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Abstract

We study the impact of manipulating the attention of a decision-maker who learns sequen-

tially about a number of items before making a choice. Under natural assumptions on the

decision-maker’s strategy, forcing attention toward one item increases its likelihood of being

chosen.
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JEL codes: D8, D91

1 Introduction

The struggle for attention is a pervasive phenomenon. Its importance has been documented in the

context of advertising at least since Fogg-Meade (1901). More broadly, attention-seeking behavior

plays an important role in marketing, finance, industrial organization, psychology, and biology.1

The main message is consistent across fields: drawing attention toward an item increases its demand.

The existing literature provides two main explanations for how attention-grabbing advertising

and marketing influence demand. One is that they directly affect preferences. While difficult

to disprove, a theory of changing preferences offers limited predictive power and makes welfare

analysis challenging. The other major explanation is that advertising conveys information—either

directly or through signaling—and thereby changes beliefs. But this second channel alone does not

∗We benefited from comments of Ian Krajbich, Arina Nikandrova, Marco Ottaviani, and audiences in Vancouver,
Evanston, Cergy, and Bern. Pavel Ilinov, Jan Sedek, and Jiaqi Zou provided excellent research assistance. This work
was financially supported by the French National Research Agency (ANR), “Investissements d’Avenir” (ANR-11-
IDEX0003/LabEx Ecodec/ANR-11-LABX-0047) (Gossner), ERC grant 770652 (Steiner), and by the Social Sciences
and Humanities Research Council of Canada (Stewart).

1See, e.g., Lou (2014) for finance, Eliaz and Spiegler (2011) for industrial organization, Orquin and Loose (2013)
for psychology, and Dukas (2002) for biology.
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suffice to explain the empirical evidence. In fact, there is a sizable body of evidence showing that

manipulating attention has a direct influence on demand even when devoid of information.2

We identify a mechanism through which grabbing attention increases demand without influenc-

ing preferences or conveying information. In our model, a decision-maker learns sequentially about

the quality of a number of items by dynamically switching attention among them before making

a choice. Paying attention to an item generates a noisy signal about its value. Due to cognitive

limitations, the decision-maker can focus only on one item at a time; while she pays attention to

a given item, her belief about its value evolves stochastically, while her beliefs about the other

items remain the same. Starting from a given strategy governing the decision-maker’s attention,

we introduce an attention-grabbing manipulation that forces the decision-maker to focus on one

“target” item for a fixed duration. We show that, under general conditions, such a manipulation

increases demand for the target item.

For the most part, we focus on a setting with binary values, in which each item is either good

or bad; we extend our results to allow for more than two values in Section 5.3 The decision-maker

can choose one of the items or an outside option of known value that she prefers to a bad item but

not to a good one. We impose a simple stopping rule: the decision-maker ceases to learn about an

item once she is sufficiently certain of its value. If she believes an item is sufficiently likely to be

good, she stops learning and chooses that item. If she believes an item is sufficiently likely to be

bad, she continues to learn about the other items until she finds one that is likely to be good or

determines that all items are likely to be bad (in which case she chooses the outside option).

The decision-maker’s learning is governed by an attention strategy that maps beliefs in any given

time period to a (possibly random) item of focus. An attention strategy generates, for each profile

of values of the items, a stochastic process over beliefs and items of attention, and a probability that

each item is chosen. We refer to these probabilities as interim demands for the items. The impact

of attention manipulation is captured by the difference in interim demands under the baseline and

manipulated attention strategies, where the baseline strategy is the one the decision-maker employs

in the absence of manipulation, while the manipulated strategy forces the decision-maker to focus

on a target item for a fixed duration, after which she returns to her baseline strategy.

We show that manipulation of attention increases demand and decreases the time to decision in

favor of the target item. Also, when the manipulated strategy leads to the choice of an item other

than the target, it takes longer to do so than does the baseline strategy. These results hold for any

realization of the items’ values. In particular, forced attention increases demand even if the target

item is bad.

The key to understanding the effect of manipulation is to consider the path of learning for each

possible realization of the sequence of signals for each item. Given such a realization, we can view

an attention strategy as selecting, in each period, an item for which to uncover one more step along

the sequence. The choice of item at the end of the process can be thought of as resulting from a kind

2See, e.g., Chandon et al. (2009), Krajbich and Rangel (2011), or, for a survey, Orquin and Loose (2013).
3Binary-value models are common in the literature on sequential sampling; see, e.g., Wald (1945) or, for more

recent work, Che and Mierendorff (2017) and Morris and Strack (2017).
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of approval contest: the decision-maker continues to learn until she approves of one of the items,

or until she finds all of them to be unworthy of approval. For a given realization of signals, there

may be multiple items the decision-maker would approve of were she to pay enough attention to

them. The choice then comes down to which of these items she approves of first. Forcing attention

toward one of these items accelerates the process of approval for this item while slowing it down

for the other items. Consequently, the likelihood that the target item is chosen increases.

This simple intuition ignores the significant complication that manipulating attention generally

affects future attention choice. It could happen, then, that manipulation toward a target item leads

to a path along which the decision-maker pays much less attention to the target item afterwards,

more than compensating for the direct effect of increased attention. If there are only two items (not

including the outside option), then this cannot happen: our results hold regardless of the baseline

attention strategy. With more than two items, we require two additional assumptions. First, the

attention strategy should be stationary: focus in each period must depend only on the current

beliefs, not on the current time. The second assumption is a form of independence of irrelevant

alternatives (IIA): conditional on not focusing on an item i, the probability of focusing on each

other item is independent of the belief about the value of item i (though it may depend on the

beliefs about items other than i). Together, these two assumptions allow us to consider learning

about the target item separately from learning among the remaining items, effectively reducing the

problem to one with two items.

To formalize these intuitions, we rely on a technique known in probability theory as coupling .

In short, we construct a joint probability space in which we fix, for each item, the outcome of the

learning process that would arise if the decision-maker focused only on that item. We refer to a

profile of realizations of these learning processes across items as a draw. We show that, for every

draw, forced attention toward an item both increases demand for that item and decreases decision

time.

Both stationarity and IIA are needed for our results in the sense that their conclusions do

not hold if we dispense with either assumption; we provide counterexamples in Section 4. Both

assumptions, though restrictive, are automatically satisfied if the attention strategy is optimized

given the stopping rules in our model: we prove that strategies that minimize a general class of

expected attention costs have a (stationary) Gittins index structure as in the theory of multi-armed

bandits. It follows that these strategies are stationary and satisfy IIA.

The presence of an outside option plays an important role in our analysis. Without it, the

decision-maker could choose by a process of elimination rather than approval; that is, she could

seek to eliminate items that she believes to be bad and ultimately choose an item—the last one

remaining—with little knowledge of its value. In this case, manipulating attention toward an item

may increase the chance that it is eliminated before the other items, thereby decreasing the demand

for it.

When each item can take on more than two values, the presence of an outside option is no longer

sufficient to generate our results. For example, with two items, it could be that the decision-maker
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is confident both are better than the outside option, making the problem effectively the same as

one with no outside option. However, our results go through as long as the decision-maker stops

and chooses an item only when her belief about that item falls within a given set. We think of

this set as consisting of those beliefs at which the decision-maker is sufficiently certain about the

item’s value. Requiring a degree of certainty about the chosen item is natural if its value affects

subsequent decisions. In the binary values case, then, the key role played by the outside option is

that it makes the decision-maker choose an item only when she is confident that it is good.

Our result is robust to many aspects of the learning process. The information structure for each

item is general, allowing for any number of signal realizations and dependence on the current belief

about the item. The decision-maker need not be Bayesian; we can, for instance, reinterpret her

beliefs as intensities of accumulated neural stimuli in favor of each item, which can evolve according

to an arbitrary stationary Markov process (not necessarily corresponding to Bayesian updating).

We also allow for attention strategies that are not optimal, making our results robust with respect

to the structure of the attention costs if these strategies were chosen optimally.

Related literature Evidence that increased attention boosts demand comes from several fields.

In marketing, Chandon et al. (2009) show that drawing attention to products—for instance, with

large displays or placement at eye level—increases demand. In finance, Seasholes and Wu (2007)

show that attention-grabbing events about individual stocks increase demand for them. In biology,

Yorzinski et al. (2013) study the display strategies through which peacocks grab and retain the

attention of peahens during courtship.

When applied to advertising, our approach finds support in Fogg-Meade (1901) who notes that

“successful advertisement is obtrusive. It continually forces itself upon the attention.” Bagwell

(2007) surveys the economics literature on advertising and divides it according to whether adver-

tisements are treated as persuasive or informative. In the persuasive approach, advertising directly

influences customers’ preferences. In the informative approach, advertisements inform consumers

about product availability, prices, or characteristics. Relative to these approaches, we show how

advertising can boost demand with stable preferences even when advertisements convey no infor-

mation.

Our assumptions on attention allocation are rooted in psychology. Though humans are able to

pay attention to multiple stimuli simultaneously, such division of attention is difficult, especially

when the stimuli are similar to each other (e.g., Spelke, Hirst, and Neisser, 1976). Psychologists

distinguish between exogenous and endogenous attention, where the first is beyond the decision-

maker’s control and is triggered by sudden movements, bright colors and such, while endogenous

attention shifts are controlled by the decision-maker (Mayer et al., 2004). We can interpret attention

allocation during our manipulation window as being exogenous, whereas our baseline attention

strategy fits the endogenous attention interpretation.

Our model builds on a long tradition in statistics and economic theory originating in Wald

(1945), who proposed a theory of optimal sequential learning about a single binary state. A grow-

4



ing literature studies optimal sequential learning about several options when attention must focus

on one item at a time (Mandelbaum, Shepp, and Vanderbei, 1990; Ke, Shen, and Villas-Boas, 2016;

Ke and Villas-Boas, 2017; Nikandrova and Pancs, 2018; Austen-Smith and Martinelli, 2018). The

structure of the optimal learning strategy varies depending on the costs and information struc-

ture. Our results on the impact of attention manipulation are independent of these considerations;

however, relative to this literature, we make simplifying assumptions on the rules that govern ter-

mination of learning. In a different vein, Che and Mierendorff (2017) study sequential allocation

of attention between two Poisson signals about a binary state. In contrast, in our model, the

decision-maker chooses among signals about multiple independent states.

In the drift-diffusion model of Ratcliff (1978), a decision-maker accumulates an internal signal

based on the difference in the values of two actions, making a choice when the signal becomes

sufficiently strong.4 Krajbich, Armel, and Rangel (2010) explicitly incorporate attention choice in

this model, and introduce an exogenous bias in the accumulated signal toward the item on which the

decision-maker is currently focusing. This extended drift-diffusion model accommodates empirical

findings showing that exogenous shifts in attention tend to bias choice (see, e.g., Armel, Beaumel,

and Rangel, 2008; Milosavljevic et al., 2012). Relative to this literature, whose primary modeling

goal is to fit choice data, we focus on foundations for the mechanism by which attention affects

demand.

Optimal sequential learning about several items is related to the theory of multi-armed bandits

(Gittins and Jones, 1974). We exploit this connection to show that optimal attention strategies

satisfy IIA by using the Gittins index characterization.

2 Main result in a simple setting

In this section, we show in the simplest possible setting that a temporary forced attention to an

item increases the probability that the decision-maker (DM) chooses it.

The DM chooses one among two items i ∈ {1, 2} of unknown values vi ∈ {0, 1} or an outside

option with a known value z ∈ (0, 1). The two values vi are independent ex ante, and each is equal

to 1 with prior probability pi0. The DM learns sequentially about each item, and can vary the focus

of her learning as specified below. She chooses when to stop learning, at which point she selects an

item or the outside option based on whichever one has the highest posterior expected value.

Let pit denote the DM’s belief about each item i at the beginning of the period t and write pt

for the pair of beliefs (p1
t , p

2
t ). At the beginning of each period t = 0, 1, . . ., the DM chooses an

item ιt on which to focus in period t. She receives a signal that is informative about the value of

item ιt and independent of the value of the other item. In this section, the signal takes on values

0 and 1, and for each v, Pr(xt = vιt | vιt = v) = λ and Pr(xt = 1− vιt | vιt = v) = 1− λ for some

λ > 1/2. Upon observing a signal realization, the DM updates her belief according to Bayes’ rule.

4When the signal is interpreted as a belief and the stopping rule is optimized, Ratcliff’s model is essentially
equivalent to a sequential sampling model in the style of Wald (1945).
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In particular, the DM’s belief about the item she is focusing on changes while her belief about the

other item remains fixed. Thus, letting

p[+] =
λp

λp+ (1− λ)(1− p)
(1)

and p[−] =
(1− λ)p

(1− λ)p+ λ(1− p)

for each p ∈ (0, 1), we have pιtt+1 = pιtt [+] or pιtt [−] according to whether xt = 1 or 0, and pit+1 = pit

for item i 6= ιt. Attention allocation is governed by a (pure) attention strategy α : [0, 1]2 −→ {1, 2}
that specifies the item of focus ιt = α(pt) of a DM with beliefs pt.

The DM stops and makes a choice once she is sufficiently sure that either (i) one of the items is

of high value or (ii) both items are of low value. Accordingly, we introduce thresholds p and p such

that p < z, pi0 < p. We define stopping regions F i = {p : pi ≥ p} for i = 1, 2, F oo = {p : p1, p2 ≤ p}
and F = F 1 ∪ F 2 ∪ F oo. Learning stops in the period τ = min{t : pt ∈ F} with the DM choosing

item i if pτ ∈ F i and the outside option if pτ ∈ F oo. We let τ i denote the period in which the DM

chooses item i; that is, τ i = τ if item i is chosen and τ i =∞ otherwise. Note that τ and τ i depend

on the attention strategy; accordingly, we sometimes write τ(α) and τ i(α) if the attention strategy

α is not otherwise clear from the context.

The above rules specify, for any given pair of values v = (v1, v2), the joint stochastic process of

beliefs and focus of attention (pt, ιt)t, with the joint law denoted by Pv
α . For any strategy α and

pair of values v, we let the interim demand for item i,

Di(v;α) = Pv
α

(
pτ ∈ F i

)
,

be the probability that the DM stops with the choice of i when the true values are v. (Stopping in

F 1 and F 2 are mutually exclusive.)

We are interested in how manipulation of the DM’s attention strategy affects her choice. To

this end, given a baseline strategy α, we introduce a manipulated strategy β constructed from α by

forcing the DM to focus on item 1 in the initial period and then returning to α in all subsequent

periods. That is, the item of focus β(p, t) in period t for beliefs p is given by

β(p, t) =

1 if t = 0,

α(p) if t > 0.

We say that an attention strategy α is non-wasteful if α(p) 6= i for any p such that pi ≤ p.

Non-wasteful strategies do not focus on an item that the DM deems to have low value.

Proposition 1. Suppose that the baseline attention strategy α is non-wasteful. Forced focus on

item 1 in the first period
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1. (weakly) increases the demand for item 1 and decreases the demand for item 2; that is,

D1(v;β) ≥ D1(v;α)

and D2(v;β) ≤ D2(v;α)

for all pairs of values v ∈ {0, 1}2; and

2. accelerates the choice of item 1 and decelerates the choice of item 2; that is,

Pv
α (τ1≥t) ≥ Pv

β (τ1≥t)

and Pv
α (τ2≥t) ≤ Pv

β (τ2≥t)

for all pairs of values v ∈ {0, 1}2 and all t ∈ N.

When an item has low value, the DM’s belief about it tends to drift downward whenever she

focuses on it. Yet, perhaps surprisingly, the proposition indicates that forced focus on an item

boosts its demand even in this case.

The result is a special case of Theorem 1, and thus we provide only an informal proof here.

Imagine that there is a large (countably infinite) deck of cards for each item, with each card showing

a signal realization of 0 or 1. In each period t, the attention strategy chooses a deck α(pt) from

which to draw the next card, and then the DM updates the relevant belief based on the signal

shown on that card. Now consider the effect of manipulation on choice for a given ordering of each

deck of cards, where manipulation forces the first card to come from the deck for item 1. To avoid

trivialities, focus on the case in which, absent manipulation, the DM first draws from deck 2.

The DM chooses item 1 if her belief p1
t reaches (at least) p before p2

t does. Intuitively, forcing

the DM to draw first from deck 1 should only cause p1
t to reach p sooner. There is a complication,

however, insofar as manipulation can cause the order of subsequent draws to change since the DM

may reach pairs of beliefs that she would not have reached otherwise. The key observation is that,

once we have fixed the ordering of the cards, we only need to keep track of how many cards the

baseline and manipulated strategies have drawn from each deck. At the end of the first period,

compared to the baseline strategy, the manipulated strategy is further ahead with deck 1 in the

sense that more cards have been drawn from deck 1. Correspondingly, the baseline strategy is

further ahead with deck 2. In each subsequent period, either the manipulated strategy remains

ahead with deck 1 (perhaps pulling even further ahead) and the baseline strategy remains ahead

with deck 2, or the numbers of draws from both decks under the baseline strategy “meet” the

numbers under the manipulated strategy. In the latter case, the beliefs under the two processes

coincide after the period in which they meet (since beliefs are independent of the order in which

signals are received). Therefore, the manipulation has no effect on choice if the two processes meet.

Accordingly, consider the case in which the two processes do not meet before one of them stops.

Suppose that the baseline strategy leads to the choice of item 1; that is, the belief about item 1

reaches p in some period τ before the belief about item 2 reaches p. Since the manipulated strategy
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is further ahead with deck 1 and behind with deck 2 in each period t < τ , it must be that under

the manipulated strategy, the belief about item 1 reaches p before the belief about item 2 does,

and does so no later than period τ . Therefore, the manipulated strategy also leads to the choice of

item 1, with this choice occurring no later than under the baseline strategy.

The argument for the statements about item 2 is symmetric. Suppose that the manipulated

strategy leads to the choice of item 2; that is, under the manipulated strategy, the belief about

item 2 reaches p in some period τ̂ before the belief about item 1 does. Since the baseline strategy is

further ahead with deck 2 and behind with deck 1 in each period t < τ̂ , under the baseline strategy,

the belief about item 2 reaches p before the belief about item 1 does, and does so no later than

period τ̂ .

This argument shows that the statements in the proposition hold for each draw; it follows that

they also hold when averaging across draws.

3 General result for binary values

We now extend the setting to allow for more than two items, general signal structures, stochastic

attention strategies, and arbitrary length of the manipulation window. At the end of the learning

process, the DM chooses one item from the set I = {1, . . . , I} or an outside option with known

value z ∈ (0, 1). Each item i ∈ I has an uncertain value vi ∈ {0, 1}, and again, v = (v1, . . . , vI).

In each period t = 0, 1, . . ., the DM focuses on a single item. Her belief in period t that item

i is of high value (vi = 1) is denoted pit, and we write pt = (pit)i for the belief vector in period

t.5 A (stochastic) attention strategy is a function α : (∆({0, 1}))I × N −→ ∆(I) that specifies a

probability distribution over items of focus as a function of the belief vector at the beginning of

a period together with the current time. We can think of α(p, t) as a vector (αi(p, t))i, where

αi(p, t) is the probability with which the DM focuses on item i in period t. An attention strategy

is stationary if it does not depend on time (i.e., if α(p, t) = α(p, t′) for all p, t, and t′), in which

case we simply write α(p) for α(p, t). If, for every p and t, an attention strategy α(p, t) assigns

probability one to a single item, then we say that it is a pure strategy, and abuse notation slightly

by writing α(p, t) for the item of focus.

The evolution of beliefs as a function of the attention strategy is as follows. The DM begins

with a prior belief vector p0 = (p1
0, . . . , p

I
0). If the beliefs at the beginning of period t are pt and

the DM focuses on item i in period t, then the belief about item i follows a stochastic transition

φi : ∆({0, 1}) × {0, 1} −→ ∆ (∆({0, 1})) that depends on pit and on vi, while the beliefs about all

other items remain unchanged; that is, conditional on pt, pt+1 is a random variable such that pit+1

is distributed according to φi(pit, v
i) and pjt+1 = pjt for all j 6= i. By fixing the DM’s beliefs about

items she is not currently focusing on, we are implicitly assuming that she treats the items’ values

as independent. One special case of this setting is when the DM receives a (serially conditionally

independent) signal about the item she focuses on and updates her belief according to Bayes’ rule.

5We identify the probability pit ∈ [0, 1] attached to vi = 1 with the corresponding belief in ∆({0, 1}).
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However, we also allow for non-Bayesian processes; for example, the “belief” pit could alternatively

represent the strength of a mental impulse towards choosing item i, or the DM could under- or

over-react to new information relative to Bayes’ law.

An attention strategy α naturally induces a process of items of focus (ιt)t and a process of belief

vectors (pt)t. The law of ιt conditional on (p0, ι0, . . . ,pt−1, ιt−1,pt) is α(pt, t), and the belief vector

pt+1 is drawn as described above, conditional on (p0, ι0, . . . ,pt−1, ιt−1,pt, ιt). Given any vector of

values v, we let Pv
α denote the joint law of the process (pt, ιt)t.

The time at which the DM stops learning is governed by thresholds pi and pi for each i satisfying

0 ≤ pi < pi0, z < pi ≤ 1. If the DM’s belief pit satisfies pit ≤ pi then we say that she is sufficiently

certain that vi = 0, and similarly, if pit ≥ pi then she is sufficiently certain that vi = 1. The DM

learns until she is sufficiently certain of an optimal choice. We thus define the stopping region F

according to F =
(⋃

i F
i
)
∪ F oo, where F i = {p : pi ≥ pi} and F oo = {p : pi ≤ pi for all i}. The

DM makes her choice at the stopping time τ = min{t : pt ∈ F}: either pτ ∈ F i for some i, in

which case this i is chosen, or pτ ∈ F oo, in which case the outside option is chosen (these cases are

mutually exclusive). For any item i, let the stopping time τ i for i be equal to τ if i is chosen and

∞ otherwise. (We allow for the possibility that learning does not stop, in which case τ = τ i =∞
for all i.)

An attention strategy α is non-wasteful if αi(p, t) = 0 for all p such that pi ≤ pi. A non-wasteful

strategy never focuses on an item that the DM is sufficiently certain is of low value.

A special case of particular interest is when the thresholds are given by pi = 0 and pi = 1

for all i. These thresholds ensure that the DM learns until she is certain that she can make an

optimal choice (at which point she stops immediately). One type of learning that eventually leads

to certainty is that with Poisson information in which the DM is a Bayesian who receives a signal

about the item she focuses on that perfectly reveals its value with positive probability. (This

probability may depend on the item and its value.) Under such a learning process, thresholds of 0

and 1 are optimal for a DM who incurs a time cost of learning, but lexicographically prioritizes the

value of her choice above this cost. More generally, however, we do not endogenize the stopping

regions as resulting from optimization in a costly learning process; doing so would make for a

very challenging problem involving tradeoffs that are orthogonal to the effect we identify. The key

difference between our setting and one with endogenous boundaries is that we require the thresholds

pi and pi to be independent of the DM’s beliefs about other items j 6= i. When the thresholds

are interior, we interpret them as capturing bounded rationality that is particularly natural when

the cost of learning is low and the thresholds are close to 0 and 1 (in which case the additional

gain from precisely tailoring the thresholds is small). We conjecture that, in this case, our results

approximate those arising from optimal strategies in Bayesian models with a small cost of learning.

An attention strategy α satisfies Independence of Irrelevant Alternative i (IIAi) if, conditional

on not focusing on item i, the probabilities of focusing on each item j 6= i are independent of pi.

Formally, for every t and p,q ∈ (∆({0, 1}))I such that pj = qj for all j 6= i, αi(p, t), αi(q, t) 6= 1
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imply that, for every j 6= i,
αj(p, t)

1− αi(p, t)
=

αj(q, t)

1− αi(q, t)
.

We say that α satisfies Independence of Irrelevant Alternatives (IIA) if it satisfies IIAi for all items i.

Note that IIA is automatically satisfied if there are only two items.

We define the interim demand for item i as

Di(v;α) = Pv
α

(
pτ ∈ F i

)
;

this is the probability, under strategy α, that the DM chooses item i when the vector of values is v.

We compare the interim demand under a baseline attention strategy to that under a manipulated

strategy capturing the effect of forced attention. Given a baseline strategy α, a target item i, and

a manipulation length m ≥ 1, the manipulated attention strategy (in favor of i) is

βj [α, i,m](p, t) =

1j=i if t ≤ m− 1, and pi > pi,

α(p, t) otherwise.

Thus, under the manipulated attention strategy, the DM focuses on item i in the first m periods

unless she is sufficiently certain that i is of low value, and then follows her baseline strategy in

every subsequent period.6

The following proposition states that manipulation in favor of an item both increases and

accelerates demand for this item, and decreases and decelerates demand for each other item. (The

comparison of timing here is in the sense of first-order stochastic dominance.) The result holds

regardless of the underlying values: even if the target item is worse than other items, drawing

attention to it is never detrimental to the likelihood that it is chosen.

Theorem 1. If an attention strategy α is stationary, satisfies IIAi, and is non-wasteful, then for

every v and manipulation length m ≥ 1,

Di(v;β[α, i,m]) ≥ Di(v;α)

and Dj(v;β[α, i,m]) ≤ Dj(v;α) for every j 6= i.

Moreover, for every t ≥ 0,

Pv
α (τ i≥t) ≥ Pv

β[α,i,m](τ
i≥t)

and Pv
α (τ j≥t) ≤ Pv

β[α,i,m](τ
j≥t) for every j 6= i.

6Since Theorem 1 holds for any manipulation length, m can be randomized without affecting the conclusion.
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3.1 Proof of Theorem 1

The proof relies on a technique known as “coupling” (see, e.g., Lindvall, 1992): we fix the vector of

values v and construct a common probability space on which we can compare the process of beliefs

and items of focus (pt, ιt)t under the baseline attention strategy α with the process (p̂t, ι̂t)t under

the manipulated strategy β = β[α, i,m]. We construct this space in such a way that the law of

(pt, ιt)t is Pv
α , while the law of (p̂t, ι̂t)t is Pv

β .

We present here a coupling construction that suffices to prove the proposition for pure attention

strategies. In Appendix A.1, we extend the construction to stochastic attention strategies, in which

case the coupling argument is significantly more complex.

The probability space consists of realizations of a learning process π = (πj)Ij=1. The process

π is a family of independent learning processes πj = (πjκ)κ=0,1,... for each item j, where πj is a

Markov process starting at pj0 with transitions φj(·, vj). The κth term πjκ of the learning process

for item j specifies the belief about item j after κ periods of focus on that item. A learning draw

is a realization of the learning process π.

We now construct, for each pure strategy γ ∈ {α, β}, a realization of the process (pt(γ), ιt(γ))t
as a function of the learning draw. Recursively define (pt(γ), ιt(γ))t as follows. For t ≥ 0, and

given the process (ιs(γ))s<t, for each item j, let k(j, t; γ) denote the cumulative focus of strategy γ

on item j before period t; that is,

k(j, t; γ) = |{s < t : ιs(γ) = j}|.

Similarly, let k(−i, t; γ) = t− k(i, t; γ) denote the number of periods of focus on items other than i.

Set pjt (γ) = πjk(j,t;γ) for every j; i.e., set the belief about each item j after k(j, t; γ) periods of focus

on this item to be the k(j, t; γ)-th value of the learning process πj . Given γ, let the focus in period

t be ιt(γ) = γ(pt). By construction, the law of the process (pt(γ), ιt(γ))t is Pv
γ , as needed.

For notational purposes, it is convenient to extend the process (pt(γ), ιt(γ))t beyond the stop-

ping time τ . To this end, if pt(γ) ∈ F , then we set ιt(γ) = ∅ and pt+1(γ) = pt(γ). From this point

forward, we write (pt, ιt) for (pt(α), ιt(α)), (p̂t, ι̂t) for (pt(β), ιt(β)), and similarly for k, and τ . We

fix a learning draw and compare the two corresponding realizations of the processes (pt, ιt)t and

(p̂t, ι̂t)t.

For any n ≥ 0, let t(n) be the n-th period such that ιt 6= i; that is, t(n) = min{t : k(−i, t) ≥ n},
where potentially t(n) =∞, and similarly, t̂(n) = min{t : k̂(−i, t) ≥ n}.

Lemma 1 (Coupling Lemma). The baseline and manipulated processes coincide when restricted to

periods of focus on items other than the target i. That is, for every n,(
p−it(0), ιt(0), . . . ,p

−i
t(n), ιt(n)

)
=
(
p̂−i
t̂(0)
, ι̂̂t(0), . . . , p̂

−i
t̂(n)

, ι̂̂t(n)

)
.

Proofs omitted in the main text can be found in the appendix.

For t ≥ m, we say that the baseline and the manipulated processes meet (in period t) if
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the cumulative focus on the target item i up to time t is the same for both processes, i.e. if

k(i, t) = k̂(i, t). Note that for the two processes to meet, the definition considers only the cumulative

focus on the target item. In general, this does not imply that the cumulative focus on any other

item coincides under the two processes at time t (see counterexamples 4.3 and 4.4). The previous

result shows that when stationarity and IIAi hold, meeting of the two processes implies that the

cumulative focus is the same for every item. According to the next result, the processes then

coincide in every subsequent period.

Lemma 2 (Meeting Lemma). If the baseline and manipulated processes meet in period t, then

(ps, ιs) = (p̂s, ι̂s) for all s ≥ t.

The Meeting Lemma implies the next result.

Lemma 3 (Attention Lemma). In every period, the cumulative focus on the target item i is at

least as large under the manipulated process as under the baseline process, and the cumulative focus

on any j 6= i is at least as large under the baseline process as under the manipulated process. That

is, for every t ≥ 1 and j 6= i,

k̂(i, t) ≥ k(i, t)

and k(j, t) ≥ k̂(j, t).

For any attention strategy γ, let τ oo(γ) = τ(γ) if pτ(γ) ∈ F oo (and thus the outside option is

chosen) and τ oo(γ) =∞ (indicating that the outside option is not chosen) otherwise.

Lemma 4 (Outside Option Lemma). For any two non-wasteful attention strategies γ and γ′ and

any learning draw, τ oo(γ) = τ oo(γ′).

The Outside Option Lemma implies in particular that the outside option is chosen under the

baseline process if and only if it is chosen under the manipulated process. Thus attention ma-

nipulation merely shifts demand within I and does not affect the total demand across all of the

items.

Lemma 5 (Choice Lemma). For any learning draw,

1. if the target item i is chosen under the baseline process, then i is also chosen under the

manipulated process, and no later than under the baseline process; and

2. if some item j 6= i is chosen under the manipulated process, then j is also chosen under the

baseline process, and no later than under the manipulated process.

Proof. Statement 1 : Consider any learning draw such that the target item i is chosen in period

τ under the baseline process. Then, by the Outside Option Lemma, the outside option is not

chosen under the manipulated process since it is not chosen under the baseline process. Suppose

for contradiction that j 6= i is chosen at some time τ̂ ≤ τ under the manipulated process. Then
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p̂jτ̂ ≥ p
j . By the Attention Lemma, the cumulative focus on items −i by period τ̂ under the baseline

process is at least as large as that under the manipulated process; that is, k(−i, τ̂) ≥ k̂(−i, τ̂). By

the Coupling Lemma, there exists a period t ≤ τ̂ such that p−it = p̂−iτ̂ , and hence the baseline

process stops with the choice of j in period t, which establishes the contradiction since stopping in

F i and F j are mutually exclusive for j 6= i. Therefore, it cannot be that, under the manipulated

process, an item j 6= i is chosen at a time τ̂ ≤ τ . By the Attention Lemma, k̂(i, t) ≥ k(i, t) for all

t. Hence, there exists τ̂ ≤ τ such that p̂iτ̂ = piτ ≥ pi (since the manipulated process does not stop

with the choice of j 6= i or the outside option before τ̂). Thus, the manipulated process stops at

time τ̂ ≤ τ with the choice of i, as needed.

Statement 2 : The proof of the second statement is symmetric to that of the first. Accordingly,

consider any draw such that, under the manipulated process, an item j 6= i is chosen in period

τ̂ . Then, by the Outside Option Lemma, the baseline process does not choose the outside option.

Suppose for contradiction that, under the baseline process, the target item i is chosen in some

period τ ≤ τ̂ . Then piτ ≥ pi. By the Attention Lemma, k̂(i, τ) ≥ k(i, τ). Thus, there exists a

period t ≤ τ such p̂it = piτ ≥ pi and hence under the manipulated process, i is chosen in period

t ≤ τ̂ , which establishes the contradiction. Therefore, it cannot be that, under the baseline process,

i is chosen at a time τ ≤ τ̂ . By the Attention Lemma, k(−i, t) ≥ k̂(−i, t) for all t. By the Coupling

Lemma, the beliefs p−i and p̂−i coincide when restricted to the periods of focus on items −i. Hence,

there exists τ ≤ τ̂ such that p−iτ = p̂−iτ̂ , and the baseline process stops in period τ with the choice

of item j, as needed.

Theorem 1 follows from the Choice Lemma by taking expectations across learning draws.

3.2 IIA and stationarity

We now provide an argument in support of the IIA and stationarity assumptions based on opti-

mization of the attention strategy. We fix, for each item i, the belief-updating process φi and the

stopping thresholds pi and pi, and let the DM control her attention strategy α. We assume in this

section that the beliefs follow a Markov process (unconditional on v), as is the case if they are

obtained through Bayesian updating based on observed signals. Until she stops learning, the DM

pays a flow cost 0 ≤ c (pιtt , ιt) ≤ c in each period t, where this flow cost may depend on the item ιt

of current focus and on the belief pιtt in the current period; c is a finite upper bound on the flow

cost. The DM chooses a strategy α to minimize the expected discounted flow cost

C(α) = E

τ∑
t=0

δtc (pιtt , ιt) , (2)

where δ ∈ (0, 1) is a discount factor. Note that such a cost-minimizing strategy is necessarily

non-wasteful.

We rely here on the theory of multi-armed bandits to show that a Gittins index strategy is

optimal: for each item i, there exists a Gittins index function Gi(pit) that depends only on the
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belief about item i, such that the optimal strategy consists in each period of focusing on an item

with the highest Gittins index. When ties are broken with uniform randomization, such a strategy

satisfies IIA and stationarity.

Proposition 2. There exists a non-wasteful strategy that minimizes the objective (2) and satisfies

IIA and stationarity.

The main challenge in proving this result is that the cost in (2) exhibits interdependence across

items because whether the decision process stops with the DM choosing the outside option depends

on the whole profile of beliefs. Since the theory of multi-armed bandits applies to problems with

flow payoffs that are independent across objects, we need to construct an auxiliary multi-armed

bandit problem with this property. The construction is based on Lemma 4 (the Outside Option

Lemma), which states that, conditional on the outside option being chosen, the stopping time is

independent of the attention strategy. This construction applies because the stopping thresholds

are independent of the DM’s beliefs about the other items; if both the attention strategy and the

stopping region are chosen jointly to maximize the expected value of the choice less the cost of

learning as in Nikandrova and Pancs (2018) and Ke and Villas-Boas (2017), then there need not

exist an optimal Gittins index strategy.

4 Examples and counterexamples

4.1 Example: the fastest strategy

To illustrate the quantitative impact of manipulating attention, we return to the example from

Section 2 and examine the fastest attention strategy (for the given stopping thresholds). This

strategy has a simple form that allows for analytical computation. Whenever manipulation changes

the DM’s focus in the first period, we show that it has a nonzero impact on demand.

Recall from Section 2 that if the DM has beliefs pt and focuses on item j ∈ {1, 2} in period t,

she updates her belief about j to pjt [−] with probability (1 − λ)vj + λ(1 − vj) and to pjt [+] with

probability λvj+(1−λ)(1−vj), where p[−] and p[+] are specified in (1). For simplicity, assume that

the stopping thresholds p and p are the same for the two items, and that each of these thresholds

can be reached exactly through some sequence of signals.7 Thus, the set of attainable beliefs takes

the form {p, p[+], . . . , p[−], p}, which is the same for both items.

Recall that Pv
α denotes the interim law of the learning process for given values v and strategy α.

Let P ea
α = EPv

α be the ex ante law, where the expectation is with respect to v, distributed according

to the prior belief vector p0; that is, P ea
α =

∑
v

(∏
j p

j
0(vj)

)
Pv
α . The stopping time τ ea(α) for

strategy α is the minimal time t at which pt(α) ∈ F under the law P ea
α .

7On its own, the latter assumption is without loss of generality since moving a threshold within a region between
attainable beliefs has no effect. When combined with the commonality of the thresholds, this assumption places a
restriction on the prior belief vector.
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The strategy α∗ depicted in Figure 1A focuses on whichever item the DM views as more promis-

ing. Accordingly, for each item j and i 6= j,

α∗j(p) =


1 if pj > pi,

1/2 if pj = pi,

0 otherwise.

(3)

The next result states that α∗ is the fastest attention strategy in this environment. Hence α∗ is

optimal for a DM who, given F , minimizes a monotone time cost.

Proposition 3. For any strategy α, τ ea(α) weakly first-order stochastically dominates τ ea(α∗).

As with our main results, the proof makes use of coupling, although the particular construction

is distinct from our main one. A different coupling construction is necessary because the strategy

α∗ is not the fastest one in every learning draw: there exist draws in which focusing on the more

promising item leads to a long sequence of contradictory signals.

The effect of manipulation identified in Theorem 1 is strict when the DM employs α∗ provided

the manipulation is nontrivial. Consider a manipulated strategy β = β[α∗, i, 1] that targets item i

for one period. Assume that pj0 ≥ pi0 for j 6= i (otherwise, α∗ focuses on i initially and the baseline

and manipulated processes trivially coincide). This manipulation generates a strict increase in the

demand for the target item; that is,

Di(v;β) > Di(v;α∗)

for all v. To see this, recall from the Choice Lemma that in any draw, if the target item is chosen

under the baseline process, then it is also chosen under the manipulated one. Hence, the impact of

manipulation is strict if there exists a positive measure of draws in which β chooses i and α∗ does

not. We construct such draws as follows.

Let the learning draw πiκ for the target item i be an increasing sequence until it reaches p.

Thus, i is chosen by either strategy γ ∈ {α∗, β} if pit(γ) > pjt (γ) in some period t ≥ 1, since the DM

focuses on i thereafter until she chooses it. For item j 6= i, recalling that pj0 ≥ pi0, let πjκ decrease

until it reaches pi0, and increase thereafter until it reaches the threshold p. The decision process

stops in finite time in this learning draw. Consider draws such that, when the tie between the two

beliefs occurs, the DM focuses on j. Such draws have a nonzero probability. By construction, in

these draws, the strategy α∗ leads to the choice of item j, while β eventually switches focus from

j to i and then continues to learn about i until it is chosen.

How much does the manipulation of attention affect demand? To quantify the effect, define the

ex ante demand by

Di
ea(p0;α) = P ea

α

(
pτ ∈ F i

)
= Ep0 D

i(v;α). (4)

Thus Di
ea(p0;α) is the (ex ante) probability that a DM with prior beliefs p0 chooses item i. The
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Figure 1: A: attention strategy α∗. B: ex ante demand D1
ea(p1, p2;α∗) for item 1 as a function

of p1. The belief p2 is fixed at .55 (solid curve), or .45 (dashed curve), respectively. The stopping
thresholds are p = .27 and p = .73. The values depicted on the horizontal axis are attainable
transient beliefs for the given information structure.

change in the ex ante demand for the target item i resulting from a single-period manipulation is

EDi
ea

(
p̃i, p−i;α

)
−Di

ea(pi, p−i;α),

where p̃i is the belief resulting from a one-period update of pi, and the expectation is over the

possible values pi[+] and pi[−] of p̃i. The magnitude of the effect is therefore determined by the

curvature of Di
ea(p−i, pi;α) with respect to pi around p.

Appendix A.4 provides an explicit expression for Di
ea(p;α∗) under the strategy α∗. Figure 1B

depicts the ex ante demand as a function of p1 for two values of the belief p2. The curvature of

the demand function, and hence the strength of the manipulation effect, is large when both beliefs

are high (and when p1 ≤ p2, which is necessary for the two processes to differ). This is because

the DM’s choice can be manipulated only in learning draws (πiκ)iκ in which both π1
κ and π2

κ reach

the high threshold p before they reach p, since the choices under the two strategies coincide in all

other draws. Thus the manipulation is more likely to have an effect when p1 and p2 are high.

4.2 Counterexample: no outside option

To illustrate the role of the outside option in our main result, we now consider a variant of the

example from Section 2 in which there is no outside option. The main result does not go through:

manipulating attention toward an item may decrease its demand even if the attention strategy is
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Figure 2: A: attention strategy α∗∗. B: demand D1
no(p1, p2;α∗∗) for item 1 as a function of p1. The

belief p2 is fixed at .55 (solid curve), or .45 (dashed curve), respectively. The stopping thresholds
are p = .27 and p = .73. The values depicted on the horizontal axis are attainable transient beliefs
for the given information structure.

optimized.

The DM must choose one of two items i ∈ {1, 2} with values vi ∈ {0, 1}. She stops learning as

soon as she is sufficiently certain about the value of one of the items: if she is sufficiently certain

that an item has high value then she chooses it, and if she is sufficiently certain that an item has

low value then she chooses the other item. Let F ino be the set of beliefs at which the DM stops

learning and chooses i, that is,

F ino =
{
p : pi ≥ pi or p−i ≤ p−i

}
,

and let Fno = F 1
no ∪ F 2

no. Define the stopping time under the law P ea
α to be τ ea

no(α) = min{t : pt ∈
Fno}; to simplify notation, we write τ in place of τ ea

no(α) when the meaning is clear from the context.

Relative to the setting with an outside option, the current stopping rule differs in that the DM

stops as soon as she is sufficiently certain that she has identified the better item, even if she has

little certainty about whether that item has high value.

For simplicity, assume that (i) the threshold beliefs are the same for the two items, (ii) p = 1−p,
and (iii) each of these thresholds can be reached exactly through some sequence of signals. Thus,

the set of attainable beliefs for each item takes the form {p, p[+], . . . , p[−], p} and is symmetric

around 1/2.
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Let α∗∗j(p) be the strategy that focuses on the item about which the DM is more certain; that

is, for j 6= i, let

α∗∗j(p) =


1 if |pj − 1/2| > |pi − 1/2|,

1/2 if |pj − 1/2| = |pi − 1/2|,

0 otherwise.

(5)

Figure 2A depicts this strategy, which, as the following result indicates, is the fastest attention

strategy in this setting.

Proposition 4. For any strategy α, τ ea
no(α) weakly first-order stochastically dominates τ ea

no(α∗∗).

For any strategy α, let Di
no(p0;α) be the ex ante demand for item i; that is,

Di
no(p0;α) = P ea

α

(
pτ ∈ F ino

)
.

We analytically characterize Di
no(p;α∗∗) in Appendix A.5 and plot it in Figure 2B as a function

of p1. When p2 is less than 1/2, the demand is concave in p1, which indicates that manipulating

attention toward item 1 decreases its demand. To understand why, consider a learning draw in

which both π1
κ and π2

κ reach p before p. In any such draw, the DM eliminates the first item for

which her belief reaches p, and thus manipulating attention toward an item increases its chance of

being eliminated.8

The reversal of our result in this example arises because of the change in the stopping region,

not because of the strategy α∗∗. Since Theorem 1 applies to any attention strategy, if the DM

employs α∗∗ in the setting with an outside option, manipulation (weakly) increases the demand for

the target item.

The presence of an outside option affects demand in two different ways: (i) directly, by allowing

the DM not to choose either item, and (ii) indirectly, by affecting the stopping region. It turns

out that (i) is irrelevant for the direction of the manipulation effect; the difference between the two

settings is driven by (ii).

To disentangle the two channels, consider an alternative model in which there is no outside

option, and the stopping region is that from our main setting. Thus learning stops with the choice

of item i whenever pτ ∈ F i = {p : pi ≥ p} for some i, and with an equal probability of choosing

either item whenever pτ ∈ F oo = {p : p1, p2 ≤ p}. The (ex ante) demand for item i is therefore

Di
alt(p0;α) = P ea

α

(
pτ ∈ F i

)
+

1

2
P ea
α (pτ ∈ F oo)

= Di
ea(p0;α) +

1

2
P ea
α (pτ ∈ F oo)

= Di
ea(p0;α) +

1

2

p− p1
0

p− p
p− p2

0

p− p
, (6)

8When p2 is greater than 1/2, the demand in Figure 2B is convex in p1, and thus manipulating attention toward
item 1 boosts its demand. This effect arises due to draws in which both π1

κ and π2
κ reach p before p.
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where Di
ea(p;α) is the demand defined in (4) from the example with an outside option. The second

summand in (6) is linear in pi0 for each i. Thus the impact of a single-period manipulation toward

target i is

EDi
alt

(
p̃i, p−i;α

)
−Di

alt(p;α) = EDi
ea

(
p̃i, p−i;α

)
−Di

ea(p;α),

where p̃i is the belief resulting from a one-period update of pi, and the expectation is over the

possible values pi[+] and pi[−] of p̃i. Therefore, the impact of manipulation in this alternative

model is the same as in our main model with an outside option; the presence of the outside option

affects the impact of manipulation only through the stopping region.9

4.3 Counterexample: failure of IIA

The result in Theorem 1 does not generally hold if the attention strategy does not satisfy IIA. To

illustrate, consider an example with three items and a Bayesian DM with prior belief pi0 = 1/2 for

each item i. If the DM’s belief about an item i is pit in period t, focusing on i in t leads to belief

pit+1 = pit[−] or pit[+] as in Section 2. The stopping boundaries are p = 1
2 [−][−] and p = 1

2 [+][+]

for each item. Let α be a stationary pure attention strategy satisfying α(p0) = 2, α(p) = 1 when

p2 6= p2
0 and p1 > 1

2 [−][−], and α(p1
0[−], p2

0, p
3) = α(p1

0[+], p2
0, p

3) = 3 for all p3 > 1
2 [−][−]. When

following such a strategy, the DM first focuses on item 2, and then, from the second period onwards,

focuses on item 1 until p1 reaches p or p. This leads to item 1 being chosen with probability 1/2.

Now consider the manipulated strategy β = β[α, 1, 1] obtained by forcing the DM to focus on

item 1 in the first period. From the second period onwards, the DM focuses on item 3 until p3

reaches p or p, and thus β chooses item 1 only if p3 reaches p and p1 reaches p. Therefore, the

manipulated DM chooses the target item 1 with probability at most 1/4.

The strategy α violates the IIAi assumption for i = 1 since the allocation of attention between

items 2 and 3 at p−1 = (p2
0, p

3
0) depends on the belief about item 1. A failure of IIA can cause

the Meeting Lemma to be violated: the baseline and manipulated processes may meet but not

coincide thereafter. Recall that two processes meet at some time if, by that time, they focus on

the target item for the same number of periods. In this example, the baseline and manipulated

processes meet after the first two periods since both focus on the target item (item 1) once. Yet the

baseline beliefs p−1
2 and the manipulated beliefs p̂−1

2 about the non-target items differ, and hence

the continuations of the processes differ as well.

4.4 Counterexample (failure of stationarity)

We now show that the result of Theorem 1 can fail if the attention strategy satisfies IIA but is

non-stationary. Suppose there are three items with prior beliefs pi0 = 1/2 for each i. For items 1

and 2, the learning process is the same as in the previous counterexample. For item 3, the value is

9In Section 5, we extend the model to allow for multiple values. There, we abstract from the presence of the
outside option, and instead assume that the DM wishes to learn the value of the chosen item. The demand defined
in Section 5 is thus an extension of that in the alternative model described here.
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perfectly revealed whenever the DM focuses on it for a single period. The stopping thresholds are
1
2 [−][−] and 1

2 [+][+] for each item.

Consider a non-stationary pure attention strategy satisfying the following conditions whenever

p1 > 1
2 [−][−]:

α(p, t) =


2 if t = 0,

3 if t = 1, p1 6= p1
0, and p3 > 1

2 [−][−],

1 otherwise.

Under this strategy, the DM first focuses on item 2, and then focuses on item 1 until p1 reaches p or

p. Hence she chooses item 1 with probability 1/2. Under the manipulated strategy β = β[α, 1, 1],

the DM first focuses on item 1, and then focuses on item 3—thereby learning its value—in the

second period. Thus the DM chooses item 1 only if item 3 has value 0 and p1 reaches p, which

occurs with probability 1/4.

As in the previous counterexample, Theorem 1 does not apply because the Meeting Lemma

fails. The baseline and manipulated processes meet after two periods since each focuses on item

1 for exactly one of those periods. However, the beliefs about items 2 and 3 differ between these

two processes at t = 2, which causes the continuation of the processes to differ. When IIAi

and stationarity are satisfied, the Meeting Lemma follows from the fact that, for each draw, the

accumulated focus k(i, t) on the target item i is a sufficient statistic for the distribution of beliefs

pt about all items in period t.

5 Multiple values

We now extend the model from Section 3 to allow for the values of the items to lie in a finite set

V ⊂ R. Instead of comparing items to an outside option, we assume that the DM chooses an item i

only if the belief pi lies in a fixed set. Our main interpretation is that the DM wants to be informed

about the chosen item, which may be useful for subsequent decisions in which the optimal action

depends on the chosen item’s value; accordingly, she stops learning only once she is sufficiently

certain of this value. For example, one can think of the previous setup as involving a choice among

items followed by a subsequent decision of whether to trade the chosen item for the outside option.

Even in the absence of an outside option, an investor choosing among projects may not be content

merely to learn that one project is likely to be better than the alternatives if information about

the chosen project will help with other investment decisions.

As before, an attention strategy α(p, t) specifies the probability distribution over the focus in

period t at beliefs p ∈ (∆(V ))I . For pj ∈ ∆(V ), φj(pj , vj) ∈ ∆(∆(V )) describes the distribution

over beliefs about item j after one period of focus on this item starting from belief pj when the true

value is vj . We extend the stopping rule from Section 3 as follows. For each item j and value v,

there is a nonempty sufficient certainty region Cj(v) ⊂ ∆(V ). When pj ∈ Cj(v), we say that the

DM is sufficiently certain that item j has value v. Let Cj =
⋃
v∈V C

j(v) denote the set of beliefs at
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which the DM is sufficiently certain of the value of item j. Similarly, for each j and v, there exists

a nonempty dominated region Lj(v) ⊂ ∆(V ). When pj ∈ Lj(v), we say that item j is v-dominated,

with the interpretation that the DM is sufficiently certain that the value of item j is at most v. If

for some v and i, pj ∈ Lj(v) and pi ∈ Ci(v), we say that j is dominated.

For any I∗ ⊆ I and any v, define the stopping region to be

F (I∗, v) =
{
p : pj ∈ Cj(v) for all j ∈ I∗ and pj ∈ Lj(v) for all j ∈ I \ I∗

}
.

Thus F (I∗, v) consists of those beliefs at which the DM is sufficiently certain that items in I∗ have

value v and all other items are v-dominated. Let F I
∗

=
⋃
v F (I∗, v); whenever p ∈ F I∗ , we say

that the DM deems items in I∗ optimal. Finally, let F =
⋃
I∗ F

I∗ . The DM stops learning and

makes a choice as soon as pt ∈ F ; accordingly, τ = min{t : pt ∈ F} is the stopping time for the

learning process. (Again, we allow for the possibility that the process does not stop.) This stopping

rule formalizes the assumption that the DM only stops when she is sufficiently certain of the value

of the chosen item (and that it is optimal).

One example of particular interest is that of a Bayesian DM who receives signals that eventu-

ally, with some probability, perfectly reveal the value of the item she focuses on (as with Poisson

learning). The DM may then always choose an optimal item, and stop learning as soon as she is

certain of an optimal choice and of its value. In this case, the sets Ci(v) are singletons consisting

of the belief that attaches probability one to item i having value v, and the sets Li(v) consist of

those beliefs that attach probability one to the event that vi ≤ v.

We impose two restrictions on the attention strategy α:

1. non-wastefulness I : if p /∈ F and pj ∈ Cj , then αj(p, t) = 0; and

2. non-wastefulness II : if p /∈ F , and, for some v, pj ∈ Lj(v) and pj
′ ∈ Cj′(v) for some j′, then

αj(p, t) = 0.

The first of these properties states that the DM does not focus on an item if she is sufficiently

certain of its value. The second states that she does not focus on any item that is dominated.

For example, in the case with perfectly revealing signals described above, these two properties are

satisfied if she always focuses on an item for which the maximum of the support of the belief is the

highest. One such strategy, which also satisfies stationarity and IIA, is when α(p) selects uniformly

from arg maxj v(pj), where v(pj) = max{v ∈ V : pj(v) > 0}.10

Unlike the setting with binary values, with multiple values, the DM may deem more than one

item optimal at the stopping time. Her choice then depends on a tie-breaking rule. Accordingly, let

σ(j, I∗) be the probability that the DM chooses item j if she deems the items in I∗ optimal. Assume

that (i) σ(j, I∗) = 0 if j /∈ I∗ (optimality), and (ii) σ(j, I∗) ≥ σ(j,J ∗) if I∗ ⊆ J ∗ (monotonicity).

For instance, these two properties hold if the DM selects uniformly from I∗. The interim demand

10In particular, non-wastefulness I holds because if the DM is certain of an item in arg maxj v(pj) then the process
stops.
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for item j under attention strategy α is

Dj(v;α) =
∑
I∗

Pv
α

(
pτ ∈ F I

∗
)
σ(j, I∗).

As before, to compare the stopping times under the baseline and manipulated processes, let τ j = τ

if item j is chosen, and τ j =∞ otherwise. Given any α and v, τ j has distribution function

Hj(t;v, α) =
∑

τ ′≤t,v,I∗
Pv
α

(
pτ ′ ∈ F I

∗
)
σ (j, I∗) .

Let β[α, i,m] = β denote the manipulated strategy constructed from the baseline strategy α

by forcing the DM to focus on the target item i in periods t = 0, . . . ,m − 1 whenever the DM

is not sufficiently certain about the value of i and i is not dominated; that is, βj(p, t) = 1j=i if

t ≤ m − 1, pi 6∈ Ci, and there is no item j and value v such that pj ∈ Cj(v) and pi ∈ Li(v), and

β(p, t) = α(p, t) otherwise. Note that β inherits non-wastefulness I and II from α.

We conclude with the following generalization of Theorem 1.

Theorem 2. If an attention strategy α satisfies stationarity, IIAi, and non-wastefulness properties

I and II, then for every v and m ≥ 1,

Di(v;β[α, i,m]) ≥ Di(v;α), (7)

Dj(v;β[α, i,m]) ≤ Dj(v;α) for all j 6= i, (8)

and, for every t ≥ 0,

H i(t;v, α) ≤ H i(t;v, β) (9)

and Hj(t;v, α) ≥ Hj(t;v, β) for all j 6= i. (10)
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A Proofs

A.1 Proofs for Section 3

To accommodate stochastic attention strategies, we introduce the attention process describing, for

each time t, (i) for each belief vector p = (pi,p−i), whether the DM focuses on the target item i,

and (ii) for each p−i, which item she focuses on when she does not focus on i. The attention process

is given by a family of random variables (ap,t)p,t, (bp−i,t)p−i,t where all draws are independent and

independent of the learning process. The random variable ap,t takes values in {0, 1}; the probability

that it takes the value 1 is αi(p). The random variable bp−i,t takes values in I \ {i}. For a fixed

value of p−i, if there exists pi such that αi(pi,p−i) 6= 1, then the probability that bp−i,t takes the

value j 6= i is αj
(
pi,p−i

)
/
(
1− αi

(
pi,p−i

))
, where we note that the particular value of pi in the

formula is irrelevant since α satisfies IIAi.11 A realization of the attention process is called an

attention draw. We refer to the pair of the learning and attention draws simply as a draw.

We now recursively construct, for stochastic attention strategies γ ∈ {α, β}, the processes

(pt(γ), ιt(γ))t as functions of the learning and attention processes. As in the construction for the

pure strategies in subsection 3.1, let the belief pjt (γ) = πjk(j,t;γ) where k(j, t; γ) is the cumulative

focus on item j in periods 0, . . . , t − 1. We proceed to construct the focus ιt(γ). Suppose that

11The specification of bp−i,t when no such pi exists is immaterial for our purposes.
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pt /∈ F . Given a sequence of beliefs and focus items (ps(γ), ιs(γ))s<t and any vector p−i of beliefs

about j 6= i, we let µ
(
p−i, t; γ

)
be the total number of periods starting with belief p−i about items

j 6= i in which the DM has not focused on the target item i under the strategy γ before time t;

that is,

µ(p−i, t; γ) = |{s < t : p−is (γ) = p−i, ιs(γ) 6= i}|.

Let ιt(γ) = i if apt(γ),t = 1 and ιt(γ) = bp−it (γ),µ(p−it (γ),t;γ) otherwise. Note a subtlety in the

construction: the element ap,t of the attention draw deciding whether the focus at p is on the

target item i depends on t, while the element bp−i,µ(p−i,t;γ) of the draw deciding the item of focus

conditional on its not being i depends on µ(p−i, t; γ). This asymmetry in the construction is

exploited in the proof of Lemma 2.

By construction, conditional on (p0(γ), ι0(γ), . . . ,pt−1(γ), ιt−1(γ),pt(γ)), ιt(γ) is distributed

according to α(pt(γ)). Conditional on (p0(γ), ι0(γ), . . . ,pt(γ), ιt(γ)), pjt+1(γ) = pjt (γ) for all j 6=
ιt(γ), and p

ιt(γ)
t+1 (γ) is distributed according to the transition probability φιt(γ)

(
p
ιt(γ)
t (γ), vιt(γ)

)
.

Therefore, the law of the process (pt(γ), ιt(γ))t is Pv
γ , as needed.

Proof of Lemma 1 (Coupling Lemma). We prove the result by induction. The property holds for

n = 0 since p−it(0) = p̂−i
t̂(0)

= p−i0 . Assume it holds for n. For item j = ιt(n) = ι̂̂t(n), we have

pjt(n+1) = πjk(j,t(n))+1 = πj
k̂(j,̂t(n))+1

= p̂j
t̂(n+1)

. For items j 6= i, ιt(n) that do not receive attention

in periods t(n) and t̂(n), respectively, we have pjt(n+1) = pjt(n) = p̂jt(n) = p̂j
t̂(n+1)

. We thus have

p−it(n+1) = p̂−i
t̂(n+1)

.

It remains to show that the items of attention in period t(n+ 1) of the baseline process and in

period t̂(n+ 1) of the manipulated process coincide. By the definitions of the attention processes,

we have

ιt(n+1) = b
p−i
t(n+1)

,µ
(
p−i
t(n+1)

,t(n+1)
) = b

p̂−i
t̂(n+1)

,µ
(
p̂−i
t̂(n+1)

,t(n+1)
) = b

p̂−i
t̂(n+1)

,µ̂
(
p̂−i
t̂(n+1)

,̂t(n+1)
) = ι̂̂t(n+1)

since, by the induction hypothesis, µ(p̂−it(n+1), t(n+ 1)) = µ̂(p̂−i
t̂(n+1)

, t̂(n+ 1)).

The next proof exploits the subtlety in the coupling construction mentioned above. The subtlety

ensures that if the processes meet in period t, they coincide thereafter. The event that they meet in

period t implies that the two processes have visited each vector p−i in the same number of periods,

but it does not ensure that the number of periods they visited each vector p is the same. To this

end, the draw at in the coupling construction does not depend on the number of periods that p

was visited (as it could be different for the two processes), but rather on t.

Proof of Lemma 2 (Meeting Lemma). Suppose the processes meet in period t, and thus k(−i, t) =

k̂(−i, t). Hence, by the Coupling Lemma,(
p−it(0), ιt(0) . . . ,p

−i
t(k(−i,t)), ιt(k(−i,t))

)
=
(
p̂−i
t̂(0)
, ι̂̂t(0), . . . , p̂

−i
t̂(k̂(−i,t))

, ι̂̂t(k̂(−i,t))

)
.

25



Therefore, for every j ∈ I, k(j, t) = k̂(j, t), so that the cumulative focus on each item before time

t is the same in the two processes, which implies that pt = p̂t. The baseline process focuses on

the target item i at time t if and only if the manipulated process focuses on i at t, since both

processes focus on i at t if apt,t = ap̂t,t = 1. The baseline process focuses on item j 6= i at

time t if and only if the manipulated process focuses on j at t, since the baseline process focuses

on j at t if bp−it ,µ(p−it ,t) = j, the manipulated process focuses on j in t if bp̂−it ,µ̂(p̂−it ,t) = j, and

µ(p−it , t) = µ̂(p̂−it , t) by the Coupling Lemma. Thus ιt = ι̂t.

Note that k(i, t + 1) = k̂(i, t + 1). Therefore, if the two processes meet in period t ≥ m, they

also meet in period t+ 1, and hence in every period s ≥ t. Thus, (pt, ιs) = (p̂t, ι̂s) for all s ≥ t.

Proof of Lemma 3 (Attention Lemma). The statement obviously holds for every t ≤ m. Since

k̂(i,m) = m ≥ k(i,m), and k̂(i, t) = k(i, t) implies k̂(i, s) = k(i, s) for every s > t, we have

k̂(i, t) ≥ k(i, t) and k̂(−i, t) ≤ k(−i, t) for every t > m. The Coupling Lemma implies that items

j 6= i are explored in the same order under both processes, which in turn implies that, for every t

and every j 6= i, k̂(j, t) ≤ k(j, t), as needed.

Proof of Lemma 4 (Outside Option Lemma). Fix a learning draw such that τ oo(α) is finite; that

is, strategy α leads to the outside option being chosen. For each item i, let κi = min{κ : πiκ ≤ pi}
be the number of steps needed for the learning process πi to reach the threshold pi. Since α

stops with the choice of the outside option once all beliefs reach their respective lower thresholds,

τ oo(α) =
∑

i κ
i, which is independent of α.

Proof of Proposition 2. Let φ̃i
(
pit+1 | pit

)
denote the ex ante Markov transition probabilities of the

DM’s belief about item i when she focuses on i in period t. Consider the following bandit problem.

In each period t = 0, 1, . . ., the DM chooses an item ιt ∈ I and pays a flow cost

γ (pιtt , ιt) =


c (pιtt , ιt) if pιt < pιtt < pιt ,

0 if pιtt ≥ pιt ,

c otherwise.

Interpret pit as the state of item i. In each period t, the item ιt chosen by the DM transitions

to a new state pιtt+1 according to the Markov process φ̃i, and the states of all other items remain

unaltered; that is, pjt+1 = pjt for j 6= ιt. The bandit problem is to choose a non-wasteful strategy α

to minimize

Γ(α) = E

∞∑
t=0

δtγ (pιtt , ιt) . (11)

This problem differs from the original problem in that the flow cost from focusing on item i in period

t depends only on pit and is independent of pjt for j 6= i. The flow payoffs in the original problem are

interdependent in that whether the DM stops upon reaching pit ≤ pi depends on whether pjt ≤ pj for

all other items j 6= i. This difference allows us to apply the following standard textbook result from

the theory of multi-armed bandits (see e.g. Weber (1992) or Whittle (1980)): an optimal solution
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to the bandit problem (11) is a Gittins index strategy where the index for an item depends only

on the current belief. In particular, when ties for the highest Gittins index are broken by uniform

randomization, this describes an optimal strategy that satisfies IIA and stationarity.

It remains to connect the bandit problem (11) to the original problem (2). Note that any

solution to the bandit problem (i) always chooses an item i such that pit ≥ p if such an item exists,

and (ii) always chooses an item i such that pit > p if such an item exists and no item satisfying

condition (i) exists.

Note that Γ(α) = C(α) + cE
∑∞

t=1 1t≥τoo(α), where the expectation is with respect to τ oo(α).

By the Outside Option Lemma, τ oo(α) is identical for all α satisfying (i) and (ii). Therefore, there

exists a constant Kδ such that

Γ(α) = C(α) +Kδ. (12)

Therefore, a non-wasteful strategy α solves the auxiliary bandit problem if and only if it solves the

original problem, as needed.

A.2 Proofs for Section 4

Proof of Proposition 3. This proof makes use of coupling. We again construct a common probabil-

ity space on which we can compare the processes of beliefs pt(α) and pt(α
∗), where, by construction,

the beliefs under strategy α follow the law P ea
α while those under α∗ follow P ea

α∗ . However, the par-

ticular construction differs from that in the proof of Theorem 1.

Let Π = {p[+], p[+][+], . . . , p[−][−], p[−]}, which is the set of transient beliefs that the DM may

attain for either item. For each π ∈ Π and κ = 0, 1, . . ., let `(π, κ) be an i.i.d. random variable that

attains values π[+] and π[−] with probabilities π−π[−]
π[+]−π[−] and π[+]−π

π[+]−π[−] , respectively. An updating

draw is a collection (`(π, κ))π,κ of realizations of `(π, κ), one for each pair (π, κ) ∈ Π× N.

We interpret `(π, κ) as the updated belief of a DM who learns for one period about an item

i starting at the belief pi = π where κ is a counter indicating the total number of times the DM

has focused on an item with associated belief π. We now construct, for each fixed updating draw

and any attention strategy γ, the process of beliefs pt(γ). In this construction, we use an auxiliary

counter kt(γ) that takes values in N|Π|. Define the joint process of pt(γ) and kt(γ) as follows.

Let kπ0 (γ) = 0 for all π and p0(γ) = p0. In each period t, the focus of attention ιt in t is chosen

according to the attention strategy γ(pt, t). Recursively define

kπt+1(γ) =

kπt (γ) + 1 if π = pιtt ,

kπt (γ) otherwise

and

pjt+1(γ) =

`
(
π, k

pjt (γ)
t (γ)

)
if j = ιt,

pjt (γ) otherwise.

By construction, for each strategy γ, the beliefs pt(γ) follow the law P ea
γ .
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For each transient belief π ∈ Π, we introduce the belief process at(π) that would result from

learning about a single item starting from the prior belief π, making use of a counter hπ̃t . Formally,

let a0(π) = π, hπ̃0 = 0 for all π̃ ∈ Π, and recursively define at+1(π) = `
(
at(π), h

at(π)
t

)
, and, for each

π̃ ∈ Π,

hπ̃t+1 =

hπ̃t + 1 if π̃ = at(π),

hπ̃t otherwise.

For each strategy γ, let Mt(γ) = maxi=1,2 p
i
t(γ), M t(γ) = maxs=0,...,tMs(γ), and M t(γ) =

mins=0,...,tMs(γ). The strategy γ stops by period t, i.e., τ ea(γ) ≤ t, if

p = M t(γ) or M t(γ) = p.

We will prove that, for every prior, in each updating draw, if a strategy α stops by t, then the

strategy α∗ also stops by t. We proceed by induction on t. To see that the statement holds for

t = 1, note that if p1
0 6= p2

0, then M0(α) = M0(α∗) = max{p1
0, p

2
0} and M1(α∗) = a1

(
max{p1

0, p
2
0}
)

while M1(α) equals a1

(
max{p1

0, p
2
0}
)

or max{p1
0, p

2
0}. (The latter case arises when α focuses on the

item with the lower belief in period 0.) Thus

M1(α∗) ≤M1(α) ≤M1(α) ≤M1(α∗),

as needed.

Suppose the statement holds for t−1. If a strategy α stops by period t then, since the induction

hypothesis applies regardless of the prior, the strategy α̃ stops by t, where α̃(p, 0) = α(p, 0) and

α̃(p, t) = α∗(p) for t > 0. Therefore, to close the induction step, it suffices to prove that if α̃ stops

by t then α∗ stops by t. This is immediate if p1
0 = p2

0. Accordingly, suppose that p1
0 6= p2

0 and,

without loss of generality, take p1
0 < p2

0. If α̃ focuses on item 2 in period 0, then the belief processes

are the same under α̃ and α∗. Thus it suffices to show that if β = β[α∗, 1, 1] stops by t then α∗

stops by t.12

To prove the last implication, we distinguish two sets of updating draws. The first set consists

of those for which as(p
2
0) > p1

0 in every period s = 0, 1, . . . , t − 1. For any (ordered) belief pair

p = (p1, p2), write 〈p〉 for the unordered pair {p1, p2}. (By considering the unordered pairs of beliefs

we eliminate the need to keep track of which item has the higher belief and which is randomly chosen

at a tie.) For each updating draw in this first set, for each s = 1, 2, . . . , t,

〈ps(α∗)〉 =
{
p1

0, as
(
p2

0

)}
and Ms(α

∗) = as
(
p2

0

)
,

and

〈ps(β)〉 =
{
a1

(
p1

0

)
, as−1

(
p2

0

)}
and Ms(β) = as−1

(
p2

0

)
12Recall that β[α∗, 1, 1] is the strategy constructed from α∗ by forcing the DM to focus on item 1 at t = 0 and

follow α∗ for every t > 0.
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since as(p
2
0) > p1

0 and as(p
2
0) ≥ a1(p1

0) for all s = 1, 2, . . . , t − 1. Therefore, α∗ updates the belief

as(p
2
0) in all periods s = 0, . . . , t, and β updates the belief as−1(p2

0) in all periods s = 1, . . . , t. Thus,

for each updating draw in this first set,

M t(α
∗) ≤M t(β) ≤M t(β) ≤M t(α

∗),

and the induction step holds.

The second set of updating draws consists of those for which there exists a period s ∈ {1, 2, . . . , t−
1} in which as(p

2
0) = p1

0. (Note that the second set is complementary to the first set.) Let s∗ be

the minimal such period. For each draw in this second set, we have

〈ps∗+1(α∗)〉 =
{
p1

0, a1(p1
0)
}

since 〈ps∗(α∗)〉 =
{
p1

0, p
1
0

}
and the belief p1

0 is updated once by s∗. We also have

〈ps∗+1(β)〉 =
{
a1(p1

0), as∗(p
2
0)
}

since the belief p1
0 is updated once in period 0 and in each period s = 1, . . . , s∗, 〈ps(β)〉 ={

a1(p1
0), as−1(p2

0)
}

and as−1(p2
0) ≥ a1(p1

0). Thus the strategy β updates the belief as−1(p2
0) in

all periods s = 1, . . . , s∗. Since as∗(p
2
0) = p1

0, we have

〈ps∗+1(β)〉 =
{
a1(p1

0), p1
0

}
= 〈ps∗+1(α∗)〉 .

Therefore, in each updating draw from the second set, 〈ps(α∗)〉 = 〈ps(β)〉 for all s ≥ s∗ + 1. In

particular, α∗ and β stop in the same period, concluding the proof of the induction step.

Proof of Proposition 4. The proof is similar to that of Proposition 3. The coupling construction

exploits the symmetry with respect to belief 1/2 as follows. Let

Π = {p[+], p[+][+], . . . , p[−][−], p[−]} ∩ [1/2, 1)

and

Π = {p[+], p[+][+], . . . , p[−][−], p[−]} ∩ (0, 1/2).

An updating draw is a collection (`(π, κ))(π,κ)∈Π×N, where `(π, κ) is an i.i.d. random variable that

attains values π[+] and π[−] with probabilities π−π[−]
π[+]−π[−] and π[+]−π

π[+]−π[−] , respectively.

For any attention strategy γ, we construct the process of beliefs pt(γ) in each updating draw

as follows. Let kπ0 (γ) = 0 for all π ∈ Π and p0(γ) = p0. In each period t, the focus of attention ιt

in t is chosen according to γ(pt, t). We distinguish two cases: pιt ≥ 1/2 and pιt < 1/2. If pιtt ≥ 1/2,

then

kπt+1(γ) =

kπt (γ) + 1 if π = pιtt ,

kπt (γ) if π ∈ Π \ {pιtt }.

29



and

pjt+1(γ) =

`
(
pjt (γ), k

pjt (γ)
t (γ)

)
if j = ιt,

pjt (γ) otherwise.

If pιtt < 1/2, then

kπt+1(γ) =

kπt (γ) + 1 if π = 1− pιtt ,

kπt (γ) if π ∈ Π \ {1− pιtt },

and

pjt+1(γ) =

1− `
(

1− pjt (γ), k
1−pjt (γ)
t (γ)

)
if j = ιt,

pjt (γ) otherwise.

By construction, for each strategy γ, the beliefs pt(γ) follow the law P ea
γ .

We again define a belief process that would result from learning about a single item. For any

belief π ∈ Π ∪ Π, let π̂ = max{π, 1− π}. Define the belief process at(π) as follows: a0(π) = π̂ and

hπ̃0 = 0 for all π̃ ∈ Π, and for t > 0, recursively define

at+1(π) = max
{
`
(
at(π), h

at(π)
t

)
, 1− `

(
at(π), h

at(π)
t

)}
and, for each π̃ ∈ Π,

hπ̃t+1 =

hπ̃t + 1 if π̃ = at(π),

hπ̃t otherwise.

For any attention strategy γ, let Mt(γ) = maxi=1,2 p̂
i
t(γ) and M t(γ) = maxs=0,...,tMs(γ). The

strategy γ stops by period t, i.e., τ ea
no(γ) ≤ t, if M t(γ) = p. We will prove by induction on t that,

for every prior, in each updating draw, if a strategy α stops by t, then the strategy α∗∗ also stops

by t.

To see that the statement holds for t = 1, note that if p1
0 6= p2

0, then M0(α) = M0(α∗∗) =

max
{
p̂1

0, p̂
2
0

}
andM1(α∗∗) = a1

(
max

{
p̂1

0, p̂
2
0

})
whileM1(α) equals a1

(
max

{
p̂1

0, p̂
2
0

})
or max

{
p̂1

0, p̂
2
0

}
.

(The latter case arises when α focuses on the less certain item in period 0.) Thus

M1(α) ≤M1(α∗∗),

as needed.

Suppose the statement holds for t−1. If α stops by t then, since the induction hypothesis holds

for every prior, strategy α̃ also stops by t, where α̃(p, 0) = α(p, 0) and α̃(p, t) = α∗∗(p) for t > 0.

Therefore, to close the induction step, it suffices to prove that if α̃ stops by t then α∗∗ stops by

t. This is immediate if p̂1
0 = p̂2

0 since then the two belief processes coincide. Accordingly, suppose

that p1
0 6= p2

0 and, without loss of generality, take p̂1
0 < p̂2

0. If α̃ focuses on item 2 in period 0 then

the belief processes coincide under α̃ and α∗∗. Thus it suffices to show that if β = β[α∗∗, 1, 1] stops

by t then α∗∗ stops by t.
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To prove the last implication, we distinguish two sets of updating draws. The first set consists

of those for which as(p̂
2
0) > p̂1

0 in every period s = 0, 1, . . . , t− 1. For each draw in this first set and

each s = 1, 2, . . . , t,

{
p̂1
s(α
∗∗), p̂2

s(α
∗∗)
}

=
{
p̂1

0, as
(
p2

0

)}
and Ms(α

∗∗) = as
(
p2

0

)
,

and {
p̂1
s(β), p̂2

s(β)
}

=
{
a1

(
p1

0

)
, as−1

(
p2

0

)}
and Ms(β) = as−1

(
p2

0

)
since as(p

2
0) > p̂1

0 and as(p
2
0) ≥ a1(p1

0) for all s = 1, 2, . . . , t − 1. Therefore, α∗∗ updates as(p
2
0) in

all periods s = 0, . . . , t, and β updates as−1(p2
0) in all periods s = 1, . . . , t. Thus, for each updating

draw in this first set,

M t(β) ≤M t(α
∗∗),

and the induction step holds.

The second set of updating draws consists of those for which there exists a period s ∈ {1, 2, . . . , t−
1} in which as(p

2
0) = p̂1

0. (Note that the second set is complementary to the first.) Let s∗ be the

minimal such period and observe that

{
p̂1
s∗+1(α∗∗), p̂2

s∗+1(α∗∗)
}

=
{
p̂1

0, a1(p̂1
0)
}

since
{
p̂1
s∗(α

∗∗), p̂2
s∗(α

∗∗)
}

=
{
p̂1

0, p̂
1
0

}
and the belief with value p̂1

0 or 1− p̂1
0 is updated once by s∗.

Also, {
p̂1
s∗+1(β), p̂2

s∗+1(β)
}

=
{
a1(p1

0), as∗(p
2
0)
}

since the belief p1
0 is updated once in period 0 and, for each period s = 1, . . . , s∗,

{
p̂1
s(β), p̂2

s(β)
}

={
a1(p1

0), as−1(p2
0)
}

and as−1(p2
0) ≥ a1(p1

0). Since as∗(p
2
0) = p̂1

0, we have

{
p̂1
s∗+1(β), p̂2

s∗+1(β)
}

=
{
a1(p1

0), p̂1
0

}
=
{
p̂1
s∗+1(α∗∗), p̂2

s∗+1(α∗∗)
}
.

Therefore, in each updating draw from the second set,
{
p̂1
s(β), p̂2

s(β)
}

=
{
p̂1
s(α
∗∗), p̂2

s(α
∗∗)
}

for all

s ≥ s∗+ 1. In particular, α∗∗ and β stop in the same period, concluding the proof of the induction

step.

A.3 Proof of Theorem 2

As in the proof of Theorem 1, for any variable η in the baseline process, let η̂ denote its counterpart

in the manipulated process. We construct the probability space and the baseline and manipulated

processes (pt, ιt)t as in the proof of Theorem 1. Note that Lemmata 1, 2, and 3 extend verbatim

to the current setting.

Given any draw, let I∗ denote the set of items deemed optimal in the baseline process and Î∗

the corresponding set in the manipulated process.
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Lemma 6 (Choice Lemma for Multiple Values). Let i be the target item. For any draw,

1. if i ∈ I∗, then (i) i ∈ Î∗, (ii) Î∗ ⊆ I∗, and (iii) τ̂ ≤ τ .

2. for any j 6= i, if j ∈ Î∗, (i) j ∈ I∗, (ii) I∗ ⊆ Î∗, and (iii) τ ≤ τ̂ .

Proof. Statement 1 : Consider any draw in which the baseline process deems the target item i

optimal (i.e., i ∈ I∗) with stopping time τ . First suppose τ̂ ≥ τ . By the attention lemma,

k̂(i, τ) ≥ k(i, τ). Since α deems i optimal and stops at τ , the DM is sufficiently certain of i’s

value at τ . Hence, by non-wastefulness I, k̂(i, τ) = k(i, τ), and the two processes meet at τ . Thus

Î∗ = I∗, τ̂ = τ , and (i–iii) hold.

Now consider any draw in which τ̂ < τ . We first show that, under the manipulated process,

the DM does not deem any item j 6= i optimal. Suppose for contradiction that j ∈ Î∗. Then there

exists v such that p̂jτ̂ ∈ Cj(v) and for all j′ 6= j, we have p̂j
′

τ̂ ∈ Cj
′
(v) or p̂j

′

τ̂ ∈ Lj
′
(v). By the

Attention Lemma, k(j′′, τ̂) ≥ k̂(j′′, τ̂) for all j′′ 6= i. By the Coupling Lemma, there exists a period

t ≤ τ̂ such p−it = p̂−iτ̂ and k(−i, t) = k̂(−i, τ̂). Non-wastefulness I and II imply that the baseline

strategy does not focus on items j′′ 6= i in periods s > t, and thus k(−i, τ̂) = k(−i, t) = k̂(−i, τ̂).

Therefore, the baseline and manipulated processes meet at τ̂ . By the Meeting Lemma, pτ̂ = p̂τ̂ ,

which implies that τ ≤ τ̂ , contradicting the assumption that τ̂ < τ . Therefore, if the manipulated

process stops at τ̂ < τ , then Î∗ = {i} and properties (i–iii) again hold.

Statement 2 : Consider any draw in which the manipulated process deems an item j 6= i

optimal (i.e., j ∈ Î∗) with stopping time τ̂ . First suppose τ ≥ τ̂ . By the Attention Lemma,

k(−i, τ̂) ≥ k̂(−i, τ̂). By the Coupling Lemma, there exists t ≤ τ̂ such that k(−i, t) = k̂(−i, τ̂) and

p−it = p−iτ̂ . Since, under the manipulated strategy, the process stops at τ̂ and the DM deems j

optimal, it must be that for some v, pjτ̂ ∈ C
j(v) and for each j′ 6= j, pj

′

τ̂ ∈ C
j′ or pj

′

τ̂ ∈ L
j′(v). Thus,

by non-wastefulness I and II, the baseline strategy focuses only on item i in each period s ≥ t, and

hence k(−i, τ̂) = k(−i, t) = k̂(−i, τ̂). Therefore, the two processes meet at τ̂ , Î∗ = I∗, τ̂ = τ , and

(i–iii) hold.

Now consider any draw in which τ < τ̂ . We first show that, under the baseline process, the

DM does not deem item i optimal. Suppose for contradiction that i ∈ I∗. Then, under the

baseline process, in period τ the DM is sufficiently certain of the value of i. By the Attention

Lemma, k̂(i, τ) ≥ k(i, τ). Non-wastefulness I implies that k̂(i, τ) = k(i, τ). Therefore, the two

processes meet at τ . By the Meeting Lemma, pτ = p̂τ , which implies that τ̂ ≤ τ , contradicting the

assumption that τ < τ̂ . Therefore, if the baseline process stops at τ < τ̂ , then i /∈ I∗.
Next, observe that k(−i, τ) = k̂(−i, τ̂). Otherwise, one of the two processes γ ∈ {α, β} focuses

on items other than i in fewer periods by τ(γ) than the other process γ′ does by τ(γ′); that is,

k(−i, τ(γ′), γ′) > k(−i, τ(γ), γ). By the Coupling Lemma, there exists a period t such that the

process γ′ does not stop by t, k(−i, t; γ′) = k(−i, τ(γ); γ) and p−it (γ′) = p−iτ(γ)(γ). Since γ stops

at τ(γ) and the DM deems j 6= i optimal, it must be that, for some v, pjτ(γ) ∈ C
j(v) and for each

item j′ 6= i, either pj
′

τ(γ) ∈ C
j′ or pj

′

τ(γ) ∈ L
j′(v). Therefore, non-wastefulness I and II imply that
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the strategy γ′ focuses only on item i in each period s > t. Hence k(−i, τ(γ′), γ′) = k(−i, t; γ′) =

k̂(−i, τ(γ), γ).

Therefore, p−iτ = p̂−iτ̂ . Since i is not the unique optimal item under either process, there exists

some v and a nonempty set I−i,∗ ⊆ I \ {i} such that pjτ = p̂jτ̂ ∈ Cj(v) for each j ∈ I−i,∗, and

pjτ = p̂jτ̂ ∈ L
j(v) for each j 6= i such that j /∈ I−i,∗. Since the DM does not deem i optimal under the

baseline process, piτ ∈ Li(v) and I∗ = I−i,∗. The DM may deem i optimal under the manipulated

process, and hence either Î∗ = I−i,∗ or Î∗ = I−i,∗∪{i}. Therefore, either Î∗ = I∗ or Î∗ = I∗∪{i},
and properties (i-iii) hold.

For (7) and (8), observe that optimality and monotonicity of σ and statements 1 and 2 of

Lemma 6 imply, respectively, that σ(i, Î∗) ≥ σ(i, I∗) and σ(j, Î∗) ≤ σ(j, I∗) in each draw. For

(9) and (10), let hj(t) = 1τ≤tσ(j, I∗) and ĥj(t) = 1τ̂≤tσ(j, Î∗). Statement 1 of Lemma 6 implies

that hi(t) ≤ ĥi(t) for the target item i and any period t. Statement 2 of the lemma implies that

hj(t) ≥ ĥj(t) for all items j 6= i and any period t. Taking expectations across draws yields the

result.

A.4 Computation of the ex ante demand from Example 4.1

We characterize Di
ea for i = 1; the case for i = 2 is symmetric. The following computation shows

that

D1
ea(p;α∗) =


p−p1

2(p−p2)

(
1− (p−p2)2

(p−p)
2

)
+ p1−p2

p−p2 if p1 ≥ p2,

p−p2
2(p−p1)

(
1− (p−p1)2

(p−p)2

)
if p1 ≤ p2.

(13)

If p1
0 = p2

0 = p, then α∗ stops with beliefs (p1
τ , p

2
τ ) = (p, p) (and hence the outside option is

chosen) with probability
(
p−p
p−p

)2
. By symmetry, conditional on not choosing the outside option,

the DM chooses item 1 with probability 1/2. Thus

D1
ea(p, p;α∗) =

1

2

(
1−

(
p− p
p− p

)2
)
.

Now consider prior beliefs such that p1
0 > p2

0. The strategy α∗ initially focuses on item 1 until

p1
t = p or p1

t = p2
0. In the former case, which occurs with probability

p10−p20
p−p20

, the DM chooses item

1. In the latter case, which occurs with probability
p−p10
p−p20

, the DM chooses item 1 with probability

D1
ea(p2

0, p
2
0;α∗). Therefore, for p1 > p2,

D1
ea(p1, p2;α∗) =

p1 − p2

p− p2
+
p− p1

p− p2
D1

ea(p2, p2;α∗),

in agreement with (13).

Finally, consider prior beliefs such that p1
0 < p2

0. The strategy α∗ initially focuses on item 2

until p2
t = p or p2

t = p1
0. In the former case, the DM chooses item 2. In the latter case, which occurs
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with probability
p−p20
p−p10

, the DM chooses item 1 with probability D1
ea(p1

0, p
1
0;α∗). Thus, for p1 < p2

we have

D1
ea(p1, p2;α∗) =

p− p2

p− p1
D1

ea(p1, p1;α∗), (14)

as needed.

A.5 Computation of the ex ante demand from Example 4.2

We characterizeDi
no for i = 1; the case of i = 2 is symmetric. By symmetry of α∗∗, D1

no(p1, p2;α∗∗) =

D2
no(p2, p1;α∗∗) = 1−D1

no(p2, p1;α∗∗), and thus it suffices to compute D1
no(p1, p2;α∗∗) for p1 ≥ p2

only. Demand D1
no for this set of beliefs is characterized in (15)—(18) below.

Consider beliefs on the two main diagonals. First, symmetry implies that D1
no(p, p;α∗∗) = 1/2

whenever p < p < p. Second, consider prior beliefs of the form (p1
0, p

2
0) = (p, 1 − p), where

1/2 < p < p. Starting from such a prior, if the strategy α∗∗ never leads to beliefs (1/2, 1/2), then

it stops either with p2
τ = p or with p1

τ = p; in either case, the DM chooses item 1. If α∗∗ does lead

to beliefs (1/2, 1/2), then the DM chooses item 1 with probability 1/2. Therefore, if 1/2 < p < p,

D1
no(p, 1− p;α∗∗) = 1− x+ x/2 where x is the probability that the DM’s beliefs reach (1/2, 1/2).

The value of x may be computed as follows. Consider the event that π1
κ stops at p and π2

κ stops

at p. The ex ante probability of this event is

p− p
p− p

1− p− p
p− p

=

(
p− p
p− p

)2

,

where the equality follows from p = 1− p. Since this event can occur only if the DM’s beliefs reach

(1/2, 1/2), in which case it occurs with probability 1/4, we have(
p− p
p− p

)2

=
x

4

and

D1
no(p, 1− p;α∗∗) = 1− 2

(
p− p
p− p

)2

whenever 1/2 < p < p.

Now consider beliefs in the set {p : p1 ≥ p2}. We partition this set into four disjoint subsets:

1. For {p : p1 ∈ (p, 1/2], p2 ∈ (p, p1]}, α∗∗ initially focuses on item 2 until p2
t reaches p or p1.

Thus, for p in this subset,

D1
no(p;α∗∗) =

p1 − p2

p1 − p
+
p2 − p
p1 − p

D1
no(p1, p1;α∗∗) =

p1 − p2/2− p/2
p1 − p

. (15)

2. For {p : p1 ∈ (1/2, p], p2 ∈ (p, 1 − p1]}, α∗∗ initially focuses on item 2 until p2
t reaches p or
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1− p1. Thus, for p in this subset,

D1
no(p;α∗∗) =

1− p1 − p2

1− p1 − p
+

p2 − p
1− p1 − p

D1
no(p1, 1− p1;α∗∗) = 1− 2

(p− p1)(p2 − p)
(p− p)2

. (16)

3. For {p : p1 ∈ (1/2, p], p2 ∈ (1−p1, 1/2]}, α∗∗ initially focuses on item 1 until p1
t reaches 1−p2

or p. Thus, for p in this subset,

D1
no(p;α∗∗) =

p1 − 1 + p2

p− 1 + p2
+

p− p1

p− 1 + p2
D1

no(1− p2, p2;α∗∗) = 1− 2
(p− p1)(p2 − p)

(p− p)2
. (17)

4. For {p : p1 ∈ (1/2, p], p2 ∈ (1/2, p1]}, α∗∗ initially focuses on item 1 until p1
t reaches p2 or p.

Thus, for p in this subset,

D1
no(p;α∗∗) =

p1 − p2

p− p2
+
p− p1

p− p2
D1

no(p2, p2;α∗∗) =
p1/2 + p/2− p2

p− p2
. (18)
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