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1. INTRODUCTION

This paper describes and discusses an estimator for a linear time series

model with time-varying coefficients. Such a model, the variable coef-

ficients model, or “VC model” for short, generalizes the standard linear

model. The standard model assumes that the coefficients giving the in-

fluence of the independent variables on the dependent variable remain

constant. In the VC model, these coefficients are permitted to change over

time.

The VC model has been initially proposed for dealing empirically with

economic theories that are subject to a ceteris paribus clause (Schlicht,

1977, ch.4). Schlicht (1989) has proposed an estimation method – the VC

method – which has been embodied in some freely available software

packages (Schlicht 2005; 2005, Ludsteck 2004; 2018). Some simulations

in Schlicht and Ludsteck (2006) have shown that the VC is preferable for

studying the specific class of models for which it was designed.

In the meanwhile, VC has found a number of applications in various

settings, mainly dealing with structural change, such as the recent decou-

pling of growth and pollution in the wake of global warming, the changes

occurring in financial markets after the financial crisis of 2008, drifts in

Okun’s Law over time, and more. Appendix A lists some of these studies.

The paper is divided in two parts. In the first part the VC method is

described, and in the second part, some points regarding the application

of the VC method and some methodological issues are discussed.

PART I

THE VC METHOD

The following sections introduce the model and describe the “criteria”

approach that permits to estimate the time-paths of the coefficients in

a purely descriptive way. Based on that, a moments estimator will be

proposed. If it is assumed additionally that the disturbances are normally

2



S C H L I C H T – T I M E - V A R Y I N G C O E F F I C I E N T S

distributed, a maximum likelihood estimator can be given. It is shown

that this estimator coincides with the moments estimator for sufficiently

long time series.

2. THE LINEAR THEORETICAL MODEL AND ITS EMPIRICAL APPLICATION

Consider a theory stating that the dependent variable y as a linear function

of some independent variables x1, x2, ... , xn :

y = a1x1 +a2x2 + ... +an xn (2.1)

The coefficients a1, a2, ... , an give the influence of the independent vari-

ables.

If we have T observations yt , x1,t , x2,t ,. . . xn,t with t = 1,2, ...T denoting

the time of an observation, we can try to estimate the theoretical coeffi-

cients a1, a2, ... , an by a standard linear regression. In order to do that, we

have to add an error term ut to capture discrepancies of the empirical

from the theoretical regularity due to measurement errors etc. and obtain

yt = a1x1,t +a2x2,t + ... +an xn,t +ut , t = 1,2, ...T . (2.2)

It appears, however, improbable, that outside influences not captured

in the theoretical model (and theoretically held constant under a ceteris

paribus clause) affect only the disturbance term, and not the coefficients

themselves. If these outside influences affect the coefficients themselves,

the coefficients might change over time.

The problem of possibly time-varying coefficients was the subject of the

famous Keynes-Tinbergen controversy around 1940.1 While Tinbergen

(1940, p. 153) defended the use of regression analysis with the argument

that in “many cases only small changes in structure will occur in the near

future”, Keynes (1973, p. 294) objected that “the method requires not too

short a series whereas it is only in a short series, in most cases, that there

is a reasonable expectation that the coefficients will be fairly constant.”

It appears that both arguments are correct. The VC model takes care of

both by assuming that the coefficients change only slowly over time: They

are highly auto-correlated. This is formalized by a random walk (Cooley

and Prescott 1973, Schlicht 1973, Athans 1974). If ai ,t denotes the state of

1See Tinbergen (1940), Keynes (1939), Keynes (1973, pp. 285–321).
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coefficient ai at time t , it is assumed that

ai ,t+1 = ai ,t + vi ,t (2.3)

with the disturbance term vi ,t of expectation zero and with variance σ2
i .

The assumption of expectation zero formalizes the idea that “the coeffi-

cients will be fairly constant” in the short run, while the variance σ2
i is a

measure of the stability of coefficient i and is to be estimated. For σ2
i = 0,

the case of a constant (time-invariant) coefficient is covered as well. As a

consequence, the standard linear model is replaced by

yt = a1,t x1,t +a2,t x2,t + ... +an,t xn,t +ut

E {ut } = 0, E
{
u2

t

}=σ2 (2.4)

ai ,t+1 = ai ,t + vi ,t ,

E
{

vi ,t
}= 0, E

{
v2

i ,t

}
=σ2

i (2.5)

The VC method estimates the expected time-paths of the coefficients.

It can be viewed as a straightforward generalization of the method of least

squares:

• While the method of ordinary least squares selects estimates that

minimize the sum of squared disturbances
∑T

t=1 u2
t in the equation,

VC selects estimates that minimize the sum of squared disturbances

in the equation and a weighted sum of squared disturbances in

the coefficients
∑T

t=1 u2
t +γ1

∑T
t=2 v2

1,t +γ2
∑T

t=2 v2
2,t +...+γn

∑T
t=2 v2

n,t ,

where the weights for the changes in the coefficients γ1,γ2, ... ,γn

are determined by the inverse variance ratios, i.e. γi = σ2/σ2
i . In

other words, it balances the desiderata of a good fit and parameter

stability over time.

• Estimation can proceed by focusing on some selected coefficients

and keeping the remaining coefficients constant over time. This

is done by keeping the corresponding variances σ2
i close to zero,

rather than estimating them. (If all coefficients are frozen in this

manner, the OLS result is obtained.)

• The time-averages of the regression coefficients are GLS estimates of

the corresponding regression with fixed coefficients, i.e. 1
T

∑
t at =

aGLS .
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• As all estimates are moments estimates, it is not necessary to pre-

suppose normally distributed disturbances.

• For increasing sample sizes T and under the assumption that all

disturbances are normally distributed, the moments estimates ap-

proach the maximum likelihood estimates.

3. NOTATION AND BASIC ASSUMPTIONS

All vectors are conceived as column vectors, and their transposes are indi-

cated by an apostrophe. The observations at time t are x ′
t =

(
x1,t , x2,t , ..., xn,t

)
and yt for t = 1,2, .. ,T . We write

y =


y1

y2

.

.

yT

 , x =


x ′

1

x ′
2

.

.

x ′
T

 , X =


x ′

1 0

x ′
2

.

.

0 x ′
T


order T T ×n T ×T n

at =


a1,t

a2,t

.

.

an,t

 , a =


a1

a2

.

.

aT

 , vi =


vi ,1

vi ,2

.

.

vi ,T

 , v =


v2

v3

.

.

vT


order n T n T (T −1)n

We write further

Σ = diag


σ2

1

σ2
2

.

.

σ2
n

 =


σ2

1 0 0

0 σ2
2

.

. 0

0 0 σ2
n


order n n ×n

5
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and define

p =


−1 1 0 0

0 −1 1 0

. .

. . 0

0 0 −1 1

 , P = p ⊗ In =


−In In 0

−In In

. .

. .

0 −In In


order (T −1)×T (T −1)n ×T n

with In denoting the identity matrix of order n.

The model is obtained by writing equations (2.4) and (2.5) in matrix

form:

The model

y = X a +u, E {u} = 0, E
{
uu′} = σ2IT (3.1)

Pa = v , E {v} = 0, E
{

v v ′} = V = IT−1 ⊗Σ (3.2)

Note that the explanatory variables X are taken as predetermined, rather

than stochastic.

Regarding the observations X and y we assume that a perfect fit of the

model to the data is not possible:

Assumption (“No Perfect Fit”).

Pa = 0 implies y 6= X a. (3.3)

This assumption rules out the (trivial) case that the standard linear model

(2.2) fits the empirical data perfectly, a case that cannot reasonably be ex-

pected to occur in practical applications. Further, the assumption implies

that the number of observations exceeds the number of coefficients to be

estimated:

T > n. (3.4)

4. LEAST SQUARES

In a descriptive spirit, the time-paths of the coefficients can be determined

by following the “criteria” approach, where some criteria are employed

6
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that formalize some descriptive desiderata.2 In the case at hand, the

desiderata are that the model fits the data well and that the coefficients

change only slowly over time – u and v ought to be as small as possible.

The sum of the squared errors u′u is taken as a criterion for the goodness

of fit of equation (3.1), the weighted sum of the squared changes of the

coefficients v ′v over time is the criterion for the stability of the coefficients

over time, and the combination of both criteria gives an overall criterion

that combines the desiderata of a good fit and stability of coefficients over

time. The weights
(
γ1,γ2, .. ,γn

)
give the relative importance of the stability

of the coefficients over time, where weight γi relates to coefficient ai . For

the time being, these weights are taken as given but will later be estimated,

too.

Write

Γ =


γ1 0 . 0

0 γ2 0 .

. 0 . .

. . 0

0 0 γn

 (4.1)

and

G = IT−1 ⊗Γ. (4.2)

Adding the sum of squares u′u and the weighted sum of squares v ′Gv

gives the overall criterion

Q = u′u + v ′Gv (4.3)

This expression is to be minimized under the constraints given by the

model (3.1), (3.2) with the observations X and y

u = y −X a (4.4)

v = Pa. (4.5)

2The criteria approach was introduced by Leser (1961), used also by Hodrick and Prescott
(1997), and has been further developed by Leser (1963) and Schlicht (1981).
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This determines the time-paths of the coefficients a that optimize this

criterion. Hence we can write

Q = (
y −X a

)′ (y −X a
)+a′P ′GPa (4.6)

The weighted sum of squares Q is the sum of two positive semi-definite

quadratic forms. The “no perfect fit” assumption (3.3) rules out the case

that Q can be zero. Hence Q is positive definite and of full rank. The first

order condition for a minimizing a is

∂Q

∂a
= −2X y +2

(
X ′X +P ′GP

)
a = 0 (4.7)

and the second order condition is that the Jacobian

∂2Q

∂a∂a′ = 2
(
X ′X +P ′GP

)
(4.8)

be positive definite, which is the case. Solving (4.7) for a and plugging this

into (4.4) and (4.5) gives the estimates

aLS = (
X ′X +P ′GP

)−1 X ′y (4.9)

uLS =
(
IT −X

(
X ′X +P ′GP

)−1 X ′
)

y (4.10)

vLS = P
(
X ′X +P ′GP

)−1 X ′y (4.11)

where the subscript LS stands for “least squares”.

5. ORTHOGONAL PARAMETRIZATION

For purposes of estimation we need a model that explains the observation

y as a function of the observations X and the random variables u and v .

This would permit calculating the probability distribution of the obser-

vations y contingent on the parameters of the distributions of u and v ,

viz. σ2 and Σ. The true model does not permit such an inference, though,

because the matrix P is of rank (T −1)n rather than of rank T n and cannot

be inverted. Hence v does not determine a unique y but rather the set of

solutions

A := {
a = P̃ v +Zβ

∣∣β ∈Rn}
. (5.1)

with β as a shift parameter and

P̃ := P ′ (PP ′)−1 (5.2)

8
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of order T n × (T −1)n as the right-hand pseudo-inverse of P . For any

v we have a ∈ A ⇔ Pa = v . Hence equation (3.1) and the set (5.1) give

equivalent descriptions of the relationship between a and v .

Define further the T n ×n matrix

Z :=


In

In

.

In

 . (5.3)

It is orthogonal to P :

P Z = 0

and the square matrix
(
P ′, Z

)
is of full rank. Note further that

Z ′Z = T · In , P ′ (PP ′)−1 P +Z Z ′ = IT n . (5.4)

The last equality is implied by the identity(
P ′ Z

)((
P

Z ′

)(
P ′ Z

))−1 (
P

Z ′

)
= IT n .

Regarding the matrices P , P̃ , and Z we have

PP̃ = P̃ ′P ′ = I(T−1)n

P̃P = P ′P̃ ′ = IT n −Z Z ′

Z ′P̃ = P̃ ′Z = 0.

(5.5)

In view of (5.1), any solution a to Pa = v can be written as

a = P̃ v +Z β (5.6)

for some β ∈Rn . Equation (3.1) can be re-written as

y = u +X P̃ v +X Zβ. (5.7)

The model (5.6), (5.7) will be referred to as the equivalent orthogonally

parameterized model. It implies the true model (3.1), (3.2). It implies, in

particular, that at is a random walk even though at depends, according to

(5.6), on past and future realizations of vt .

9
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The formal parameter β has a straightforward interpretation. Pre-multi-

plying (5.6) by Z ′ gives

Z ′a = Z ′Zβ= Tβ

and therefore

β = 1

T

T∑
t=1

at .

Hence β gives the averages of the coefficients ai ,t over time.

Equation (5.7) permits calculating the density of y dependent upon the

parameters of the distributions of u and v and the formal parameters β.

In a second step, all these parameters – σ2, Σ, and β – can be determined

by moments estimators that will be derived in Section 8.

The orthogonal parametrization, proposed in Schlicht (1985, Sec. 4.3.3),

entails some advantages with respect to symmetry and mathematical

transparency, as compared to more usual procedures, such as parametriza-

tion by initial values. It permits to derive our moments estimator that does

not require normally distributed disturbances, and to write down an ex-

plicit likelihood function for the case of normally distributed disturbances

that permits estimation of all relevant parameters in a unified one-shot

procedure.

The formal parameter vector β relates directly to the coefficient esti-

mates of a standard generalized least squares (GLS, Aitken) regression.

Equation (5.7) can be interpreted as a standard regression for this parame-

ter vector with the matrix x = X Z giving the explanatory variables:

y = xβ+w (5.8)

and the disturbance

w = X P̃ v +u. (5.9)

It has expectation zero

E {w} = 0 (5.10)

and covariance

E
{

w w ′}= X P̃V P̃ ′X ′+σ2IT =W . (5.11)

10
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The Aitken estimate βA satisfies

x ′W −1 (
y −xβA

)= 0 (5.12)

or

βA = (
x ′W −1x

)−1
x ′W −1 y . (5.13)

where the subscript A stands for “Aitken”.

6. THE FILTER

This section derives the VC filter which gives the expectation of the coef-

ficients a for given observations X and y , a given shift parameter β, and

given variances σ2 and Σ.

For given β and X , the vectors y and a can be viewed as realizations of

random variables determined jointly by the system (5.6), (5.8) as brought

about by the disturbances u and v :(
a

y

)
=

(
Z

X Z

)
β+

(
P̃ 0

X P̃ IT

)(
v

u

)
The covariance is

E

{(
a

y

)(
a y

)}
=

(
P̃ 0

X P̃ IT

)(
V 0

0 σ2IT

)(
P̃ ′ P̃ ′X ′

0 IT

)

=
(

P̃V P̃ ′ P̃V P̃ ′X ′

X P̃V P̃ ′ X P̃V P̃ ′X +σ2IT

)
.

The marginal distribution of y is as given by (5.8) and (5.11). The condi-

tional expectation of a and the expected covariance for given y (and β, σ2,

Σ) are

E
{

a
∣∣y

} = Zβ+ P̃V P̃ ′X ′ (X P̃V P̃ ′X +σ2IT
)−1 (

y −X Zβ
)

(6.1)

E
{

aa′ ∣∣y
} = P̃V P̃ ′− P̃V P̃ ′X ′ (X P̃V P̃ ′X +σ2IT

)−1
X P̃V P̃ ′ (6.2)

Hence an estimator for a can be derived by plugging the Aitken estimator

βA from (5.12) into (6.1) and calculating the mean:

aA = ZβA + 1

σ2
P̃V P̃ ′X ′ (y −X ZβA

)
. (6.3)

11
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Note that the variance-covariance matrix of w , as given in equation (5.11),

tends to σ2IT if the the variances σ2
i go to zero, and equation (5.7) ap-

proaches the standard unweighted linear regression. In this sense, the

OLS regression model is covered as a special limiting case by the model

discussed here.

7. LEAST SQUARES AND AITKEN

The following theorem states that the least squares estimator aLS and the

Aitken estimator aA coincide if the weights are given by the variance ratios.

Claim 1. G =σ2V −1 implies aLS = aA.

Proof. Consider first the necessary conditions for a minimum of (4.3).

The first-order condition (4.7) defines aLS with weights G =σ2V −1

uniquely and can be written as(
X ′X +σ2P ′V −1P

)
aLS = X ′y (7.1)

It will be shown that (6.3) implies(
X ′X +σ2P ′V −1P

)
aA = X ′y (7.2)

which will establish the proposition.

Pre-multiplication of (6.3) by
(
X ′X+ σ2P ′V −1P

)
gives

(
X ′X +σ2P ′V −1P

)
aA = (

X ′X +σ2P ′V −1P
)

ZβA +
+(

X ′X +σ2P ′V −1P
)

P̃V P̃ ′X ′ (X P̃V P̃ ′X +σ2IT
)−1 ·

·(y −X ZβA
)

.

Because of P Z = 0 this can be written as(
X ′X +σ2P ′V −1P

)
aA = X ′X ZβA +

+X ′X P̃V P̃ ′X ′ (X P̃V P̃ ′X +σ2IT
)−1 (

y −X ZβA
)

+σ2P ′P̃ ′X ′ (X P̃V P̃ ′X +σ2IT
)−1 (

y −X ZβA
)

.

12
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Adding and subtracting σ2X ′ (X P̃V P̃ ′X +σ2IT
)−1 (

y −X ZβA
)

and using

P ′P̃ ′ = (
IT n −Z Z ′) results in(

X ′X +σ2P ′V −1P
)

aA = X ′X ZβA +
+X ′ (X P̃V P̃ ′X ′+σ2IT

)(
X P̃V P̃ ′X +σ2IT

)−1 (
y −X ZβA

)
−σ2X ′ (X P̃V P̃ ′X +σ2IT

)−1 (
y −X ZβA

)
+σ2 (

IT n −Z Z ′) X ′ (X P̃V P̃ ′X +σ2IT
)−1 (

y −X ZβA
)

which reduces to(
X ′X +σ2P ′V −1P

)
aA = X ′X ZβA +

+X ′ (y −X ZβA
)

−σ2X ′ (X P̃V P̃ ′X +σ2IT
)−1 (

y −X ZβA
)

+σ2X ′ (X P̃V P̃ ′X +σ2IT
)−1 (

y −X ZβA
)

,

hence to (
X ′X +σ2P ′V −1P

)
aA = X ′X ZβA +X ′ (y −X ZβA

)
and finally to (

X ′X +σ2P ′V −1P
)

aA = X ′y .

This shows that the least squares estimator aLS and the Aitken estimator

aA coincide. �

For the sake of completeness and later use, the following observation is

added:

Claim 2. G =σ2V −1 implies Q =σ2w ′W −1w . In other words: the sum of

squared deviations weighted by the variance ratios σ2

σ2
1

, σ
2

σ2
2

, ... , σ
2

σ2
n

equals

the weighted sum of squares (the squared Mahalanobis distance) in the

Aitken regression.

13
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Proof.

Q = u′u +σ2v ′V −1v

= u′ (w −X P̃ v
)+σ2v ′V −1v

= u′w −
((

w −X P̃ v
)′

X P̃ −σ2v ′V −1
)

v

= u′w −
((

w −X P̃ v
)′

X P̃ −σ2v ′V −1
)

Pa

= u′w −
((

w −X P̃ v
)′

X P̃ −σ2v ′V −1
)

P
(
Zβ+ P̃V P̃ ′X ′W −1w

)
= u′w −

((
w −X P̃ v

)′
X P̃ −σ2v ′V −1

)
PP̃V P̃ ′X ′W −1w

= u′w −
((

w −X P̃ v
)′

X P̃ −σ2v ′V −1
)

V P̃ ′X ′W −1w

= u′w − (
u′X P̃V P̃ ′X ′−σ2v ′P̃ ′X ′)W −1w

= u′w −u′X P̃V P̃ ′X ′W −1w +σ2v ′P̃ ′X ′W −1w

= u′w −u′ (X P̃V P̃ ′X ′+σ2IT −σ2IT
)

W −1w +σ2v ′P̃ ′X ′W −1w

= u′w −u′ (X P̃V P̃ ′X ′+σ2IT
)

W −1w +σ2u′W −1w +σ2v ′P̃ ′X ′W −1w

= u′w −u′w +σ2u′W −1w +σ2v ′P̃ ′X ′W −1w

= σ2 (
u′+ v ′P̃ ′X ′)W −1w

= σ2w ′W −1w

Hence the weighted sum of squares Q equals the squared Mahalanobis

distance. �

Consider now the distribution of aA. The matrix
(
X ′X +σ2P ′V −1P

)
,

henceforth referred to as the “system matrix”, will be denoted by M :

M = (
X ′X +σ2P ′V −1P

)
. (7.3)

With this, the normal equation (7.2), which defines the solution for the

vector of the coefficients aA can be written as

M aA = X ′y . (7.4)

With (3.1) and (7.3) we obtain

aA = M−1X ′ (X a +u)

= M−1 (
X ′X a +X ′u +σ2P ′V −1Pa −σ2P ′V −1Pa

)
= a +M−1 (

X ′u −σ2P ′V −1v
)

. (7.5)

14
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Given a realization of the time-path of the coefficients a, the estimator

aA is normally distributed with mean a and covariance

E
{
(a −aA)′ (a −aA)

}= M−1
(

X ′ −σ2P ′V −1
)(

σ2IT 0

0 V

)(
X

−σ2V −1P

)
M−1

which reduces to

E
{
(a −aA)′ (a −aA)

}= M−1
(
σ2X ′X +σ4P ′V −1P

)
M−1

and finally to

E
{
(a −aA)′ (a −aA)

}=σ2M−1. (7.6)

The system matrix (7.3) is determined by the observations X , the vari-

ance σ2 and the variances Σ. Equation (7.6) gives the precision of our

estimate which is directly related to the system matrix M . The next step is

to determine the variance σ2 and the variances Σ.

8. MOMENTS ESTIMATION OF THE VARIANCES

The moments estimator that will be developed in this section has, for any

sample size, a straightforward interpretation: It is defined by the property

that the variances of the disturbances in the estimated coefficients equal

their expectations. It has, thus, a straightforward connotation even in

shorter time series and does not presuppose that the perturbations u

and v are normally distributed. It will be shown later that the moments

estimators approach the respective maximum likelihood estimators in

large samples if the disturbances are normally distributed. Hence the

intuitive appeal of the moments estimator carries over to the likelihood

estimator, and the attractive large-sample properties of the likelihood

estimator carry over to the moments estimator.

In the following we denote the estimated coefficients by â and the

estimated perturbations by û and v̂ . For some variances σ2 and
∑ =

diag
(
σ2

1, σ2
2, . . , σ2

n

)
, the estimated coefficients â along with the

estimated disturbances û and v̂ are random variables brought about by

realizations of the random variables u and v . Consider û = y − X â =
X (a − â)+u first. With (7.5) we obtain

15
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û = −X
(
M−1 (

X ′u −σ2P ′V −1v
))+u

û = (
IT −X M−1X ′)u +σ2X M−1P ′V −1v .

Regarding v̂ , consider the vectors v̂ ′
i =

(
v̂2

i ,2, v̂2
i ,3, . . , v̂2

i ,T

)
for i =

1,2, .. ,n, that is, the disturbances in the coefficients âi for each coefficient

separately. These are obtained as follows.

Denote by ei ∈Rn the n-th column of an n×n identity matrix and define

the (T −1)× (T −1)n-matrix

Ei := IT−1 ⊗e ′
i (8.1)

that picks the time-path of the i−th disturbance vi =
(
vi ,2, vi ,3, ...vi ,T

)′
from the disturbance vector v :

vi := Ei v .

Note that
n∑

i=1
σ2

i E ′
i Ei = V . (8.2)

Pre-multiplying (7.5) with the matrices Ei yields

v̂i = Ei
(
I(T−1)n −σ2P M−1P ′V −1)v +Ei P M−1X ′u

Thus û and v̂i are linear functions of the random variables u and v , and

their expected squared errors can be calculated.

Claim 3. For given observations X and y and given variances σ2and Σ,

the expected squared deviations of û and v̂i , i = 1,2, ... ,n are

E
{
û′û

} = σ2 (
T − trX M−1X ′) (8.3)

E
{

v̂ ′
i v̂i

} = (T −1)σ2
i −σ2trEi P M−1P ′E ′

i . (8.4)

This implies that the expected sum of squares is

E
{
Q̂

} = σ2 (T −n) . (8.5)

Proof. The expectation of the squared estimated error û is
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E
{
û′û

} = E
{(

u′ (IT +X M−1X ′)+σ2v ′V −1P M−1X ′) ·((
IT −X M−1X ′)u +σ2X M−1P ′V −1v

)}
= E

{
u′ (IT −X M−1X ′)(IT −X M−1X ′)u

}+
+σ4E

{
v ′V −1P M−1X ′X M−1P ′V −1v

}
= trE

{
u′ (IT −X M−1X ′)(IT −X M−1X ′)u

}+
+σ4trE

{
v ′V −1P M−1X ′X M−1P ′V −1v

}
S

= trE
{(

IT −X M−1X ′)uu′ (IT −X M−1X ′)}+
+σ4trE

{
X M−1P ′V −1v v ′V −1P M−1X ′}

= trσ2 (
IT −X M−1X ′)(IT −X M−1X ′)+ trσ4X M−1P ′V −1P M−1X ′

= σ2tr
((

IT −X M−1X ′)(IT −X M−1X ′)+σ2X M−1P ′V −1P M−1X ′)
= σ2tr

(
I −2X M−1X ′+X M−1X ′X M−1X ′+σ2X M−1P ′V −1P M−1X ′)

= σ2tr
(
IT −2X M−1X ′+X M−1 (

X ′X +σ2P ′V −1P
)

M−1X ′)
= σ2tr

(
IT −X M−1X ′)

= σ2 (
T − trX M−1X ′) .

In a similar way, the expectation of the squared estimated disturbance

in in the i -th coefficient v̂i is evaluated as

E
{

v̂ ′
i v̂i

} = E
{(

u′X M−1P ′E ′
i + v ′ (I(T−1)n −σ2V −1P M−1P ′)E ′

i

)
· (

Ei P M−1X ′u +Ei
(
I(T−1)n −σ2P M−1P ′V −1)v

)}
= E

{
u′X M−1P ′E ′

i Ei P M−1X ′u +
v ′ (I(T−1)n −σ2V −1P M−1P ′)E ′

i Ei
(
I(T−1)n −σ2P M−1P ′V −1)v

}
= E

{
tr

(
u′X M−1P ′E ′

i Ei P M−1X ′u +
v ′ (I(T−1)n −σ2V −1P M−1P ′)E ′

i Ei
(
I(T−1)n −σ2P M−1P ′V −1)v

)}
= E

{
tr

(
Ei P M−1X ′uu′X M−1P ′E ′

i +
Ei

(
I(T−1)n −σ2P M−1P ′V −1)v v ′ (I(T−1)n −σ2V −1P M−1P ′)E ′

i

)}
= tr

(
σ2Ei P M−1X ′X M−1P ′E ′

i

)+
tr

(
Ei

(
I(T−1)n −σ2P M−1P ′V −1)V

(
I(T−1)n −σ2V −1P M−1P ′)E ′

i

)
17
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E
{

v̂ ′
i v̂i

} = tr
(
σ2Ei P M−1X ′X M−1P ′E ′

i

)+
tr

(
Ei

(
V −σ2P M−1P ′)(I(T−1)n −σ2V −1P M−1P ′)E ′

i

)
= tr

(
σ2Ei P M−1X ′X M−1P ′E ′

i

)+
tr

(
Ei

(
V −σ2P M−1P ′)(I(T−1)n −σ2V −1P M−1P ′)E ′

i

)
= tr

(
σ2Ei P M−1X ′X M−1P ′E ′

i

)+
tr

(
Ei

(
V −σ2P M−1P ′)E ′

i −σ2Ei
(
V −σ2P M−1P ′)V −1P M−1P ′E ′

i

)
= tr

(
σ2Ei P M−1X ′X M−1P ′E ′

i

)+
tr

(
Ei

(
V −σ2P M−1P ′−σ2P M−1P ′+σ4P M−1P ′V −1P M−1P ′)E ′

i

)
= tr

(
σ2Ei P M−1X ′X M−1P ′E ′

i +
Ei

(
V −σ2P M−1P ′−σ2P M−1P ′+σ4P M−1P ′V −1P M−1P ′)E ′

i

)
= tr

(
Ei

((
σ2P M−1 (

X ′X +σ2P ′V −1P
)

M−1P ′)+V −2σ2P M−1P ′)E ′
i

)
= tr

(
Ei

(
V −σ2P M−1P ′)E ′

i

)
= tr

(
Ei V E ′

i −σ2Ei P M−1P ′E ′
i

)
= tr

((
IT−1 ⊗e ′

i

)
(IT−1 ⊗Σ) (IT−1 ⊗ei )−σ2Ei P M−1P ′E ′

i

)
= tr

(
IT−1 ⊗e ′

iΣei
)−σ2tr

(
Ei P M−1P ′E ′

i

)
= (T −1)σ2

i −σ2tr
(
Ei P M−1P ′E ′

i

)
.

Regarding Q̂ we note that

X ′X +σ2P ′V −1P = X ′X +σ2
n∑

i=1

1

σ2
i

P ′
i Pi = M

18
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and obtain

E
{
Q̂

} = σ2 (
T − trX M−1X ′)+ n∑

i=1

σ2

σ2
i

(
(T −1)σ2

i −σ2trEi P M−1P ′E ′
i

)
= σ2

(
T − trX M−1X ′+

n∑
i=1

(T −1)−
n∑

i=1

σ2

σ2
i

trEi P M−1P ′E ′
i

)

= σ2

(
T +n (T −1)− trX M−1X ′− tr

(
n∑

i=1

σ2

σ2
i

Ei P M−1P ′E ′
i

))

= σ2

(
T n −T −n − trM−1X ′X − tr

(
M−1

n∑
i=1

σ2

σ2
i

P ′E ′
i Ei P

))

= σ2

(
T n −T −n − trM−1X ′X − tr

(
M−1

n∑
i=1

σ2P ′V −1P

))
= σ2 (

T n −T −n − trM−1 (
X ′X −σ2P ′V −1P

))
= σ2 (T n −T −n − trInT )

= σ2 (T −n) .

�

The moments estimators are obtained by selecting variances σ2 and

σ2
i , i = 1,2, ...,n such that the expected moments E

{
û′û

}
and E

{
v̂ ′

i v̂i
}

, i =
1,2, ...,n are equalized to the estimated moments û′û and v̂ ′

i v̂i , i = 1,2, ...,n.

As both the expected moments and the estimated moments are functions

of the variances, the moments estimators, denoted by σ̂2 and σ̂2
i , i =

1,2, ...,n, respectively, are defined as a fix point of the system

E
{
û′û

} = û′û

E
{

v̂ ′
i v̂i

} = v̂ ′
i v̂i

Alternatively, the moments estimators can be equivalently defined as a

fix point of the system:

E
{

v̂ ′
i v̂i

} = v̂ ′
i v̂i

E
{
Q̂

} = Q̂.
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The implementations Schlicht (2005a, 2005b) use the latter alternative

and proceed as follows. The equation system to be solved is

v̂ ′
i v̂i = (T −1) σ̂2

i − σ̂2trEi P M̂−1P ′E ′
i

1

T −n
Q̂ = σ̂2.

which can be written as

σ̂2
i

σ̂2
=

(
v̂ ′

i v̂i

Q̂
(T −n)− trEi P M̂−1P ′E ′

i

)
1

T −1
(8.6)

σ̂2 = 1

T −n
Q̂. (8.7)

Iteration starts with some variance ratios γi = σ2

σ2
i

. This permits to de-

termine the right-hand sides of equations (8.6) and (8.7). The variance

ratios at the left-hand side of (8.6) and the variance at the left hand side

of (8.7) are used for a new iteration, and this continues until convergence

is reached, delivering the fix-point values γ̂i = σ̂2
i

σ̂2 and σ̂2 and the corre-

sponding variances σ̂2
i = γ̂i σ̂

2.

9. MAXIMUM LIKELIHOOD ESTIMATION OF THE VARIANCES

This section derives a maximum-likelihood estimator for the variances un-

der the additional assumption that the disturbances u and v are normally

distributed.

Using equations (3.2) and (5.9) – (5.13) together with the identity x =
X Z , the concentrated log-likelihood function for the Aitken regression

(5.8) can be written as

L
(
σ2,Σ

)
=−1

2

(
T

(
log2+ logπ

)+ logdetW
)− 1

2
ŵ ′W −1ŵ (9.1)

with

W = X P̃ (IT−1 ⊗Σ) P̃ ′X ′+σ2IT

and

ŵ =
(
IT −X Z

(
Z ′X ′W −1X Z

)−1
Z ′X ′W −1

)
y ,

By maximizing (9.1) with respect to σ2 and Σ, the maximum likelihood es-

timates for the variances are obtained and the corresponding expectation
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for the parameter a is given by (6.3) and its covariance matrix is given by

(7.6).

The maximum likelihood estimator can be characterized in another

way. This will be explained in the following. In order to do so, the following

Lemma is needed.

Claim 4.

logdetW = logdet
(
P MP ′)+ (T −1)

n∑
i=1

logσ2
i −

(T −1)n −T ) logσ2 −2logdet
(
PP ′) . (9.2)

Proof. Note that V = (IT−1 ⊗Σ) and that P̃ = P ′ (PP ′)−1 and write

detW = det
(
X P̃V P̃ ′X ′+σ2IT

)
= (

σ2)T
det

(
1

σ2
X P̃V

1
2 V

1
2 P̃ ′X ′+ IT

)
= (

σ2)T
det

(
1

σ2
V

1
2 P̃ ′X ′X P̃V

1
2 + I(T−1)n

)
= (

σ2)T
det

(
V

1
2

(
1

σ2
P̃ ′X ′X P̃ +V −1

)
V

1
2

)
= (

σ2)T
det

(
V

(
1

σ2

(
PP ′)−1 P X ′X P ′ (PP ′)−1 +V −1

))
= (

σ2)T
det

(
1

σ2
V

(
PP ′)−1 P

(
X ′X +σ2P ′V −1P

)
P ′ (PP ′)−1

)
= (

σ2)T
det

(
1

σ2
V

)
det

(
PP ′)−1 det

(
P MP ′)det

(
PP ′)−1

= (
σ2)T

(
n∏

i=1

σ2
i

σ2

)(T−1)

det
(
PP ′)−2 det

(
P MP ′) .

Hence the result

logdetW = logdet
(
P MP ′)+ (T −1)

n∑
i=1

logσ2
i −

(T −1)n −T ) logσ2 −2logdet
(
PP ′)

is obtained. �
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Claim 5. Minimizing the criterion

CL = logdet
(
P MP ′)+ (T −1)

n∑
i=1

logσ2
i − (T −1)n −T ) logσ2+

+ 1

σ2
û′û + v̂ ′V −1v̂ (9.3)

is equivalent to maximizing the likelihood function (9.1).

Proof. With (9.2) we have

CL+2L
(
σ2,Σ

)
= 1

σ2
û′û+v̂ ′V −1v̂−ŵ ′W −1ŵ+2logdet

(
PP ′)−T

(
log2+ logπ

)
.

As, according to Claim 2, ŵ ′W −1ŵ equals 1
σ2 û′û+v̂ ′V −1v̂ and logdet

(
PP ′)

and T
(
log2+ logπ

)
are independent of the variances, we can write

CL = −2L
(
σ2,Σ

)
+constant

where “constant” is independent of the variances and maximization of L

with regard to the variances is equivalent to minimization of CM . �

10. ANOTHER REPRESENTATION OF THE MOMENTS ESTIMATOR

The relationship between the likelihood estimator and the moments esti-

mator can be elucidated with the aid of a criterion that is very similar to

the likelihood criterion (9.3). This criterion function is

CM

(
σ2, Σ

)
= logdet M + (T −1)

n∑
i=1

logσ2
i −T (n −1)logσ2 +

+ 1

σ2
û′û + v̂ ′V −1v̂ . (10.1)

Claim 6. Minimization of the criterion function (10.1) with respect to the

variances σ2 and Σ yields the moments estimators as defined in (8.3) and

(8.4).

Proof. Note that the envelope theorem together with (8.2) implies

∂

∂σ2

(
1

σ2
û′û + v̂ ′V −1v̂

)
= − 1

σ4
û′û (10.2)

∂

∂σ2
i

(
1

σ2
û′û + v̂ ′V −1v̂

)
= −σ

2

σ4
i

v̂i
′v̂i . (10.3)
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In view of (8.2) we obtain further

∂ logdet M

∂σ2
= tr

(
M−1P ′V −1P

)
. (10.4)

By definition (7.3) we have

M−1 (
X ′X +σ2P ′V −1P

) = I

and hence

M−1P ′V −1P = 1

σ2

(
I −M−1X ′X

)
.

With this, equation (10.4). can be written as

∂ logdet M

∂σ2
= tr

(
1

σ2

(
IT n −M−1X ′X

))
= 1

σ2

(
trIT n − trM−1X ′X

)
= T n

σ2
− 1

σ2
trX M−1X ′.

∂ logdet M

∂σ2
i

= −σ
2

σ4
i

tr
(
M−1P ′E ′

i Ei P
)

and we find

∂CM

∂σ2
= T n

σ2
− 1

σ2
trX M−1X ′.− T (n −1)

σ2
− 1

σ4
û′û = 0 (10.5)

∂CM

∂σ2
i

= −σ
2

σ4
i

trP ′F ′
i Fi P M−1 + (T −1)

1

σ2
i

− σ2

σ4
i

v̂i
′v̂i = 0 (10.6)

which gives

û′û = σ2 (
T −σ2trX M−1X ′)

v̂i
′v̂i = (T −1)σ2

i −σ2trP ′F ′
i Fi P M−1.

These first-order conditions are equivalent to equations (8.3), (8.4) that

define the moments estimator. �

Johannes Ludsteck’s (2004, 2018) Mathematica packages for VC pro-

ceed by minimizing the criterion function (10.1). This permits very clean

23



S C H L I C H T – T I M E - V A R Y I N G C O E F F I C I E N T S

and transparent programming. As Claim 6 is confined to moments and

does not require any assumption about the normality of the disturbances,

Ludsteck’s estimators are moments estimators as well.

11. THE RELATIONSHIP BETWEEN THE LIKELIHOOD AND THE MOMENTS

ESTIMATOR

The likelihood estimates minimize, according to Claim 5, the criterion CL

and the moments estimates minimize, according to Claim 6, the criterion

CM . It is claimed in the following that, for increasing T and bounded X ,

both estimates tend to coincide.

Claim 7. For sufficiently large T and bounded explanatory variables X ,

the following holds true approximately:

detP MP ′ ≈ det M det
(
PP ′) .

Proof. Define the T n ×T n matrix

P =
(

P

T − 1
2 Z ′

)
and consider the matrix PMP′. One way to calculate it is as follows:

PMP′ =
(

P

T − 1
2 Z ′

)
M

(
P ′ T − 1

2 Z
)

=
(

P MP ′ T − 1
2 P M Z

T − 1
2 Z ′MP ′ T −1Z ′Z

)

=
(

P MP ′ T − 1
2 P X ′X Z

T − 1
2 Z ′X ′X P ′ In

)
.
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This implies

detPMP′ = det In det

(
P MP ′− 1

T
P X ′X Z Z ′X ′X P ′

)
= det

(
P MP ′− 1

T
P X ′xx ′X P ′

)
= det

(
P

(
M − 1

T
X ′xx ′X

)
P ′

)
= det

(
P

(
X ′

(
IT − 1

T
xx ′

)
X +σ2P ′V −1P

)
P ′

)
.

For increasing T and bounded x, 1
T xx ′ tends to zero and

(
IT − 1

T xx ′) tends

to IT . Hence logdetPMP′ tends to logdetP MP ′ and we can write

detPMP′ ≈ detP MP ′ (11.1)

for large T . Another way to evaluate det(PMP) is the following:

detPMP′ = det
(
MP′P

)
= det M det

(
P′P

)
= det M det

(
PP′)

As

det
(
PP′) = det

(
PP ′ 0

0 In

)
= det

(
PP ′) ,

detPMP′ = det M det
(
PP ′) (11.2)

is obtained. Combining (11.1) and (11.2) gives the result. �

Claim 8. For increasing T and bounded explanatory variables X , the

moments criterion and the likelihood criterion coincide.

Proof. For large T and in view Claim (7), CM and CL differ by the constant

logdet
(
PP ′)+n. Hence the minimization of both criteria with respect to

the variances will generate the same result. �

In consequence, the descriptive appeal of the moments estimator car-

ries over to the likelihood estimator, and the theoretical appeal of the

likelihood estimator carries over to the moments estimator.
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PART II

NOTES ON THE VC METHOD

The actual workings of the VC method are best illustrated by the appli-

cations found in the literature. Some are listed in Appendix A. As any of

the authors of these studies will be a better judge regarding the practical

performance of the VC method than this author (who is neither an ap-

plied economist, nor an econometrican, nor a statistician) any comments

in this regard from my side appear unwarranted. Further, Schlicht and

Ludsteck (2006) offer Monte-Carlo studies that illustrate the performance

of the VC method from a statistical point of view.

12. AN ILLUSTRATION3

To illustrate the working of VC, assume a model with an intercept term at

and a single explanatory variable xt with coefficient bt :

yt = at +bt xt +ut

Using the simulation tool from Ludsteck (2004; 2018), a time series for

the explanatory variable was generated with xt ∼N (0,100), t = 1,2, ... ,50.

Further it was assumed that ut ∼N (0,0.1), (at −at−1) ∼N (0,0.01), and

(bt −bt−1) ∼N (0,0.001). Typically the optimally computed expectations

of the time paths (calculated by using the true variances) and the VC esti-

mates lie very close together. Figure 12.1 illustrates a somewhat atypical

run with estimated smoothing weights that deviate from the true smooth-

ing weights by the order of five. The optimally estimated time-paths of the

coefficients (based on the true variances) and the estimated time-paths

(based on the estimated coefficients) move together. This illustrates the

general impression that the filtering results, especially the qualitative time-

patterns, are not extremely sensitive with regard to the weights used for

filtering.

It is, obviously, never possible to extract the movement of the true

coefficients from the data, irrespective how long the time series is. (Only

the estimation of the weights will improve with the length of the time

series.) The best that can be done is to estimate the expectations of the

3This is taken from Schlicht and Ludsteck (2006, Sec. 10)
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FIGURE 12.1. Optimally calculated expectations (thin lines)
and VC estimates (thick lines) for intercept (left) and slope (right),
together with the realizations of the coefficients (x) and the VC
confidence bands. The example has been selected to visually
exhibit differences between the true expectations and the VC
estimates; usually the weights are estimated better and the curves
lie quite close together. As the estimated smoothing weights are
considerably smaller than the true weights, the time-paths of the
VC estimates are less smooth than the true expectations (True
weights are γa = 10 and γb = 100, while the estimated weights are
γ̂a = 1.60 and γ̂b = 14.76 here. The true variances are σ2

u = 0.1,
σ2

a = 0.01, andσ2
b = 0.001, the estimated variances are σ̂2

u = 0.040,
σ̂2

a = 0.025, and σ̂2
b = 0.0029.)

coefficients. Given the variances, the VC estimate (which is the mean of

a normally distributed vector) is optimal and cannot be improved upon,

and the standard of comparison must be the estimates obtained with

optimal weights, as in Figure 12.1.

The distribution of the weights in the above setting is illustrated in Fig-

ure 12.2. The time series for x, u, and v have been generated as described

above and the VC moments estimation applied 5000 times. The histogram

illustrates that the estimates cluster around their theoretical values.

13. ARTIFACTS

Suppose that the data have been generated by the standard linear model

(2.2). If this is the case, the VC model is slightly misspecified, because a

correct estimation would require that the variances σ2
1,σ2

2, ... ,σ2
n of the

coefficients are zero and the weights γ1,γ2, ... ,γn – the inverse variance

ratios – are infinite whereas VC implicitly assumes that the weights are
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FIGURE 12.2. Histogram of estimates for the log10 weights. The
theoretical values are log10γa = 1 and log10γb = 2. The distribu-
tion of estimates clusters around this peak. (T = 50, 5000 trials.)

finite. As it appears that the VC estimates with sufficiently large weights γi

are indistinguishable from the OLS estimates, the VC estimation would be

approximately correct if the estimated weights are sufficiently large.4

As VC estimates nearly twice as many parameters as OLS, there is more

room for artifacts in VC. From this point of view, VC ought to be used with

caution, especially if all parameters are permitted to vary over time, rather

just a selected few. To illustrate, consider a linear model yt = a +bxt +ut

with a = 1, b = 2, xt drawn from a Normal distribution with mean zero and

variance 5, and ut normally distributed with mean zero and variance σ2
u =

1. The histogram of the lowest estimated weights is given in Figure 13.1

4The option “keep selected coefficients constant” in Schlicht (2005a) and Schlicht (2005b)
is implemented with σ2

i = 10−10 for those coefficients that are kept constant.
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FIGURE 13.1. Histogram of lowest weights γmin =
min

{
γ1,γ2

}
of VC estimates for a linear model with time-

invariant coefficients. (T = 50, 1000 trials.)
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FIGURE 13.2. VC estimates at the 1% quantile (A) and the
10% quantile (B) of Figure 13.1. The red lines indicate the
OLS estimates of the coefficients. The true coefficients are
1 and 2.

In 99% of the cases, the minimum weight is above 7.97, and in 90% of the

cases, the minimum weight is above 63,9. The corresponding VC estimates

are given in Figure 13.2. In the 1% case, the estimate of the time paths

involve severe artifacts. In the 10% case, artifacts are still pronounced,

but in the majority of cases, VC estimates conform to OLS estimates.

With lower noise (σ2
u = 0.1 rather than σ2

u = 1 in the above example) the

problem of artifacts is significantly reduced. Still the problem has to be

kept in mind when interpreting VC results.
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14. AGGREGATE DATA, PYRRHO’S LEMMA, AND THE VC PHILOSOPHY

Almost all economic models deal with aggregate data. Employment com-

prises women and men, different age groups and various occupations in

sundry industries scattered over many regions. The wage level summa-

rizes the earnings of all these people. Similarly, production comprises a

multitude of goods and services, and the price level is just an index of

thousands of the attached prices. The structures of these aggregates are

not rigid but change over time in response to changing technologies, shift-

ing tastes, and volatile business conditions. To assume that time-invariant

laws govern the interaction of time series of such aggregates seem prepos-

terous to me. Some researchers tried to cope with the problem by using

weighted regression – giving higher weights to more recent observations

(Gilchrist 1967, Rouhiainen 1978). This seems to me to be an inferior

alternative to VC.

The reason for developing VC was my desire to show that a Marshal-

lian view of economics, that involves time-varying structures does not

render quantitative economics impossible. Estimation can be done by

using Kalman filtering, or the VC method described in this paper, or per-

haps other methods. I advocated estimating time-varying structures with

Kalman filtering in Schlicht (1977, Appendix B), but without any resonance.

This puzzled me. Was this really such a bad idea?

Maybe it wasn’t, but the puzzle remains. What were the reasons for the

decade-long resistance to dealing with time-varying coefficients? And why

has this somewhat changed over the past fifteen years?

One reason may have been that structures changing over time cannot

represent the ’true model’ economists were chasing during the heydays of

’dynamic stochastic general equilibrium’ macroeconomics. The existence

of such a ’true model’ was simply postulated (Lucas, 1976, p. 24). I think

that this is, in the context of aggregate models dealing with long-run time

series, a red herring, distracting from considering seriously what aggregate

models represent.5

Another reason, I submit, was the reductionist bent of economists. If a

structure changes over time, this warrants explanation. Hence there was a

5My view if aggregation is outlined in Schlicht (1977), Schlicht (1985), and Schlicht (1990).
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tendency to add additional explanatory variables as ’controls’ in order to

explain the change. While this may be sensible in many cases, it seems,

statistically speaking, a problematic way of dealing with time-varying

coefficients because of the following theorem that has been provided by

Theo Dijkstra (1995, p. 122).

Pyrrho’s Lemma: For every collection of vectors, consist-

ing of observations on a regressand and regressors, it is

possible to get any set of coefficients as well as any set of

predictions with variances as small as one desires, just by

adding one additional vector from a continuum of vectors.

In other words: There exists a time series xn+1 that, if added to the ex-

planatory variables x1,x2, ..., xn in the standard linear model (2.2), will

deliver arbitrarily predetermined coefficients and variances as estimates.

This should make us reluctant to seek to explain too much by inserting

additional controls which, taken together, span an entire set of such ad-

ditional time series. Further, the procedure can generate the mirage of a

’true model’ in cases when such a model actually does not exist. Using VC

reduces the necessity for adding further controls and mitigates, therefore,

Pyrrho’s problem.

Let me add another remark. The VC model (2.4), (2.5) can easily be

generalized in many ways. A possibility would be, for instance, to replace

ai ,t+1 = ai ,t + vi ,t by ai ,t+1 = θi
(
ai ,t − āi

)+ vi ,t . Such generalizations (and

many more) can be handled by Kalman filtering. So why not allow for

more general specifications?

My objection would be that such generalizations would impinge on

the descriptive transparency of the VC method which is, to me, a major

concern – trumping more technical statistical considerations.

An estimation method, such as VC, can be viewed as a filter that seeks

to identify certain patterns in clouds of data. In doing so, such a filter gives

preference to certain patterns rather than others. The patterns preferred

by the VC method are the desiderata underlying the descriptive account

(Section 4). These are that that the coefficients remain as time-invariant
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as possible and that a good fit is obtained. This makes sure that all time-

variance estimated is driven by the data, rather than a preference of the

model, as would be the case in auto-regressive specifications.

Unfortunately the determination of weights used in VC is descriptively

less transparent than the desiderata of stable coefficients and a good fit,

but it carries nevertheless some descriptive meaning; in this regard, at

least, there is room for improvement.
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