 1) is active. By Symmetry, the same is true for α(ω1, 2). Therefore, by Exchangeability,

ω2 ≡ α(α(ω1, 2), 1) = α(α(ω1, 1), 2). By monotonicity, ω2 is active.

Figure 4. Proof of Theorem 2

Repeating this argument, we have an infinite sequence of active states {ωk}∞k=0 such that π(ωk) = ωk

for any k. Since the state machine has only finitely many states, there is a state ωk in that sequence

that belongs to the SCC. This proves the first assertion of the theorem.

Assume next that there is precisely one state ω ∈ C such that π(ω) = ω. Clearly, ω ∈ Ωact. By

Monotonicity, there is a finite sequence ω1, ..., ωL with L ≥ 1 such that (i) ω1 = ω, (ii) ωl ∈ Ωact with

ωl+1 = α(ωl, 1) for l ∈ {1, ..., L − 1}, and (iii) ωL ∈ Ω1. Moreover, there is a finite sequence ω̂1, ..., ω̂K

with K ≥ 1 such that (i) ω̂1 = ω, (ii) ωk ∈ Ωact with ω̂k+1 = α(ω̂k, 2) for k ∈ {1, ...,K − 1}, and

(iii) ωK ∈ Ω2. By Symmetry, L = K, and π(ω2) = ω̂2. If L = 2, then any immediate successor of

ω is terminal, and we obtain a contradiction. Thus, L > 2. In this case, however, ω2 and ω̂2 are
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active, and Exchangeability implies that α(ω2, 2) = α(ω̂2, 1). Note that this state is balanced, so that

α(ω2, 2) = α(ω̂2, 1) = ω. Thus, if L = 3, then we are done. If L > 3, then we can iteratively use

Exchangeability to see that α(ωl+1, 2) = ωl and that α(ω̂k+1, 2) = ω̂k. This proves the second assertion,

and hence, the lemma. �

This concludes the proof of Theorem 1.

3.4 Tightness

We conclude this section with two examples that illustrate the tightness of our assumptions.

Example 5. The multi-battle contest shown in Figure 5 below satisfies Exchangeability and Monotonic-

ity. Lemma 5 shows, however, that the SCC appearing in Figure 5 cannot be a SCC. This SCC is actually

symmetric, but it does not contain a balanced state. Thus, Assumption 1 (symmetry) is crucial for

obtaining the conclusion of Lemma 5.

Figure 5. An SCC without balanced state.

Example 6. Figure 6 shows two SCCs with more than one balanced state. Thus, these multi-battle

contests are inconsistent with Centeredness. The SCC in panel (a) may be reduced to a tug-of-war,

but note that the Markov property is more stringent in the reduced automaton. The SCC in panel (b)

cannot be reduced to a tug-of-war.

Figure 6. Two SCCs that violate Centeredness.
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4. The tug-of-war

The analysis above implies a central role for the tug-of-war in the analysis of multi-battle contests that

can be represented by a finite state machine. In this section, we will prove that the tug-of-war admits

a unique symmetric Markov perfect equilibrium. We also characterize the equilibrium. Our analysis

builds upon Harris and Vickers (1987), but in contrast to their work, we will admit a different class of

technologies for the component contests.

Figure 7. Continuation payoffs in the tug-of-war

Considered is a tug-of-war of distance N ≥ 1, as introduced in Example 2. Thus, there are 2N − 1

active states ω−(N−1), ..., ωN−1, and two terminal states ωN ∈ Ω1 and ω−N ∈ Ω2. The initial state is

ωinit = ω0. Let Vn,N denote the valuation, i.e., the continuation payoff, of a state ωn ∈ Ω for player 1.

Similarly, for player 2, the continuation payoff of state ωn ∈ Ω is denoted by vn,N .

As we show in the Appendix, a Markov perfect equilibrium exists in the tug-of-war. To ensure

uniqueness, however, and to characterize the equilibrium, we will impose one more assumption.

Assumption 4. φ(1/θ)
θ(1−φ(θ)) is strictly declining in θ ∈ (0, 1).

The assumption captures a property of the component CSF that is crucial for constructing the Markov

perfect equilibrium in the tug-of-war. Specifically, Assumption 4 ensures that, from the ratio of differ-

ences in continuation payoffs in the transition between two states state, one may uniquely determine the

ratio of valuations in any of the two corresponding component battle. Assumption 4 imposes an upper
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bound on the curvature of the technology, which holds for any of the before-mentioned specifications of

CSF.

Lemma 6. The Tullock, serial, and relative-difference CSF all satisfy Assumption 4.

Proof. See the Appendix. �

We are now in the position to characterize the equilibrium of the tug-of-war.

Theorem 2. Suppose that Assumptions 3 and 4 hold. Let N ≥ 1 be a positive integer. Then, the

following holds true for the tug-of-war with 2N − 1 active states:

(i) the tug-of war has a unique symmetric MPE;

(ii) Vn,N is strictly increasing in n ∈ {−N, ..., N}, while vn,N is strictly declining in n ∈ {−N, ..., N};

(iii) the symmetric equilibrium payoff V0,N = v0,N is strictly declining in N ;

(iv) for any fixed integer n ≥ 0, equilibrium efforts Xn,N for player 1 and xn,N for player 2 are strictly

declining in N ∈ {n + 1, n + 2, ...}, and symmetrically, for any fixed integer n < 0, equilibrium efforts

Xn,N for player 1 and xn,N for player 2 are strictly increasing in N ∈ {..., n− 2, n− 1};

(v) for i ∈ {1, 2}, player i’s probability of winning in any active state ωn is independent of N ∈

{n+ 1, n+ 2, ...}.

Proof. See the Appendix. �

Theorem 2 establishes existence and uniqueness of the symmetric and interior Markov perfect equilib-

rium for a tug-of-war with an odd number of active states and constant or decreasing returns. Figure

7 illustrates equilibrium continuation payoffs at active states in a tug-of-war of distance N = 4. These

continuation values are identified recursively as the unique solution of a nonlinear equation. For R = 1,

each of these nonlinear equations is quadratic, so that an explicit solution is feasible.11

Example 7. For the case of the lottery technology (i.e., Tullock CSF with parameter R = 1), and a

11The derivations are detailed in the Appendix.
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distance N = 2, we get the following equilibrium continuation payoffs at active states:

V0,2 = v0,2 =

√
33− 5

4
= 0.18614 (7)

V1,2 =
385− 65

√
33

16
= 0.72521 (8)

v1,2 =
27
√

33− 155

16
= 6.4495× 10−3 (9)

The monotonicity of equilibrium continuation values predicted by Theorem 2(ii) is evident from these

numbers.

The analysis conducted in the Appendix identifies an unexpected similarity principle across tug-of-wars

with different N , which is that

Vn,N − Vn−1,N =
Vn,N+1 − Vn−1,N+1

VN,N+1 − V−N,N+1
(10)

holds for any n ∈ {−(N − 1), ..., N}. Thus, continuation payoffs known for the tug-of-war with a larger

number of active states may be used to compute continuation payoffs for a tug-of-war with a smaller

number of active states. For instance, scaling Example 7 down to N = 1, relationship (10) implies for

and n = 0 that

V0,1 = V0,1 − V−1,1 =
V0,2 − v1,2

V1,2 − v1,2
= 0.25, (11)

which indeed corresponds to the symmetric equilibrium payoff in the one-shot lottery contest. Clearly,

this property is inherited from our assumption that the contest success function is homogeneous of

degree zero. As a result of the similarity property, the symmetric equilibrium payoff V0,N in the tug-

of-war is monotone also in N , as stated in Theorem 2(iii). For instance, the rent dissipation in the

win-by-2 is always stronger than in one-shot contest, and similarly, the rent dissipation in the win-by-3

is always stronger than in a win-by-2. This is remarkable because the analogous property for the match

race does not hold.

The proof of Theorem 2 that we offer in the Appendix proceeds algebraically, i.e., we solve the

system of Bellman equations in a recursive way. This actually seems necessary because the abstract

transformation that maps a vector of continuation payoffs, via the Bellman equations, into a new vector

of continuation payoffs does not seem to possess any convenient properties. For instance, it is not a

contraction. We also found that the Jacobian of this transformation is not a P-matrix, so that uniqueness

is not guaranteed by the usual conditions for univalence. To see that the equilibrium strategies predicted
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by state-by-state optimization are immune against arbitrary deviations, we verify that the tug-of-war

without discounting satisfies a suitable variant of the one-stage deviation principle.

5. Existence and uniqueness

Our second main result is the following.

Theorem 3. Impose Assumptions 1-4 and (E), (M), and (C). Then, the multi-battle contest admits a

unique symmetric Markov perfect equilibrium. Moreover, the equilibrium is interior.

Proof. We start by showing that at every active state, the continuation payoff for every player at each

state lies in the open interval (0, 1). Consider first the case where the contest has a finite horizon. Thus,

there is an integer L ≥ 0 such that the longest finite history has length L. Clearly, L ≥ 1. Indeed,

if L = 0, then ωinit is terminal, say ωinit ∈ Ω1. But then, by Assumption 2, π(ωinit) ∈ Ω1 ∩ Ω2 = ∅,

a contradiction. Hence, L ≥ 1, as claimed. The proof proceeds now by induction. Suppose first that

L = 1. Then, there is precisely one active state, which is ωinit. From Monotonicity, there is an interior

equilibrium. Suppose that the claim has been shown for any finite-horizon contest of length ≤ L − 1.

Take any ω such that the longest finite history in the subgame starting at ω has length L. There are

three cases. Assume first that there is another battle at ω′ = α(ω, 1) ∈ Ωact, but ω′′ = α(ω, 2) is

terminal, as illustrated in panel (a) of Figure 8. Since state ω′′ is terminal, Monotonicity implies that

player 1’s payoff at ω′′ is zero and it suffi ces to show that valuation at ω′ is positive. However, given

that the longest finite history in the subgame starting at ω′ has length at most L− 1, this follows from

the induction hypothesis. The situation is similar in a second case, where ω′ = α(ω, 1) is terminal,

while ω′′ = α(ω, 2) ∈ Ωact. See as panel (b) of Figure 8 for illustration. Here, by Monotonicity, it must

be that ω′ ∈ Ω1, and contestant 1’s continuation payoff is one. Conversely, if player 1 loses and there

is another battle at ω′′ = α(ω, 2), then by the induction hypothesis, player 1’s continuation payoff is

strictly below one. In a third case, neither ω′ nor ω′′ is terminal, as illustrated in panel (c) of Figure 8.

Then, by Exchangeability, α(ω′, 2) = α(ω′′, 1), and player 1’s continuation payoff at ω′ must be strictly

higher than player 1’s continuation payoff at ω′′. Therefore, at ω, player 1 has a positive valuation of

winning. Analogous arguments can be made for player 2, of course, which proves the claim for the case

of contests with finite horizon.
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Figure 8. Proof of Theorem 3.

Consider next the case where the contest has an infinite horizon. Then, we may replace the continuation

payoffs at any state in the concluding SCC by the unique and interior equilibrium payoffs of the cor-

responding tug-of-war of some distance N ≥ 2. By Theorem 2 (ii), player 1’s continuation payoff Vn,N

is strictly increasing, and player 2’s continuation payoff vn,N is strictly declining in n ∈ {−N, ..., N}.

The proof proceeds now precisely as above by backward induction. This proves the claim. To see that

the identified profile of Markov strategies constitutes a subgame-perfect equilibrium (i.e., allowing for

unilateral deviations that affect effort levels at more than one battle), one may use the same arguments

as in the proof of Theorem 2. �

The following examples show that existence breaks down in general when the assumptions of Exchange-

ability and Monotonicity are dropped.

Example 8. Consider the multi-battle contest depicted in panel (a) of Figure 9, and suppose that

R = 1 with Tullock technology. This contest does not admit a Markov perfect equilibrium. Indeed, in

the initial battle, contestants fight about whether the remaining interaction will be a one-shot contest

(if 2 wins the first battle) or a win-with-2 (if 1 wins the first battle). The one-shot contest is known

to yield a payoff of 0.25 for each contestant, the win-with-two a payoff of 0.18 for each contestant.

Therefore, player 2 has a negative valuation of winning, so she exerts no effort. Player 1, conversely, has

a positive valuation of winning, and would not want to leave the outcome to any symmetric tie-breaking

rule. So player 1 has no best response. As a result, an equilibrium does not exist. While the example

is asymmetric, it is simple to make it symmetric, so it is really assumption (E) that does the job here.
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Figure 9. Multi-battle contests without MPE

Example 9. The multi-battle contest shown in panel (b) of Figure 9 is an example of nonexistence

when Monotonicity does not hold, while Exchangeability holds.

Konrad and Kovenock (2009) define an important property of multi-battle contests which they refer to

as pervasiveness. In short, pervasiveness means that, starting from any state corresponding to n1 wins

of player 1 and n2 wins by player 2, one reaches with positive probability any other state corresponding

to n
′
1 wins of player 1 and n

′
2 wins by player 2 provided that n

′
1 ≥ n1 and n′2 ≥ n2. This property holds

for any multi-battle contest in our class as well.

Corollary 1. Any multi-battle contest satisfying Assumptions (E), (M), and (C) is pervasive.

6. Optimal multi-battle contests

6.1 Theoretical results

In this section, we explore the intricate issue of finding the optimal dynamic structure of multi-battle

contests. Of course, the degree to which the extensive form of a contest may be shaped by a third

party depends on the application considered. E.g., in a sports contest, the designer has essentially

full discretion (maybe up to constraints with respect to timing or players’ levels of exhaustion). In

contrast, a regulatory body that aims at maximizing the effort expended in R&D activities will likely

face a variety of policy constraints. All the more, the regulator’s influence on the extensive form of

competition will often be quite indirect. In our analysis below, however, we will abstract from such

application-specific considerations.

The designer is assumed to maximize expected total efforts. Thus, we sum efforts both across players

and across periods. In particular, no discounting is applied. Similar objective functions have been used

in the literature (e.g., Moldovanu and Sela, 2001; Groh et al., 2006, Sec. 3.2). Note that, given that
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the prize will be allocated with probability one, we may equivalently assume that the designer aims at

minimizing the players’symmetric expected equilibrium payoff in the symmetric equilibrium.

Lemma 7. Maximizing expected total efforts is equivalent to minimizing symmetric expected equilibrium

payoffs in the contest.

Proof. Let Π∗ = Π∗1 = Π∗2 denote the symmetric equilibrium payoff. Then, Π∗ = 1
2 − e

∗, where e∗

denotes the total expected payoff per player. The claim is now immediate. �

We can now show the following.

Theorem 4. The one-shot contest is dominated by any contest in which two consecutive battle wins at

the beginning of the contest imply a win of the contest.

Proof. Take any contest in which two consecutive battle wins at the beginning of the contest imply

a win of the contest. We denote by π the continuation value of the contest after each player has won

precisely one battle. Clearly, π < 1/2. Then, the continuation payoff for a player that has lost the first

battle is

v ≡ πφ(
π

1− π ) > 0, (12)

while the continuation payoff for the player having won the initial battle is

V ≡ π + (1− π)φ(
1− π
π

) < 1. (13)

Therefore, in the initial battle of the contest, the symmetric equilibrium payoff is given by

Π∗ = v + σ (V − v) . (14)

We claim that

v + σ (V − v) < σ (15)

⇔ v

1− V <
σ

1− σ . (16)

Plugging in the expressions for v and V , we obtain

Π∗ < σ (17)

⇔ v

1− V <
σ

1− σ (18)

⇔
πφ( π

1−π )

(1− π)
(
1− φ(1−π

π )
) < σ

1− σ . (19)
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By Assumption 4, the left-hand side is strictly increasing in π. Moreover, for π = 1/2, the left-hand

side is identical to the right-hand side. This proves the claim, and hence, the Theorem. �

The theorem shows that a very large class of dynamic contests elicits higher expected total efforts

than the one-shot contest. Intuitively, this is so because even the two-fold repetition of the component

contest allows making double-use of the same incentive. The conclusion of Theorem 4 can be extended

by recalling that the one-shot contest is a degenerate form of the tug-of-war. Since we have shown that

symmetric equilibrium payoffs in the tug-of-war are strictly declining in the number of active states,

it follows that the one-shot contest is dominated, in terms of total effort, also by any non-degenerated

tug-of-war. In fact, we conjecture that the one-shot contest minimizes expected total efforts across all

contests. This is also suggested by the results of our numerical analysis which will be reported below.

6.2 Numerical exploration

In the numerical analysis, we employed several specifications. For the Tullock case, the well-known

equilibrium characterization (Nti, 1999) yields

ΠTULi =
V R+1
i (V R

i + (1−R)V R
j )

(V R
1 + V R

2 )2
(i, j ∈ {1, 2}, j 6= i), (20)

provided that V1 > 0 and V2 > 0. The parameter was chosen from the grid R ∈ {0.01, ..., 1.00}. In the

case of the serial specification, Alcalde and Dahm (2007) have shown that

ΠSER1 = V1

[
1− 1 + α

2

(
V2

V1

)α]
and ΠSER2 = V2

1− α
2

(
V2

V1

)α
, (21)

provided that V1 ≥ V2 > 0. In this case, the parameter was chosen from the grid α ∈ {0.01, ..., 0.99},

i.e., excluding the case α = 1 which implies complete rent dissipation for the contestant with the lower

valuation. The relative difference CSF yields equilibrium payoffs

ΠRDi = Vi

(
τV 2

i

(V1 + V2)2
+

1− τ
2

)
(i ∈ {1, 2}). (22)

In this case, the parameter was chosen from the grid τ ∈ {0.01, ..., 1.00}.

To compare the expected equilibrium payoff across contests, we needed a way to enumerate all

designs with a finite or infinite horizon. As for the finite-horizon contests, we considered multi-battle

contests for which the longest sequence of consecutive battles feasible has length (2K+1), where K ≥ 1

is an integer. One can convince oneself that the number TK of dynamic contests with longest path

(2K + 1) that satisfy our assumptions corresponds to the number of nondecreasing integer sequences
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0 ≤ x1 ≤ x2 ≤ ... ≤ xK−1 satisfying xk ≤ k for any k ∈ {1, ....,K − 1}. For instance, for K = 1, there

is only the best-of-three (or win-with-two) multi-battle contest. For K = 2, there are two contests, the

best-of-five (or win-with-three) contest, and the win-with-three-or-by-two contest. For larger values of

K, the number of contests increases quickly. In fact, one can show (e.g., Pemantle and Wilf, 2009) that

TK corresponds to the k-th Catalan number, i.e., TK = 1
K+1

(
2K
K

)
, with T1 = 1, T2 = 2, T3 = 5, T4 = 14,

and asymptotic approximation TK ∼ 4K

K3/2
√
π
. To enumerate all possible multi-battle contests, we chose

a recursive programming approach that conveniently solves the issue of an endogenous loop depth.

As for the contests with infinite horizon, these can likewise be enumerated by replacing the payoffs in

the final active states of dynamic contests with finite horizon by the corresponding continuation payoffs

of a tug-of-war with an odd number of active states. Figure 1(b) illustrates this idea. Note that the

minimality assumption implies that the states of the concluding tug-of-war can always be arranged in

the inverted L-shape. Altogether, we explored the set of (i) all finite-horizon contests that end after at

most 29 battles, and (ii) all infinite-horizon contests in which a recurrent state is reached after at most

26 battles. The computations were done using Visual Basic.

6.3 Unconstrained contests

In our first analysis, we assume that the choice set is the entire set of multi-battle contests satisfying

our assumptions. It follows from Theorem 2 that the one-shot contest is always strictly suboptimal.

In fact, any tug-of-war can be strictly improved by replacing it by a longer variant. We now have the

following, as we believe, interesting numerical finding.

Finding 1. The revenue maximizing multi-battle contest is always a match race of length M ≥ 2.12

To understand intuitively why the race is optimal compare the two contests shown in Figure 10. Suppose

that player 1 wins the initial battle in contest (a), so that state ω(1,0) is reached. Then, to win the

contest, player 1 just needs one more win (at least), while player 2 would need three wins in any case.

In contest (b), however, the analogous situation looks less unbalanced. Thus, the continuation value

for player 1 at state ω(1,0) is higher in contest (a) than in contest (b). For player 2, the situation is the

opposite, i.e., the continuation value for player 2 at state ω(1,0) is lower in contest (a) than in contest

(b). Because of this, the net valuation of winning the initial battle is higher in contest (a) than in

12We have checked this for the Tullock, serial, and relative difference specifications, going through all finite-horizon
contests that end after 12 or less consecutive battle wins by the same player. In the case of the Tullock contest, we allowed
for an arbitrary concluding tie-breaking phase with up to 21 recurrent states.

25



contest (b), whereas the continuation value for the loser of the initial battle is lower in contest (a) than

in contest (b).

Figure 10. Optimality of the match race

It turns out that the expected payoff in the contest shown in Figure 10a, Πw/3∨b/2, is always weakly

higher than the expected in the best-of-five contest shown in Figure 10b, Πw/3. Analytically, this seems

like a very hard problem.

For our analysis, the relative size of the changes in the continuation values across players matters.

Specifically, it turns out that the change in continuation values between contests (a) and (b) is much

larger for player 1 than for player 2. In other words, the leading player 1 gains, in relative terms, much

more than the lagging player 2 loses. We call this the preemption effect. As a result, the equilibrium

payoff, i.e., the continuation payoff at state ωinit = ω(0,0) is higher in contest (a) than in contest (b).

In turn, this implies that contest (a) is always suboptimal from the perspective of an effort-maximizing

designer. Thus, the intuitive reason for the optimality of the race is that, among all multi-battle contests,

it minimizes the preemption effect by making a battle-win as incremental a progress towards winning

as feasible. The one-shot multi-battle contest, however, is never optimal. The intuitive reason for this

is that a repetition allows a double-use of the same prize incentives, which is impossible in a one-shot

contest.

6.4 The optimal length of a race

Given that a match race is always optimal, the question is which length is best for a designer that

maximize the expected total effort. Figure 11 illustrates that the length of the optimal race is inversely

related to the Tullock parameter. Thus, intuitively, if each the contest success function reflects more

randomness (i.e., a lower R), then it is preferable for the contest designer to involve contestants into a

longer race. We have found the same prediction for the serial and relative difference contest.
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Finding 2. The revenue-maximizing length of a match race is monotonically increasing in the noise.

Figure 11. Expected total effort in a Tullock race, as a function of R

6.5 Contests subject to a complexity bound

In many environments, the scope for changing the rules of the contest will be more limited than assumed

above. Suppose, therefore, that the contest designer is restricted to use a multi-battle contest such that

the number of active states is no larger than a given number K ≥ 1. Below, we report the results for

the Tullock contest.

For K ∈ {1, 2}, we obtain the one-shot contest. There is no other symmetric multi-battle contest

under this complexity constraint.

For K = 3, we need to compare the one-shot contest with a win-by-2. As shown in the observation,

however, rent dissipation in the tug-of-war with three active states is always strictly higher than in the

one-shot contest. Thus, for K = 3, the win-by-2 is always optimal.

For K = 4, we have the win-with-2 as an additional possibility. Numerically, the win-with-2 strictly

dominates the win-by-2 if and only if R ≥ 0.89. Intuitively, this finding captures the trade-off for the

contest designer. If randomness is important (R low), then the designer has an incentive to have long

multi-battle contest, so as to reward small but continued efforts provision. If, however, the constraint of

the number of states is binding, then the tug-of-war, with its potentially infinite horizon, offers a better

trade-off than the race.

For K ∈ {5, 6}, the designer has the win-by-3 as an additional option. This is numerically optimal if

R < 0.95, otherwise the match race is better. This makes sense because the contest designer will make
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use of the relaxed complexity constraint.

For K = 7, there are two additional possibilities, the win-by-4, that always dominates smaller tug-

of-wars. Further, we have a win-with-3-or-by-2 (Example 4). Optimal is the win-by-4 for R < 0.95, and

the win-with-2 otherwise. The win-with-3-or-by-2, however, is never optimal.

For K = 8, the win-by-4 remains optimal for R < 0.85, while the win-with-two (i.e., best-of-three)

stays optimal for R ≥ 0.95. In between, it is optimal to use a win-with-3-and-by-2 (Example 3).

For K ∈ {9, 10}, the win-by-5 becomes optimal for R < 0.74, while the win-with-two stays optimal

for R > 0.98. In between, it is optimal to use a win-with-three (i.e., a match race of length three).

For K ∈ {11, 12}, the win-by-6 replaces the win-by-5.

For K = 13, the win-by-7 replaces the win-by-6.

For K = 14, it is optimal to use a win-with-4-or-by-3 when R ∈ [0.67, ..., 0.76].

Thus, for R ∈ (0, 1] small, the numerical always analysis finds a tug-of-war to be optimal, whereas

for R ∈ (0, 1] large, the complexity constraint relaxes, and we find a match race. For intermediate values

of R, there are cases (e.g., K = 8 and K = 14) in which we get “sporadic” contests that are optimal

but neither a tug-of-war nor a match race. We have continued the analysis to state machines with

up to K = 28 active states, but this pattern remained unchanged. Recalling the relationship between

complexity and the number of active states to be K = γ(M) − 2, we may summarize our results for

complexity-constrained optimal contests as follows.

Finding 3. Let the complexity γ = γ(M) be given. Then, for any R not too large, the complexity

bound is binding and the optimal multi-battle contest of complexity γ is the longest tug-of-war that can

be realized with complexity γ.

7. Conclusion

In this paper, we have introduced three conditions that jointly define a flexible and, as we believe, natural

class of symmetric multi-battle contests. This class includes both dynamic contests with finite horizon,

such as the win-with-N contest, also known as the best-of-(2N−1) tournament, as well as contests with

infinite horizon, such as a the tug-of-war. We propose making use of a finite state machine to obtain a

well-defined class of dynamic contests that can then be analyzed. It was shown that any multi-battle

contest in our class has a very simple structure. Moreover, provided that the contest technology satisfies
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our assumptions, we established that any multi-battle contest admits a unique symmetric and interior

Markov perfect equilibrium.

As part of the analysis, we characterized the Markov perfect equilibrium of the tug-of-war. This

complements results in the existing literature. While we used the characterization result for the tug-of-

war predominantly as the basis for our numerical analysis of more general contests with infinite horizon,

the result addresses also a long-standing open research question, and therefore may be of independent

interest.

Finally, we have studied the optimal design of dynamic contests, where the designer sets the rules

so as to maximize total aggregate effort. For this type of problem, there is still a regrettable lack of

analytical methods, and so we had to resort to numerical methods. Despite this diffi culty, the optimal

design problem could be seen to balance a trade-offbetween three natural forces in multi-battle contests:

(i) lower incentives due to randomness in the contest technology, (ii) a double-use of incentives, and

(iii) the discouragement effect in unbalanced states. The standard race was seen to optimally balance

this trade-off for a variety of contest success function if the complexity of rules is no concern for the

designer. Moreover, the length of the optimal race was shown to increase monotonically in the degree of

randomness in the contest technology. However, once there is a positive shadow cost of complexity, the

tug-of-war is typically the optimal choice. Taken together, these findings shed light on the determinants

of optimal dynamic contests.

There are some natural extensions that we chose to not address in this paper. To begin with, one

could consider heterogeneous valuations of the multi-battle contest prize. That case, however, would

be more demanding. For instance, we conjecture that the Markov perfect equilibrium of the tug-of-war

might not be unique in that case. Next, Definition 1 could be generalized to account for, say, ties in

the outcome of an individual contest, or ties in the outcome of the dynamic contest. We did not pursue

this line of research because we perceive the multi-battle contest as an instrument to avoid precisely

any kind of tied outcomes. Further, there might be random transitions between states. For instance,

in Figure 4, an initial coin toss could determine the active state from which interaction starts. We

conjecture that, incorporating such possibilities would complicate matters substantially (e.g., because

it would be diffi cult to capture Centeredness) without yielding additional insights. Finally, one could

think about having a variety of sets of final states, with different prize allocations in each of those. In

that case, our assumptions would appear intuitively too tight, however. For example, in a promotional
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competition, or in a series of presidential debates, the prize allocation is usually not of a binary nature,

which upholds incentives for candidates in most scenarios even if the number of battles is fixed ex-ante

and independent of the outcome of individual battles.

Appendix A. Analysis of the tug-of-war

Let N ≥ 1 be an arbitrary positive integer. We consider a tug-of-war with 2N − 1 active states

ω−(N−1), ..., ω−1, ω0, ω1, ..., ω(N−1), (23)

and two terminal states ωN ∈ Ω1 and ω−N ∈ Ω2 (cf. Example 2). The contest success function will be

kept fixed throughout.13

We start with the uniqueness part. Suppose that a Markov perfect equilibrium exists. We denote

by Vn,N and vn,N , respectively, player 1’s and player 2’s continuation payoffs at state ωn, for any

n ∈ {−N, ..., N}. In particular, VN,N = v−N,N = 1 and vN,N = V−N,N = 0. Moreover, we let

∆n,N = Vn,N − Vn−1,N , (24)

δn,N = vn−1,N − vn,N , (25)

for n ∈ {−(N − 1), ..., N}, denote the change in continuation payoffs for players 1 and 2, respectively,

when moving from state ωn−1 to ωn. As our first lemma shows, both ∆n,N and δn,N are positive, which

corresponds to the intuitive idea that winning a battle strictly raises (strictly lowers) the winner’s (the

loser’s) continuation payoff.

Lemma A.1 In any Markov perfect equilibrium of the tug-of-war of distance N , we have ∆n,N > 0

and δn,N > 0 for any n ∈ {−(N − 1), ..., N}.

Proof. Consider any active state ωn, i.e., n ∈ {−(N−1), ..., (N−1)}. In the Markov perfect equilibrium,

the respective effort choices Xn,N for player 1 and xn,N for player 2 must form a pure-strategy Nash

equilibrium in the one-shot contest with valuations Vn+1,N − Vn−1,N for player 1 and vn−1,N − vn+1,N

for player 2. Moreover, by Lemma 1, for the pure-strategy Nash equilibrium to exist in the one-shot

contest, we need either (i) Vn+1,N−Vn−1,N > 0 and vn−1,N−vn+1,N > 0, or (ii) Vn+1,N−Vn−1,N ≤ 0 and

13The consideration of tug-of-wars with an even number of active states is obsolete for our analysis. We conjecture,
however, that the methods developed below would allow to deal with that case as well.
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vn−1,N − vn+1,N ≤ 0. In case (i), the equilibrium characterization of the one-shot contest (cf. Lemma

1) yields the Bellman equations

Vn,N = Vn−1,N + (Vn+1,N − Vn−1,N ) · φ
(
Vn+1,N − Vn−1,N

vn−1,N − vn+1,N

)
, (26)

vn,N = vn+1,N + (vn−1,N − vn+1,N ) · φ
(
vn−1,N − vn+1,N

Vn+1,N − Vn−1,N

)
. (27)

Given that equilibrium payoffs are positive in the one-shot contest, this implies that Vn,N > Vn−1,N

and vn,N > vn+1,N . Moreover, in this case, Xn,N > 0 and xn,N > 0, so that Vn,N < Vn+1,N and

vn,N > vn+1,N , which proves the claim. In case (ii), Xn,N = xn,N = 0 by Lemma 1, and consequently,

each of the two players wins with equal probability in state ωn. Therefore, Vn+1,N ≤ Vn,N ≤ Vn−1,N and

vn+1,N ≥ vn,N ≥ vn−1,N . By arguments detailed in case (i), this sequence of weak inequalities may be

continued to both sides until VN,N ≤ ... ≤ V−N,N and vN,N ≥ ... ≥ v−N,N , which is impossible because

of VN,N = v−N,N = 1 and vN,N = V−N,N = 0. This concludes the analysis of case (ii), and proves the

lemma. �

Given Lemma A.1, we may define the ratio of changes in continuation payoffs when moving from ωn−1

to ωn,

ρn,N =
δn,N
∆n,N

> 0, (28)

for any n ∈ {−(N − 1), ..., N}, as well as the ratio of net valuations at any active state ωn,

θn,N =
δn,N + δn+1,N

∆n,N + ∆n+1,N
> 0, (29)

i.e., for n ∈ {−(N − 1), ..., (N − 1)}. The following relationship exploits that the contest technology is

homogeneous of degree zero, so that the ratio of net valuations at any active state uniquely determines

the corresponding ratio of changes in continuation payoffs.

Lemma A.2 In any Markov perfect equilibrium of the tug-of-war with 2N−1 active states, continuation

payoffs satisfy

θn,N = ρn,N ·
φ (1/θn,N )

1− φ (θn,N )
, (30)

for any n ∈ {−(N − 1), ..., (N − 1)}.

Proof. Fix n ∈ {−(N − 1), ..., (N − 1)}. Using the notation introduced above, equations (26) and (27)
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may be rewritten as

∆n,N = (∆n,N + ∆n+1,N ) · φ
(

∆n,N + ∆n+1,N

δn,N + δn+1,N

)
, (31)

δn+1,N = (δn,N + δn+1,N ) · φ
(
δn,N + δn+1,N

∆n,N + ∆n+1,N

)
. (32)

It now follows from (32) that

δn,N = (δn,N + δn+1,N )− δn+1,N (33)

= (δn,N + δn+1,N ) ·
{

1− φ
(
δn,N + δn+1,N

∆n,N + ∆n+1,N

)}
. (34)

Dividing by (31), we obtain

δn,N
∆n,N

=
δn,N + δn+1,N

∆n,N + ∆n+1,N
·

1− φ
(
δn,N+δn+1,N

∆n,N+∆n+1,N

)
φ
(

∆n,N+∆n+1,N

δn,N+δn+1,N

) . (35)

The claim is now immediate. �

The following lemma shows that, for any ρn,N ∈ (0, 1), there is a unique value for θn,N ∈ (0, 1) that

solves equation (30).

Lemma A.3 For any ρ ∈ (0, 1), the mapping γρ : [0, 1]→ [0, 1] defined through

γρ(θ) =

{
ρ · φ(1/θ)

1−φ(θ) if θ > 0

ρ if θ = 0
(36)

has a unique fixed point θ∗ ≡ ϕ(ρ). Moreover, the fixed point is interior, i.e., ϕ(ρ) ∈ (0, 1).

Proof. Since

lim
θ↘0

φ

(
1

θ

)
= lim

θ↘0
(1− 2f(θ) + φ (θ)) = 1, (37)

the mapping γρ(.) is a continuous self-mapping on the unit interval. Hence, there certainly exists a fixed

point. This fixed point must be interior because 0 and 1 are not fixed points. Indeed, γρ(0) = ρ > 0,

and

γρ(1) = ρ · σ

1− σ < 1, (38)

since σ < 1
2 . Finally, the fixed point θ

∗ satisfies the relationship

θ∗ (1− φ (θ∗))

φ (1/θ∗)
= ρ, (39)

and hence, must be unique by Assumption 4. �
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We will need the following auxiliary result.

Lemma A.4 Assumption 3 implies φ(x) + φ(1/x) < 1, for any x > 0.

Proof. Recall that

f(
1

x
) = 1− f(x). (40)

Taking the derivative of (3) yields

− 1

x2
f ′(

1

x
) = −f ′(x) (41)

⇒ f ′(
1

x
) = x2f ′(x). (42)

Therefore,

φ(
1

x
) = f(

1

x
)− 1

x
f ′(

1

x
) (43)

= 1− f(x)− xf ′(x). (44)

From the above,

φ(x) + φ(
1

x
) = f(x)− xf ′(x) + 1− f(x)− xf ′(x) (45)

= 1− 2xf ′(x) (46)

< 1, (47)

because f is strictly monotone and concave on R+. �

The parameters θn,N and ρn,N are now determined recursively, starting from the balanced state ω0.

Lemma A.5 In any symmetric Markov Perfect equilibrium of the tug-of-war with 2N −1 active states,

θ0,N = 1 (48)

θn+1,N = ϕ

(
θn,N ·

φ (θn,N )

1− φ (1/θn,N )

)
(n ∈ {0, ..., N − 2}). (49)

Moreover, given Assumption 4, θn+1,N < θn,N for any n ∈ {0, ..., N − 2}.

Proof. Fix N ≥ 1. Then

θ0,N =
δ0,N + δ1,N

∆0,N + ∆1,N
(50)

=
(v−1,N − v0,N ) + (v0,N − v1,N )

(V0,N − V−1,N ) + (V1,N − V0,N )
(51)

=
v−1,N − v1,N

V1,N − V−1,N
. (52)
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Clearly, in any symmetric MPE, v−1,N = V1,N and v1,N = V−1,N . Hence, θ0,N = 1, proving (48). To

prove the recursion, let n ∈ {0, ..., N − 2}. Then, n + 1 ∈ {1, ..., N − 1}, so that by Lemma A.2, we

know that

θn+1,N = ρn+1,N ·
φ (1/θn+1,N )

1− φ (θn+1,N )
. (53)

Assume for the moment that ρn+1,N < 1. Then, equation (53) says that θn+1,N is the unique fixed-

point of the mapping γρn+1,N defined in the statement of Lemma A.3. In this case, therefore, θn+1,N =

ϕ (ρn+1,N ). To verify (49), it therefore suffi ces to show that ρn+1,N < 1, and that

ρn+1,N = θn,N ·
φ (θn,N )

1− φ (1/θn,N )
. (54)

For this, we divide (31) by ∆n,N + ∆n+1,N > 0, and get

∆n,N

∆n,N + ∆n+1,N
= φ (1/θn,N ) . (55)

Taking the reciprocal on both sides and subsequently subtracting one, this becomes

∆n+1,N

∆n,N
=

1− φ (1/θn,N )

φ (1/θn,N )
. (56)

Similarly, starting from (32), we get

δn,N
δn+1,N

=
1− φ (θn,N )

φ (θn,N )
. (57)

Multiplying (57) with (56), and rearranging, we obtain

δn+1,N

∆n+1,N
=

δn,N
∆n,N

· φ (θn,N )

1− φ (1/θn,N )
· φ (1/θn,N )

1− φ (θn,N )
. (58)

By Lemma A.2, we know that
φ (1/θn,N )

1− φ (θn,N )
=
θn,N
ρn,N

. (59)

Plugging this into equation (58), we arrive at

δn+1,N

∆n+1,N︸ ︷︷ ︸
=ρn+1,N

=
δn,N
∆n,N︸ ︷︷ ︸
=ρn,N

· φ (θn,N )

1− φ (1/θn,N )
· θn,N
ρn,N

, (60)

which yields (54). Finally, Lemma A.4 guarantees that

φ (θn,N ) + φ (1/θn,N ) < 1. (61)
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Hence, θn,N ≤ 1 and equation (54) imply that ρn+1,N < 1. This proves the the first part of the lemma.

To prove the second part, let n ∈ {0, ..., N − 2}. Then, (49) implies that

θn+1,N = θn,N ·
φ (θn,N )

1− φ (1/θn,N )

φ (1/θn+1,N )

1− φ (θn+1,N )
. (62)

Re-writing yields
θn,Nφ (θn,N )

1− φ (1/θn,N )
=
θn+1,N (1− φ (θn+1,N ))

φ (1/θn+1,N )
. (63)

To provoke a contradiction, suppose that θn+1,N ≥ θn,N . Then, by Assumption 4,

θn+1,N (1− φ (θn+1,N ))

φ (1/θn+1,N )
≥ θn,N (1− φ (θn,N ))

φ (1/θn,N )
. (64)

Combining the last two inequality delivers

θn,Nφ (θn,N )

1− φ (1/θn,N )
≥ θn,N (1− φ (θn,N ))

φ (1/θn,N )
, (65)

which reduces to

1 ≤ φ (θn,N ) + φ (1/θn,N ) . (66)

But this is in conflict with Lemma A.4. The contradiction proves the second part of the lemma, which

concludes the proof. �

Next, we consider ratios

∆̂n,N =
∆n,N

∆0,N
(n ∈ {0, 1, ..., N}), (67)

δ̂n,N =
δn,N
δ1,N

(n ∈ {1, ..., N}). (68)

where, in any symmetric Markov perfect equilibrium, ∆0,N = V0,N − V−1,N = v0,N − v1,N = δ1,N .

The following lemma allows to recursively compute ∆̂n,N and δ̂n,N from the previously determined

parameters θn,N .

Lemma A.6 We have ∆̂0,N = δ̂1,N = 1, and

∆̂n+1,N = ∆̂n,N ·
1− φ (1/θn+1,N )

φ (1/θn+1,N )
(n ∈ {0, 1, ..., N − 1}), (69)

δ̂n+1,N = δ̂n,N ·
φ (θn+1,N )

1− φ (θn+1,N )
(n ∈ {1, ..., N − 1}). (70)

Proof. By definition, ∆̂0,N = δ̂1,N = 1. Further, the recursive relationships (69) and (70) follow

immediately from equations (56) and (57), respectively. �
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Lemma A.7 Let N ≥ 1. Then, continuation payoffs in any symmetric Markov perfect equilibrium

satisfy

Vn,N =

∑N
ν=1 δ̂ν,N +

∑n
ν=1 ∆̂ν,N∑N

ν=1 δ̂ν,N +
∑N

ν=1 ∆̂ν,N

(n = 0, ..., N) (71)

vn,N =

∑N
ν=n+1 δ̂ν,N∑N

ν=1 δ̂ν,N +
∑N

ν=1 ∆̂ν,N

(n = 0, ..., N). (72)

Proof. We start by rewriting the sums appearing in equations (71) and (72). This yields for any

n ∈ {0, ..., N + 1}

∑n

ν=1
∆̂ν,N =

1

∆0,N

∑n

ν=1
∆ν,N (73)

=
1

∆0,N

∑n

ν=1
(Vν,N − Vν−1,N ) (74)

=
Vn,N − V0,N

∆0,N
(75)

=
Vn,N − V0,N

δ1,N
. (76)

In particular, for n = N , we obtain

∑N

ν=1
∆̂ν,N =

1− V0,N

δ1,N
. (77)

Similarly,

∑N

ν=n+1
δ̂ν,N =

1

δ1,N

∑N

ν=n+1
δν,N (78)

=
1

δ1,N

∑N

ν=n+1
(vν−1,N − vν,N ) (79)

=
vn,N − vN,N

δ1,N
(80)

=
vn,N
δ1,N

, (81)

In particular, for n = 0, ∑N

ν=1
δ̂ν,N =

v0,N

δ1,N
. (82)

Plugging this all in the right-hand side of (71), and subsequently eliminating the common denominator

δ1,N , delivers ∑N
ν=1 δ̂ν,N +

∑n
ν=1 ∆̂ν,N∑N

ν=1 δ̂ν,N +
∑N

ν=1 ∆̂ν,N

=
v0,N + Vn,N − V0,N

v0,N + 1− V0,N
= Vn,N , (83)
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as claimed. In an analogous fashion, we obtain∑N
ν=n+1 δ̂ν,N∑N

ν=1 δ̂ν,N +
∑N

ν=1 ∆̂ν,N

=
vn,N

v0,N + 1− V0,N
= vn,N . (84)

This proves the lemma. �

Proof of Theorem 2. (i) (Uniqueness) Note that Lemma A.7 above settles uniqueness of the symmet-

ric Markov perfect equilibrium. (Existence) From the continuation payoffs identified above, a candidate

equilibrium may be constructed in a straightforward way. Indeed, by the virtue of Lemma 1, it suffi ces

to set equilibrium efforts for player 1 and 2, respectively, at any active state ωn equal to

X∗n,N = (vn−1,N − vn+1,N )f ′
(
vn−1,N − vn+1,N

Vn+1,N − Vn−1,N

)
, (85)

x∗n,N = (Vn+1,N − Vn−1,N )f ′
(
Vn+1,N − Vn−1,N

vn−1,N − vn+1,N

)
, (86)

where n ∈ {−(N − 1), ..., (N − 1)}. Clearly, this defines a symmetric and interior strategy profile with

the property that unilateral deviations at a given finite history are not profitable. It remains to be

shown that, in the spirit of the one-stage deviation principle, simultaneous deviations at any set of

histories are not profitable. For this, note that the opponent’s strategy is fixed and interior. Moreover,

since a deviating player never exerts an effort in a battle in excess of the value of the prize for the

entire contest, it may be assumed that efforts in each battle are taken from the interval [0, 1]. Suppose

that a pure strategy exists that grants a player an expected payoff of at least ε > 0 higher than the

expected payoff in the candidate equilibrium. Then, there is a time T such that, for any given length

of play exceeding T , the deviator’s probability for winning the contest after T stages is strictly smaller

than ε. Therefore, there exists a profitable deviation with finite horizon as well, and hence, a profitable

deviation at a single state. Thus, we have established existence as well, which concludes the proof of

part (i) of Theorem 2.

(ii) Recall that V−n,N = vn,N and v−n,N = V−n,N , for any n ∈ {0, ..., N}. Therefore, it clearly

suffi ces to prove, in view of Lemma A.7, that δ̂n,N > 0 for any n ∈ {1, ..., N}, and that ∆̂n,N > 0 for any

n ∈ {1, ..., N} for any n ∈ {1, ..., N}. Now, a straightforward induction argument involving Lemmas

A.3 and A.5 shows that θn,N > 0 for any n ∈ {0, ..., N − 1}. Therefore, via Lemma A.6, it follows that,

indeed, δ̂n,N > 0 for any n ∈ {1, ..., N}, and ∆̂n,N > 0 for any n ∈ {1, ..., N} for any n ∈ {1, ..., N}.

This delivers part (ii).
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(iii) As illustrated in Figure 7, when moving from state ωn−1 to ωn, for any n ∈ {1, ..., N}, player

1’s increase in the continuation payoff when moving one state to the right is always larger in absolute

value than player 2’s corresponding loss in the continuation payoff. Formally,

δn,N
∆n,N

= ρn,N < 1, (87)

for any n ∈ {1, ..., N}, as has been checked in the proof of Lemma A.5. Therefore, the symmetric

equilibrium payoff indeed declines strictly in N . This proves part (iii).

(iv) From equations (85-86) and the similarity principle, player 1’s and player 2’s respective equi-

librium efforts Xn,N and xn,N in each active state ωn are strictly declining in N , i.e., Xn,N+1 < Xn,N

and xn,N+1 < xn,N for any n ∈ {−(N − 1), ..., N − 1}. This proves (iv).

(v) As the ratio of efforts does not change, i.e., xn,N+1/Xn,N+1 = xn,N/Xn,N for any n ∈ {−(N −

1), ..., N − 1}, winning probabilities at active states do not change in the transition from N to N + 1.

This proves part (v), and hence, the theorem. �

The next lemma is a formal statement of the similarity principle mentioned in the body of the paper.

Lemma A.8 (Similarity property) The parameters θn,N , ∆̂n,N , and δ̂n,N do not depend on N .

Proof. By Lemma A.5, have θ0,N = 1 for any N ≥ 1. Since the recursion does not depend on N , the

parameter θn,N does not depend on N either. The other claims are now immediate from Lemma A.6.

�

Details on Example 7. In the case of the Tullock CSF with parameter R = 1, the fixed point

identified by Lemma A.3 admits the explicit representation

ϕ1(ρ) =
1

4

(√
1 + 8ρ− 1

)
. (88)

Hence, θ0 = 1, and

θ1 = ϕ(
θ2

0

2 + θ0
) = ϕ(

1

3
) =

√
33

12
− 1

4
= 0.22871. (89)

Moreover, ∆̂0 = δ̂1 = 1, and

∆̂1 = ∆̂0 · θ0 · (2 + θ0) = 3, (90)

∆̂2 = ∆̂1 · θ1 · (2 + θ1) =
3
√

33− 5

8
= 1.5292, (91)

δ̂2 = δ̂1 ·
θ2

1

1 + 2θ1
=

5
√

33− 27

48
= 3.5892× 10−2. (92)
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Finally, from Lemma A.7,

V0,2 = v0,2 =
δ̂1 + δ̂2

δ̂1 + δ̂2 + ∆̂1 + ∆̂2

=

√
33− 5

4
= 0.18614, (93)

V1,2 =
δ̂1 + δ̂2 + ∆̂1

δ̂1 + δ̂2 + ∆̂1 + ∆̂2

=
385− 65

√
33

16
= 0.72521, (94)

v1,2 =
δ̂2

δ̂1 + δ̂2 + ∆̂1 + ∆̂2

=
27
√

33− 155

16
= 6.4495× 10−3, (95)

which concludes the derivation of the continuation payoffs in the case N = 2. �

Appendix B. Proofs of Lemmas 1 and 6

Proof of Lemma 1. If p is constant, then anonymity implies p ≡ 0.5, so that x∗1 = x∗2 = 0. Moreover,

Π∗1 = V1/2 > 0 and Π∗2 = V2/2 > 0, which proves the claim in this case. Assume, therefore, that p is

not constant. For that case, Malueg and Yates (2005, Lemma 1) have shown that any pure-strategy

equilibrium satisfies x∗1 > 0 and x∗2 > 0. For ξ > 0, we may define f(ξ) = p(ξ, 1). Then we have by

homogeneity that

Π1(x1, x2) = f(
x1

x2
)V1 − x1 (96)

Π2(x1, x2) = f(
x2

x1
)V2 − x2 (97)

for any x1 > 0 and x2 > 0. The necessary first-order conditions for an interior optimum read

f ′(
x∗1
x∗2

)
V1

x∗2
− 1 = 0 (98)

f ′(
x∗2
x∗1

)
V2

x∗1
− 1 = 0 (99)

Combining anonymity with homogeneity, we get

f(
x1

x2
) + f(

x2

x1
) = 1, (100)

for any x1 > 0 and x2 > 0. Differentiating w.r.t. x1 yields

1

x2
f ′(

x1

x2
)− x2

x2
1

f ′(
x2

x1
) = 0, (101)

so that (a variant of Euler’s Lemma)

f ′(
x2

x1
) = f ′(

x1

x2
)

(
x1

x2

)2

, (102)
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for any x1 > 0 and x2 > 0. Evaluating at x1 = x∗1 and x2 = x∗2, and combining the resulting relationship

with (98) and (99), we arrive at
x∗1
x∗2

=
V1

V2
, (103)

as in Baik (2004) and Malueg and Yates (2005). Moreover, from (98),

x∗1 = V2f
′(
V2

V1
) (104)

= V2f
′(
V1

V2
)

(
V1

V2

)2

(105)

= V 2
1

∂p(V1, V2)

∂x1
. (106)

Analogously, for player 2,

x∗2 = −V 2
2

∂p(V1, V2)

∂x2
= V 2

2

∂p(V2, V1)

∂x1
, (107)

as claimed. Thus, we have shown that, provided that a pure-strategy Nash equilibrium exists, it is

unique and given by efforts (106) and (107). To see that these effort levels constitute a pure-strategy

Nash equilibrium, note that the equilibrium payoff function for player 1,

Π̃1(x1) = p(x1, x
∗
2)V1 − x1 (108)

is concave on R+. Hence, given that the first-order condition holds, x∗1 is indeed a global maximum of

Π̃1. Finally, it is obvious that equilibrium profits are positive if the CSF is noncompetitive. To see that

equilibrium payoffs (5) are positive if the CSF is strictly concave, recall that a player can always ensure

a nonnegative payoff by choosing an effort of zero. Since x∗1 > 0 is the unique interior maximum, strict

concavity implies that Π∗1 > 0. A similar argument shows that Π∗2 > 0. �

Proof of Lemma 6. In the Tullock case, φTUL (ξ) = ξR(ξR+1−R)

(1+ξR)2
, with R ∈ (0, 1], so that

φTUL (1/θ)

φTUL (1− φ (θ))
=

θ−R(θ−R + 1−R)

θ (1 + θ−R)2 (1− θR(θR+1−R)

(1+θR)2
)

(109)

=
θR(θ−R + 1−R)

θ (1 + θR)2 (1− θR(θR+1−R)

(1+θR)2
)

(110)

=
θR(θ−R + 1−R)

θ (1 + θR)2 − θR(θR + 1−R)
(111)

=
1

θ

θR(1−R) + 1

θR(1 +R) + 1
, (112)

which is indeed strictly declining.
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In the case of the serial contest with parameter α ∈ (0, 1), we have φSER(x) = 1− 1+α
2 x−α if x ≥ 1,

and φSER(x) = 1−α
2 xα if x < 1. Note that this is a continuous function (not differentiable though). To

check if Assumption 4 holds, we note that for x ≥ 1,

φSER(1/x)

x(1− φSER(x))
=

1−α
2 x−α

x(1+α
2 x−α)

=
1− α

x(1 + α)
, (113)

which is strictly declining in x, and for x < 1,

φSER(1/x)

x(1− φSER(x))
=

1− 1+α
2 xα

x(1− 1−α
2 xα)

, (114)

with derivative
∂

∂x

φSER(1/x)

x(1− φSER(x))
= (−4) · (2− xα)2 + (4− xα)α2xα

x2(1− 1−α
2 xα)2

< 0. (115)

Thus, Assumption 4 holds also for the serial contest.

In the case of the relative difference contest with parameter τ ∈ (0, 1], we have

φRD(x) =
τx2

(x+ 1)2
+

1− τ
2

. (116)

To check that Assumption 4 holds, we note that

φRD(1/x)

x(1− φRD(x))
=

τ
(x+1)2

+ 1−τ
2

x
(

1− τx2

(x+1)2
− 1−τ

2

) (117)

=
τ + 1−τ

2 (x+ 1)2

x
((

1− 1−τ
2

)
(x+ 1)2 − τx2

) (118)

=
(1− τ)x2 + 2(1− τ)x+ 1 + τ

x((1− τ)x2 + 2(1 + τ)x+ 1 + τ)
, (119)

Brute-force derivation shows that

∂

∂x

φRD(1/x)

x(1− φRD(x))

= −x(x3 + 4x2 + 4)(1− τ)2 + 6x2(1− τ2) + 16xτ + (1 + τ)2

x2 ((1− τ)x2 + 2(1 + τ)x+ 1 + τ)2 (120)

< 0 (121)

Thus, Assumption 4 holds also for the relative difference contest. �

Appendix C. Details on the contest specifications used in the paper

Tullock. If p(x1, x2) = pTUL1 (x1, x2), then the unique pure-strategy Nash equilibrium is given by effort

levels

xTUL1 =
RV R+1

1 V R
2

(V R
1 + V R

2 )2
and xTUL2 =

RV R
1 V

R+1
2

(V R
1 + V R

2 )2
. (122)
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Moreover, equilibrium payoffs are given as

ΠTUL1 =
V R+1

1 (V R
1 + (1−R)V R

2 )

(V R
1 + V R

2 )2
and ΠTUL2 =

V R+1
2 (V R

2 + (1−R)V R
1 )

(V R
1 + V R

2 )2
. (123)

Serial. If p(x1, x2) = pSER1 (x1, x2), then the unique pure-strategy Nash equilibrium, if V1 ≥ V2, is given

by efforts

xSER1 =
αV1

2

(
V2

V1

)α
and xSER2 =

αV2

2

(
V2

V1

)α
. (124)

Moreover, payoffs are given as

ΠSER1 = V1

[
1− 1 + α

2

(
V2

V1

)α]
and ΠSER2 = V2

(1− α)

2

(
V2

V1

)α
. (125)

Cf. Alcalde and Dahm (2007, Th. 3.4).

Relative-difference CSF. We have

fRD(x) =
τx

x+ 1
+

1− τ
2
, (126)

φRD(x) =
τx

x+ 1
+

1− τ
2
− τx

(x+ 1)2
(127)

=
τx2

(x+ 1)2
+

1− τ
2
. (128)

This yields equilibrium efforts

xRD1 =
τV 2

1 V2

(V1 + V2)2
and xRD2 =

τV1V
2

2

(V1 + V2)2
, (129)

and

ΠRD1 = V1

(
τV 2

1

(V1 + V2)2
+

1− τ
2

)
and ΠRD2 = V2

(
τV 2

2

(V1 + V2)2
+

1− τ
2

)
. (130)
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