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Enhancing the distance minimization 
methods of matrix updating within a 
homothetic paradigm
Vladimir Motorin* 

1  An introduction to the matrix‑updating problems
A general problem of updating rectangular (or square) matrix can be formulated as fol-
lows. Let A be an initial matrix of dimension N × M with row and column marginal 
totals uA = AeM, v′A = e′NA where eN and eM are N × 1 and M × 1 summation column 
vectors with unit elements. Further, let u �= uA and v �= vA be exogenous column vectors 
of dimension N × 1 and M × 1, respectively. The problem is to estimate a target matrix 
X of dimension N × M at the highest possible level of its structural similarity (or resem-
blance, likeness, closeness, etc.) to initial matrix A subject to N + M equality constraints

Abstract 

Matrix updating methods are used for constructing the target matrix with the pre-
scribed row and column marginal totals that demonstrates the highest possible level 
of its structural similarity to initial matrix given. A concept of structural similarity has 
a vague framework that can be slightly refined under considering a particular case of 
strict proportionality between row and column marginal totals for target and initial 
matrices. Here the question arises: can we accept the initial matrix homothety as 
optimal solution for proportionality case of matrix-updating problem? In most practi-
cal situations, an affirmative answer to the question is almost obvious. It is natural to 
call this common notion by homothetic paradigm and to refer its checking as homo-
thetic testing. Some well-known methods for matrix updating serve as an additional 
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method and Kuroda’s method pass through the homothetic test successfully. Homo-
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and under the consistency condition

It is assumed that initial matrix A does not include any zero rows or zero columns, 
does not have less than N + M nonzero elements, does not include any rows or col-
umns with a unique nonzero element, and does not contain any pairs of rows and col-
umns with four nonzero elements in the intersections. Otherwise, it is advisable to clean 
matrix A from those undesirable features before applying any matrix updating method 
in practice.

Clearly, the system of equations (1) is dependent at consistency condition (2) that pro-
vides an existence of target matrix X. However, it is easy to show that any N + M − 1 
among N + M constraints (1) are mutually independent. Furthermore, it is evident that 
any feasible solution of matrix-updating problem X can be simply transformed into 
another one by letting, e.g.,

where ε is an arbitrary scalar, or

and so on.
Thus, general problem of matrix updating with a great variety of feasible solutions sig-

nificantly depends on a definition of the measure for structural similarity between initial 
and target matrices. Various definitions of this measure generate a great manifold of dif-
ferent methods and techniques for matrix updating. A quite common approach to define 
the similarity measure is to use some objective distance function f (X − A) to be mini-
mized subject to linear constraints (1) under the consistency condition (2). The main 
purpose of the article is to enhance the methods of this kind by defining and applying a 
new algebraic concept named homothetic paradigm.

2  A homothetic paradigm for the matrix updating methods
A notion of structural similarity between initial and target matrices has a vague frame-
work that can be slightly refined in an axiomatic manner. In this context, let us con-
sider a particular case of strict proportionality between row and column marginal totals 
u = kuA and v = kvA for target and initial matrices with the same scalar factor k. Here 
the main question arises: can we accept the matrix homothety X = kA as optimal solu-
tion for proportionality case of a general matrix-updating problem? At first sight this 
solution can be appreciated as rather logical and corresponding to famous principle of 
insufficient reason (also known in decision theory as Laplace criterion) because there 
is no way to explain convincingly that X must not be equal to kA. Moreover, it allows 
preserving in X the same location of zeros as in the initial matrix. However, it is to be 

(1)XeM = u, e′NX = v′,

(2)e′Nu = e′Mv.

xnewnm = xnm + ε, xnewnj = xnj − ε; xnewim = xim − ε, xnewij = xij + ε

xnewnm = xnm + ε, xnewnj = xnj − ε
/

2, xnewnk = xnk − ε
/

2; xnewim = xim − ε,

xnewij = xij + ε
/

2, xnewik = xik + ε
/

2,
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emphasized that the above question indeed seems neither simple nor evident, and its 
proposition cannot be proved formally.

Nevertheless, in most practical situations an affirmative answer to this question is 
almost obvious. In particular, as it is shown below, the well-known and widely used RAS 
and Kuroda’s methods for matrix updating serve as an additional instrumental confirma-
tion to such an answer. In this connection, we will call this rather common notion by 
homothetic paradigm and will refer examining the property “if u = kuA and v = kvA 
then X = kA” as a homothetic test for the matrix updating methods. It is advisable to 
propose that a successful passing through homothetic test were to be appreciated as a 
positive feature of any matrix updating method.

3  Homothetic testing of RAS method
The key idea of the RAS method is triple factorization of target matrix

where r and s are unknown N × 1 and M × 1 column vectors. Here angled bracketing 
around vector’s symbol or putting a “hat” over it denotes a diagonal matrix, with the vec-
tor on its main diagonal and zeros elsewhere (see Miller and Blair 2009, p. 697).

Putting (3) into (1), we have the system of nonlinear equations

Proper transformations of this system lead to the following pair of iterative processes:

where i and j are iteration numbers, and the character “÷” between the lower and upper 
bounds of index’s changing range means that the index sequentially runs all integer val-
ues in the specified range.

As concerning a homothetic test for RAS method at u = kuA and v = kvA, it can be 
easily shown that under starting condition r(0) = eN or s(0) = eM the RAS method iter-
ative process (4) or (5) demonstrates one-step convergence to pair of vectors r = eN , 
s = keM or to r = keN, s = eM, respectively. Hence, RAS algorithm’s implementation 
gives rnsm = k for any n and m, n = 1 ÷ N, m = 1 ÷ M, from which X = rs′ ◦ A = kA 
where the character “°” denotes Hadamard’s (element-wise) product of two matrices of 
the same dimension. Besides, it is easy to see that replacing the initial matrix A with its 
homothety kA leaves the RAS method iterations (4) and (5) invariant. Thus, the RAS 
method passes through a homothetic test successfully.

For another formal proof of this fact, notice that the RAS method can be associated 
with a conditional minimization of nonnegative function called the Kullback–Leibler 
divergence (see Kullback and Leibler 1951; Kullback 1959) that is used for comparing 
“true”  and “test” probability distributions. This function is sometimes called “infor-
mation gain,” albeit it measures an information loss from using a “test” distribution to 

(3)X = RAS = �r�A�s� = r̂Aŝ

r̂AŝeM = r̂Aŝ = �As�r = u, e′N r̂Aŝ = r′Aŝ = s′
〈

A′r
〉

= v′.

(4)r(i) =
〈

A
〈

A′r(i−1)

〉−1
v
〉−1

u, i = 1÷ I; s(I) =
〈

A′r(I)
〉−1

v;

(5)s(j) =
〈

A′
〈

As(j−1)

〉−1
u
〉−1

v, j = 1÷ J ; r(J ) =
〈

As(J )
〉−1

u
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approximate a “true” distribution. The Kullback–Leibler divergence actually expresses 
the difference between the cross-entropy of two distributions (namely, in order “true”–
“test”) and the entropy of “true” distribution.

Let the “true” distribution be X/x, and let the “test” one be A/a, where a = e′NAeM and 
x = e′NXeM = e′Nu = e′Mv. (So all elements of X and A are implied to be nonnegative.) 
In these denotations the Kullback–Leibler divergence can be written as

where fKL(X;A) is corresponding Kullback–Leibler function for nonnormalized data. 
Note that values of fKL(X

/

x;A
/

a) are dimensionless quantities, whereas fKL(X;A) has 
dimension of x (or of X’s and A’s entries).

The function fKL(X;A) for nonnormalized data often serves as an objective function 
in mathematical programming formulation of the RAS method instead of function (6), 
e.g., in Appendix 7.1 “RAS as a Solution to the Constrained Minimum Information Dis-
tance Problem” to Miller and Blair (2009). It becomes possible due to the linear depend-
ency (6) between fKL(X

/

x;A
/

a) and fKL(X;A) with fixed and known coefficients, 
so that a minimum of both functions is achieved at the same point. Nevertheless, the 
Kullback–Leibler function for nonnormalized data cannot be classified as “information 
distance” at least from the viewpoint of dimensional analysis. (To be fully fair, the Kull-
back–Leibler divergence (6) is not a distance function really because the symmetry and 
subadditivity (triangle inequality) conditions do not hold for it.)

Consider the conditional minimization problem with objective function (6) for 
normalized data and linear constraints (1) under the consistency requirement 
e′Nu = e′Mv = e′NXeM = x.

The first partial derivatives of Lagrangian function for this problem with respect to xnm 
are

from which it is easy to obtain the RAS triple factorization of target matrix (3) as follows:

where � and µ are the column vectors of Lagrange multipliers with dimensions N × 1 
and M × 1, respectively, and e is the base of natural logarithms.

Thus, the RAS method’s logical emanation from the Kullback–Leibler divergence min-
imization approach is proved.

Finally, it is easy to see that in homothetic testing with X = kA the nonnegative func-
tion (6) for normalized data reaches its global (or absolute) minimum value, since

(6)fKL(X
/

x;A
/

a) =

N
∑

n=1

M
∑

m=1

xnm

x
ln

(

a

x

xnm

anm

)

=
1

x
fKL(X;A)+ ln

a

x

∂LKL

∂xnm
=

1

x
(ln xnm + 1− ln anm)− �n − µm = 0, n = 1÷ N ,m = 1÷M,

xnm = anme
x(�n+µm)−1 = ex�n−1/ 2anme

xµm−1/ 2 = rnanmsm

fKL(kA
/

ka;A
/

a) =

N
∑

n=1

M
∑

m=1

kanm

ka
ln

(

a

ka

kanm

anm

)

=
ka

ka
ln (1) = 0,
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although function fKL(X;A) for nonnormalized data does not allow to consider the 
matrices X = kA and A as indiscernibles, namely

It means that, from viewpoint of the Kullback–Leibler divergence minimization 
approach together with the RAS method, the matrix homothety X = kA can be consid-
ered as optimal solution for proportionality case of a general matrix-updating problem.

4  Homothetic testing of Kuroda’s method
Kuroda (1988) proposed an original method for matrix updating that comes to con-
strained minimization of the twofold-weighted quadratic objective function

which can be rewritten in matrix form as

where W1 and W2 are the nonsingular diagonal matrices of order NM with the relative 
reliability or relative confidence factors (weights). Here the NM-dimensional column 
vectors xu and xv are defined through applying the vectorization operator “vec,” which 
transforms a matrix into a vector by stacking the columns of the matrix one underneath 
the other (see, e.g., Magnus and Neudecker 2007), as follows:

where

EM is an identity matrix of order M, and the character “⊗” denotes the Kronecker prod-
uct of two matrices.

Within a homothetic test for Kuroda’s method, the row and column marginal totals for 
target matrix are u = kuA and v = kvA, hence

Therefore, at x = ka the vectors xu and xv vanish both, and the quadratic function (7) 
reaches its global minimum value equal to zero. It means that from viewpoint of Kuro-
da’s method, the matrix homothety X = kA provides the optimal solution for a general 
problem of matrix updating in a case of strict proportionality between row and column 

fKL(kA;A) =

N
∑

n=1

M
∑

m=1

kanm ln

(

kanm

anm

)

= ka · ln (k) �= 0.

fK (X;A) =
1

2

N
∑

n=1

M
∑

m=1

w1
NM

(

xnm

un
−

anm

uAn

)2

+
1

2

N
∑

n=1

M
∑

m=1

w2
NM

(

xnm

vm
−

anm

vAm

)2

,

(7)fK (xu, xv) =
1

2
x′uW1xu +

1

2
x′vW2xv

xu = vec
(

û−1X − û−1
A A

)

= Ux −UAa, xv = vec
(

Xv̂−1 − Av̂−1
A

)

= Vx − VAa,

a = vecA, UA = EM ⊗ û−1
A , VA = v̂−1

A ⊗ EN

x = vecX, U = EM ⊗ û−1, V = v̂−1 ⊗ EN ,

xu = Ux −UAa = UA

(

1

k
x − a

)

, xv = Vx − VAa = VA

(

1

k
x − a

)

.
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marginal totals for target and initial matrices. Thus, Kuroda’s method passes through a 
homothetic test successfully as well as RAS method.

5  Homothetic test’s failure: the method of weighted squared differences 
(WSD)

A quite common approach to define a measure of the structural similarity between ini-
tial and target matrices is to use some matrix norm for the difference X − A to be min-
imized subject to linear constraints (1) under the consistency condition (one can find 
the proper reviews, e.g., in Miller and Blair 2009; Temurshoev et al. 2011), so that the 
optimal solution can be represented as X∗ = arg minX �X − A�, or in equivalent vector 
form as x∗ = arg minx |x − a| where a = vecA and x = vecX, as earlier.

For instance, the choice of Frobenius matrix norm (and compatible Euclidean vector 
norm) leads to the constrained minimization of weighted quadratic objective function

where W is a nonsingular diagonal matrix of order NM with the relative reliability or 
relative confidence coefficients. (Usually the elements of matrix W is assumed to be nor-
malized by multiplying it on a proper factor, i.e., e′NMWeNM = 1.) To complete a for-
mulation of the constrained minimization problem for the WSD method, one needs 
to rewrite left-hand sides of the constraints (1) in vector denotations. Introducing the 
N × NM matrix G = e′M ⊗ EN, which consists of M identity matrix EN located horizon-
tally, and the M × NM matrix H = EM ⊗ e′N, which is N-fold successive replication of 
each column from identity matrix EM, we have

Notice that each column of G and H includes exactly one nonzero (unit) element such 
that e′NG = e′MH = e′NM.

The Lagrangian function for problem of minimizing the objective function (8) subject 
to linear constraints (9) is just

where � and µ are the column vectors of Lagrange multipliers, as earlier. Taking the first 
partial derivatives of this function with respect to x, � and µ gives

Expressing x from first equation of this system, we obtain the problem solution as a 
function of Lagrange multipliers, namely

Inserting (10) into the second and third equations leads to the following system of 
equations with � and µ as unknowns:

(8)fWSD(x; a) =

N
∑

n=1

M
∑

m=1

wnm(xnm − anm)
2 = (x − a)′W(x − a)

(9)XeM = Gx = u, X′eN = Hx = v.

LWSD(x, �,µ) = (x − a)′W(x − a)− �
′(Gx − u)− µ

′(Hx − v)

2W(x − a)−G′
�−H′

µ = 0NM , Gx − u = 0N , Hx − v = 0M .

(10)x = a +
1

2
W−1

(

G′
�+H′

µ
)

.
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where Ga = uA and Ha = vA.
Note that the main matrix of the system (11) is symmetric. Moreover, it is easy to see 

that GW−1G′eN −GW−1H′eM = 0N and HW−1G′eN −HW−1H′eM = 0M because of 
G′eN = H′eM = eNM, i.e., the matrix of the system (11) has the linearly dependent col-
umns and so is singular. Thus, the general solution to corresponding homogeneous sys-
tem (11) is �(0) = ceN , µ(0) = −ceM with any scalar constant c.

Since a general solution to nonhomogeneous linear system equals the sum of a general 
solution to corresponding homogeneous system and any particular solution to nonho-
mogeneous system, let � = �

(0) + �
(1) and µ = µ

(0) + µ
(1), where the pair �(1), µ(1) is a 

particular solution to system (11). Putting these formulas into round-bracketed expres-
sion in the right-hand side of (10) gives

i.e., the optimal solution of minimization problem (8), (9) depends only on a particular 
solution to nonhomogeneous system (11).

As noted above, any N + M − 1 among N + M constraints (9) are mutually independ-
ent while e′Nu = e′Mv. Therefore, the Lagrange multipliers � and µ can be determined 
from reduced system of linear equations (11) with any one of them eliminated (of course, 
with setting a corresponding multiplier equal to zero).

For homothetic testing the WSD method, suppose that x = ka. Inserting this 
homothety into the solution (10) leads to the condition

which is not met at N + M > 3 because it actually represents a generally inconsistent 
system of NM linear equations with N + M − 1 < NM unknown Lagrange multipliers. 
(Recall that one of them equals zero.) Hence, the vector x = ka cannot be an optimal 
solution of minimization problem (8), (9) at u = kuA and v = kvA.

Thus, WSD method does not pass through a homothetic test in contrast to RAS and 
Kuroda’s method.

6  Applying homothetic paradigm for improving the WSD method
Acceptance of the matrix X = kA as optimal solution for proportionality case of a gen-
eral matrix updating problem leads to establishing the fact that all matrices from homo-
thetic family kA demonstrate an excellent structural similarity between each other. The 
homothetic paradigm can be helpful for enhancing a collection of matrix updating meth-
ods based on constrained minimization of the distance (or quasi-distance) functions.

Within homothetic paradigm, we can set a goal to dispose the target matrix as close 
as possible not to initial matrix A, but to its homothetic family kA. As a result, the opti-
mal solution becomes (X∗, k∗) = arg minX,k

∥

∥X − kA
∥

∥, or in equivalent vector form 

(11)
GW−1G′

�+GW−1H′
µ = 2(u −Ga),

HW−1G′
�+HW−1H′

µ = 2(v −Ha)

G′
�+H′

µ = G′
(

ceN + �
(1)
)

+H′
(

−ceM + µ
(1)
)

= ceNM − ceNM +G′
�
(1) +H′

µ
(1) = G′

�
(1) +H′

µ
(1)
,

(12)G′
�+H′

µ = 2(k − 1)Wa
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(x∗, k∗) = arg minx,k
∣

∣x − ka
∣

∣, and, clearly, it cannot be “worse” (in terms of the cer-
tain matrix/vector norm chosen) than the original one.

As it is shown below, transition from | x − a | to 
∣

∣ x − ka
∣

∣ leads to an idea of orthogonal 
projecting an unknown target vector x onto the homothetic ray ka in NM-dimensional 
vector space with a scalar product operation.

In the case of WSD method, the improved version of weighted quadratic objective 
function (8) can be written as

where l is an additional scalar variable.
The Lagrangian function for problem of minimizing the objective function (13) subject 

to linear constraints (9) becomes

where, as earlier, � and µ are the column vectors of Lagrange multipliers. Taking the first 
partial derivatives of this function with respect to vector x and scalar l gives the follow-
ing system of NM + 1 equations:

where the second equation is being interpreted as an orthogonality condition for vectors 
x − la and a.

Expressing x from first equation of this system, we obtain the solution of problem (13), 
(9) as a function of Lagrange multipliers, namely

Inserting (14) into second equation of above system and into the pair of constraint 
equations  (9) leads to the following system of 1 + N + M equations with scalar l and 
vectors �, µ as unknown variables:

where Ga = uA and Ha = vA. Since any N + M − 1 among N + M constraints (9) are 
mutually independent while e′Nu = e′Mv, the scalar l and Lagrange multipliers �, µ can 
be determined from reduced system of linear equations (15) with any one of them elimi-
nated (except the first equation) with setting a corresponding multiplier equal to zero.

Putting the improved WSD method to homothetic test, suppose that x = ka. Inserting 
this formula into the orthogonality condition gives (k − l)a′Wa = 0 from which l∗ = k. 
In turn, substituting the homothety into (14) leads to the homogeneous system

(13)fiWSD(x, l; a) =

N
∑

n=1

M
∑

m=1

wnm(xnm − lanm)
2 = (x − la)′W(x − la)

LiWSD(x, l, �,µ) = (x − la)′W(x − la)− �
′(Gx − u)− µ

′(Hx − v)

2W(x − la)−G′
�−H′

µ = 0NM , a′W(x − la) = 0

(14)x = la +
1

2
W−1

(

G′
�+H′

µ
)

.

(15)

a′G′
�+ a′H′

µ = 0,

2lGa +GW−1G′
�+GW−1H′

µ = 2u,

2lHa +HW−1G′
�+HW−1H′

µ = 2v

G′
�+H′

µ = 0NM
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that obviously has the solution �∗ = ceN, µ∗ = −ceM where c is an arbitrary scalar (see 
Sect. 5). Further, at u = kuA, v = kvA and l∗ = k the linear equations (15) are also being 
transformed to the homogeneous system

with the same simple solution. Therefore, the vectors x∗ = ka, �∗ = ceN, µ∗ = −ceM 
bring the optimal solution to the problem of minimizing the objective function (13) sub-
ject to linear constraints (9) at u = kuA and v = kvA.

Thus, the improved WSD method passes through a homothetic test successfully as 
well as RAS and Kuroda’s method (and in contrast to WSD method).

7  Analyzing and improving the method of weighted squared relative 
differences (WSRD)

To make the minimization problems (8), (9) and (13), (9) independent on scale of initial 
data, it is expedient to let

where q is NM-dimensional column vector of unknown relative coefficients, and then to 
introduce into consideration the relative distance functions, namely |q − eNM | instead 
of | x − a | for WSD method and 

∣

∣q − keNM
∣

∣ instead of 
∣

∣ x − ka
∣

∣ for improved WSD 
method. Here the transition from |q − eNM | to 

∣

∣q − keNM
∣

∣, as it is shown below, leads 
to an idea of orthogonal projecting an unknown target vector q onto the homothetic 
ray keNM in NM-dimensional vector space with a scalar product operation. Notice that 
Eq. (16) cannot be resolved with respect to q if the initial matrix A contains at least one 
zero entry.

In transition from WSD to WSRD method, the quadratic objective function (8) 
becomes

whereas the improved objective function (13) is being transformed to

and, finally, inserting (16) into the linear constraints (9) leads to the following modified 
constraints:

The objective function (17) was first proposed by Harthoorn and van Dalen (1987) 
with the relative confidence coefficients matrix factorized as W = âŵ−1â where w is 

a′
(

G′
�+H′

µ
)

= 0,

GW−1
(

G′
�+H′

µ
)

= 0N ,

HW−1
(

G′
�+H′

µ
)

= 0M

(16)x = âq

(17)fWSRD (q; eNM) =

N
∑

n=1

M
∑

m=1

wnm(qnm − enm)
2 = (q − eNM)′W(q − eNM)

(18)fiWSRD (q, l; eNM) =

N
∑

n=1

M
∑

m=1

wnm(qnm − lenm)
2 = (q − leNM)

′W(q − leNM),

(19)Gx = Gâq = u, Hx = Hâq = v.
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exogenous vector of reciprocal weights for the elements of initial vector a. The Lagran-
gian function for problem of minimizing the objective function (17) subject to linear 
constraints (19) is just

where � and µ are the column vectors of Lagrange multipliers, as earlier.
By analogy with derivation of (10) and (11) in Sect. 5, we obtain

and

where, as earlier, Ga = uA and Ha = vA. It is easy to see that the system of linear equa-
tions (21) is a degenerate one, resembling (11), and its corresponding homogeneous sys-
tem also has the general solution �(0) = ceN , µ(0) = −ceM with any scalar constant c. 
Since any N + M − 1 among N + M constraints (19) are mutually independent while 
e′Nu = e′Mv, the Lagrange multipliers � and µ can be determined from reduced system 
of linear equations (21) with any one of them eliminated with setting a corresponding 
multiplier equal to zero.

For homothetic testing the WSRD method, suppose that q = keNM. Inserting this 
homothety into the solution (20) leads to the condition (compare with condition (12) in 
Sect. 5)

which is not met at N + M > 3 because it actually represents a generally inconsistent 
system of NM linear equations with N + M − 1 < NM unknown Lagrange multipliers. 
(One of them equals zero because the matrix of system (21) has nonfull rank.) Hence, 
the vector q = keNM cannot be an optimal solution of minimization problem (17), (19) 
at u = kuA and v = kvA. Thus, WSRD method does not pass through a homothetic test 
as well as WSD method.

The objective function (18) demonstrates a result of applying a homothetic paradigm 
to the objective function of WSRD method (17). The Lagrangian function for problem of 
minimizing the improved objective function (18) subject to linear constraints (19) is just

where � and µ are the column vectors of Lagrange multipliers, and l is an additional sca-
lar variable.

Taking the first partial derivatives of this function with respect to vector q and scalar l 
gives the following system of NM + 1 equations:

LWSRD(q; �,µ) = (q − eNM)′W(q − eNM)− �
′
(

Gâq − u
)

− µ
′
(

Hâq − v
)

,

(20)q = eNM +
1

2
W−1â

(

G′
�+H′

µ
)

(21)
GâW−1âG′

�+GâW−1âH′
µ = 2(u −Ga),

HâW−1âG′
�+HâW−1âH′

µ = 2(v −Ha)

â
(

G′
�+H′

µ
)

= 2(k − 1)WeNM

LiWSRD(q, l; �,µ) = (q − leNM)
′W(q − leNM)− �

′
(

Gâq − u
)

− µ
′
(

Hâq − v
)

,

2W(q − leNM)− âG′
�− âH′

µ = 0NM , e′NMW(q − leNM) = 0
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where the second equation of the system expresses an orthogonality condition for vec-
tors q − leNM and eNM.

By analogy with derivation of (14) and (15) in Sect. 6, we obtain

and

where Ga = uA and Ha = vA. Since any N + M − 1 among N + M constraints (19) are 
mutually independent while e′Nu = e′Mv, the scalar l and Lagrange multipliers �, µ can 
be determined from reduced system of linear equations  (23) with any one (except the 
first one) of them eliminated with setting a corresponding multiplier equal to zero.

Putting the improved WSRD method to homothetic test, suppose that q = keNM . 
Inserting this formula into the orthogonality condition gives (k − l) e′NMWeNM = 0 
from which l∗ = k. In turn, substituting the homothety into (22) leads to the homogene-
ous system

that obviously has the solution �∗ = ceN, µ∗ = −ceM where c is an arbitrary scalar (see 
Sect. 6). Further, at u = kuA, v = kvA and l∗ = k the linear equations (23) are also being 
transformed to the homogeneous system

with the same simple solution. Therefore, the vectors q∗ = keNM, �∗ = ceN, µ∗ = −ceM 
bring the optimal solution to the problem of minimizing the objective function (18) sub-
ject to linear constraints (19) at u = kuA and v = kvA.

Thus, the improved WSRD method passes through a homothetic test successfully as 
well as improved WSD method (and in contrast to WSRD method).

8  Handling the zero entries in the distance minimization methods of matrix 
updating

In practice, an initial matrix often contains some zero elements. In this context, all 
matrix updating methods can be divided into two groups: those that do preserve the 
same location of zeros in target matrix as in the initial one, and those that do not. For 
example, RAS method should be assigned to the first group because of its multiplica-
tive pattern (3), whereas Kuroda’s method belongs to the second group because it does 
not include any mechanisms for fitting the proper elements of target matrix to required 
zero level. Analogically, the regular and improved WSRD are methods of the first group 

(22)q = leNM +
1

2
W−1â

(

G′
�+H′

µ
)

(23)

a′G′
�+ a′H′

µ = 0,

2lGa +GâW−1âG′
�+GâW−1âH′

µ = 2u,

2lHa +HâW−1âG′
�+HâW−1âH′

µ = 2v

â
(

G′
�+H′

µ
)

= 0NM

a′
(

G′
�+ a′H′

µ
)

= 0

GâW−1â
(

G′
�+H′

µ
)

= 0N

HâW−1â
(

G′
�+H′

µ
)

= 0M
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because they are based on multiplicative pattern (16) in contradistinction to the WSD 
method both regular and improved.

If a zero preservation property is assumed desirable, the WSD methods can be slightly 
redeveloped to provide it by reducing the dimensionalities of minimization problems 
(8), (9) and (13), (9). Let J < NM be a number of nonzero elements in the initial matrix A 
(and in NM-dimensional vector a). While the zero preservation principle “if aj = 0 then 
xj = 0 for any j” is being applied, the target vector x does really contain only J unknown 
variables because the other NM–J variables should be setting to zero values. Hence, it is 
advisable to reduce the operational dimensions of initial and target vectors from NM × 1 
to J × 1 by eliminating NM–J zero components.

Let EJ×NM be a rectangular matrix with dimensions J × NM that is obtained from an 
identity matrix of order NM by deleting the rows corresponding to zero entries in the 
initial vector. Then the initial and target vectors can be redefined as aJ×1 = EJ×NMaNM×1 
and xJ×1 = EJ×NMxNM×1. In turn, in order to make the formulas of objective functions 
for WSD and improved WSD methods (8) and (13) be operational, one needs also to 
redefine the weight matrix W by deleting the corresponding rows and columns, i.e., 
WJ×J = EJ×NMWNM×NME′

J×NM.
Finally, it is necessary to adapt the linear constraints (9) to reduced dimension of the 

target vector. To this end, N × NM-dimensional matrix G and M × NM-dimensional 
matrix H must be postmultiplied by E′

J×NM in order to eliminate their redundant col-
umns. Hence, the constraints (9) are being transformed to GN×NME′

J×NMxJ×1 = uN×1 
and HM×NME′

J×NMxJ×1 = vM×1, respectively, where all dimensions are consist-
ent in a sense of matrix product. Notice that, as earlier, each column of the trans-
formed constraint matrices includes exactly one nonzero (unit) element so that 
e′NGN×NME′

J×NM = e′MHM×NME′
J×NM = e′J. Thus, the redevelopment of regular and 

improved WSD methods comes to proper reducing the dimensions of all vectors and 
matrices in the minimization problems (8), (9) and (13), (9) without their reformulation.

Furthermore, it is easy to see that Kuroda’s method can be modified for preserving the 
zeros in a similar way.

As noted earlier, the regular and improved WSRD methods provide the same loca-
tion of zeros in target matrix as in the initial one. Despite it, the eliminating procedure 
described above seems to be helpful for them also because the operation of excluding 
zero elements allows decreasing the dimension of solution space for the matrix-updating 
problem in significant degree. It is to be emphasized that macroeconomic matrices of 
high dimensions often appear to be very sparse in practice, up to more than 90% of zero 
elements. In such cases, the efficiency of computations within the minimization prob-
lems (17), (19) and (18), (19) increases rather noticeably.

9  One more failure of homothetic testing: GRAS method
The regular WSD and WSRD methods do not satisfy a homothetic test originally but 
can be improved by applying a homothetic paradigm. However, some methods of matrix 
updating demonstrate an incorrigible failure of homothetic testing. For instance, the 
generalized RAS (GRAS) method does not pass through a homothetic test and at the 
same time cannot be enhanced in this sense because of its nature.
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As it is well-known, “… RAS can only handle non-negative matrices, which limits its 
application to SUTs that often contain negative entries…”—see Temurshoev et al. (2011, 
p. 92). The GRAS method has been proposed by Junius and Oosterhaven (2003) for the 
initial matrices with some negative entries, and later it was redeveloped by Lenzen et al. 
(2007). (In order to be fair, it is appropriate to mention that a mathematical framework 
of GRAS method was described earlier by Günlük-Şenesen and Bates 1988.)

Any initial matrix A can be represented as A = P−Q where P is a matrix of positive 
entries and Q is a matrix containing the absolute values of negative entries. The GRAS 
method leans on the mixed additive–multiplicative pattern

where r and s are unknown N ×  1 and M ×  1 column vectors that are needed to be 
estimated subject to linear constraints (9). Notice that in the absence of negative entries 
GRAS method coincides with RAS method which is based on multiplicative pattern (3).

For homothetic testing the GRAS method, suppose that X = kA = kP− kQ. Insert-
ing this homothety into the pattern (24) leads to the following pair of matrix equations:

The transition to Hadamard’s products in the left-hand sides of these equations gives

from which it follows that

where eNe′M is outer product of two summation vectors, i.e., the matrix of dimension 
N × M with unit elements.

It is easy to see that the conditions (25) are met simultaneously if and only if k = ±1, 
or X = ±A. Hence, the matrix homothety X = kA = kP− kQ cannot be a feasible solu-
tion for GRAS method at all other values of k (k �= ±1). Thus, the GRAS method does 
not pass through a homothetic test.

The strict structure of mixed additive–multiplicative pattern (24) does not give any 
opportunity for improving the GRAS method on the base of homothetic paradigm 
without its considerable redevelopment. Here the main problem seems to be an inexact 
correspondence between the GRAS method’s objective function and Kullback–Leibler 
divergence that Lemelin (2009) has rightly pointed out. Indeed, if initial matrix A con-
tains some negative entries, then by virtue of the Kullback–Leibler probabilistic inter-
pretation the nonlinear function (6) can be rewritten as

(24)X = r̂Pŝ− r̂−1Qŝ−1

r̂Pŝ = kP, r̂Qŝ =
1

k
Q.

(

rs′
)

◦ P = kP,
(

rs′
)

◦Q =
1

k
Q

(25)rs′ = keNe
′
M , rs′ =

1

k
eNe

′
M

(26)

fKL(X
+
/

x
+;A+

/

a
+) =

N
∑

n=1

M
∑

m=1

| xnm|

x+
ln

(

a
+

x+

| xnm|

| anm|

)

=
1

x+

N
∑

n=1

M
∑

m=1

| xnm| ln

(

| xnm|

| anm|

)

+ ln
a
+

x+
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where x+ = e′NX
+eM =

∑N
n=1

∑M
m=1

∣

∣xij
∣

∣ and a+ = e′NA
+eM =

∑N
n=1

∑M
m=1

∣

∣aij
∣

∣. 
Notice that now a value of x+ �= e′Nu = e′Mv is not known a priori in contrast to the case 
(6) in which all initial matrix entries are implied to be nonnegative.

Factorizing the unknown variables in (26) as | xnm| = | anm| znm, one can introduce the 
new variables znm and then obtain the following objective function:

that should be minimized subject to the linear marginal total constraints

It is interesting to compare three summands in right-hand side of (27) with two sum-
mands of the GRAS method’s objective function

that was being considered at Lenzen et  al. (2007). Let a target matrix be equal to 
the initial matrix, i.e., X = A, from which it follows that Z = eNe

′
M. Then we have 

f (eNe
′
M;A+) = −a+, whereas fKL(eNe

′
M;A+) = − ln a+ + ln a+ = 0. Therefore, the 

GRAS method’s objective function (29) may take negative values, and an identity of 
indiscernibles is not being satisfied for it in contrast to function (27). Thus, there are no 
any reasons to consider (29) as a distance (or even quasi-distance) function.

Note that the first summand in right-hand side of (29) is just the original GRAS objec-
tive function that has been proposed by Junius and Oosterhaven (2003). It coincides with 
the numerator of first summand in (27) and, hence, cannot be considered as a measure 
of “information distance” from the viewpoint of dimensional analysis.

It is to be emphasized that nonlinear minimization problem (27), (28) is much more 
complicated computationally than the GRAS problem of minimizing the objective func-
tion (29) subject to constraints (28). The problem (27), (28) is likely to deserve a further 
analytical examination, although Lemelin (2009) has proposed to solve it numerically.

In turn, it is easy to see that in homothetic testing with X = kA and Z = keNe
′
M the 

nonnegative objective function (27) reaches its absolute minimum value, since

It means that, from viewpoint of the Kullback–Leibler divergence minimization 
approach, the matrix homothety X = kA can be classified as optimal solution for pro-
portionality case of a general matrix-updating problem. Therefore, the modified GRAS 

(27)

fKL(Z;A
+) =

∑N
n=1

∑M
m=1 |anm|znm ln znm

∑N
n=1

∑M
m=1 |anm|znm

− ln

N
∑

n=1

M
∑

m=1

|anm|znm + ln

N
∑

n=1

M
∑

m=1

|anm|

(28)
M
∑

m=1

anmznm = un, n = 1÷ N ,

N
∑

n=1

anmznm = vm, m = 1÷M.

(29)

f (Z;A+) =

N
∑

n=1

M
∑

m=1

|anm|znm ln
znm

e
=

N
∑

n=1

M
∑

m=1

|anm|znm ln znm −

N
∑

n=1

M
∑

m=1

|anm|znm

fKL(keNe
′
M;A+) =

∑

N

n=1

∑

M

m=1
|anm|k ln k

∑

N

n=1

∑

M

m=1
|anm|k

− ln

N
∑

n=1

M
∑

m=1

|anm|k + ln a
+

= ln k − ln ka
+ + ln a

+ = 0.
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(mGRAS) method based on the minimization problem (27), (28) passes through a 
homothetic test successfully.

10  Numerical examples and concluding remarks
Consider the Eurostat input–output data set given in “Box  14.2: RAS procedure” (see 
Eurostat, 2008, p.  452) for compiling some numerical examples. The 3  ×  4-dimen-
sional initial matrix A combines the entries in intersections of the columns “Agricul-
ture,” “Industry,” “Services,” “Final d.” with the rows “Agriculture,” “Industry,” “Services” 
in “Table 1: Input–output data for year 0.” Note that all the elements of this matrix are 
positive. The row marginal total vector u of dimension 3 × 1 is the proper part of the 
column “Output” in “Table 2: Input–output data for year 1,” and the column marginal 
total vector v′ of dimension 1 × 4 involves the proper entries of the row “Total” in the 
near-mentioned data source.  

Initial matrix A and target marginal totals u, v′ are marked  by italic font in the left 
half and in the right half of Table  1, respectively. The results of handling the data 
from Table  1 by RAS method with iterative processes (4) or (5) and by Kuroda’s 
method (KM) of conditional minimizing the quadratic objective function (7) with 
W1 = W2 = ENM

/

e′NMENMeNM subject to the linear marginal total constraints (9) are 
grouped in Table 2. The next two numerical examples demonstrate the results of apply-
ing the WSD and improved WSD methods as well as WSRD and improved WSRD meth-
ods for updating the available data set at W = ENM

/

e′NMENMeNM (see Tables 3 and 4, 
respectively). The calculated target matrices seem to be close among themselves. 

Table 1 Initial matrix and the target marginal totals, Eurostat (2008), p. 452

Year 0 A uA Year 1 X u

20.00 34.00 10.00 36.00 100.00 19.16 33.38 10.14 32.10 94.78

20.00 152.00 40.00 188.00 400.00 18.32 158.16 41.36 195.02 412.86

10.00 72.00 20.00 98.00 200.00 9.80 76.48 22.08 104.32 212.68

v′
A

50.00 258.00 70.00 322.00 700.00 v′ 47.28 268.02 73.58 331.44 720.32

Table 2 The RAS and KM results for updating the data set from Table 1

RAS X uX = u KM X uX = u

17.94 32.77 9.76 34.31 94.78 18.79 32.20 10.01 33.78 94.78

19.36 158.08 42.12 193.30 412.86 18.91 158.41 42.18 193.35 412.86

9.98 77.17 21.70 103.84 212.68 9.57 77.41 21.38 104.31 212.68

v′
X
= v′ 47.28 268.02 73.58 331.44 720.32 v′

X
= v′ 47.28 268.02 73.58 331.44 720.32

Table 3 The WSD and iWSD results for updating the data set from Table 1

WSD X uX = u iWSD X uX = u

16.10 34.34 8.20 36.15 94.78 17.40 33.68 8.91 34.80 94.78

20.62 156.86 42.72 192.67 412.86 19.25 157.73 41.83 194.05 412.86

10.57 76.82 22.67 102.62 212.68 10.63 76.62 22.85 102.59 212.68

v′
X
= v′ 47.28 268.02 73.58 331.44 720.32 v′

X
= v′ 47.28 268.02 73.58 331.44 720.32
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The following numerical example is assigned to verify a response of WSD and WSRD 
methods to homothetic testing at k = 5 (see Table 5). It is easy to see that the WSD tar-
get matrix does distinct from 5A very significantly, whereas the difference between the 
WSRD target matrix and 5A is noticeably less.

Furthermore, several numerical examples are intended for testing some methods’ 
response to zero entries in the initial matrix. So let us disturb two elements of initial 
matrix A in Table 1, say (1, 3) and (2, 1), by putting it equal to zero for years 0 and 1. 
After recalculation of the marginal totals we get the data set in the left and right halves 
of Table 6. (Initial matrix A and target marginal totals u, v′ are marked by italic font; zero 
entries are underlined.)

The left parts of Tables 7, 8 and 9 contain the target matrices calculated by methods 
that are not based on any multiplicative pattern, namely, WSD and improved WSD as 
well as Kuroda’s method, respectively. It is easy to check that they do not really pre-
serve the same location of zeros in target matrix as in the initial one. In contrast, the 
right parts of Tables 7, 8 and 9 present the results of additional applying the proposed 
procedure of reducing the dimension of solution space in the matrix updating problem 
described in Sect. 8 (with the letters “rd” after an abbreviation of method’s title).

Other several numerical examples are intended to test some methods’ responses to 
negative entries in the initial matrix. So let us disturb two elements of initial matrix A 
in Table 1, say the same elements (1, 3) and (2, 1), by reversing their sign for years 0 and 
1. After proper recalculation of the marginal totals, we obtain the data set presented in 
the left and right halves of Table 10. (Initial matrix A and target marginal totals u, v′ are 
marked by italic font; negative matrix elements are underlined.)

The halves of Tables 11, 12 and 13 contain the target matrices calculated by methods 
that, in contrast to RAS, can be used in presence of negative entries, namely WSD and 
improved WSD methods, WSRD and improved WSRD methods, Kuroda’s method and 
GRAS method, respectively. It is easy to see that they are all quite acceptable at small 
values of relative difference (x − a)

/

a; in particular, for the data set from Table 10.

(x − a)
/

a =
(

e′Nu − e′NuA
)/

e′NuA = (663.4 − 640)
/

640 = 3.7%.

Table 4 The WSRD and iWSRD results for updating the data set from Table 1

WSRD X uX = u iWSRD X uX = u

18.39 32.40 10.00 33.99 94.78 18.35 32.41 10.03 33.99 94.78

19.06 158.84 42.66 192.29 412.86 19.07 158.82 42.60 192.37 412.86

9.83 76.77 20.92 105.16 212.68 9.86 76.79 20.95 105.08 212.68

v′
X
= v′ 47.28 268.02 73.58 331.44 720.32 v′

X
= v′ 47.28 268.02 73.58 331.44 720.32

Table 5 The WSD and WSRD homothetic test results for the data set from Table 1 at k = 5

WSD X �= 5A uX = 5uA WSRD X �= 5A uX = 5uA

− 46.67 244.67 − 30.00 332.00 500.00 127.17 166.38 31.17 175.28 500.00

253.33 662.67 300.00 784.00 2000.00 92.17 775.80 238.68 893.36 2000.00

43.33 382.67 80.00 494.00 1000.00 30.66 347.82 80.15 541.36 1000.00

v′
X
= 5v′

A
250.00 1290.00 350.00 1610.00 3500.00 v′

X
= 5v′

A
250.00 1290.00 350.00 1610.00 3500.00
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Setting the new target marginal totals, say, by doubling them, i.e., at

(x − a)
/

a =
(

2e′Nu − e′NuA
)/

e′NuA = (1326.8− 640)
/

640 = 107.3%,

Table 6 Initial matrix with zero entries and the target marginal totals

Year 0 A uA Year 1 X u

20.00 34.00 0.00 36.00 90.00 19.16 33.38 0.00 32.10 84.64

0.00 152.00 40.00 188.00 380.00 0.00 158.16 41.36 195.02 394.54

10.00 72.00 20.00 98.00 200.00 9.80 76.48 22.08 104.32 212.68

v′
A

30.00 258.00 60.00 322.00 670.00 v′
A

28.96 268.02 63.44 331.44 691.86

Table 7 The WSD and WSDrd results for updating the data set from Table 6

With the same location of underlined matrix elements as in Table 6

WSD X uX = u WSDrd X uX = u

16.49 34.18 − 2.02 35.99 84.64 16.64 33.09 0.00 34.90 84.64

1.47 157.15 42.96 192.96 394.54 0.00 158.16 42.42 193.97 394.54

11.00 76.69 22.50 102.50 212.68 12.32 76.77 21.02 102.57 212.68

v′
X
= v′ 28.96 268.02 63.44 331.44 691.86 v′

X
= v′ 28.96 268.02 63.44 331.44 691.86

Table 8 The iWSD and iWSDrd results for updating the data set from Table 6

With the same location of underlined matrix elements as in Table 6

iWSD X uX = u iWSDrd X uX = u

18.13 33.47 − 1.51 34.55 84.64 17.57 33.00 0.00 34.07 84.64

− 0.39 158.17 42.24 194.53 394.54 0.00 158.37 41.44 194.74 394.54

11.22 76.38 22.72 102.36 212.68 11.39 76.65 22.00 102.64 212.68

v′
X
= v′ 28.96 268.02 63.44 331.44 691.86 v′

X
= v′ 28.96 268.02 63.44 331.44 691.86

Table 9 The KM and KMrd results for updating the data set from Table 6

With the same location of underlined matrix elements as in Table 6

KM X uX = u KMrd X uX = u

19.22 31.98 − 0.15 33.58 84.64 19.23 31.91 0.00 33.51 84.64

0.02 158.62 42.28 193.62 394.54 0.00 158.67 42.20 193.67 394.54

9.72 77.42 21.31 104.23 212.68 9.73 77.45 21.24 104.26 212.68

v′
X
= v′ 28.96 268.02 63.44 331.44 691.86 v′

X
= v′ 28.96 268.02 63.44 331.44 691.86

Table 10 Initial matrix with negative entries and the target marginal totals

Year 0 A uA Year 1 X u

20.00 34.00 − 10.00 36.00 80.00 19.16 33.38 − 10.14 32.10 74.50

− 20.00 152.00 40.00 188.00 360.00 − 18.32 158.16 41.36 195.02 376.22

10.00 72.00 20.00 98.00 200.00 9.80 76.48 22.08 104.32 212.68

v′
A

10.00 258.00 50.00 322.00 640.00 v′
A

10.64 268.02 53.30 331.44 663.40
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Table 11 The WSD and iWSD results for updating the data set from Table 10

With the same location of underlined matrix elements as in Table 10

WSD X uX = u iWSD X uX = u

16.89 34.02 − 12.23 35.82 74.50 18.87 33.28 − 11.96 34.32 74.50

− 17.68 157.45 43.21 193.25 376.22 − 20.05 158.60 42.68 194.99 376.22

11.43 76.56 22.32 102.37 212.68 11.83 76.14 22.58 102.13 212.68

v′
X
= v′ 10.64 268.02 53.30 331.44 663.40 v′

X
= v′ 10.64 268.02 53.30 331.44 663.40

Table 12 The WSRD and iWSRD results for updating the data set from Table 10

With the same location of underlined matrix elements as in Table 10

WSRD X uX = u iWSRD X uX = u

19.74 31.68 − 10.08 33.16 74.50 19.97 31.71 − 10.37 33.20 74.50

− 19.32 159.67 42.52 193.35 376.22 − 19.75 159.64 42.64 193.69 376.22

10.23 76.67 20.86 104.92 212.68 10.42 76.68 21.04 104.55 212.68

v′
X
= v′ 10.64 268.02 53.30 331.44 663.40 v′

X
= v′ 10.64 268.02 53.30 331.44 663.40

Table 13 The KM and GRAS results for updating the data set from Table 10

With the same location of underlined matrix elements as in Table 10

KM X uX = u GRAS X uX = u

21.23 31.13 − 10.58 32.72 74.50 19.01 32.22 − 10.46 33.72 74.50

− 21.26 159.83 42.58 195.06 376.22 − 19.08 158.88 42.19 194.23 376.22

10.67 77.06 21.30 103.65 212.68 10.71 76.92 21.56 103.48 212.68

v′
X
= v′ 10.64 268.02 53.30 331.44 663.40 v′

X
= v′ 10.64 268.02 53.30 331.44 663.40

we obtain new target matrices calculated by the same methods; they are located in 
Tables 14, 15 and 16. It is to be emphasized that only the iWSD, iWSRD methods and 
Kuroda’s method show acceptable results here, whereas the WSD, WSRD and GRAS 
methods are not good at all. Recall that exactly these methods do not satisfy a homo-
thetic test proposed (see Sects. 5, 7 and 9, respectively).

The next numerical example is assigned to verify a response of GRAS method to 
homothetic testing at k = 2 and k = 10 (see Table 17). It is easy to see that the GRAS 
target matrices do differ from 2A and 10A very significantly. For instance, 2a13 = −20 
and 2a21 = −40 whereas x13 = −5.62 and x21 = −16.86. In turn, at k =  10 we have 
10a13 = −100 and 10a21 = −200, whereas x13 = −1.14 and x21 = −6.13. Moreover, 

Table 14 The WSD and iWSD results for the doubled marginal totals from Table 10

With the same location of underlined matrix elements as in Table 10

WSD X uX = 2u iWSD X uX = 2u

− 16.22 86.70 − 31.12 109.64 149.00 37.73 66.55 − 23.92 68.64 149.00

24.64 285.56 99.74 342.50 752.44 − 40.11 317.21 85.36 389.98 752.44

12.87 163.79 37.97 210.73 425.36 23.66 152.28 45.17 204.26 425.36

v′
X
= 2v′ 21.28 536.04 106.60 662.88 1326.80 v′

X
= 2v′ 21.28 536.04 106.60 662.88 1326.80
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there are some other large distinctions between the matrix elements in the columns 
where the negative entries are located, namely, columns 1 and 3.

As a conclusion, it is to be emphasized that a homothetic paradigm expresses the 
important and helpful property of any matrix updating method. Moreover, positive 
response to homothetic testing serves as an additional evidence of plausibility and cor-
rectness of the matrix updating method tested.

Homothetic paradigm leans on a common notion of orthogonal projecting that is 
likely to be the most powerful concept in econometrics. It has an obvious logical inter-
pretation, corresponds to famous principle of insufficient reason and remains opera-
tional in a row of practical situations.

If a method of matrix updating emanates from some distance minimization problem, 
it can be fully adapted to homothetic testing (see Sect.  6). If at the same time a zero 
preservation property is assumed desirable, the method must be slightly redeveloped to 
provide its observance, with a concomitant reducing the dimensionalities of underlying 
minimization problem without its reformulation (see Sect. 8).

In this article, we have considered four methods of matrix updating that can be used 
for handling the matrices with some negative entries, namely, Kuroda’s, iWSD, iWSRD 
and GRAS (including mGRAS) methods. A critical analysis of the GRAS methodology is 
given in Sect. 9 (see also Tables 16 and 17).

Table 15 The WSRD and iWSRD results for the doubled marginal totals from Table 10

With the same location of underlined matrix elements as in Table 10

WSRD X uX = 2u iWSRD X uX = 2u

28.39 61.93 − 5.86 64.54 149.00 39.94 63.41 − 20.75 66.40 149.00

− 18.35 320.93 79.30 370.57 752.44 − 39.49 319.27 85.28 387.38 752.44

11.25 153.18 33.16 227.78 425.36 20.83 153.35 42.07 209.10 425.36

v′
X
= 2v′ 21.28 536.04 106.60 662.88 1326.80 v′

X
= 2v′ 21.28 536.04 106.60 662.88 1326.80

Table 16 The KM and GRAS results for the doubled marginal totals from Table 10

With the same location of underlined matrix elements as in Table 10

KM X uX = 2u GRAS X uX = 2u

42.46 62.26 − 21.17 65.45 149.00 23.37 64.32 − 5.94 67.25 149.00

− 42.51 319.66 85.17 390.13 752.44 − 15.73 312.83 73.26 382.07 752.44

21.33 154.12 42.60 207.31 425.36 13.63 158.89 39.28 213.56 425.36

v′
X
= 2v′ 21.28 536.04 106.60 662.88 1326.80 v′

X
= 2v′ 21.28 536.04 106.60 662.88 1326.80

Table 17 The GRAS homothetic test results for the data set from Table 10 at k = 2 and 10

With the same location of underlined matrix elements as in Table 10

GRAS X �= 2A uX = 2uA GRAS X �= 10A uX = 10uA

24.38 68.63 − 5.62 72.61 160.00 70.57 354.96 − 1.14 375.61 800.00

− 16.86 298.60 69.22 369.04 720.00 − 6.13 1467.62 324.41 1814.09 3600.00

12.48 148.77 36.40 202.34 400.00 35.56 757.42 176.73 1030.30 2000.00

v′
X
= 2v′

A
20.00 516.00 100.00 644.00 1280.00 v′

X
= 10v′

A
100.00 2580.00 500.00 3220.00 6400.00
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It is obvious that, because of its additive nature, the iWSD method does not work 
rather good if the initial matrix has some very small entries together with some very 
large ones (a practically important case!). The final numerical examples are intended to 
test a response of the above-mentioned methods to appearance of a small entry in the 
initial matrix. So let us disturb one element of initial matrix A in Table  10, say entry 
(3, 4), by multiplying its value by  10−4 for years 0 and 1. After proper recalculation of the 
marginal totals, we obtain the data set presented in the left and right halves of Table 18. 
(Initial matrix A and target marginal totals u, v′ are marked by italic font; the small ele-
ments (3, 4) are underlined.)

The results of handling the data from Table 18 by iWSD, Kuroda’s and iWSRD meth-
ods are presented in Tables 19, 20 and 21 where the elements of matrices Q are deter-
mined by formula (16).

As it was expected, the iWSD method has unjustifiably reversed the sign of a34 in 
target element x34 and has increased the initial absolute value in more than 80 times 
although x/a = e′Nu

/

e′NuA is just equal to 559.09
/

542.01 = 1.03 (see Table 19). In this 
situation Kuroda’s method appears to work somewhat better without sign reversing and 
with increasing the initial value in more than only 10 times (see Table 20). And finally, 
the iWSRD method seems to be most preferable in this example demonstrating the scat-
tering in Q’s elements from 0.92 to 1.07 (see Table 21).

Table 18 Initial matrix with one small entry and the target marginal totals

Year 0 A uA Year 1 X u

20.00 34.00 − 10.00 36.00 80.00 19.16 33.38 − 10.14 32.10 74.50

− 20.00 152.00 40.00 188.00 360.00 − 18.32 158.16 41.36 195.02 376.22

10.00 72.00 20.00 0.01 102.01 9.80 76.48 22.08 0.01 108.37

v′
A

10.00 258.00 50.00 224.01 542.01 v′ 10.64 268.02 53.30 227.13 559.09

Table 19 The iWSD results for updating the data set from Table 18

With the same location of underlined matrix elements as in Table 18

iWSD X uX = u iWSD Q û−1
A

uX

18.94 33.56 − 11.75 33.75 74.50 0.95 0.99 1.18 0.94 0.93

− 19.64 158.74 42.95 194.17 376.22 0.98 1.04 1.07 1.03 1.05

11.34 75.71 22.11 − 0.79 108.37 1.13 1.05 1.11 − 80.45 1.06

v′
X
= v′ 10.64 268.02 53.30 227.13 559.09 v′

X
v̂
−1

A
1.06 1.04 1.07 1.01 1.03

Table 20 The KM results for updating the data set from Table 18

With the same location of underlined matrix elements as in Table 18

KM X uX = u KM Q û−1
A

uX

21.23 30.99 − 10.61 32.90 74.50 1.06 0.91 1.06 0.91 0.93

− 21.25 160.68 42.67 194.12 376.22 1.06 1.06 1.07 1.03 1.05

10.66 76.35 21.25 0.11 108.37 1.07 1.06 1.06 10.82 1.06

v′
X
= v′ 10.64 268.02 53.30 227.13 559.09 v′

X
v̂
−1

A
1.06 1.04 1.07 1.01 1.03
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Thus, one can assert that improved WSRD method has some advantage among the 
other methods of matrix updating in practically important situations when the initial 
matrix has some very small entries and some very large ones simultaneously (because of 
multiplicative nature of iWSRD objective function).

Notice that the minimization problems associated with Kuroda’s and iWSRD methods 
have almost the same computational complexity. It can be shown that for their solving 
it is necessary to calculate the inverse of the symmetric matrix of order min{N, M} − 1 
with the diagonal blocks on its main diagonal.

Abbreviations
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improved WSD method; WSRD method: method of weighted squared relative differences; WSRDrd: WSRD method 
with a solution space of reduced dimension; iWSRD method: improved WSRD method; GRAS method: generalized RAS 
method; mGRAS method: modified GRAS method.
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