ECOMNZTOR

Make Your Publications Visible.

Motorin, Vladimir

Article

A Service of
Leibniz-Informationszentrum

.j B w Wirtschaft

| 1.

Leibniz Information Centre
for Economics

Enhancing the distance minimization methods of
matrix updating within a homothetic paradigm

Journal of Economic Structures

Provided in Cooperation with:

Pan-Pacific Association of Input-Output Studies (PAPAIOS)

Suggested Citation: Motorin, Vladimir (2017) : Enhancing the distance minimization methods
of matrix updating within a homothetic paradigm, Journal of Economic Structures, ISSN
2193-2409, Springer, Heidelberg, Vol. 6, Iss. 36, pp. 1-22,

https://doi.org/10.1186/s40008-017-0094-7

This Version is available at:
https://hdl.handle.net/10419/194902

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dirfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie durfen die Dokumente nicht fur 6ffentliche oder kommerzielle
Zwecke vervielfaltigen, 6ffentlich ausstellen, éffentlich zuganglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfigung gestellt haben sollten,

gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewahrten Nutzungsrechte.

https://creativecommons.org/licenses/by/4.0/
WWW.ECOMSTOR.EU

Terms of use:

Documents in EconStor may be saved and copied for your
personal and scholarly purposes.

You are not to copy documents for public or commercial
purposes, to exhibit the documents publicly, to make them
publicly available on the internet, or to distribute or otherwise
use the documents in public.

If the documents have been made available under an Open
Content Licence (especially Creative Commons Licences), you
may exercise further usage rights as specified in the indicated
licence.

Mitglied der

Leibniz-Gemeinschaft ;


https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1186/s40008-017-0094-7%0A
https://hdl.handle.net/10419/194902
https://creativecommons.org/licenses/by/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Motorin Economic Structures (2017) 6:36

D1 10.1160/40008.017.0004.7 ® Journal of Economic Structures

RESEARCH Open Access
@ CrossMark

Enhancing the distance minimization
methods of matrix updating within a
homothetic paradigm

Vladimir Motorin®

*Correspondence:

motoriny@gmail.com; Abstract

vmotorin@hse.ru Matrix updating methods are used for constructing the target matrix with the pre-
Laboratory for Research ibed d col inal ls that d he high ible | |
in Inflation and Growth, scribed row and column marginal totals that demonstrates the highest possible leve
Expert Institute, National of its structural similarity to initial matrix given. A concept of structural similarity has
Research University Higher a vague framework that can be slightly refined under considering a particular case of

School of Economics,

Moscow, Russian Federation strict proportionality between row and column marginal totals for target and initial

matrices. Here the question arises: can we accept the initial matrix homothety as
optimal solution for proportionality case of matrix-updating problem? In most practi-
cal situations, an affirmative answer to the question is almost obvious. It is natural to
call this common notion by homothetic paradigm and to refer its checking as homo-
thetic testing. Some well-known methods for matrix updating serve as an additional
instrumental confirmation to validity of homothetic paradigm. It is shown that RAS
method and Kuroda's method pass through the homothetic test successfully. Homo-
thetic paradigm can be helpful for enhancing a collection of matrix updating methods
based on constrained minimization of the distance functions. Main attention is paid to
improving the methods with weighted squared differences (both regular and relative)
as an objective function. As an instance of a incorrigible failure in the homothetic test-
ing, the GRAS method for updating the economic matrices with some negative entries
is analyzed in details. A collection of illustrative numerical examples and some recom-
mendations for method'’s choice are given.

Keywords: Matrix updating methods, Homothetic paradigm and testing, RAS
and Kuroda's methods, Kullback-Leibler divergence, Methods of weighted squared
differences, GRAS method

JEL Classification: C61, C67

1 Anintroduction to the matrix-updating problems

A general problem of updating rectangular (or square) matrix can be formulated as fol-
lows. Let A be an initial matrix of dimension N x M with row and column marginal
totals up = Aeyy, vg = e}\[A where ey and ejr are N x 1 and M x 1 summation column
vectors with unit elements. Further, let u # uj and v # vy be exogenous column vectors
of dimension N x 1 and M x 1, respectively. The problem is to estimate a target matrix
X of dimension N x M at the highest possible level of its structural similarity (or resem-
blance, likeness, closeness, etc.) to initial matrix A subject to N + M equality constraints
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Xeyy =u, eyX=v, 1)
and under the consistency condition
/ /
eyu = eyv. (2)

It is assumed that initial matrix A does not include any zero rows or zero columns,
does not have less than N + M nonzero elements, does not include any rows or col-
umns with a unique nonzero element, and does not contain any pairs of rows and col-
umns with four nonzero elements in the intersections. Otherwise, it is advisable to clean
matrix A from those undesirable features before applying any matrix updating method
in practice.

Clearly, the system of equations (1) is dependent at consistency condition (2) that pro-
vides an existence of target matrix X. However, it is easy to show that any N+ M — 1
among N + M constraints (1) are mutually independent. Furthermore, it is evident that
any feasible solution of matrix-updating problem X can be simply transformed into
another one by letting, e.g.,

new new . new __ new __
Kpm = Xnm + € Xyi" =Xnj — € Ky = Xim — & X =Xj+ €

where ¢ is an arbitrary scalar, or

new new
Xym = Xnm + & xnj

G = te)2, wp =xi+e/2,

new

new .
:x,,j—s/2, Xk ank—8/2, Xip = Xim — &,

and so on.

Thus, general problem of matrix updating with a great variety of feasible solutions sig-
nificantly depends on a definition of the measure for structural similarity between initial
and target matrices. Various definitions of this measure generate a great manifold of dif-
ferent methods and techniques for matrix updating. A quite common approach to define
the similarity measure is to use some objective distance function f (X — A) to be mini-
mized subject to linear constraints (1) under the consistency condition (2). The main
purpose of the article is to enhance the methods of this kind by defining and applying a
new algebraic concept named homothetic paradigm.

2 A homothetic paradigm for the matrix updating methods

A notion of structural similarity between initial and target matrices has a vague frame-
work that can be slightly refined in an axiomatic manner. In this context, let us con-
sider a particular case of strict proportionality between row and column marginal totals
u = kup and v = kv for target and initial matrices with the same scalar factor k. Here
the main question arises: can we accept the matrix homothety X = kA as optimal solu-
tion for proportionality case of a general matrix-updating problem? At first sight this
solution can be appreciated as rather logical and corresponding to famous principle of
insufficient reason (also known in decision theory as Laplace criterion) because there
is no way to explain convincingly that X must not be equal to kKA. Moreover, it allows
preserving in X the same location of zeros as in the initial matrix. However, it is to be
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emphasized that the above question indeed seems neither simple nor evident, and its
proposition cannot be proved formally.

Nevertheless, in most practical situations an affirmative answer to this question is
almost obvious. In particular, as it is shown below, the well-known and widely used RAS
and Kuroda’s methods for matrix updating serve as an additional instrumental confirma-
tion to such an answer. In this connection, we will call this rather common notion by
homothetic paradigm and will refer examining the property “if u = kus and v = kvj
then X = kA” as a homothetic test for the matrix updating methods. It is advisable to
propose that a successful passing through homothetic test were to be appreciated as a
positive feature of any matrix updating method.

3 Homothetic testing of RAS method
The key idea of the RAS method is triple factorization of target matrix

X = RAS = (r)A(s) = fAS (3)

where r and s are unknown N x 1 and M x 1 column vectors. Here angled bracketing
around vector’s symbol or putting a “hat” over it denotes a diagonal matrix, with the vec-
tor on its main diagonal and zeros elsewhere (see Miller and Blair 2009, p. 697).

Putting (3) into (1), we have the system of nonlinear equations

fASey =TAS = (As)r=u, ey fAS=rAs=s(Ar)=V.

Proper transformations of this system lead to the following pair of iterative processes:

-1\ -1
I = <A<A/r(,‘_1)> V> u i=1=+1I; sg= <A’r(1)> V; (4)
-1\t -1
s() = <A’<As(j_1)> u> v, j=1=]; rg)= <As(])> u (5)
where i and j are iteration numbers, and the character “+” between the lower and upper

bounds of index’s changing range means that the index sequentially runs all integer val-
ues in the specified range.

As concerning a homothetic test for RAS method at u = kup and v = kvy, it can be
easily shown that under starting condition r() = en or s(9) = ey the RAS method iter-
ative process (4) or (5) demonstrates one-step convergence to pair of vectors r = ey,
s = key or to r = key, s = ey, respectively. Hence, RAS algorithm’s implementation
gives rys;; =k foranynand m,n =1+ N, m = 1 + M, from which X =rs’ 0 A = kA
where the character “” denotes Hadamard’s (element-wise) product of two matrices of
the same dimension. Besides, it is easy to see that replacing the initial matrix A with its
homothety kA leaves the RAS method iterations (4) and (5) invariant. Thus, the RAS
method passes through a homothetic test successfully.

For another formal proof of this fact, notice that the RAS method can be associated
with a conditional minimization of nonnegative function called the Kullback-Leibler
divergence (see Kullback and Leibler 1951; Kullback 1959) that is used for comparing
“true” and “test” probability distributions. This function is sometimes called “infor-
mation gain,” albeit it measures an information loss from using a “test” distribution to
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approximate a “true” distribution. The Kullback-Leibler divergence actually expresses
the difference between the cross-entropy of two distributions (namely, in order “true”-
“test”) and the entropy of “true” distribution.

Let the “true” distribution be X/x, and let the “test” one be A/a, where a = e};Ae;; and
x = e\ Xey = eju = e, v. (So all elements of X and A are implied to be nonnegative.)
In these denotations the Kullback—Leibler divergence can be written as

N M
fiaX/xAfa) =33 P (axm) = JROGA) +in (6)

x xa
n=1m=1 nm

where fx7(X; A) is corresponding Kullback—Leibler function for nonnormalized data.
Note that values of fxz (X / x; A / a) are dimensionless quantities, whereas fxz (X; A) has
dimension of x (or of X’s and A’s entries).

The function fxz (X; A) for nonnormalized data often serves as an objective function
in mathematical programming formulation of the RAS method instead of function (6),
e.g., in Appendix 7.1 “RAS as a Solution to the Constrained Minimum Information Dis-
tance Problem” to Miller and Blair (2009). It becomes possible due to the linear depend-
ency (6) between fKL(X/ x; A/ a) and fxr(X; A) with fixed and known coefficients,
so that a minimum of both functions is achieved at the same point. Nevertheless, the
Kullback-Leibler function for nonnormalized data cannot be classified as “information
distance” at least from the viewpoint of dimensional analysis. (To be fully fair, the Kull-
back-Leibler divergence (6) is not a distance function really because the symmetry and
subadditivity (triangle inequality) conditions do not hold for it.)

Consider the conditional minimization problem with objective function (6) for
normalized data and linear constraints (1) under the consistency requirement
eyu =e)v=e\Xey =ux

The first partial derivatives of Lagrangian function for this problem with respect to x,,,
are

dLkr 1

ox :;(lnx”m'f'l—lnﬂnm)_An_ﬂmzoy n=1+Nm=1+M,
nm

from which it is easy to obtain the RAS triple factorization of target matrix (3) as follows:

Ky = anmex(ﬂ.n+um)—1 — ex).n—l/Zdnmexum—l/Z = FulumSm

where A and p are the column vectors of Lagrange multipliers with dimensions N x 1
and M x 1, respectively, and e is the base of natural logarithms.

Thus, the RAS method’s logical emanation from the Kullback-Leibler divergence min-
imization approach is proved.

Finally, it is easy to see that in homothetic testing with X = kA the nonnegative func-

tion (6) for normalized data reaches its global (or absolute) minimum value, since

N M ka a ka ka
fKL(kA/ka;A/a):ZZ nmln( "m)zln(l):O,

ka ka a,m, ka
n=1m=1
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although function fxz(X; A) for nonnormalized data does not allow to consider the
matrices X = kA and A as indiscernibles, namely

N M ka
S kA; A) =Y > kayyIn ( s > = ka - In (k) # 0.

n=1m=1

It means that, from viewpoint of the Kullback-Leibler divergence minimization
approach together with the RAS method, the matrix homothety X = kA can be consid-
ered as optimal solution for proportionality case of a general matrix-updating problem.

4 Homothetic testing of Kuroda’s method
Kuroda (1988) proposed an original method for matrix updating that comes to con-
strained minimization of the twofold-weighted quadratic objective function

1 N M x a 2 9 N M X 4 9
Fe0 A = D3 i () LS S g ()
2 Uy u) 2 Vin yA
n=1m=1 n=1m=1
which can be rewritten in matrix form as
1, 1,
ﬁ((xu; xv) = EXUW1Xu —+ Ewizxv (7)

where W1 and W are the nonsingular diagonal matrices of order NM with the relative
reliability or relative confidence factors (weights). Here the NM-dimensional column
vectors Xy and Xy are defined through applying the vectorization operator “vec;,” which
transforms a matrix into a vector by stacking the columns of the matrix one underneath
the other (see, e.g., Magnus and Neudecker 2007), as follows:

Xu = vec (fle — ﬁ;lA) =Ux —Ujsa, xy= V@C(X\Aﬁ1 — A\AIKI) = Vx — Vaa,
where

a=vecA, Uy=Ey®i,', Va=V,'®Ex

x=vecX, U=Ey®u!, V=v1QEy,

E, is an identity matrix of order M, and the character “®” denotes the Kronecker prod-
uct of two matrices.

Within a homothetic test for Kuroda’s method, the row and column marginal totals for
target matrix are u = kup and v = kvy, hence

1 1
xuzUx—UAazUA(/x—a>, xV=Vx—VAa=VA(/x—a>.
k k

Therefore, at x = ka the vectors x, and Xy vanish both, and the quadratic function (7)
reaches its global minimum value equal to zero. It means that from viewpoint of Kuro-
da’s method, the matrix homothety X = kA provides the optimal solution for a general
problem of matrix updating in a case of strict proportionality between row and column
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marginal totals for target and initial matrices. Thus, Kuroda’s method passes through a
homothetic test successfully as well as RAS method.

5 Homothetic test’s failure: the method of weighted squared differences
(WSD)
A quite common approach to define a measure of the structural similarity between ini-
tial and target matrices is to use some matrix norm for the difference X — A to be min-
imized subject to linear constraints (1) under the consistency condition (one can find
the proper reviews, e.g., in Miller and Blair 2009; Temurshoev et al. 2011), so that the
optimal solution can be represented as X* = arg minx || X — A|, or in equivalent vector
form as x* = arg miny |x — a|wherea = vec A and x = vecX, as earlier.
For instance, the choice of Frobenius matrix norm (and compatible Euclidean vector
norm) leads to the constrained minimization of weighted quadratic objective function

N M

Suwsp () =D W @nm — anm)® = (x —2) W(x — a) ®)

n=1m=1

where W is a nonsingular diagonal matrix of order NM with the relative reliability or
relative confidence coefficients. (Usually the elements of matrix W is assumed to be nor-
malized by multiplying it on a proper factor, i.e., €y;, Wenxy = 1.) To complete a for-
mulation of the constrained minimization problem for the WSD method, one needs
to rewrite left-hand sides of the constraints (1) in vector denotations. Introducing the
N x NM matrix G = €); ® En, which consists of M identity matrix Ey located horizon-
tally, and the M x NM matrix H = Eyr ® e}, which is N-fold successive replication of
each column from identity matrix Eps, we have

Xey =Gx=u, Xey=Hx=v. 9)

Notice that each column of G and H includes exactly one nonzero (unit) element such
thate),G = e, H = e},.

The Lagrangian function for problem of minimizing the objective function (8) subject
to linear constraints (9) is just

Lwsp(X, b ) = (x —a)W(x —a) — M (Gx —u) — p/(Hx —v)

where A and p are the column vectors of Lagrange multipliers, as earlier. Taking the first
partial derivatives of this function with respect to x, A and p gives

2W(x —a) —GA—H®R =05y, Gx—u=0yn, Hx—v=0,.

Expressing x from first equation of this system, we obtain the problem solution as a
function of Lagrange multipliers, namely

1
X=a+ 5W—1 (GL+Hp). (10)

Inserting (10) into the second and third equations leads to the following system of
equations with A and p as unknowns:
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GWlG'L+ GW 'H'n = 2(u — Ga),
HW 'G'A + HW 'H'pn = 2(v — Ha)

where Ga = ua and Ha = va.

Note that the main matrix of the system (11) is symmetric. Moreover, it is easy to see
that GW ~'G'ey — GW 'H'ey; = Oy and HW 1G’exy — HW 'H’ey; = 0y because of
G'exy = H'eyr = enyy, ie., the matrix of the system (11) has the linearly dependent col-
umns and so is singular. Thus, the general solution to corresponding homogeneous sys-
tem (11) is AQ = cen, n© = —ceys with any scalar constant c.

Since a general solution to nonhomogeneous linear system equals the sum of a general
solution to corresponding homogeneous system and any particular solution to nonho-
mogeneous system, let A = 2O A and p = n @ 4+ w®, where the pair A0, D s a
particular solution to system (11). Putting these formulas into round-bracketed expres-
sion in the right-hand side of (10) gives

Gr+Hp=G (ceN + k(l)) + H/(—ceM + u(l))

= cexyr — cenyr + GAY + Hp® = GAD + HpW,

i.e., the optimal solution of minimization problem (8), (9) depends only on a particular
solution to nonhomogeneous system (11).

As noted above, any N + M — 1 among N + M constraints (9) are mutually independ-
ent while e\, u = €},v. Therefore, the Lagrange multipliers % and p can be determined
from reduced system of linear equations (11) with any one of them eliminated (of course,
with setting a corresponding multiplier equal to zero).

For homothetic testing the WSD method, suppose that x = ka. Inserting this
homothety into the solution (10) leads to the condition

GL+Hp=2k—-1)Wa (12)

which is not met at N + M > 3 because it actually represents a generally inconsistent
system of NM linear equations with N + M — 1 < NM unknown Lagrange multipliers.
(Recall that one of them equals zero.) Hence, the vector x = ka cannot be an optimal
solution of minimization problem (8), (9) at u = kup and v = kva.

Thus, WSD method does not pass through a homothetic test in contrast to RAS and
Kuroda’s method.

6 Applying homothetic paradigm for improving the WSD method
Acceptance of the matrix X = kA as optimal solution for proportionality case of a gen-
eral matrix updating problem leads to establishing the fact that all matrices from homo-
thetic family kKA demonstrate an excellent structural similarity between each other. The
homothetic paradigm can be helpful for enhancing a collection of matrix updating meth-
ods based on constrained minimization of the distance (or quasi-distance) functions.
Within homothetic paradigm, we can set a goal to dispose the target matrix as close
as possible not to initial matrix A, but to its homothetic family kKA. As a result, the opti-

mal solution becomes (X*, k*) = arg miny ||X — kAl|, or in equivalent vector form
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«

(x*, k*) = arg miny 4 |x — ka ‘worse” (in terms of the cer-

, and, clearly, it cannot be
tain matrix/vector norm chosen) than the original one.
As it is shown below, transition from |x — a | to ’ x — ka ‘ leads to an idea of orthogonal
projecting an unknown target vector x onto the homothetic ray ka in NM-dimensional
vector space with a scalar product operation.
In the case of WSD method, the improved version of weighted quadratic objective
function (8) can be written as

N M
Sowsp L) =Y W @nm — lanm)® = (x — 1a) W (x — a) (13)

n=1 m=1

where [ is an additional scalar variable.
The Lagrangian function for problem of minimizing the objective function (13) subject
to linear constraints (9) becomes

Liwsp (%, L, n) = (x —la) W(x — la) — 1/ (Gx —u) — p (Hx — v)

where, as earlier, A and p are the column vectors of Lagrange multipliers. Taking the first
partial derivatives of this function with respect to vector x and scalar / gives the follow-
ing system of NM + 1 equations:

2W(x —la) — GL—H'pn =05y, aW(ix—Ila)=0

where the second equation is being interpreted as an orthogonality condition for vectors
x —laand a.

Expressing x from first equation of this system, we obtain the solution of problem (13),
(9) as a function of Lagrange multipliers, namely

1
x=la+ EW—l (GA+Hp). (14)

Inserting (14) into second equation of above system and into the pair of constraint
equations (9) leads to the following system of 1 + N + M equations with scalar / and
vectors A, i as unknown variables:

aG'L+a'Hp =0,
21Ga+ GW 'G'A + GW 'H'p = 2u, (15)
2/Ha + HW !G'A + HW 'H'n = 2v

where Ga = up and Ha = v,. Since any N + M — 1 among N + M constraints (9) are
mutually independent while e, u = €},v, the scalar / and Lagrange multipliers X, p can
be determined from reduced system of linear equations (15) with any one of them elimi-
nated (except the first equation) with setting a corresponding multiplier equal to zero.

Putting the improved WSD method to homothetic test, suppose that x = ka. Inserting
this formula into the orthogonality condition gives (k — [)a"Wa = 0 from which /* = k.
In turn, substituting the homothety into (14) leads to the homogeneous system

G\ + H/lk = Onwmr
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that obviously has the solution A* = cey, p* = —cey; where c is an arbitrary scalar (see
Sect. 5). Further, at u = kug, v = kva and [* = k the linear equations (15) are also being
transformed to the homogeneous system

a'(G'h+Hp) =0,
GW (G'h+H'p) =0y,
HW ' (G'A+Hp) =0

with the same simple solution. Therefore, the vectors x* = ka, A* = cen, p* = —cey
bring the optimal solution to the problem of minimizing the objective function (13) sub-
ject to linear constraints (9) at u = kup and v = kva.

Thus, the improved WSD method passes through a homothetic test successfully as
well as RAS and Kuroda’s method (and in contrast to WSD method).

7 Analyzing and improving the method of weighted squared relative
differences (WSRD)

To make the minimization problems (8), (9) and (13), (9) independent on scale of initial

data, it is expedient to let

X = aq (16)

where q is NM-dimensional column vector of unknown relative coefficients, and then to
introduce into consideration the relative distance functions, namely | q — exp | instead
of | x —a| for WSD method and | q — kenym ‘ instead of | x — ka ‘ for improved WSD
, as it is shown below, leads

method. Here the transition from | q — enys | to } q — keny
to an idea of orthogonal projecting an unknown target vector q onto the homothetic
ray kenpyr in NM-dimensional vector space with a scalar product operation. Notice that
Eq. (16) cannot be resolved with respect to q if the initial matrix A contains at least one

zero entry.
In transition from WSD to WSRD method, the quadratic objective function (8)
becomes
N M
fowsrp (@ exat) =Y > W (Gum — eam)” = (@ — enm) W (q — enr) (17)
n=1m=1

whereas the improved objective function (13) is being transformed to

N M
Siwsep (q, 15 eny) = Z Z Wy (@um — lenm)2 =(q— leNM)/W(q — lenm), (18)

n=1m=1

and, finally, inserting (16) into the linear constraints (9) leads to the following modified
constraints:

Gx =Gaq=u, Hx=Haq=v. (19)

The objective function (17) was first proposed by Harthoorn and van Dalen (1987)
with the relative confidence coefficients matrix factorized as W = aw~1a where w is
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exogenous vector of reciprocal weights for the elements of initial vector a. The Lagran-
gian function for problem of minimizing the objective function (17) subject to linear
constraints (19) is just

Lwsep(q; b ) = (q — exyr) ' W(q — enxar) — 1 (Gaq — u) — p/(Haq — v),

where A and p are the column vectors of Lagrange multipliers, as earlier.
By analogy with derivation of (10) and (11) in Sect. 5, we obtain

1 R
q=enxm + EW_la(G’)\. + H/IL) (20)
and

Gaw laG'L + GaWw laH'p = 2(u — Ga),
Haw 'aG'A + HaW 'aH'p = 2(v — Ha) @)
where, as earlier, Ga = ua and Ha = v,. It is easy to see that the system of linear equa-
tions (21) is a degenerate one, resembling (11), and its corresponding homogeneous sys-
tem also has the general solution L9 = cey, B(¥ = —cey; with any scalar constant c.
Since any N + M — 1 among N + M constraints (19) are mutually independent while
ejyu = e}V, the Lagrange multipliers A and p can be determined from reduced system
of linear equations (21) with any one of them eliminated with setting a corresponding
multiplier equal to zero.

For homothetic testing the WSRD method, suppose that q = kenps. Inserting this
homothety into the solution (20) leads to the condition (compare with condition (12) in
Sect. 5)

Q(G/l + H/M) =2k — D)Wenum

which is not met at N + M > 3 because it actually represents a generally inconsistent
system of NM linear equations with N + M — 1 < NM unknown Lagrange multipliers.
(One of them equals zero because the matrix of system (21) has nonfull rank.) Hence,
the vector q = kexnps cannot be an optimal solution of minimization problem (17), (19)
at u = kuy and v = kva. Thus, WSRD method does not pass through a homothetic test
as well as WSD method.

The objective function (18) demonstrates a result of applying a homothetic paradigm
to the objective function of WSRD method (17). The Lagrangian function for problem of
minimizing the improved objective function (18) subject to linear constraints (19) is just

Liwsep(q,1; L, m) = (q — lexar)'W(q — lenyr) — 2 (Gaq — u) — ' (Haq — v),

where A and p are the column vectors of Lagrange multipliers, and / is an additional sca-
lar variable.

Taking the first partial derivatives of this function with respect to vector q and scalar /
gives the following system of NM + 1 equations:

2W(q — lexy) —aG'A —aH'pw = Onp, €3 W (q — leaar) =0
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where the second equation of the system expresses an orthogonality condition for vec-
tors q — lenas and enag.
By analogy with derivation of (14) and (15) in Sect. 6, we obtain

1 A /
q=leny + iw_la(G’k +H'p) (22)

and

aG'L+a'Hp =0,
2lGa + GaW 'aG') + Gaw 'aH'p = 2u, (23)
2[Ha + HAW 'aG'A + HAW 'aH'p = 2v

where Ga = up and Ha = v,4. Since any N + M — 1 among N + M constraints (19) are
mutually independent while e, u = €,v, the scalar / and Lagrange multipliers X, pu can
be determined from reduced system of linear equations (23) with any one (except the
first one) of them eliminated with setting a corresponding multiplier equal to zero.

Putting the improved WSRD method to homothetic test, suppose that q = keyys.
Inserting this formula into the orthogonality condition gives (k — ) e};,, Weny = 0
from which /* = k. In turn, substituting the homothety into (22) leads to the homogene-
ous system

a(G'h+H'pn) = 0ny

that obviously has the solution A* = cen, W* = —ceys where c is an arbitrary scalar (see
Sect. 6). Further, at u = kug, v = kva and [* = k the linear equations (23) are also being
transformed to the homogeneous system

a'(Gh+a'Hp) =0
Gaw 'a(G'h + H'p) = 0y
HaW 'a(G'A + H'p) = 0y

with the same simple solution. Therefore, the vectors q* = kenp, M = cen, B* = —cey
bring the optimal solution to the problem of minimizing the objective function (18) sub-
ject to linear constraints (19) at u = kua and v = kva.

Thus, the improved WSRD method passes through a homothetic test successfully as
well as improved WSD method (and in contrast to WSRD method).

8 Handling the zero entries in the distance minimization methods of matrix
updating

In practice, an initial matrix often contains some zero elements. In this context, all
matrix updating methods can be divided into two groups: those that do preserve the
same location of zeros in target matrix as in the initial one, and those that do not. For
example, RAS method should be assigned to the first group because of its multiplica-
tive pattern (3), whereas Kuroda’s method belongs to the second group because it does
not include any mechanisms for fitting the proper elements of target matrix to required
zero level. Analogically, the regular and improved WSRD are methods of the first group
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because they are based on multiplicative pattern (16) in contradistinction to the WSD
method both regular and improved.

If a zero preservation property is assumed desirable, the WSD methods can be slightly
redeveloped to provide it by reducing the dimensionalities of minimization problems
(8), (9) and (13), (9). Let J < NM be a number of nonzero elements in the initial matrix A
(and in NM-dimensional vector a). While the zero preservation principle “if z; = 0 then
x; = 0 for any ;” is being applied, the target vector x does really contain only / unknown
variables because the other NAM—/ variables should be setting to zero values. Hence, it is
advisable to reduce the operational dimensions of initial and target vectors from NM x 1
toJ x 1 by eliminating NM—J zero components.

Let Ej«na be a rectangular matrix with dimensions J x NM that is obtained from an
identity matrix of order NM by deleting the rows corresponding to zero entries in the
initial vector. Then the initial and target vectors can be redefined as ajx1 = Ejxnaranarx1
and X7x1 = EjxnmXaarx1. In turn, in order to make the formulas of objective functions
for WSD and improved WSD methods (8) and (13) be operational, one needs also to
redefine the weight matrix W by deleting the corresponding rows and columns, i.e.,
Wiy = Epenmt WM< NmE, -

Finally, it is necessary to adapt the linear constraints (9) to reduced dimension of the
target vector. To this end, N x NM-dimensional matrix G and M x NM-dimensional
matrix H must be postmultiplied by E}, ,, in order to eliminate their redundant col-
umns. Hence, the constraints (9) are being transformed to Gy x NME}>< NMXTx1 = UNx1
and Hjyx NME}>< NmXIx1 = Vax1, respectively, where all dimensions are consist-
ent in a sense of matrix product. Notice that, as earlier, each column of the trans-
formed constraint matrices includes exactly one nonzero (unit) element so that
eE\IGNXNME}xNM = e;V[HMxNME}XNM = e}. Thus, the redevelopment of regular and
improved WSD methods comes to proper reducing the dimensions of all vectors and
matrices in the minimization problems (8), (9) and (13), (9) without their reformulation.

Furthermore, it is easy to see that Kuroda’s method can be modified for preserving the
zeros in a similar way.

As noted earlier, the regular and improved WSRD methods provide the same loca-
tion of zeros in target matrix as in the initial one. Despite it, the eliminating procedure
described above seems to be helpful for them also because the operation of excluding
zero elements allows decreasing the dimension of solution space for the matrix-updating
problem in significant degree. It is to be emphasized that macroeconomic matrices of
high dimensions often appear to be very sparse in practice, up to more than 90% of zero
elements. In such cases, the efficiency of computations within the minimization prob-
lems (17), (19) and (18), (19) increases rather noticeably.

9 One more failure of homothetic testing: GRAS method

The regular WSD and WSRD methods do not satisfy a homothetic test originally but
can be improved by applying a homothetic paradigm. However, some methods of matrix
updating demonstrate an incorrigible failure of homothetic testing. For instance, the
generalized RAS (GRAS) method does not pass through a homothetic test and at the
same time cannot be enhanced in this sense because of its nature.
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As it is well-known, “.. RAS can only handle non-negative matrices, which limits its
application to SUTs that often contain negative entries..”—see Temurshoev et al. (2011,
p- 92). The GRAS method has been proposed by Junius and Oosterhaven (2003) for the
initial matrices with some negative entries, and later it was redeveloped by Lenzen et al.
(2007). (In order to be fair, it is appropriate to mention that a mathematical framework
of GRAS method was described earlier by Giinliik-Senesen and Bates 1988.)

Any initial matrix A can be represented as A = P — Q where P is a matrix of positive
entries and Q is a matrix containing the absolute values of negative entries. The GRAS
method leans on the mixed additive—multiplicative pattern

X =iPs — i 1Qs! (24)

where r and s are unknown N x 1 and M x 1 column vectors that are needed to be
estimated subject to linear constraints (9). Notice that in the absence of negative entries
GRAS method coincides with RAS method which is based on multiplicative pattern (3).
For homothetic testing the GRAS method, suppose that X = kA = kP — kQ. Insert-
ing this homothety into the pattern (24) leads to the following pair of matrix equations:

1
Ps = kP, rQs=-Q.
k
The transition to Hadamard’s products in the left-hand sides of these equations gives
/ / 1
(rs') oP =kP, (rs)oQ= EQ
from which it follows that

rs’ = keye),, 18 = EeNeﬁw (25)
where eye), is outer product of two summation vectors, i.e., the matrix of dimension
N x M with unit elements.

It is easy to see that the conditions (25) are met simultaneously if and only if kX = %1,
or X = *+A. Hence, the matrix homothety X = kA = kP — kQ cannot be a feasible solu-
tion for GRAS method at all other values of k (k # =1). Thus, the GRAS method does
not pass through a homothetic test.

The strict structure of mixed additive—multiplicative pattern (24) does not give any
opportunity for improving the GRAS method on the base of homothetic paradigm
without its considerable redevelopment. Here the main problem seems to be an inexact
correspondence between the GRAS method’s objective function and Kullback-Leibler
divergence that Lemelin (2009) has rightly pointed out. Indeed, if initial matrix A con-
tains some negative entries, then by virtue of the Kullback—Leibler probabilistic inter-
pretation the nonlinear function (6) can be rewritten as

X+ /5t AT/ at) = N X |xnm|l ﬂ+|xnm|
S X /xt AT faTy =) > Ll e

+
=1 1 xt | anml
+ (26)

1 N X 1 [ %pam| 1 a
ZFZZL’C”W" n +nxj

1 el | @pml
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where &+ = e Xtey = S, U, sy and a* = efAten = T, T, Jag)
Notice that now a value of ¥ # e}, u = €),v is not known a priori in contrast to the case
(6) in which all initial matrix entries are implied to be nonnegative.

Factorizing the unknown variables in (26) as | %y,;| = | @um| Zum, one can introduce the
new variables z,,,, and then obtain the following objective function:

+ {Il\[:l Zly\y/{:l |@m | Znm 10 Zym MU NHX
fi(Z; AY) = =10 ) D awmlzwm +10> > lawm]

Yot St || Zm n=1m=1 n=1m=1
(27)
that should be minimized subject to the linear marginal total constraints
M N
Zanmznm=un, n=1-=+N, Zanmznm=vm, m=1-=-M. (28)
m=1 n=1

It is interesting to compare three summands in right-hand side of (27) with two sum-
mands of the GRAS method’s objective function

N M z N M N M
nm
f(Z; A+) = g g |@pm|Zim In e = E E | @ Zam 1N 2y — § § | @y | Zim
n=1m=1 n=1m=1 n=1m=1

(29)
that was being considered at Lenzen et al. (2007). Let a target matrix be equal to
the initial matrix, i.e., X = A, from which it follows that Z = eNeM Then we have
f(eney; AT) = —at, whereas fxi(ene);; AY) = —Ina™ +Inat = 0. Therefore, the
GRAS method’s objective function (29) may take negative values, and an identity of
indiscernibles is not being satisfied for it in contrast to function (27). Thus, there are no
any reasons to consider (29) as a distance (or even quasi-distance) function.

Note that the first summand in right-hand side of (29) is just the original GRAS objec-
tive function that has been proposed by Junius and Oosterhaven (2003). It coincides with
the numerator of first summand in (27) and, hence, cannot be considered as a measure
of “information distance” from the viewpoint of dimensional analysis.

It is to be emphasized that nonlinear minimization problem (27), (28) is much more
complicated computationally than the GRAS problem of minimizing the objective func-
tion (29) subject to constraints (28). The problem (27), (28) is likely to deserve a further
analytical examination, although Lemelin (2009) has proposed to solve it numerically.

In turn, it is easy to see that in homothetic testing with X = kA and Z = keye}, the
nonnegative objective function (27) reaches its absolute minimum value, since

N M N M
S [k Ink

fri(keney; AT) = g[z;:;; T;” B —In> " " laumlk +Inat
n=1 m=1 %nm n=1m=1

=Ink—Ilnka™ +lnat =0.

It means that, from viewpoint of the Kullback-Leibler divergence minimization
approach, the matrix homothety X = kA can be classified as optimal solution for pro-
portionality case of a general matrix-updating problem. Therefore, the modified GRAS
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(mGRAS) method based on the minimization problem (27), (28) passes through a
homothetic test successfully.

10 Numerical examples and concluding remarks

Consider the Eurostat input—output data set given in “Box 14.2: RAS procedure” (see
Eurostat, 2008, p. 452) for compiling some numerical examples. The 3 x 4-dimen-
sional initial matrix A combines the entries in intersections of the columns “Agricul-

» o«

ture,

” o«

Industry;

” « ” «

Services,” “Final d” with the rows “Agriculture,

” «

Industry,” “Services”
in “Table 1: Input—output data for year 0" Note that all the elements of this matrix are
positive. The row marginal total vector u of dimension 3 x 1 is the proper part of the
column “Output” in “Table 2: Input—output data for year 1,” and the column marginal
total vector v’ of dimension 1 x 4 involves the proper entries of the row “Total” in the
near-mentioned data source.

Initial matrix A and target marginal totals u, v’ are marked by italic font in the left
half and in the right half of Table 1, respectively. The results of handling the data
from Table 1 by RAS method with iterative processes (4) or (5) and by Kuroda’s
method (KM) of conditional minimizing the quadratic objective function (7) with
Wi =Wy =Enu / e}VMENMeNM subject to the linear marginal total constraints (9) are
grouped in Table 2. The next two numerical examples demonstrate the results of apply-
ing the WSD and improved WSD methods as well as WSRD and improved WSRD meth-
ods for updating the available data set at W = Enpy / ejVMENMeNM (see Tables 3 and 4,
respectively). The calculated target matrices seem to be close among themselves.

Table 1 Initial matrix and the target marginal totals, Eurostat (2008), p. 452

Year 0 A ua Year1 X u
20.00 34.00  10.00 36.00  100.00 19.16 3338 10.14 32.10 94.78
2000 15200 4000  188.00  400.00 1832 15816 4136 19502 41286
10.00 72.00  20.00 98.00  200.00 9.80 7648 2208 10432 271268
‘A 5000 25800 7000 32200 70000 vV 4728  268.02 7358 33144  720.32
Table 2 The RAS and KM results for updating the data set from Table 1
RAS X Ux =u KM X Ux =u
17.94 32.77 9.76 34.31 94.78 18.79 3220 1001 33.78 94.78
1936 15808 4212 19330 412.86 1891 15841 4218 19335 41286
9.98 7717 2170 10384 21268 9.57 7741 2138 10431 21268
vy =V 4728 26802 7358 33144 72032 wvy=V 4728 26802 7358 33144 72032
Table 3 The WSD and iWSD results for updating the data set from Table 1
wWsD X ux =u iWSD X ux =u
16.10 34.34 8.20 36.15 94.78 1740 33.68 8.91 34.80 94.78
2062 15686 4272 19267 41286 1925 15773 4183 19405 41286
10.57 7682 2267 10262 21268 10.63 7662 2285 10259 21268
vy =V 4728 26802 7358 33144 72032 vy=V 4728 26802 7358 33144 72032
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Table 4 The WSRD and iWSRD results for updating the data set from Table 1

WSRD X ux=u iWSRD X ux =u
18.39 3240 10.00 3399 9478 18.35 3241 1003 3399 9478

1906 15884 4266 19229 41286 19.07 15882 4260 19237 41286

9.83 7677 2092 10516 21268 9.86 7679 2095 10508 21268

vy =V 4728 26802 7358 33144 72032 vy=V 4728 26802 7358 33144 72032

The following numerical example is assigned to verify a response of WSD and WSRD
methods to homothetic testing at k = 5 (see Table 5). It is easy to see that the WSD tar-
get matrix does distinct from 5A very significantly, whereas the difference between the
WSRD target matrix and 5A is noticeably less.

Furthermore, several numerical examples are intended for testing some methods’
response to zero entries in the initial matrix. So let us disturb two elements of initial
matrix A in Table 1, say (1, 3) and (2, 1), by putting it equal to zero for years 0 and 1.
After recalculation of the marginal totals we get the data set in the left and right halves
of Table 6. (Initial matrix A and target marginal totals u, v’ are marked by italic font; zero
entries are underlined.)

The left parts of Tables 7, 8 and 9 contain the target matrices calculated by methods
that are not based on any multiplicative pattern, namely, WSD and improved WSD as
well as Kuroda’s method, respectively. It is easy to check that they do not really pre-
serve the same location of zeros in target matrix as in the initial one. In contrast, the
right parts of Tables 7, 8 and 9 present the results of additional applying the proposed
procedure of reducing the dimension of solution space in the matrix updating problem
described in Sect. 8 (with the letters “rd” after an abbreviation of method’s title).

Other several numerical examples are intended to test some methods’ responses to
negative entries in the initial matrix. So let us disturb two elements of initial matrix A
in Table 1, say the same elements (1, 3) and (2, 1), by reversing their sign for years 0 and
1. After proper recalculation of the marginal totals, we obtain the data set presented in
the left and right halves of Table 10. (Initial matrix A and target marginal totals u, v’ are
marked by italic font; negative matrix elements are underlined.)

The halves of Tables 11, 12 and 13 contain the target matrices calculated by methods
that, in contrast to RAS, can be used in presence of negative entries, namely WSD and
improved WSD methods, WSRD and improved WSRD methods, Kuroda’s method and
GRAS method, respectively. It is easy to see that they are all quite acceptable at small
values of relative difference (x — a) / a; in particular, for the data set from Table 10.

(x—a)/a= (eyu—eyup)/eyus = (663.4 — 640) / 640 = 3.7%.

Table 5 The WSD and WSRD homothetic test results for the data set fromTable 1atk =5

WSD X #5A ux = 5ur WSRD X # 5A ux = 5ua
— 4667 24467 —3000 332.00 50000 12717 16638 31.17 17528 50000
25333 66267 30000 784.00 2000.00 9217 77580 23868 893.36 2000.00
4333 38267 8000 494.00 1000.00 3066 34782 80.15 54136 1000.00
Vi =5V, 25000 129000 35000 161000 3500.00 v} = 5vj 25000 129000 35000 1610.00 3500.00
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Table 6 Initial matrix with zero entries and the target marginal totals

Year 0 A ua Year1 X u
20.00 34.00 0.00 36.00 90.00 19.16 33.38 0.00 3210 84.64
0.00 75200 40.00 188.00  380.00 000 15816 4136 19502 394.54
10.00 72.00  20.00 98.00  200.00 9.80 7648 2208 10432 21268
‘A 3000 25800 6000 32200 67000 vy 2896 26802 6344 33144 691.86

Table 7 The WSD and WSDrd results for updating the data set from Table 6

WSD X ux=u WSDrd X ux =u
16.49 3418 =202 35.99 84.64 16.64 33.09 0.00 34.90 84.64
147 15715 4296 19296 39454 0.00 15816 4242 19397 39454
11.00 76.69 2250 10250 21268 1232 76.77 21.02 10257 21268

vy =V 2896 26802 6344 33144 69186 vy=V 2896 26802 6344 33144 691.86

With the same location of underlined matrix elements as in Table 6

Table 8 The iWSD and iWSDrd results for updating the data set from Table 6

iwsD X ux =u iWSDrd X ux =u
18.13 3347 —=1.51 3455 84.64 17.57 33.00 0.00 34,07 84.64

—0.39 15817 4224 19453 39454 0.00 15837 4144 19474 39454

11.22 76.38 2272 10236 21268 11.39 76,65 2200 10264 21268

vy =V 2896 26802 6344 33144 69186 vy=V 2896 26802 6344 33144 691.86

With the same location of underlined matrix elements as in Table 6

Table 9 The KM and KMrd results for updating the data set from Table 6

KM X ux =u KMrd X ux =u
19.22 3198 —=0.15 33.58 84.64 19.23 31.91 0.00 33.51 84.64

0.02 15862 4228 19362 39454 0.00 15867 4220 19367 39454

972 7742 2131 10423 21268 973 7745 2124 10426 21268

vy =V 2896 26802 6344 33144 69186 vy=V 2896 26802 6344 33144 691.86

With the same location of underlined matrix elements as in Table 6

Table 10 Initial matrix with negative entries and the target marginal totals

Year0 A ua Year1 X u
2000 3400 —=10.00 3600 80.00 19.16 3338 —10.14 3210 7450
—20.00 152.00 40.00 188.00 360.00 — 1832 15816 4136 19502 37622
10.00  72.00 20.00 9800 200.00 980 7648 2208 10432 212.68
A 10.00 258.00 5000 32200 64000 vy 1064 268.02 5330 33144 66340

Setting the new target marginal totals, say, by doubling them, i.e., at

(x —a)/a= (2eyu —ejup)/eyus = (1326.8 — 640) / 640 = 107.3%,
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Table 11 The WSD and iWSD results for updating the data set from Table 10

wWsD X ux =u iWSD X ux =u
1689 3402 —=1223 3582 7450 1887 3328 —=1196 3432 7450

— 1768 15745 4321 19325 37622 —20.05 15860 4268 19499 37622

1143 7656 2232 10237 21268 1183 76.14 2258 102.13 21268

vy =V 10.64 268.02 5330 33144 66340 vy=V 10.64 268.02 5330 33144 66340

With the same location of underlined matrix elements as in Table 10

Table 12 The WSRD and iWSRD results for updating the data set from Table 10

WSRD X ux =u iWSRD X ux =u
1974 3168 —=1008 33.16 7450 1997 3171 =1037 3320 7450

—=1932 15967 4252 19335 376.22 —=19.75 15964 4264 19369 376.22

1023 7667 2086 10492 212.68 1042 76.68 21.04 10455 21268

vy =V 10.64 268.02 5330 33144 66340 vy=V 1064 268.02 5330 33144 66340

With the same location of underlined matrix elements as in Table 10

Table 13 The KM and GRAS results for updating the data set from Table 10

KM X ux =u GRAS X ux =u

2123 3113 =1058 3272 7450 1901 3222 =1046 3372 7450
—21.26 15983 4258 19506 376.22 —19.08 15888 4219 19423 37622
1067 77.06 2130 10365 21268 071 7692 2156 10348 21268
vy =V 10.64 268.02 5330 33144 66340 vy=V

1
10.64 268.02 5330 33144 66340

With the same location of underlined matrix elements as in Table 10

we obtain new target matrices calculated by the same methods; they are located in
Tables 14, 15 and 16. It is to be emphasized that only the iWSD, iWSRD methods and
Kuroda’s method show acceptable results here, whereas the WSD, WSRD and GRAS
methods are not good at all. Recall that exactly these methods do not satisfy a homo-
thetic test proposed (see Sects. 5, 7 and 9, respectively).

The next numerical example is assigned to verify a response of GRAS method to
homothetic testing at kK = 2 and k = 10 (see Table 17). It is easy to see that the GRAS
target matrices do differ from 2A and 10A very significantly. For instance, 2413 = —20
and 2477 = —40 whereas x13 = —5.62 and x7; = —16.86. In turn, at kK = 10 we have
10a13 = —100 and 10ay; = —200, whereas x;3 = —1.14 and x7; = —6.13. Moreover,

Table 14 The WSD and iWSD results for the doubled marginal totals from Table 10

WsD X ux = 2u iWSD X ux = 2u
— 1622 8670 —31.12 10964 149.00 3773 6655 —2392 6864 149.00

2464 28556  99.74 34250 75244 —40.11 317.21 85.36 38998 75244

12.87 163.79 3797 210.73 42536 23.66 152.28 4517 20426 42536

vy =2V 2128 53604 10660 662838 132680 vy =2V’ 21.28 53604 10660 662.88 1326.80

With the same location of underlined matrix elements as in Table 10
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Table 15 The WSRD and iWSRD results for the doubled marginal totals from Table 10

WSRD X ux =2u iWSRD X ux = 2u
2839 6193 =586 6454 149.00 3994 6341 =2075 6640 149.00

= 1835 32093 7930 37057 75244 —=3949 319.27 8528 38738 75244

11.25 15318 33.16 227.78 42536 20.83 15335 4207 209.10 42536

vy =2V 21.28 53604 10660 662.88 132680 vy =2V 21.28 536.04 10660 662.88 1326.80

With the same location of underlined matrix elements as in Table 10

Table 16 The KM and GRAS results for the doubled marginal totals from Table 10

KM X ux = 2u GRAS X ux = 2u
4246 6226 —21.17 6545 149.00 2337 6432 =594 6725 149.00

— 4251 31966 85.17 390.13 75244 — 1573 31283 7326 38207 75244

2133 154.12 4260 20731 42536 13.63 15889 3928 21356 42536

vy =2V 2128 53604 10660 662.88 132680 vy =2v/ 2128 53604 10660 662.88 1326.80

With the same location of underlined matrix elements as in Table 10

Table 17 The GRAS homothetic test results for the data set from Table 10 at k=2 and 10

GRAS X #2A ux = 2up GRAS X # 10A ux = 10up
2438 6863 =562 7261 160.00 70.57 35496 —1.14 37561 800.00
—16.86 29860 69.22 369.04 720.00 =613 146762 32441 1814.09 3600.00
1248 14877 36.40 20234 400.00 35.56 75742 176.73 1030.30 2000.00

vy =2v, 2000 51600 100.00 644.00 1280.00 vy = 10v 10000  2580.00 500.00 3220.00 6400.00

With the same location of underlined matrix elements as in Table 10

there are some other large distinctions between the matrix elements in the columns
where the negative entries are located, namely, columns 1 and 3.

As a conclusion, it is to be emphasized that a homothetic paradigm expresses the
important and helpful property of any matrix updating method. Moreover, positive
response to homothetic testing serves as an additional evidence of plausibility and cor-
rectness of the matrix updating method tested.

Homothetic paradigm leans on a common notion of orthogonal projecting that is
likely to be the most powerful concept in econometrics. It has an obvious logical inter-
pretation, corresponds to famous principle of insufficient reason and remains opera-
tional in a row of practical situations.

If a method of matrix updating emanates from some distance minimization problem,
it can be fully adapted to homothetic testing (see Sect. 6). If at the same time a zero
preservation property is assumed desirable, the method must be slightly redeveloped to
provide its observance, with a concomitant reducing the dimensionalities of underlying
minimization problem without its reformulation (see Sect. 8).

In this article, we have considered four methods of matrix updating that can be used
for handling the matrices with some negative entries, namely, Kuroda’s, iWSD, iWSRD
and GRAS (including mGRAS) methods. A critical analysis of the GRAS methodology is
given in Sect. 9 (see also Tables 16 and 17).
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It is obvious that, because of its additive nature, the iWSD method does not work
rather good if the initial matrix has some very small entries together with some very
large ones (a practically important case!). The final numerical examples are intended to
test a response of the above-mentioned methods to appearance of a small entry in the
initial matrix. So let us disturb one element of initial matrix A in Table 10, say entry
(3, 4), by multiplying its value by 10~* for years 0 and 1. After proper recalculation of the
marginal totals, we obtain the data set presented in the left and right halves of Table 18.
(Initial matrix A and target marginal totals u, v/ are marked by italic font; the small ele-
ments (3, 4) are underlined.)

The results of handling the data from Table 18 by iWSD, Kuroda’s and iWSRD meth-
ods are presented in Tables 19, 20 and 21 where the elements of matrices Q are deter-
mined by formula (16).

As it was expected, the iWSD method has unjustifiably reversed the sign of az4 in
target element x34 and has increased the initial absolute value in more than 80 times
although x/a = e\ u/ e} uy is just equal to 559.09/542.01 = 1.03 (see Table 19). In this
situation Kuroda’s method appears to work somewhat better without sign reversing and
with increasing the initial value in more than only 10 times (see Table 20). And finally,
the iWSRD method seems to be most preferable in this example demonstrating the scat-
tering in Q’s elements from 0.92 to 1.07 (see Table 21).

Table 18 Initial matrix with one small entry and the target marginal totals

Year0 A ua Year1 X u
2000 3400 —1000 3600  80.00 1916 3338 —1014 3210 7450
—20.00 152.00 40.00 188.00 360.00 — 1832 15816 4136 19502 376.22
10.00  72.00 20.00 0.01 10201 980 7648 22.08 001 10837
‘A 10.00 258.00 50.00 22401 54201 Vv 1064 268.02 5330 227.13 559.09

Table 19 The iWSD results for updating the data set from Table 18

iwsD X ux=u iWSD Q G;‘ uy
18.94 3356 —11.75 3375 74.50 095 099 1.8 094 093
— 1964 15874 4295 19417  376.22 098 1.04 1.07 1.03  1.05
11.34 75.71 2211 =079 10837 113 105 111 =8045 1.06
vy =V 10.64 26802 5330 22713 559.09 v;((,? 106 1.04 1.07 1.01  1.03

With the same location of underlined matrix elements as in Table 18

Table 20 The KM results for updating the data set from Table 18

KM X Ux =u KM Q 0;1 ux
2123 3099 —1061 3290 74.50 106 091 106 091 093
—2125 160.68 4267 19412 37622 106 106 107 1.03  1.05
10.66 76.35 21.25 011 10837 1.07 106 106 1082 106
v;( =V 1064  268.02 5330 22713  559.09 \/;(\7;T 106 1.04 107 .01 1.03

With the same location of underlined matrix elements as in Table 18
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Table 21 The iWSRD results for updating the data set from Table 18

iWSRD X ux=u iWSRD Q 0;1 ux
19.90 3169 —1028 33.20 74.50 099 093 103 092 093
— 1962 15934 4258 19392 37622 098 105 106 103 105
10.37 76.99 21.00 001 10837 104 107 105 101 106
vy =V 10.64  268.02 5330 22713 559.09 \,;(\7;1 106 104 107 101 103

With the same location of underlined matrix elements as in Table 18

Thus, one can assert that improved WSRD method has some advantage among the
other methods of matrix updating in practically important situations when the initial
matrix has some very small entries and some very large ones simultaneously (because of
multiplicative nature of iWSRD objective function).

Notice that the minimization problems associated with Kuroda’s and iWSRD methods
have almost the same computational complexity. It can be shown that for their solving
it is necessary to calculate the inverse of the symmetric matrix of order min{N, M} — 1
with the diagonal blocks on its main diagonal.
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KM: Kuroda's method; KMrd: Kuroda's method with a solution space of reduced dimension; WSD method: method
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