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Abstract

We investigate a recently introduced extension of the multi-period facility location
problem that considers service-differentiated customer segments. Accordingly, some cus-
tomers require their demands to be met on time, whereas the remaining customers accept
delayed deliveries as long as lateness does not exceed a pre-specified threshold. In this
case, late shipments can occur at most once over the delivery lead time, i.e. an order
cannot be split over several time periods. At the beginning of the multi-period planning
horizon, a number of facilities are in place with given capacities. A finite set of potential
facility sites with multiple capacity levels is also available. The objective is to find the
optimal locations and the opening, resp. closing, schedule for new, resp. existing, facili-
ties that provide sufficient capacity to satisfy all customer demands at minimum cost. In
this paper, we propose four heuristics that construct initial solutions to this problem and
subsequently explore their neighborhoods via different local improvement mechanisms.
Computational results with randomly generated instances demonstrate the effectiveness
of the proposed heuristics. While a general-purpose mixed-integer programming solver
fails to find feasible solutions to some instances within a given time limit, the heuris-
tics provide good solutions to all instances already during the constructive phase and
in significantly shorter computing times. During the improvement phase, the solution
quality is further enhanced. For nearly one-fifth of the instances, the heuristic solutions
outperform the best solutions identified by the solver.

Keywords: facility location, multi-period, delivery lateness, constructive heuristics, local
improvements

∗Corresponding author. E-mail address : teresa.melo@htwsaar.de

1



1 Introduction

Discrete facility location problems involve a finite set of potential sites at which new facilities

can be located, and a finite set of customers, whose demands have to be satisfied from the new

facilities. In solving these problems, a balance between fixed facility costs and variable trans-

portation costs must be found. Stimulated by real-world problems, a wide variety of extensions

to classical discrete location models have emerged in different contexts. The latter include, but

are not limited to, supply chain network design (Melo et al., 2009), telecommunications (Fortz,

2015), location-routing (Prodhon and Prins, 2014), health care services (Ahmadi-Javid et al.,

2017), and humanitarian operations (Martins et al., 2018). One important problem extension

focuses on the time-phasing of location and demand allocation decisions over a multi-period

finite planning horizon (Nickel and Saldanha da Gama, 2015).

In this paper, we consider a multi-period facility location problem with different time scales

for strategic (location) decisions and tactical (demand allocation) decisions that was recently

introduced by Correia and Melo (2016). Given a number of facilities that are available at the

beginning of the planning horizon and a set of potential sites for new facilities, the problem

involves determining the optimal locations and the opening, resp. closing, schedule for new,

resp. existing, facilities in order to satisfy time-varying customer demands at minimum cost.

Facility sizing decisions are also considered by offering a choice of discrete capacity levels in each

potential location. While multi-period facility location has been a research topic of recurring

interest (Owen and Daskin, 1998; Klose and Drexl, 2005; Arabani and Farahani, 2012), only

recently a few authors have acknowledged the relevance of adopting different time scales for

decisions belonging to distinct planning levels. This is the case of the location-routing problem

addressed by Albareda-Sambola et al. (2012), in which strategic location decisions are allowed

to be made over a pre-defined subset of periods in the time horizon, whereas routing decisions

can be made in any time period. A similar approach is also followed by Bashiri et al. (2012)

and Badri et al. (2013) in the context of supply chain network design. Moreover, in the multi-

period location problem studied by Fattahi et al. (2015), each strategic period spans multiple,

consecutive tactical periods. Some authors also integrate location and capacity acquisition

decisions into a single model (Amiri, 2006; Elhedhli and Gzara, 2008; Amrani et al., 2011;

Correia et al., 2013; Irawan and Jones, 2019) by assuming that multiple capacity levels are

available at each potential location. This setting is appropriate when capacity is purchased in

the form of equipment which is available at a few discrete sizes (Correia and Captivo, 2006).

2



While most multi-period location models enforce the satisfaction of customer demands

on time, the problem introduced by Correia and Melo (2016) is the first to consider service-

differentiated customer segments. To this end, two customer segments are modeled with

distinct sensitivity with respect to delivery lead times. Customers in the first segment require

their demands to be met in the same periods in which they occur, whereas customers in the

second segment tolerate late deliveries as long as they do not exceed a pre-specified threshold.

This setting is often encountered in inventory management for spare parts (Alvarez et al.,

2015), repair services (Wang et al., 2002), and retail companies (Duran et al., 2008; Li et al.,

2015). Typically, two demand classes are considered: customers in the first class receive priority

service, while customers in the second class are given price incentives in exchange for longer

response times (Hung et al., 2012; Wu and Wu, 2015). By offering different price and delivery

time options to customers, companies such as Amazon remain competitive with other available

services (e.g. brick-and-mortar stores), are able to segment the available market in an attempt

to earn more profit from customers demanding preferred service, and can benefit from greater

flexibility in managing their facility network. All these aspects impact location decisions as

suggested by Escalona et al. (2015) for a location-inventory problem.

When those customers accepting late shipments do not allow an order to be split over multi-

ple periods, thus requiring an order to be delivered as a single shipment, even if with some delay,

Correia and Melo (2016) proposed two mixed-integer linear programming (MILP) formulations.

Numerical experiments with a general-purpose MILP solver revealed that optimality could not

be achieved within a time limit of 10 CPU hours for the majority of the instances. For a few

instances, the solver even failed to find feasible solutions. These findings are not surprising

due to the combinatorial nature of the problem at hand. In addition, when re-optimization is

required for performing ‘what-if’ analysis and a model has to be solved repeatedly with dif-

ferent data sets, the computational burden can become prohibitively expensive. In this case,

there is a need to develop tailored solution algorithms that can efficiently handle instances with

significant size. Various exact and (meta)heuristic methods have been proposed to solve the

discrete multi-period location problem as well as a number of challenging variants of the clas-

sical problem. Lagrangian relaxation (Shulman, 1991; Elhedhli and Gzara, 2008) and Benders

decomposition (Torres-Soto and Üster, 2011; Marufuzzaman et al., 2016; Castro et al., 2017)

have proved to be effective for some problems. Large instances are prone to be tackled by

means of different kinds of heuristics, including Variable Neighborhood Search (Amrani et al.,

2011), metaheuristics, (Arostegui Jr. et al., 2006; Melo et al., 2012), memetic algorithms (Dias
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et al., 2008), and clustering techniques (Boujelben et al., 2016), among others.

In this paper, we make the following contributions to the problem studied by Correia and

Melo (2016) and that we revisit: First, we propose several two-phase heuristic procedures for the

problem. In the first phase, a feasible solution is constructed by choosing a subset of the initially

existing facilities and a subset of the potential locations to operate over the planning horizon.

Four alternative strategies are developed to explore the feasible space of the location decisions.

For the facility choices made, customer demands are allocated according to a heuristic scheme.

In the second phase, two different types of facility moves are applied which aim at finding

improving configurations of the open facilities. The neighborhood structures are embedded in

a local improvement algorithm which starts with a feasible solution and performs improving

facility moves and customer demand reallocations until it obtains a locally optimal solution.

The combination of the constructive and improving schemes yields in total 16 different possible

ways to obtain feasible solutions to the problem at hand. Second, we assess the computational

efficiency and the solution quality of the proposed heuristics for randomly generated instances.

The testbed includes the instances created by Correia and Melo (2016) and is extended with

larger instances. In contrast to CPLEX, all constructive heuristics are capable of finding feasible

solutions to all instances in significantly shorter computing times. At the end of the two phases,

the average heuristic objective value is less than 1% more costly than the objective value of

the best solution identified by CPLEX. Moreover, for nearly one-fifth of the test instances, the

heuristics even achieve higher solution quality than CPLEX.

The remainder of the paper is organized as follows. In Section 2, the problem is defined and

one of the formulations proposed by Correia and Melo (2016) is revisited. Section 3 describes

four constructive heuristics that provide initial feasible solutions. In Section 4, local improvement

moves are presented. Section 5 reports the computational results obtained. Section 6 concludes

the paper with a summary of our findings and an outline of opportunities for future research.

2 Formulation

For the problem revisited in this paper, Correia and Melo (2016) proposed two MILP formula-

tions. For the sake of completeness, we present in this section one of the formulations, namely

the formulation that exhibited a better computational performance in a set of numerical exper-

iments. The heuristic procedures to be described in Sections 3 and 4 use the decision variables

and various parameters of this model.
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We consider a company that operates a set of facilities at fixed locations to serve the

demands of customers (or customer zones) for a single product (or product family). The

company differentiates its customers by their service requirements in terms of delivery times.

Customers who receive preferred service have zero delivery lead time, i.e. their demands must

be satisfied in the same periods in which they are placed. Customers who are not averse to

waiting for their demands to be satisfied specify a maximum allowed delivery delay. These

customers are compensated with a lower price which is translated into a tardiness penalty cost

for delayed deliveries to reflect the negative impact on the company’s profit margin. Due to

projected variations in customer demands, it is anticipated that the company will not be able to

provide adequate customer service in the future. Therefore, a finite set of potential locations at

which new facilities can be located has been identified. At each potential site, a discrete set of

capacity levels is also available. A planning horizon is considered which is divided into a finite

number of time periods having equal durations. Selected time periods form the set of strategic

periods at which existing facilities are closed, new facilities are opened and their capacity levels

are installed. Shipment decisions from operating facilities to customers are made in any time

period. The company needs to determine the number, location and capacity of new facilities,

schedule their opening periods, and plan the removal of existing facilities so as to satisfy all

customer demands at minimum cost. Due to the sizeable investment associated with location

decisions, facilities cannot be temporarily closed and reopened. Accordingly, new facilities must

remain in activity once they are initially opened. Analogously, if an existing facility is closed then

it cannot be reopened in a later time period. All relevant data (i.e. costs, customer demands,

and other parameters) are deterministic and assumed to be the outcome of forecasting methods

and company-specific analyzes.

The following notation is used throughout the paper.

T , TL : Set of discrete time periods, resp. set of strategic time periods in which location

and capacity acquisition decisions can be made, TL ⊂ T

Ie, In : Set of initially existing facilities, resp. set of potential locations for opening

new facilities

Ki : Set of capacity levels available in location i (i ∈ Ie ∪ In); for each existing

facility i ∈ Ie, |Ki| = 1

J0, J1 : Set of customers that receive preferred service, resp. set of customers that

tolerate delays in demand satisfaction
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All facility locations are gathered in set I, i.e. I = Ie ∪ In. Moreover, J denotes the set

of all customers with J = J0 ∪ J1 and J0 ∩ J1 = ∅. Let ℓ = 1, resp. ℓmax, be the first, resp.

last, strategic time period in which decisions on opening/closing facilities and installing capacity

levels in potential locations can be made. The configuration of a facility in time period ℓ ∈ TL

is the outcome of the decisions taken until that period. For ℓ < ℓmax, this configuration remains

unchanged over all tactical periods between ℓ and the next strategic period ℓ′. For ℓ = ℓmax,

the configuration of the facility is maintained until the last period of the planning horizon. Let

φ(ℓ) denote the last tactical period between two consecutive strategic periods, ℓ and ℓ′. It

follows that φ(ℓ) = max{t ∈ T : t < ℓ′} for ℓ < ℓmax, and φ(ℓ) = |T | for ℓ = ℓmax. Capacity

and demand parameters are defined next.

Qik, Qi1 : Capacity of level k that can be installed in potential location i (i ∈ In; k ∈

Ki), resp. capacity of initially existing facility i (i ∈ Ie)

dtj : Demand of customer j for a given product at time period t (j ∈ J ; t ∈ T )

ρj : Maximum allowed delay (in number of time periods) to satisfy the demand

of customer j (j ∈ J)

Customers that receive preferred service have ρj = 0 (j ∈ J0), whereas customers tolerating

late deliveries have ρj > 0 (j ∈ J1). The time lag for demand satisfaction for customer j is

also defined by ρj . This means that demand for period t ∈ T must be filled over periods

t, t + 1, . . . , t + ρj . In case t + ρj > |T |, then the last delivery must occur in period |T |,

thus ensuring that demand is not carried over to future periods beyond the planning horizon.

Moreover, we assume that for each customer j ∈ J1, his demand dtj in period t cannot be

split over multiple periods of time. In other words, the customer receives a single shipment

even if it arrives with some delay. For the customer, the cost of handling a single shipment is

proportionally less than the cost of processing several deliveries belonging to a particular order.

Fixed and variable costs are defined as follows:

FOℓ
ik : Fixed cost of opening a new facility in potential location i with capacity level

k at the beginning of time period ℓ (i ∈ In; k ∈ Ki; ℓ ∈ TL)

FCℓ
i1 : Fixed cost of closing the initially existing facility i at the end of time period

ℓ (i ∈ Ie; ℓ ∈ TL)

M t
ik : Fixed cost of operating facility i with capacity level k in time period t (i ∈

I; k ∈ Ki; t ∈ T )
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ctij : Cost of distributing one unit of product from facility i to customer j in time

period t (i ∈ I; j ∈ J ; t ∈ T )

otik : Cost of processing one unit of product in facility i with capacity level k in

time period t (i ∈ I; k ∈ Ki; t ∈ T )

ptt
′

j : Tardiness penalty cost for satisfying one unit of demand of customer j in

period t′ that was originally demanded in period t (j ∈ J1; t ∈ T ; t′ =

t, t+ 1, . . . ,min{t + ρj, |T |}); in particular, ptt
′

j = 0 for t′ = t

All cost parameters associated with the capacity levels (FOℓ
ik, FCℓ

i1, M t
ik, otik) reflect

economies of scale. In addition, economies of scale are also present in the variable cost for

processing the product in a facility. By combining the fixed facility and operating costs over an

appropriate number of time periods, we obtain the total fixed cost incurred over the planning

horizon for opening or closing a facility in a given time period. For a new facility i ∈ In

that is opened in period ℓ ∈ TL with capacity level k ∈ Ki, this total cost is calculated as

F ℓ
ik = FOℓ

ik+
∑|T |

t=ℓ M
t
ik. For an existing facility i ∈ Ie that is closed at the end of period ℓ ∈ TL,

the total fixed cost is given by F ℓ
i1 = FCℓ

i1 +
∑ℓ

t=1 M
t
i1.

The problem can be formulated as a MILP model using the following binary variables:

zℓik : 1 if a new facility is opened in potential location i with capacity level k at the

beginning of time period ℓ, 0 otherwise (i ∈ In; k ∈ Ki; ℓ ∈ TL)

zℓi1 : 1 if the initially existing facility i is closed at the end of time period ℓ, 0 otherwise

(i ∈ Ie; ℓ ∈ TL)

vtt
′

j : 1 if all the demand of customer j for period t is delivered in period t′, 0 otherwise

(j ∈ J1; t ∈ T ; t′ = t, . . . ,min{t+ ρj , |T |})

Additionally, we use three sets of continuous variables that are related to the amount of

product that is moved from operating facilities to customers.

rtij : Total quantity of product shipped from facility i to customer j in time period

t (i ∈ I; j ∈ J0; t ∈ T )

stt
′

ij : Amount of product distributed from facility i to customer j in time period t′ to

satisfy all demand of period t (i ∈ I; j ∈ J1; t ∈ T ; t′ = t, . . . ,min{t+ρj , |T |})

wt
ik : Total quantity of product shipped from facility i with capacity level k in time

period t (i ∈ I; k ∈ Ki; t ∈ T )
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The MILP formulation is as follows:

Min
∑

ℓ∈TL

∑

i∈I

∑

k∈Ki

F ℓ
ik z

ℓ
ik +

∑

t∈T

∑

i∈Ie

M t
i1

(
1−

∑

ℓ∈TL

zℓi1

)

+
∑

t∈T

∑

i∈I

∑

j∈J0

ctij r
t
ij +

∑

t∈T

∑

i∈I

∑

k∈Ki

otik w
t
ik

+
∑

t∈T

∑

i∈I

∑

j∈J1

min{t+ρj , |T |}∑

t′=t

(
ptt

′

j + ct
′

ij

)
stt

′

ij (1)

s.t.
∑

ℓ∈TL

∑

k∈Ki

zℓik ≤ 1 i ∈ I (2)

∑

i∈I

rtij = dtj j ∈ J0, t ∈ T (3)

∑

i∈I

stt
′

ij = dtj v
tt′

j j ∈ J1, t ∈ T,

t′ = t, . . . ,min{t+ ρj , |T |} (4)

min{t+ρj , |T |}∑

t′=t

vtt
′

j = 1 j ∈ J1, t ∈ T (5)

wt
ik ≤ Qik

∑

ℓ∈TL: ℓ≤ t

zℓik i ∈ In, k ∈ Ki, t ∈ T (6)

wt
i1 ≤ Qi1

(
1−

∑

ℓ∈TL: ℓ< t

zℓi1

)
i ∈ Ie, t ∈ T (7)

∑

k∈Ki

wt
ik =

∑

j∈J0

rtij +
∑

j∈J1

t∑

t′=max{1, t−ρj}

st
′t
ij i ∈ I, t ∈ T (8)

zℓik ∈ {0, 1} i ∈ I, k ∈ Ki, ℓ ∈ TL (9)

vtt
′

j ∈ {0, 1} j ∈ J1, t ∈ T,

t′ = t, . . . ,min{t+ ρj , |T |} (10)

rtij ≥ 0 i ∈ I, j ∈ J0, t ∈ T (11)

stt
′

ij ≥ 0 i ∈ I, j ∈ J1, t ∈ T,

t′ = t, . . . ,min{t+ ρj , |T |} (12)

wt
ik ≥ 0 i ∈ I, k ∈ Ki, t ∈ T (13)

The objective function (1) minimizes the total sum of the fixed and variable costs. The

former include the costs incurred for opening new facilities and installing capacity levels in the

new sites, removing initially existing facilities, and operating facilities in those periods in which
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they are active. Variable costs account for processing the product in operating facilities and

shipping it to customers. In addition, tardiness costs resulting from delayed deliveries are also

incurred. For each potential location i ∈ In, constraints (2) state that at most one new facility

can be opened with a given capacity level over the time horizon. Constraints (2) also allow

each initially existing facility i ∈ Ie to be closed at most once throughout the planning horizon.

Constraints (3), resp. (4), guarantee the satisfaction of the demand over the time horizon for

customer segment J0, resp. J1. Equalities (5) ensure that an order of customer j ∈ J1 cannot

be split over multiple time periods. Inequalities (6), resp. (7), are capacity constraints for new,

resp. existing, facilities. Observe that since an existing facility can only be closed at the end

of a given time period, say ℓ, its capacity is not available in any subsequent period. This is

described in (7) by considering all strategic periods ℓ ∈ TL such that ℓ < t for every t ∈ T . In

contrast, if a new facility is opened in time period t then its capacity also becomes available in

the same period. Therefore, in constraints (6) we consider all periods ℓ ∈ TL such that ℓ ≤ t

for every t ∈ T . Constraints (8) state that the total product outflow from a facility in a given

time period is split into deliveries to customers with preferred service and deliveries to customers

accepting delays in demand satisfaction. Finally, non-negativity and binary conditions are given

by (9)–(13).

Correia and Melo (2016) also enhanced the above formulation with additional inequalities

that set a lower bound on the total number of facilities that must be available in each time

period of the planning horizon. Finally, we remark that the problem belongs to the class of

NP-hard problems as it generalizes the classical multi-period uncapacitated facility location

problem (Jacobsen, 1990).

3 Constructive heuristics

The general framework of the proposed constructive schemes is provided in Algorithm 1. We

start by selecting in the first strategic period the subset of facilities that should be available

over the whole planning horizon (line 3). To this end, the set Îe is identified which includes the

existing facilities that are retained from time period 1 until period |T |. Analogously, the set În is

also specified with all new facilities that are opened in the first time period. We have developed

four different procedures to obtain Îe and În. These will be detailed in Section 3.2. The

location choices gathered in Îe and În can be later revoked during the improvement phase (cf.

Section 4). After having selected the operating facilities, the allocation of customer demands is
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then performed (line 7) over all time periods according to a mechanism that will be described

in Section 3.1. Depending on the choice of facilities to operate, this step may fail to detect

a feasible solution. Therefore, we have also developed additional strategies that enable us to

revise our previous location decisions (see Section 3.2). A pre-specified stopping criterion rules

the number of times this procedure is repeated. In lines 4 and 5, we initialize sets Îet , resp.

Înt , with all existing, resp. new, facilities available at time period t (t ∈ T ). Since an existing

facility can only be closed at the end of a strategic period (recall the definition of variables zℓi1

in Section 2), all existing facilities are available at time period t = 1 and therefore, Îe1 = Ie

(line 4). If Îe ⊂ Ie (i.e. some, but not all, existing facilities have been selected) then in any

other period t (2 ≤ t ≤ |T |) none of the facilities in Ie \ Îe are operating. For the selected

new facilities, it is not necessary to distinguish between t = 1 and t > 1 (line 5) because the

time instant for opening a new facility coincides with the beginning of the period in which this

action takes place.

Algorithm 1: General constructive scheme
Input : All instance data
Output: Solution S

1 while stopping condition is not satisfied do

2 // Choice of facilities to operate throughout the planning horizon

3 SelectFacilities(Îe, În)

4 Îe1 := Ie and Îet := Îe for every t = 2, . . . , |T |

5 Înt := În for all t ∈ T

6 // Allocation of customer demands to selected facilities

7 AllocateDemands(Îe1, . . . , Î
e
|T |, Î

n
1 , . . . , Î

n
|T |)

8 end

9 return feasible solution S = (z, v, r, s,w)

3.1 Allocation of customer demands

Given pre-selected sets of open facilities, Îet and Înt (t ∈ T ), customer demands are satisfied

over the planning horizon according to Procedure AllocateDemands. At each time period t, this

process consists of two phases. In the first phase, so-called priority demands, gathered in set Dt
∗,

are satisfied (line 5). The set Dt
∗ includes all demand requirements of customer segment J0 for

period t and unsatisfied orders of customers in segment J1 whose fulfillment cannot be further

delayed. If at the end of this phase there is at least one open facility with positive residual
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capacity (line 7) then additional demands from customer segment J1 are allocated in the second

phase (line 8). To keep track of the capacity that is available in each open facility in period t,

the residual capacity vector RQt = (RQt
i, i ∈ Îet ∪ Înt ) is updated whenever the demand of a

customer is partially or totally assigned to an operating facility. The sets U t (t ∈ T ), which

appear in lines 6 and 8, will be defined below. Procedure AllocateDemands is also embedded

in the local improvement heuristics to be described in Section 4.

Algorithm AllocateDemands: Demand allocation over the planning horizon

Input : Îe1 , . . . , Î
e
|T |: existing facilities that are operated

În1 , . . . , Î
n
|T |: new facilities that are open

Output: Solution S
1 for t := 1 to |T | do
2 Determine total capacity available in period t, TQt

3 Determine set of priority demands, Dt
∗, and the associated total demand, dtmin

4 if dtmin ≤ TQt then

5 AllocatePriorityDemand(Îet , Î
n
t ,D

t
∗,RQt)

6 U t := J1

7 if
∑

i∈Îet ∪Î
n
t

RQt
i > 0 and t < |T | then

8 AllocateNonPriorityDemand(Îet , Î
n
t ,RQt, U t−ρ+1, . . . , U t−1, U t)

9 end

10 else

11 return ∅ // unable to construct feasible solution

12 end

13 end

14 return solution S = (z, v, r, s,w) (if feasible)

In what follows, we assume without loss of generality that all customers in segment J1 have

the same maximum delay ρ, that is, ρj = ρ for all j ∈ J1 (ρ > 0). The procedures that detail

the demand allocation can be easily adapted when this is not the case.

At the beginning of each time period t, there are various demand sources. Some of them

must be served in period t, while others may or may not be considered for service in that period.

The former group concerns two types of customers: all customers from the preferred segment,

J0, and a subset of the customers of segment J1 whose demands for period t − ρ were not

satisfied so far. Failing to serve the demands of these customers in period t would violate the

maximum delay tolerated by them. This specific subset of customers is denoted by U t−ρ. In

addition, optional service can also be provided in period t to customers from J1 with unfilled

demands from periods t− ρ+1, . . . , t− 1. These particular customers are gathered in the sets
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U t−ρ+1, . . . , U t−1. Note that demands from J1 for the current period t may or may not be

satisfied in t. For consistency, we introduce U t = J1. All demands that cannot be delayed are

called priority demands and form the set Dt
∗. Accordingly, this set is defined as follows:

Dt
∗ =

{
dtj : j ∈ J0

}
if t = 1, . . . , ρ

Dt
∗ =

{
dtj : j ∈ J0

}
∪
{
dt−ρ
j : j ∈ U t−ρ

}
if t = ρ+ 1, . . . , |T | − 1

Dt
∗ =

{
dtj : j ∈ J

}
∪
{
dt−ρ
j : j ∈ U t−ρ

}
∪

{
dt−ρ+1
j : j ∈ U t−ρ+1

}
∪ . . . ∪

{
dt−1
j : j ∈ U t−1

}
if t = |T |

Observe that in the last time period it is necessary to include the demand from both customer

segments for that period as well as all unsatisfied demand from periods |T | − ρ, . . . , |T | − 1.

In particular, customers j ∈ U |T |−ρ+1 ∪ . . . ∪ U |T |−1 must also be given priority in the last

period since they cannot be serviced after the end of the planning horizon.

Priority demands set the minimum service level that must be provided in each time period.

Let dtmin denote the minimum demand requirements in period t ∈ T . Clearly, dtmin is given by:

dtmin =





∑
j∈J0

dtj if t = 1, . . . , ρ

∑
j∈J0

dtj +
∑

j∈U t−ρ

dtj if t = ρ+ 1, . . . , |T | − 1

∑
j∈J

dtj +
|T |−1∑
t′=t−ρ

∑
j∈U t′

dt
′

j if t = |T |

Procedure AllocatePriorityDemand outlines how priority demands are allocated to facilities

operating in time period t. The total capacity available in this period is determined by TQt =
∑

i∈Îet
Qi1 +

∑
i∈Înt

Qik∗
i
, with k∗

i denoting the capacity level chosen for facility i ∈ Înt . Since

Procedure AllocatePriorityDemand is only run when inequality dtmin ≤ TQt holds (line 4,

Procedure AllocateDemands), all priority demands can be satisfied. We start by initializing the

residual capacity RQt
i of every facility i ∈ Îet ∪ Înt with the corresponding capacity size (line 2,

Procedure AllocatePriorityDemand). After ranking the priority demands from highest to lowest,

we decide on the facility or facilities that should serve each one of them (lines 7–23). To this

end, we consider all facilities with positive residual capacity and sort them by non-decreasing

total variable cost for serving the customer specified in line 4. This cost is the sum of the

processing cost (which depends on the size of the facility) and the distribution cost. We give

preference to choosing the least costly facility. If its currently free capacity is insufficient to
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cover the customer order then demand will have to be split between two or more facilities (lines

16-20).

Algorithm AllocatePriorityDemand: Allocation of priority demands to facilities
operating in time period t

Input : Îet , Î
n
t : existing facilities, resp. new, facilities operating in period t

Dt
∗: demands to be served in period t, sorted by non-increasing value

Output: Complete allocation of demands from Dt
∗, update of residual capacity vector,

RQt

1 // Initialize the residual capacity of each facility with the corresponding

available capacity level

2 RQt
i := Qi1 for every i ∈ Îet and RQt

i := Qik∗i
for every i ∈ Înt

3 repeat

4 Extract a demand from the top of Dt
∗. Let d

t′

j be this demand

5 rdtj := dt
′

j // (residual) demand of customer j

6 Create list Ît of facilities Î
e
t ∪ Înt that have positive residual capacity; sort these

facilities by non-decreasing cost otik + ctij (with k = 1 if i ∈ Îet and k = k∗i if i ∈ Înt ) and

set wt
ik := 0

7 repeat

8 Extract a facility from the top of Ît, say i

9 if rdtj ≤ RQt
i then

10 // Assign residual demand of customer j to facility i

11 if j ∈ J0 then rtij := rdtj else st
′t
ij := rdtj

12 RQt
i := RQt

i − rdtj // update residual capacity

13 wt
ik := wt

ik + rdtj
14 rdtj := 0

15 else

16 // Assign part of residual demand of customer j to facility i

17 if j ∈ J0 then rtij := RQt
i else st

′t
ij := RQt

i

18 wt
ik := wt

ik +RQt
i

19 rdtj := rdtj −RQt
i // update residual demand of customer j

20 RQt
i := 0

21 end

22 if j ∈ J1 then vt
′t
j := 1

23 until rdtj = 0

24 until Dt
∗ = ∅

25 if t > ρ then U t−ρ := ∅
26 if t = |T | then U τ := ∅ for every τ = |T | − ρ+ 1, . . . , |T |
27 return v, r, s,w,RQt

The demand allocation decisions are also translated into specific values for variables rtij
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(i ∈ Îet ∪ Înt ; j ∈ J0), st
′t
ij and vt

′t
j (i ∈ Îet ∪ Înt ; j ∈ J1), and wt

ik (i ∈ Îet ∪ Înt ; k ∈ Ki) in lines

11, 13, 17, 18, and 22. The time period t′ in line 4 of the algorithm identifies the period in

which a particular priority demand occurs. For every customer belonging to segment J0, t′ = t.

If j ∈ J1 then t′ may be associated with different time periods. In this case, if ρ < t < |T |

then t′ represents period t − ρ according to the definition of the set Dt
∗. Only in the last

time period, t′ is associated with multiple periods with unsatisfied demand for customers in J1,

namely periods t− ρ, t− ρ+ 1, . . . , |T | (recall the definition of D
|T |
∗ ).

Throughout Procedure AllocatePriorityDemand, the capacity available of each facility open

in time period t is gradually used according to the demand allocation decisions that are made.

After having satisfied all priority demands, the second phase of the demand allocation scheme

is applied, provided that there is at least one facility with positive residual capacity (recall line 7

in Procedure AllocateDemands). In this case, Procedure AllocateNonPriorityDemand manages

the unfilled demands of all customers gathered in sets U t−ρ+1, . . . , U t. Since the longer a

customer order is delayed, the higher the tardiness penalty cost becomes, it would seem natural

to rank these customers by giving the highest priority to set U t−ρ+1 and the lowest priority to

set U t. Therefore, the demands of customers belonging to U t−ρ+1 would be the first to be

allocated, whereas the demands of customers in U t would be the last to be considered, provided

that sufficient residual capacity were available. However, depending on the quantities ordered

by individual customers, demands would not necessarily be satisfied in the less costly manner

using this strategy. This case is illustrated in Table 1 by means of a small example with two

customers and assuming the maximum delay ρ = 3. Let us also suppose that the total residual

capacity is 15. Customer j requests 6 units in period t−2, while customer j′ orders 10 units in

period t− 1. The satisfaction of the demand of customer j in period t incurs a total tardiness

cost of 18 monetary units and the residual capacity drops to 9. Clearly, there is not sufficient

capacity to also meet the order of customer j′ in period t, and so its demand will have to be

further delayed. This will increase even more the tardiness cost of this customer (from 20 to

Unit tardiness cost Total tardiness cost
Customer Demand period t period t+ 1 period t period t+ 1

j ∈ U t−2 dt−2
j = 6 pt−2,t

j = 3 pt−2,t+1
j = 4 18 24

j′ ∈ U t−1 dt−1
j′ = 10 pt−1,t

j′ = 2 pt−1,t+1
j′ = 3 20 30

Table 1: Example with two customers and their tardiness costs in periods t and t + 1
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30). In fact, it would be less costly to meet the 10 units of customer j′ in period t and postpone

servicing customer j to period t + 1.

Hence, to avoid additional tardiness costs, we adopt an improved procedure for the allocation

of unfilled demands which is based on the total tardiness penalty cost (pt
′t
j +1) dt

′

j for all j ∈ U t′

and t′ = t− ρ+ 1, . . . , t. We add one monetary unit to the original tardiness penalty cost pt
′t
j

because no delay occurs when t′ = t (i.e. pttj = 0). Without this perturbation, we would never

consider allocating demand for customers in U t since pttj dtj = 0, and so these customers would

always experience delays. Next, we create the list D of demands sorted by non-increasing values

of (pt
′t
j +1) dt

′

j (line 1, Procedure AllocateNonPriorityDemand). In this way, higher importance

is given both to large orders subject to a relatively low unit tardiness penalty cost and to small

demands incurring a high unit tardiness penalty cost. Lines 2–27 describe a procedure similar

to the one used in algorithm AllocatePriorityDemand to satisfy each one of these demands.

If there is enough residual capacity to serve a particular demand (line 5) then one or several

facilities are selected and the associated customer is removed from set U t′ (line 24). Since it

is not allowed to split an order for customer j ∈ U t′ over multiple periods of time, when the

residual capacity is insufficient to cover an order, its fulfillment must be further delayed and

the customer remains in set U t′ . As a result, for t < |T |, not all sets U t′ may be empty when

Procedure AllocateNonPriorityDemand terminates.

3.2 Facility selection

In this section, we propose four alternative schemes for the Procedure SelectFacilities and

show how they are embedded in the framework of Algorithm 1. In all of them, we choose in the

first strategic period the (sub)set of facilities that will operate throughout the planning horizon.

To this end, the existing, resp. new, facilities are gathered in set Îe, resp. În. In two of the

schemes, the facility selection process is based on the estimation of the mean demand D that

needs to be satisfied per period,

D =

∑
t∈T

∑
j∈J

dtj

|T |
+ mσ (14)

where σ is the standard deviation of all the demands and m is an integer parameter that will

be specified later. Demand fluctuations are captured by expression (14).

In the first scheme, that leads to Heuristic 1, we decide to keep all existing facilities.
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Algorithm AllocateNonPriorityDemand: Allocation of non-priority demand
from customer segment J1 to facilities operating in time period t

Input : Îet , Î
n
t : existing facilities, resp. new, facilities operating in period t

RQt: residual capacity vector for facilities operating in period t

U t′ (t′ = max{1, t− ρ+ 1}, . . . , t): sets of customers belonging to J1 with
unfilled demands from period t′

Output: (Complete/partial) allocation of demands of customers from sets U t′ ,
t′ = max{1, t − ρ+ 1}, . . . , t

1 Create list D of demands of all customers from U t′ (t′ = max{1, t− ρ+ 1}, . . . , t), sorted

by non-increasing values of (pt
′t
j + 1) dt

′

j

2 repeat

3 Extract a demand from the top of D, say dt
′

j

4 // Check if there is enough residual capacity

5 if dt
′

j ≤
∑

i∈Îet ∪Î
n
t

RQt
i then

6 rdt
′

j := dt
′

j // (residual) demand of customer j

7 Create list Ît of facilities Îet ∪ Înt that have positive residual capacity; sort these

facilities by non-decreasing cost otik + ctij (with k = 1 if i ∈ Îet and k = k∗i if i ∈ Înt )

8 repeat

9 Extract a facility from the top of Ît, say i

10 if rdt
′

j ≤ RQt
i then

11 // Assign residual demand of customer j to facility i

12 st
′t
ij := rdt

′

j

13 RQt
i := RQt

i − rdt
′

j // update residual capacity

14 wt
ik := wt

ik + rdtj

15 rdt
′

j := 0

16 else

17 // Assign part of residual demand of customer j to facility i

18 st
′t
ij := RQt

i

19 rdt
′

j := rdt
′

j −RQt
i // update residual demand of customer j

20 wt
ik := wt

ik +RQt
i

21 RQt
i := 0

22 end

23 until rdt
′

j = 0

24 U t′ := U t′ \ {j}

25 vt
′t
j := 1

26 end

27 until D = ∅
28 return v, s, w
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Therefore, zℓi1 = 0 for every ℓ ∈ TL and i ∈ Ie. This choice is motivated by the fact that from

a fixed cost perspective, we avoid paying closing costs by operating these facilities. If the total

capacity of these facilities is adequate to cover the demand estimate D for a pre-specified value

of m then no additional potential facilities are required and thus, zℓiki = 0 for every ℓ ∈ TL,

i ∈ In and ki ∈ Ki. Hence, in this case, our choice is defined by Îe = Ie and În = ∅.

Often, the overall capacity of the existing facilities is insufficient to meet D and as a result,

additional facilities need to be chosen from the potential set In. The selection process is

controlled by the total cost incurred by each potential facility to handle one unit of product

per period, TC ik. This cost is estimated by the sum of four components: the mean processing

cost, the mean distribution cost, the mean operating cost, and the fixed cost for establishing

the facility. The latter depends on the capacity level that is chosen from the set of available

discrete sizes. Hence,

TC ik =

∑
t∈T

otik

|T |
+

∑
t∈T

∑
j∈J

ctij

|T | · |J |
+

∑
t∈T

M t
ik

Qik · |T |
+

FO1
ik

Qik · |T |
i ∈ In, k ∈ Ki

(15)

Since at most one facility can be established in a potential location with a given capacity level,

we identify k∗
i = argmink∈Ki

{TCik} for every i ∈ In, and discard all other capacity options.

Due to economies of scale, the capacity size k∗
i is usually associated with the largest available

capacity level.

In case
∑

i∈Ie Qi1 < D, we build the list F n of all facilities i ∈ In sorted by non-decreasing

estimated total costs TC ik, and choose the minimum number of potential facilities whose total

capacity is at least equal to D−
∑

i∈Ie Qi1. The selected locations are gathered in set În and

the values of the associated location variables are fixed as follows for i ∈ În: z1ik∗
i
= 1, z1ik = 0

for k ∈ Ki \ {k
∗
i }, and zℓik = 0 for ℓ ∈ TL \ {1} and k ∈ Ki. Furthermore, for every i /∈ În,

k ∈ Ki and ℓ ∈ TL, we consider zℓik = 0.

Heuristic 1 uses the above strategy for facility selection under different demand estimates.

Initially, the mean demand per period is estimated by taking m = 0 in (14). After fixing Îe = Ie

and having identified the set În, we proceed with the allocation of customer demands, period by

period, according to Procedure AllocateDemands (cf. Section 3.1). If the total available capacity

is not enough to cover all demand requirements then a feasible solution cannot be constructed.

In this case, we adjust our estimation of the mean demand to be filled per period by incrementing

the value of parameter m by 1, and use again the list F n to enlarge our facility selection.
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Heuristic 1: Construction of a feasible solution
Input : All instance data
Output: Feasible solution S

1 // All existing facilities are maintained

2 Îet := Ie for all t ∈ T , zℓi1 := 0 for all ℓ ∈ TL, i ∈ Ie

3 Create list Fn of potential facilities sorted by non-decreasing estimated costs, TCik∗
i

4 m := −1
5 repeat

6 m := m+ 1

7 În := ∅ // no potential facilities are initially selected

8 zℓiki := 0 for all ℓ ∈ TL, i ∈ In, ki ∈ Ki

9 Estimate mean demand per period, D

10 if
∑

i∈Îe
Qi1 < D then

11 Extract from Fn the minimum number of facilities whose total capacity plus
∑

i∈Îe
Qi1 is

capable to cover D

12 Assign these potential facilities to În and set z1ik∗
i
:= 1 for i ∈ În and k∗i denoting the

selected capacity level
13 end

14 Înt := In for all t ∈ T

15 AllocateDemands(Îe1, . . . , Î
e
|T |, Î

n
1 , . . . , Î

n
|T |)

16 until feasible solution is obtained

17 if m = 0 then

18 repeat

19 m := m− 1

20 În := ∅ // no potential facilities are initially selected

21 zℓiki := 0 for all ℓ ∈ TL, i ∈ In, ki ∈ Ki

22 Estimate mean demand per period, D

23 if
∑

i∈Îe
Qi1 < D then

24 Extract from Fn the minimum number of facilities whose total capacity plus∑

i∈Îe

Qi1 is capable to cover D

25 Assign these potential facilities to În and set z1ik∗
i
:= 1 for i ∈ În and k∗i denoting

the selected capacity level
26 end

27 Înt := In for all t ∈ T

28 AllocateDemands(Îe1, . . . , Î
e
|T |, Î

n
1 , . . . , Î

n
|T |)

29 until infeasible solution is obtained

30 end

31 return best feasible solution S = (z, v, r, s,w)

In the worst case, we only stop when all potential facilities have been chosen, i.e. when În = In.
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In case a feasible solution is directly identified with m = 0, we reduce our demand estimate

by setting m = −1 in (14), and choose a sufficient number of potential locations (lines 19–24

in Heuristic 1). With a lower demand estimate we expect that fewer facilities will be selected,

and as a result, the total cost will decrease. In all our numerical experiments, feasible solutions

could be identified for values of parameter m ranging from −3 to +3.

Heuristic 2 uses a similar construction mechanism as Heuristic 1, but it does not automati-

cally select all existing facilities. In fact, the selection process takes into account the estimated

cost to handle one unit of product per period for all locations. Therefore, we extend the

estimate (15) to existing facilities as follows:

TC i1 =

∑
t∈T

oti1

|T |
+

∑
t∈T

∑
j∈J

ctij

|T | · |J |
+

∑
t∈T

M t
i1

Qi1 · |T |
i ∈ Ie (16)

Initially, we set Îe = ∅, În = ∅ and zℓik = 0 for all ℓ ∈ TL, i ∈ I, and k ∈ Ki. We then create

the list F of facilities sorted by non-increasing values of (15) and (16) (line 1 in Heuristic 2).

For a given value of m, the minimum number of facilities with total capacity capable to satisfy

the demand estimate (14) are chosen. Compared to Heuristic 1, this scheme may result in a

different choice of the facilities to be operated throughout the planning horizon.

The third heuristic for constructing a feasible solution partially adopts the outcome of

Heuristic 1. Specifically, all existing facilities are retained (Îe = Ie) but we only make use of

the total number α of new facilities that are chosen by Heuristic 1, i.e. α = |În|. Let V(S) be

the objective function value of solution S identified by Heuristic 1. To avoid the computational

effort incurred by examining all possible combinations of α new facilities, we restrict our search

by considering a subset of In, namely the α+m (m ≥ 1) cheapest facilities according to their

estimated costs (15). We start with m = 1 and examine all possible selections with α facilities.

Naturally, the choice made in Heuristic 1 does not have to be inspected again and can thus be

discarded. If a feasible solution can be identified with an objective function value lower than

V(S), we stop. Otherwise, we take the α + 2 (m = 2) cheapest new facilities, and evaluate

all possible ways of selecting α facilities from this set. Again, we stop if we can construct a

solution that is better than the one found by Heuristic 1. If that is not the case, we repeat this

procedure with m = 3. For a given value of m, there are in total
(
α+m

α

)
different selections,

each with exactly α new facilities. However, in practice, we do not need to examine them all

because some of them have already been evaluated upon considering m− 1. Hence, for a fixed
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Heuristic 2: Construction of a feasible solution
Input : All instance data
Output: Feasible solution S

1 Create list F of all facilities sorted by non-decreasing estimated costs
2 m := −1
3 repeat

4 m := m+ 1

5 Estimate mean demand per period, D
6 Extract from F the minimum number of facilities with total capacity capable to cover

D; specify Îe, În and the values of variables z accordingly

7 Îe1 := Ie and Îet := Îe for every t = 2, . . . , |T |

8 Înt := În for all t ∈ T

9 AllocateDemands(Îe1, . . . , Î
e
|T |, Î

n
1 , . . . , Î

n
|T |)

10 until feasible solution is obtained

11 if m = 0 then

12 repeat

13 m := m− 1

14 Estimate mean demand per period, D
15 Extract from F the minimum number of facilities with total capacity capable to

cover D; specify Îe, În and the values of variables z accordingly

16 Îe1 := Ie and Îet := Îe for every t = 2, . . . , |T |

17 Înt := În for all t ∈ T

18 AllocateDemands(Îe1, . . . , Î
e
|T |, Î

n
1 , . . . , Î

n
|T |)

19 until infeasible solution is obtained

20 end

21 return best feasible solution S = (z, v, r, s,w)

value of m, the search for a better feasible solution involves inspecting
(
α+m−1
α−1

)
possible facility

selections. In the worst case, this procedure has to be executed for every m = 1, . . . , |In| − α.

This strategy, which we call Heuristic 3, always returns a feasible solution, even if it is the same

as the one identified by Heuristic 1.

To illustrate how the set În is specified in the second phase of Heuristic 3, let us assume that

there are 5 potential locations for establishing new facilities and that the estimated cost (15)

for location 1 is the smallest, whereas the estimated cost for location 5 is the largest. In other

words, ranking the facilities by increasing estimated costs yields F n = (1, 2, 3, 4, 5). Moreover,

let us suppose that according to Heuristic 1, two new facilities should be opened in period

ℓ = 1, in addition to keeping all existing facilities. Hence, Îe = Ie, În = {1, 2} and α = 2.

Starting with m = 1, we consider the three cheapest facilities (1, 2, 3) and examine the pairs
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{1, 3} and {2, 3}. If none of them yields a solution with total cost lower than V(S) then we

take the four cheapest facilities (1, 2, 3, 4) by setting m = 2. In this case, from the
(
4
2

)
= 6

possible combinations with two facilities, we only need to investigate three of them, namely

{1, 4}, {2, 4} and {3, 4}, since the remaining options have already been inspected. Again, if a

better feasible solution cannot be identified, we take m = 3. From the
(
5
2

)
= 10 options with

two facilities, only four have to be examined, namely {1, 5}, {2, 5}, {3, 5}, and {4, 5}.

Heuristic 3: Construction of a feasible solution
Input : All instance data
Output: Feasible solution S

1 Obtain feasible solution S with Heuristic 1 and let V(S) be its objective value

2 Îe1 := Ie and Îet := Îe for every t = 2, . . . , |T | // keep all existing facilities

3 α := |În| // number of new facilities to be selected

4 În := ∅, bestSol := false

5 m := 1
6 while m ≤ |In| − α and bestSol = false do

7 Create list Fn with the α+m new facilities with lowest estimated costs, TCik∗
i

8 for all combinations of α facilities from list Fn do

9 if combination was not inspected before then

10 Assign the selected α facilities to În

11 Înt := În for all t ∈ T

12 AllocateDemands(Îe1, . . . , Î
e
|T |, Î

n
1 , . . . , Î

n
|T |)

13 if feasible solution S ′ is identified and V(S ′) < V(S) then
14 S := S ′, V(S) := V(S ′)
15 bestSol := true

16 end

17 end

18 end

19 m := m+ 1

20 end

21 return feasible solution S = (z, v, r, s,w)

Finally, Heuristic 4 allows for the construction of a feasible solution in a similar way as

Heuristic 3, but it partially uses the outcome of Heuristic 2. Accordingly, the (subset of)

existing facilities selected by Heuristic 2 are operated throughout the planning horizon and the

process of choosing α = |În| new facilities to be opened at time period 1 is executed as in

lines 5–20 (Heuristic 3).
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4 Improvement heuristics

Given a feasible solution S, different local transformations can be applied in an attempt to

identify a better solution. In this section, we introduce two types of facility moves aiming,

respectively, at postponing the time period in which a new facility is opened, and identifying

the time period to close an existing facility. We have also developed a third strategy that

replaces the capacity initially installed in new facilities by smaller capacity levels. However, in

our numerical study, this type of move turned out to be ineffective (see Section 4.3).

A move is profitable if it maintains the feasibility of the solution and results in a decrease

of the total cost. The evaluation of a move requires reassigning customers to the modified set

of operating facilities by applying Procedure AllocateDemands (cf. Section 3.1). In order to

efficiently detect improving moves, our approach does not enumerate and evaluate the large

number of neighboring solutions. Instead, a greedy scheme is used that partially explores a

neighborhood. Algorithm 2 outlines the general structure of the local search heuristic. At

each iteration, the neighborhood of the incumbent solution is explored with a particular type

of facility move. Whenever an improved solution is identified, it replaces the current solution

and the search is restarted. Algorithm 2 can be executed only once with a particular choice of

move, or several times according to a pre-specified sequence of facility moves.

Algorithm 2: General improvement scheme
Input : All instance data, feasible solution S
Output: Feasible solution, S∗

1 S∗ := S, V(S∗) := V(S)
2 Choose type of facility move to use
3 Apply local search to S∗

4 if profitable feasible solution S ′ is identified then S∗ := S ′ and V(S∗) := V(S ′)
5 return best feasible solution, S∗ = (z, v, r, s,w)

Again, we denote by Îet , resp. Î
n
t , the set of existing, resp. new, facilities operating in time

period t (t ∈ T ) according to the initial solution S. If S has been obtained with one of the

constructive heuristics then Îe1 := Ie, Îet := Îe for every t = 2, . . . , |T |, and Înt := În for all

t ∈ T . However, if S is the best cost-decreasing solution yielded by the exploration of a facility

move then sets Îet and Înt are initialized accordingly. Next, we describe how local search is

performed (line 3) according to a particular choice of facility move.
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4.1 Postponing moves

The first improvement strategy, denoted LI1, attempts to open new facilities as late as possible.

All pre-selected existing facilities i ∈ Îet (t ∈ T ) continue to be available. Any postponement of

the opening of a new facility uniquely defines a new solution. Depending on the total number

of strategic periods and the total number of open new facilities, the size of the neighborhood

can be excessively large if we consider all possibilities of shifting the period in which each

new facility is opened. In order to overcome this difficulty, we only search a restricted facility

neighborhood. To this end, we sequentially visit the list of strategic periods, and at each time

period ℓ ∈ TL we examine the possibility of constructing a feasible solution without having to

operate one or several of the new facilities in that period. The shift of the opening period of

a new facility yields savings in the fixed facility operating costs for all tactical periods until the

next strategic period, i.e. for periods t = ℓ, . . . , φ(ℓ). These savings may be offset by additional

facility processing costs, distribution costs and tardiness penalty costs due to the reallocation

of some customer demands. Hence, a move may not be necessarily profitable.

Since postponing the time period in which a facility is opened reduces the total capacity

available in the network, we sort the facilities in În =
⋃

t∈T Înt by non-decreasing order of their

capacities. Let In denote this list. At a given strategic period ℓ, we consider the new facilities

in list In in turn as indicated by the ordering. Therefore, we assume that there is a higher

chance to maintain feasibility when the opening of a relatively small facility is postponed rather

than the setup of a large facility. If the decision to shift the opening of a particular facility, say

i ∈ In with capacity level k∗
i , one strategic period ahead, i.e. from period ℓ to period ℓ + 1,

results in an illegal move then we know that this facility must be operated until the end of the

planning horizon. Hence, facility i is excluded from further consideration in future strategic

periods and is removed from list In. Facility i is also eliminated from In when the move is legal

but does not yield an improved solution. In contrast, if a feasible and profitable solution can be

constructed without operating facility i in periods ℓ, . . . , φ(ℓ), this change is implemented and

the new solution becomes the incumbent solution. This process is repeated until we reach the

last strategic period ℓmax. The pseudo-code Local improvement 1 details this procedure. At

the end of the algorithm, the best solution identified is returned.
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Local improvement 1: PostponeFacilityOpenings - Defer opening new facilities
Input : All instance data, feasible solution S
Output: Feasible solution S∗

1 S∗ := S and V(S∗) := V(S)

2 Initialize sets Îet and Înt , for all t ∈ T , according to the facilities selected in S

3 Create list In of new facilities În =
⋃

t∈T Înt sorted by non-decreasing capacities
4 ℓ := 1
5 repeat

6 F := In

7 repeat

8 Extract a facility from the top of F , say i

9 // Check if opening of facility i can be postponed to next strategic

period

10 Înt := Înt \ {i} for all t = ℓ, . . . , φ(ℓ)

11 AllocateDemands(Îe1, . . . , Î
e
|T |, Î

n
1 , . . . , Î

n
|T |)

12 if feasible solution S ′ is constructed and V(S ′) < V(S∗) then
13 zℓik∗

i
:= 0 // facility i is not opened in strategic period ℓ

14 S∗ := S ′ and V(S∗) := V(S ′)

15 else

16 // Opening of facility i is not postponed to next strategic period

17 Înt := Înt ∪ {i} for all t = ℓ, . . . , φ(ℓ)
18 In := In \ {i} // further postponement is not possible

19 end

20 until F = ∅
21 ℓ := ℓ+ 1

22 until last strategic period ℓmax

23 return best feasible solution S∗ = (z, v, r, s,w)

4.2 Closing moves

The aim of the second local improvement mechanism, denoted LI2, is to decide if and when

selected existing facilities Îe should be removed. The choices previously made with respect to

new facilities and their capacity levels remain unaltered. As for the postponing move, we only

explore a restricted neighborhood generated by closing moves.

When a facility is closed at the end of a given strategic period then fixed facility operating

costs are saved until the end of the planning horizon. These may counterbalance the fixed closing

cost that is charged and possibly also the higher cost incurred by reassigning the demands

previously allocated to this facility. Even though the largest saving can be expected to be

obtained when an existing facility is closed at the end of the first period, this action also poses
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a greater risk of not producing a feasible solution. Therefore, closing moves are explored by

starting from the last strategic period ℓmax and stopping at the first period. Similar to the first

local improvement scheme, we sort the facilities in Îe =
⋃

t∈T Îet by non-decreasing capacities.

At each strategic period ℓ, we use this ordering to examine the impact of closing each one

of these facilities at the end of ℓ. If a feasible solution is detected, it becomes the incumbent

solution provided it is also profitable. In the event that the move is illegal, the facility is removed

from the sorted list. This exclusion is motivated by the fact that trying to close the facility

earlier will also not yield a feasible solution, and thus computational effort can be saved. A

legal but unprofitable move leads to the same action.

Local improvement 2: CloseExistingFacilities - Schedule facility closings
Input : All instance data, feasible solution S
Output: Feasible solution S∗

1 S∗ := S and V(S∗) := V(S)

2 Initialize sets Îet and Înt , for all t ∈ T , according to the facilities selected in S

3 Create list Ie of existing facilities Îe =
⋃

t∈T Îet sorted by non-decreasing capacities
4 ℓ := ℓmax

5 repeat

6 F := Ie

7 repeat

8 Extract a facility from the top of F , say i

9 // Check if facility i can be closed at the end of strategic period ℓ

10 Îet := Îet \ {i} for all ℓ < t ≤ φ(ℓ)

11 AllocateDemands(Îe1, . . . , Î
e
|T |, Î

n
1 , . . . , Î

n
|T |)

12 if feasible solution S ′ is constructed and V(S ′) < V(S∗) then
13 zℓi1 := 1 // facility i is closed at the end of period ℓ

14 S∗ := S ′ and V(S∗) := V(S ′)

15 else

16 // Facility i cannot be closed at the end of strategic period ℓ

17 Îet := Îet ∪ {i} for all ℓ < t ≤ φ(ℓ)
18 Ie := Ie \ {i} // earlier closing is also not possible

19 end

20 until F = ∅
21 ℓ := ℓ− 1

22 until first strategic period

23 return best feasible solution S∗ = (z, v, r, s,w)

If a closing move is successful in the first strategic period then the associated existing facil-

ity is not active throughout the planning horizon except in the first period. The Procedure
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Local Improvement 2 describes how closing moves are performed. The most profitable solu-

tion is returned at the end of this process.

4.3 Other moves

We have also developed a third local improvement mechanism, denoted LI3, that explores the

possibility to exchange the capacity level of a new facility for a smaller capacity size. Due to

economies of scale, cost savings are expected to be achieved in opening the facility, operating

it, and processing deliveries to the customers assigned to it. As with the postponing and closing

moves, we perform a restricted neighborhood search for capacity exchange moves. We start

by sorting the pre-selected new facilities În by non-decreasing order of the capacity levels Qik

that were installed in the new locations. These facilities are examined in turn as indicated by

the ordering. For a given facility i, we replace its current capacity level with the next smaller

size in all periods the facility is available. If successful postponing moves were performed

earlier then the facility may be opened in some strategic period ℓ such that ℓ > 1. A profitable

exchange move results in replacing the current solution with the improved neighbor. In contrast,

if the move yields an infeasible solution, we restore feasibility by discarding the capacity level

exchange. Moreover, we also exclude the facility from further consideration since lower capacity

sizes will also not maintain the feasibility of the solution. After having inspected all new facilities

sequentially and updated the set În, this process is restarted in an attempt to further decrease

the capacity of one or several new facilities. The pseudo-code Local improvement 3 details

this local search procedure.

In our computational experiments, capacity exchange moves (LI3) never generated better

solutions. Therefore, we report in the next section only the results obtained with postponing

moves (LI1) and closing moves (LI2). We attribute the ineffectiveness of procedure LI3 to

the magnitude of the economies of scale that are present in our instances in the fixed cost of

opening a new facility with a given capacity level. This characteristic is also evidenced by the

solutions provided by a state-of-the-art MILP solver, with new facilities being often operated

with the largest capacity level available. Since the constructive heuristics always select the

largest capacity size in a new location, the outcome of applying LI3 was expected. However, we

believe that this procedure may facilitate the improvement of a solution to a problem instance

having smaller differences between the costs per unit of capacity installed in a potential facility

location (FOℓ
ik/Qik, i ∈ In, k ∈ Ki) .
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Local improvement 3: ExchangeCapacity - Decrease capacity of new facilities
Input : All instance data, feasible solution S
Output: Feasible solution S∗

1 S∗ := S and V(S∗) := V(S)

2 Initialize sets Îet and Înt , for all t ∈ T , according to the facilities selected in S

3 Create list In of new facilities În =
⋃

t∈T Înt sorted by non-decreasing capacities
4 repeat

5 F := In

6 repeat

7 Extract a facility from the top of F , say i; let Qik be its current capacity level and
ℓ be the strategic time period in which the facility is opened

8 if k > 1 then

9 Replace capacity Qik with Qi,k−1 in all periods that facility i is available

10 AllocateDemands(Îe1, . . . , Î
e
|T |, Î

n
1 , . . . , Î

n
|T |)

11 if feasible solution S ′ is constructed and V(S ′) < V(S∗) then
12 zℓik := 0 for all ℓ ∈ TL

13 zℓi,k−1 := 1 for all ℓ ∈ TL such that i ∈ Înℓ
14 S∗ := S ′ and V(S∗) := V(S ′) // better solution

15 if k − 1 = 1 then In := In \ {i} // further capacity decrease not

possible

16 else

17 // Capacity level cannot be exchanged for a smaller size

18 In := In \ {i}

19 end

20 end

21 until F = ∅

22 until In = ∅
23 return best feasible solution S∗ = (z, v, r, s,w)

5 Computational study

In this section, we assess the computational efficiency of the proposed heuristics and the quality

of the solutions obtained for a set of randomly generated test instances. Our heuristic solutions

are compared against the solutions identified with IBM ILOG CPLEX 12.3 within a time limit

of 36000 CPU seconds. The heuristics were implemented in C++ and all heuristic experiments

were performed on a laptop computer with a 1.33 GHz Intel Atomr processor Z3740 with

2 GB RAM and running Windows 8.1 (32-bit operating system).
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5.1 Test instances

We consider the two sets of test instances that were randomly generated by Correia and Melo

(2016). These sets mainly differ in the total number of customers, namely one set has 100

customers and the other 150 customers. We have also enlarged this testbed with a third set

of instances, each having 200 customers. In total, 162 instances were randomly created by

combining the parameters shown in Table 2, thereby obtaining 54 instances for each value of

|J |. The planning horizon is divided into 36 time periods. Two different temporal opportunities

for facility and capacity acquisition decisions are considered, specifically TL = {1, 13, 25} and

TL = {1, 7, 13, 19, 25, 31}. In the first time period, the demand of each customer is selected

at random from the interval [20, 100] according to a continuous uniform distribution. In each

subsequent period, demands exhibit fluctuations ranging from −5% to +5% compared to the

previous period. Accordingly, in each time period t, the rate of change is chosen randomly

from the interval [0.95, 1.05] for customer j and multiplied by the demand of this customer for

period t − 1 (t ≥ 2). In each potential location, three different capacity levels are available,

representing small, medium and large sizes. The medium (small) capacity option corresponds

to 70% (49%) of the large size and the associated fixed costs exhibit economies of scale. For

further details on the generation of the test instances, we refer to Correia and Melo (2016),

which also includes a sophisticated scheme for obtaining the cost parameters.

Parameter Value
|J | 100, 150, 200
|J0| ⌈βJ |J |⌉ with βJ ∈ {0.25, 0.5, 0.75}
|I| 0.1 |J |
|In| 0.8 |I| (|Ie| = 0.2 |I|)
|Ki| 3 (i ∈ In)
|T | 36
|TL| 3, 6
ρ 1, 2, 3

Table 2: Parameter values

5.2 Analysis of results

In Table 3, the type of solutions obtained with CPLEX and the constructive heuristics is sum-

marized for different values of the maximum allowed delay for demand fulfilment (column 1).
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Columns 2–4 refer to CPLEX and indicate the number of instances solved to optimality (#

opt sol), the number of instances not solved to proven optimality within the specified time

limit (# non-opt sol), and the number of instances for which CPLEX failed to identify a single

feasible solution (# unsolved inst). For each constructive heuristic, the following information is

presented: the number of instances for which the heuristic created a feasible solution (# feas

sol, columns 5, 7, 9 and 11) and the number of solutions with higher quality than the best

solutions reported by CPLEX (# impr sol over CPLEX, columns 6, 8, 10 and 12). The last row

(All) in Table 3 provides the above information over all test instances.

Increasing the maximum allowed delivery time results in more challenging problems and this

is reflected in the growing number of instances that cannot be solved to optimality by CPLEX

within the computing time of 10 h (in total, 84% or 136 instances). Furthermore, CPLEX is

unable to find feasible solutions to 5.6% of the instances. These features are associated with

the large size of the instances and, as mentioned earlier, the additional complexity posed by

parameter ρ. On average, the MIP formulation has 194,606 binary variables, 173,979 continuous

variables, and 18,220 constraints. Additionally, as the value of ρ increases, more opportunities

arise for satisfying the demands of customer segment J1 and these have to be investigated.

While the satisfaction of a customer order can be delayed at most one time period when

ρ = 1, taking ρ = 3 leads to four alternative time periods for meeting the demands of these

customers (either on time or with a delay of one, two or three periods). This also explains

why a significantly larger number of instances could be solved to optimality with ρ = 1 against

ρ ∈ {2, 3}. In contrast to CPLEX, all heuristics construct a feasible solution to every instance

(100% feasible solutions versus 94.4% with CPLEX). It is also noteworthy that the heuristics

even return a better solution than CPLEX for a few instances.

ρ CPLEX Heuristic 1 Heuristic 2 Heuristic 3 Heuristic 4
# opt # non- # un- # feas # impr # feas # impr # feas # impr # feas # impr
sol opt sol solved sol sol over sol sol over sol sol over sol sol over

inst CPLEX CPLEX CPLEX CPLEX
1 13 36 5 54 3 54 4 54 3 54 4

2 3 50 1 54 0 54 0 54 0 54 1

3 1 50 3 54 0 54 0 54 0 54 0

All 17 136 9 162 3 162 4 162 3 162 5

Table 3: Solutions obtained with CPLEX and the constructive heuristics.

Table 4 reports the quality of the solutions identified by CPLEX and the constructive heuris-

tics. For each value of ρ considered, this table indicates the minimum (min), average (avg) and

maximum (max) integrality gaps achieved by CPLEX at termination (MIP gap (%), column 3).
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In addition, the minimum, average and maximum CPU times (in seconds) are also presented for

CPLEX (CPU (s), column 4). Columns 5–8 report for each constructive heuristic the minimum,

average and maximum GAP-UB in percent, which is the gap between the objective value of

the heuristic solution (zH) and the objective value of the best solution identified by CPLEX (z)

within the time limit, i.e. (zH − z)/z × 100%. A negative value indicates a saving achieved

by the heuristic under examination over CPLEX. The last row in Table 4 displays the average

values over all test instances. The CPU times of the heuristics are omitted from this table

because our code and the Correia and Melo (2016) code were run on two different computers.

Therefore, direct comparisons between CPLEX and the heuristics are not possible. However,

the computing time does not seem to be the critical issue for our approaches. All runs with

Heuristics 1 and 2 required less than 30 CPU seconds. Runs with Heuristics 3 and 4 demanded

more computing time due to the procedure developed to select new facilities, with an average

of 1.2 and 3.5 CPU minutes, respectively. We note that the processor of the computer used

for the experiments with the heuristics is considerably less powerful than the computer used by

Correia and Melo (2016) to run the commercial code CPLEX.

ρ CPLEX Heuristic 1 Heuristic 2 Heuristic 3 Heuristic 4

MIP gap (%) CPU (s) Gap-UB (%) Gap-UB (%) Gap-UB (%) Gap-UB (%)

1 min 0.00 183.50 -4.27 -3.32 -4.40 -3.90

avg 1.39 30890.78 4.33 3.61 3.89 3.07

max 6.15 36000.00 11.79 11.01 11.60 10.56

2 min 0.00 956.07 0.67 0.01 0.33 -0.17

avg 1.64 34190.46 4.43 3.25 4.03 2.84

max 4.36 36000.00 11.60 10.71 11.41 10.27

3 min 0.00 25266.11 0.79 0.43 0.52 0.31

avg 1.85 35789.53 4.59 3.63 4.24 3.25

max 4.60 36000.00 9.32 10.40 8.65 9.96

All avg 1.64 33666.72 4.45 3.49 4.06 3.05

Table 4: Performance of the constructive heuristics.

Even though proven optimal solutions are only available for 10.5% (17/162) of the instances,

the integrality gaps reported by CPLEX are, on average, rather small (less than 2%) and the

maximum gaps are lower than 5% with the exception of a single instance with 150 customers

and ρ = 1 for which an integrality gap of 6.15% is achieved. Since the maximum computing

time is attained by CPLEX for the majority of the instances, it is not surprising that good
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solutions are found at the expense of high average CPU time. The quality of the solutions

produced by the four constructive heuristics is not significantly worse than that of the CPLEX

solutions. Depending on the heuristic and the value of ρ, on average, a feasible solution is 2.84%

to 4.59% more costly than the best solution identified by CPLEX. Moreover, each heuristic is

robust with respect to the different values for the maximum allowed delay in demand fulfilment.

Three solutions are constructed by Heuristic 1 that outperform CPLEX, with a reduction of the

corresponding objective value of 0.39%, 3.32% and 4.27%. With Heuristic 2, the improvement

over CPLEX occurs in four instances and amounts to 0.39%, 1.17%, 1.74%, and 3.32%,

respectively. The magnitude of the improved solutions obtained with Heuristic 3 is similar to

that of Heuristic 1. Heuristic 4 produces four solutions that are 0.44%, 1.64%, 2.14%, and

3.90% better than those found by CPLEX.

Among the four constructive heuristics, Heuristic 1 seems to be the weakest. This is not

surprising since this procedure offers the least flexibility for selecting the facilities to operate

over the planning horizon. In particular, all the existing facilities are retained as opposed to the

choices made by Heuristic 2. Heuristic 3 also exhibits this characteristic but invests more time

in searching for an improved subset of the new facilities to establish. As a result, the quality

of the solutions obtained is, on average, superior to Heuristic 1 but still inferior to Heuristic 2.

Heuristic 4 retains the subset of existing facilities identified by Heuristic 2 and makes use of

the same flexible approach for selecting new facilities as Heuristic 3. The combination of these

strategies brings additional benefits and so Heuristic 4 performs consistently better than the

other three constructive heuristics.

Table 5 reports the results obtained for the proposed local improvements applied to all con-

structive heuristics. The table shows the minimum, average and maximum percent deviations

of the heuristic solutions from the best CPLEX solutions (Gap-UB (%)) for executing one local

improvement strategy (LI1 or LI2) or two local improvement strategies (LI1 followed by LI2 or

LI2 followed by LI1). All possible sequences of local improvements are tested on the initial so-

lutions produced by the four constructive heuristics, yielding in total 16 different ways to obtain

feasible solutions to the problem at hand. For each value of parameter ρ and each heuristic

used in the first phase, the average gap is highlighted in boldface for the best sequence of local

improvements. The last row in Table 5 summarizes the average gaps over all instances. The

computing times are omitted from this table because LI1 and LI2 are extremely fast (< 60 CPU

seconds).

As can be observed in Table 5, all local improvement schemes succeed in making transfor-
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ρ Gap-UB (%)
Heuristic 1 Heuristic 2 Heuristic 3 Heuristic 4
LI1 LI2 LI1 + LI2 LI2 + LI1 LI1 LI2 LI1 + LI2 LI2 + LI1 LI1 LI2 LI1 + LI2 LI2 + LI1 LI1 LI2 LI1 + LI2 LI2 + LI1

1 min -4.27 -4.27 -4.27 -4.27 -3.32 -3.32 -3.32 -3.32 -4.40 -4.40 -4.40 -4.40 -3.90 -3.90 -3.90 -3.90
avg 3.03 1.40 0.82 0.49 2.29 2.75 1.72 1.64 2.67 1.31 0.71 0.41 1.85 2.53 1.52 1.48
max 11.79 7.39 6.08 3.51 10.57 11.01 10.57 10.57 11.60 7.39 5.89 4.04 10.39 10.56 10.39 10.39

2 min -1.23 -2.06 -2.06 -2.06 -1.23 0.01 -1.23 -1.23 -0.88 -1.51 -1.51 -1.51 -1.13 -0.17 -1.13 -1.13
avg 3.36 1.79 1.41 1.08 2.22 2.53 1.84 1.67 3.06 1.81 1.39 1.11 1.90 2.39 1.61 1.56
max 11.60 7.10 7.03 4.51 7.38 10.71 5.80 5.80 11.41 7.10 6.79 4.22 7.12 10.27 6.01 6.01

3 min 0.47 -1.56 -1.56 -1.56 -0.25 -0.87 -0.25 -0.87 0.33 -1.56 -1.56 -1.56 -0.25 0.31 -0.73 -0.73
avg 3.57 2.41 2.00 1.76 2.69 2.99 2.26 2.17 3.38 2.46 1.95 1.80 2.44 2.90 2.16 2.13
max 8.70 8.11 8.11 8.11 7.79 10.40 7.79 7.79 8.65 8.12 8.12 8.12 7.79 9.96 7.79 7.79

All avg 3.32 1.87 1.42 1.12 2.40 2.75 1.94 1.83 3.04 1.87 1.36 1.12 2.07 2.61 1.76 1.73

Table 5: Performance of the local improvements.
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mations that yield cost reductions, even though with varying degree of enhancement. When a

single procedure is employed, LI1 performs better with Heuristics 2 and 4, whereas LI2 provides

better solutions with Heuristics 1 and 3. Recall that the latter constructive heuristics have in

common the operation of all existing facilities from period 1 until period |T |. Depending on

the test instance, this corresponds to operating 2, 3 or 4 facilities (3 facilities on average).

Hence, deciding if and when these facilities should be closed by means of LI2 yields additional

cost savings. In contrast, most of the solutions constructed by Heuristics 2 and 4 already in-

clude a subset of the existing facilities to be in place over the whole planning horizon. In fact,

an average of 1.7 facilities belonging to Ie are chosen and in about 10% of the instances no

existing facility is even selected. Since the capacity provided by the chosen existing facilities is

often insufficient to cover all demands, additional capacity needs to be made available through

establishing new facilities. This results in opening, on average, 4.7 facilities (for comparison,

an average of 4.2 facilities are opened with Heuristics 1 and 3). The decision about when these

facilities should be set up is ruled by LI1 and this strategy yields a stronger improvement due

to the larger number of new facilities involved. Additional enhancements are achieved when

both types of local moves are executed. For all initial solutions and all values of ρ considered,

the sequence LI2 + LI1 always returns the best solutions. Closing moves (LI2) aim at reducing

the amount of capacity available in the system towards the end of the planning horizon, while

postponing moves (LI1) aim at decreasing the capacity available in the first strategic periods.

By readjusting the time periods during which the selected existing and new facilities are oper-

ating, excess capacity tends to be eliminated. We have observed that when LI2 is run before

LI1, slightly fewer existing facilities are kept, as opposed to the sequence LI1 + LI2.

Although Heuristic 4 provides, on average, the best solutions during the construction phase,

it is noteworthy that the local improvements are more effective when applied to the lower

quality solutions obtained with Heuristics 1 and 3. The latter solutions leave more room for

improvement which is exploited by LI1 and LI2. For the instances with ρ = 1, Heuristic 3

together with the sequence LI2 + LI1 achieves the best solutions with an average deviation

of 0.41% to CPLEX solutions. Moreover, 18.5% of the solutions obtained (10/54) strictly

outperform CPLEX. For the larger delivery delays ρ = 2 and ρ = 3, Heuristic 1 followed by

LI2 + LI1 yields the best solutions with an average deviation of 1.08% and 1.76% to CPLEX,

respectively. Improved solutions over CPLEX are returned in 5 (ρ = 2) and 4 instances (ρ = 3).
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5.3 Additional insights

Since the constructive heuristics and the local improvement strategies are undemanding in their

computational requirements, they can all be applied to a problem instance and the best solution

can be retained at the end. Table 6 reports the performance of the best solutions obtained for

every instance and after each phase. Columns 2–4 give the number of instances for which the

best heuristic solutions outperform the best solutions found by CPLEX within the time limit

of 10 CPU hours. Columns 6–8 present the quality of the heuristic solutions in terms of the

minimum, average and maximum deviations to CPLEX (GAP-UB (%)). The last row (All)

summarizes the results over all test instances. The effectiveness of the local improvements

is evidenced by the generation of 22 solutions with higher quality than the CPLEX solutions,

against the 5 better solutions obtained during the construction phase. Since CPLEX failed to

identify feasible solutions to 9 instances (cf. Table 3) and the heuristics always find a feasible

solution, in total 31 solutions outperform CPLEX (19.1%). While the construction phase

yields an average deviation of 2.49% to CPLEX, the improvement phase results in a significant

decrease of the average gap to 0.72%. For ρ = 1 and ρ = 2, the solutions deviate at most

2.19% and 3.88%, respectively. For ρ = 3, in all instances, except one, the best solutions are at

most 3.49% more expensive than CPLEX. In the outlier instance, a gap of 7.79% is achieved.

For the 17 instances for which a guaranteed optimal solution is available (cf. Table 3), the

quality of the best heuristic solutions can be assessed. In 11 of these instances, at least one

heuristic provided a solution that is within 1% of the optimal solution. In 5 other instances, the

quality of the best heuristic solution obtained varies between 1% and 1.5%. Finally, there is one

single instance for which the best heuristic solution deviates 2.19% from the optimal solution.

ρ # impr sol over CPLEX Gap-UB (%)
Constructive Improvement Phase Constructive Improvement Phase
Phase with 1 LI with 2 LI Phase with 1 LI with 2 LI

1 9 15 15 min -4.40 -4.40 -4.40
avg 2.38 0.16 0.12
max 10.39 2.19 2.19

2 2 8 9 min -0.17 -2.06 -2.06
avg 2.34 0.74 0.71
max 7.10 3.88 3.88

3 3 7 7 min 0.31 -1.56 -1.56
avg 2.75 1.31 1.30
max 7.79 7.79 7.79

All 14 30 31 avg 2.49 0.75 0.72

Table 6: Performance of the best heuristic solutions.
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In order to apprehend the characteristics of the best solutions obtained at the end of the

improvement phase, we have compared them to the best solutions provided by CPLEX (153

instances) with respect to different cost categories. The minimum, average and maximum

percent deviations are presented in Table 7. The deviation is calculated as (cH−c′)/c′)×100%

for each cost category, where cH and c′ denote the cost obtained by the heuristic and by

CPLEX, respectively. A negative value indicates that a lower cost is achieved by the heuristic

solution over CPLEX for the category under examination. The heuristics show a tendency to

operate more existing facilities for a longer period of time, which results in savings in the closing

costs but in increased costs for maintaining these facilities. A significant variability within each

of these two cost categories is observed. The average investment spending on opening new

facilities does not show large differences against the setup costs in the CPLEX solutions. While

the average costs of processing customer orders at the operating facilities are slightly lower

than the corresponding costs provided by CPLEX, the costs of distributing the product to the

customers are more expensive, even though the differences are not substantial.

ρ Deviation to CPLEX (%)

New facilities Existing facilities Tardiness

Opening Maint. Closing Maint. Processing Distribution penalty

cost cost cost cost cost cost cost

1 min -24.7 -22.3 -100.0 -41.3 -7.4 -0.5 -100.0

avg -0.7 -2.0 -17.7 10.8 -0.9 1.7 771.6

max 16.8 7.7 0.0 447.7 2.8 4.9 11420.9

2 min -26.2 -22.3 -100.0 -86.5 -5.5 -0.6 -100.0

avg -0.7 -1.1 -10.1 8.5 -0.7 1.6 1313.8

max 11.8 7.2 38.8 424.7 2.7 4.8 21532.3

3 min -22.3 -22.3 -100.0 -97.3 -6.5 -0.3 -100.0

avg 0.8 1.6 -10.9 7.9 -0.8 1.5 2235.1

max 31.5 31.5 37.6 447.7 2.6 5.4 36686.7

All avg -0.2 -0.5 -12.8 9.0 -0.8 1.6 1442.1

Table 7: Cost deviations of the best heuristic solutions to CPLEX solutions.

The most striking discrepancy concerns the tardiness penalty cost, with the heuristics incur-

ring more delays in customer satisfaction in 68% of the instances. Late shipments do not occur

in the best heuristic solutions identified to 14/153 instances compared to the CPLEX solutions.

This feature produces the best possible deviation (−100%). Recall that the decisions on de-

mand allocation are made by the Procedure AllocateDemands, which is used by all heuristics.
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Therefore, it seems that there is some potential for enhancing the mechanism that determines

the time period in which a customer order should be met. This decision is certainly affected by

the facilities available in a certain period and their capacities. Interestingly, the average share

of the tardiness penalty cost over the total cost is rather small, namely 0.3% (ρ = 1), 0.6%

(ρ = 2) and 0.9% (ρ = 3). In the CPLEX solutions, this share represents 0.2% of the total

objective value for every value of ρ considered. The savings achieved in some cost categories

are weighed against the additional spending on other categories, and therefore, the quality of

the solutions generated by the best heuristics turns out to be very good.

Further insights on the characteristics of the best heuristic solutions are provided in Table 8

with respect to the utilization level of the capacity of operating facilities. Similar information

is also displayed for the best CPLEX solutions. Interestingly, both groups of solutions exhibit

similar average capacity utilization rates. The only difference occurs in the minimum values

for the new facilities, with the heuristics producing more slack capacity in a few instances.

Table 8 also presents the mean number of new facilities that are opened and the mean number

of initially existing facilities that are closed at the end of some strategic period. As observed

earlier, the best heuristic solutions are characterized by fewer facility closings and openings

compared to the CPLEX solutions.

Sol method ρ Capacity usage (%) # facilities (avg)

new facilities existing facilities new closed

min avg max min avg max

CPLEX 1 87.9 94.9 99.9 73.2 89.8 100.0 4.4 1.5

2 88.9 96.1 100.0 70.5 90.0 100.0 4.5 1.6

3 87.7 96.1 100.0 67.4 90.3 100.0 4.4 1.6

Best heur 1 69.8 96.5 100.0 72.4 92.2 100.0 4.3 1.1

2 69.8 96.3 100.0 69.5 89.9 100.0 4.3 1.1

3 69.1 96.3 100.0 60.6 88.8 100.0 4.4 1.1

Table 8: Capacity utilization rates and average number of new/closed facilities.

In summary, our numerical results indicate that the proposed constructive heuristics along

with the local improvements provide good quality solutions in significantly shorter CPU times

than CPLEX. In addition, for 19% of the test instances, the heuristics even achieve higher

solution quality.
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6 Conclusions

In this article, we have considered a recently introduced multi-period facility location problem

with features that go beyond the classical perspective. In particular, customers are differentiated

by their service requirements in terms of delivery times. While one demand class includes

customers whose orders must be met on time, the second class of customers tolerates delayed

deliveries as long as lateness does not exceed a given threshold. In addition to location and

allocation decisions, capacity sizing decisions are also addressed, with their associated fixed

investment costs and variable processing costs being subject to economies of scale.

We have proposed the first two-phase heuristic procedures for this new problem. During

the constructive phase, special focus is given to the identification of a suitable set of initially

existing facilities and new locations that are operated over the whole planning horizon. For

the facility choices made, customer demands are served according to a heuristic scheme. In

the improvement phase, adjustments in the opening and closing schedule of the pre-selected

facilities are made in an attempt to obtain solutions with a lower total cost. The computational

results show that the mechanisms developed for the constructive and improvement heuristics

are effective both in terms of computational efficiency and solution quality. Compared to a

state-of-the-art MILP solver, all constructive procedures identify a feasible solution to every

instance in significantly shorter computing times. Furthermore, at the end of the first phase,

the average heuristic objective value is 2.49% more costly than the objective value of the best

solution provided by the solver. This rate decreases to 0.72% after using the local improvement

schemes. This quality enhancement is achieved with low computational effort. At the end of

the two phases, solutions with higher quality than those found by the solver are available for

almost one-fifth of the instances. These findings suggest that the proposed heuristics could

be integrated into a decision support framework, enabling a ‘what-if’ analysis to be performed

within reasonable computing time. Such an analysis is important to help decision makers gain

deeper insight into the impact of delays in demand fulfillment and the trade-offs achieved from

location and capacity sizing decisions. Additionally, the heuristic procedures provide a useful

alternative to a commercial solver, especially for large-sized instances.

A future line of research would be the extension of the heuristic algorithms to deal with

single-assignment conditions for serving customers. Moreover, since some input parameters for

long-term planning are inherently uncertain (e.g. demand), focus could also be given to extend-

ing the heuristics to explicitly account for the uncertainty associated with future conditions.
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J. Dias, M.E. Captivo, and J. Cĺımaco. A memetic algorithm for multi-objective dynamic

location problems. Journal of Global Optimization, 42:221–253, 2008.

S. Duran, T. Liu, D. Simchi-Levi, and J.L. Swann. Policies utilizing tactical inventory for

service-differentiated customers. Operations Research Letters, 36:259–264, 2008.

S. Elhedhli and F. Gzara. Integrated design of supply chain networks with three echelons,

multiple commodities and technology selection. IIE Transactions, 40:31–44, 2008.
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