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Abstract

Peer effects in innovation adoption decisions have been extensively studied. However,
the underlying mechanisms of peer effects are generally not explicitly accounted for.
Gaps in this knowledge could lead to misestimation of peer effects and inefficient
interventions. This study examined the role of two mechanisms—sharing experiences
(namely, experience effect) and externalities—in the adoption of an agricultural
innovation. By referring to the diffusion process of a new crop in Chinese villages, we
developed a simulation model that incorporated experience effect and externality
effect on a multiplex network. The model allowed us to estimate the influence of each
specific effect and to investigate the interplay of the positive and negative directions of
the effects. The main results of simulation experiments were the following: (1) a
negative externality effect in the system caused the diffusion of innovation to vary
around a middle-level rate, which resulted in a fluctuating diffusion curve rather than a
commonly found S-shaped one; (2) in the case of full diffusion, experience effect
significantly shaped the diffusion process at the early stage, while externality effect
mattered more at the late stage; and (3) network properties (i.e. connectivity,
transitivity, and network distance) imposed indirect influence on diffusion through
specific peer effects. Overall, our study illustrated the need to understand specific
causal mechanisms when studying peer effects. Simulation methods such as
agent-based modelling provide an effective approach to facilitate such understanding.

Keywords: Peer effects, Innovation diffusion, Social network, Agent-based simulation

Background
Social interactions can significantly shape individuals’ economic behaviours. This is espe-
cially true when an individual behaves upon situations with uncertainties. In particular,
an individual’s decision on whether to adopt an innovation (i.e. the idea, practice, or
object that are perceived as new (Rogers 2003)) often depends on the decisions of their
friends, relatives, colleagues, etc. Such social influence is referred to as peer effects. Exist-
ing studies have examined peer effects on the diffusion of innovations in varied settings,
including products and services (Goolsbee and Klenow 1999; Sorensen 2006; Kremer and
Levy 2008; Luan and Neslin 2009), technologies (Munshi 2004; Bandiera and Rasul 2006;
Conley and Udry 2010), financial services (Banerjee et al. 2013), and social programmes
(Dahl et al. 2014). In these studies, many forms of peer effects, including word of mouth
(Luan and Neslin 2009; Banerjee et al. 2013), social learning (Bandiera and Rasul 2006;
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Conley and Udry 2010), and network externalities (Goolsbee and Klenow 1999), are
discussed1.
The work by (Xiong et al. 2016) distinguishes three basic interactions through which

peer effects take place in the diffusion of innovations: transmitting information, sharing
experiences and externalities. They are termed as information effect, experience effect, and
externality effect, respectively. Specifically, information effect refers to the influence of the
transmission of awareness information of the innovation and general information about
the cost and benefit of adopting the innovation. The effect can occur through any relation-
ship ties through which individuals can communicate. Experience effect characterises the
influence that one obtains by sharing experiential knowledge (e.g. know-how, localised
techniques) or physical resources (e.g. seeds of a new crop, tools) from earlier adopters.
Such knowledge and resource are generally scarce at this stage of the diffusion process.
Experience effect thus mainly occurs through close social relationships, such as kinship
or close friendship. In addition, an individual’s adoption behaviour can lead to positive or
negative externalities. They can affect other individuals regardless of whether those indi-
viduals also adopt the innovation. Negative externalities leads to the reduction of payoff
when staying on the original choice, and consequently increases individuals’ propensity
to choosing the innovation, which in turn increases the diffusion in the group, generating
a positive externality effect. Likewise, positive externalities can generate a negative exter-
nality effect. In empirical studies, negative externality effect is rarely considered mainly
due to the difficulty of collecting data. In general, the three effects have significant impacts
on different stages of the diffusion process. Information effect shapes the process mainly
at the early stage, experience effect at the intermediate stage, and externality effect at the
late stage as depicted in Fig. 1.
Peer effects were previously studied either as a composite of different mecha-

nisms or in a specific form (such as social leaning or network externalities). Typi-
cally only one mechanism was considered. However, a diffusion process is very often
shaped by multiple mechanisms simultaneously, and each mechanism could play a
different role at a different phase of the evolution of the process. Different mecha-
nisms may potentially have different policy implications (Carrell et al. 2013; Alcalde
2013). This paper is a theoretical study to examine the roles of multiple peer effects

Fig. 1 Peer effects at different stages of the diffusion process
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in the diffusion of innovations. We have chosen a case of the adoption of a new
crop in rural China to set up our simulation model and to select key experimental
parameters. In this case, all households were well informed of the new crop at the
beginning of the diffusion, and thus, information effect is excluded from our model.
Our model and estimation are therefore focused on experience effect and externality
effect.

Background and data
This paper use the case of the diffusion of a high-value crop (a crop with high eco-
nomic return) in 10 villages in rural China to demonstrate multiple types of peer
effects in the adoption of an innovation. The farmers in these villages traditionally
farmed staple rice and cotton. The new vegetable, Artemisia selengensis (AS), was
introduced into the villages in 2001. To encourage farmers to grow AS, village lead-
ers distributed some seed-stalks to each household for free. This action informed all
households about the new crop. However, as the farmers were not certain about the
profitability of farming a new crop, there were only one or two households in each vil-
lage (the average number of households was 37, with a standard deviation of 14) who
adopted in the first year. These earlier adopters were mainly motivated by the aware-
ness information they obtained. Their adoption behaviour was thus the result of the
information effect.
When other farmers realised that farming the AS was much more profitable, they also

started to farm in subsequent years. However, they encountered difficulty in obtaining
seed-stalks, which can only remain fresh for a few days. It turned out that the only reli-
able source at the time was the earlier adopters in their villages. The seed-stalks were
so scarce at the time that a household could obtain them exclusively from its close rela-
tives. Those who managed to obtain the seed-stalks in a given year then shared them with
other households next year, and so forth. Meanwhile, new adopters were often benefited
by obtaining techniques and tacit knowledge from their relatives and house neighbours
who have adopted earlier. Overall, the sharing of such experiential resources provided
the main motivation for farmers’ adoption in this stage. By 2005, more than 70% of the
households had adopted AS.
When the majority of the households by then had adopted, the non-adopters were put

under some pressure to join in, mainly through the use of irrigation. There was nearly
a half-year period during which both AS and cotton were active on the land. However,
farming AS required much more water than farming cotton. A plot for farming cotton
could thus be over flooded as its adjacent plots were planted with AS. Therefore, house-
holds farming cotton in this situation would be ‘coerced’ into adopting AS. Such adoption
was thus attributed to positive externality effect.
Figure 2 presents adoption rates of the new crop throughout the entire diffusion period.

It shows an S-shaped diffusion curve as many other studies do. This case provides an
excellent demonstration for the study of different types of peer effects in a complete
diffusion process.
The data collected from this case are used to calibrate the parameters in the model.

They include the number of households (i.e. nodes in the social network), charac-
teristics of household (e.g. risk preference) ratio of initial adopters (elaborated in the
“Model parameterisation” section).
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Fig. 2 Diffusion of the new crop in the Chinese villages

Methods andmodel
In this section, we first justify our choice of agent-based modelling for conducting this
study. We then described how agents’ behavioural environment (i.e. the social networks)
and agents’ decision-making are represented in our model. Finally, we present how
parameters in the model are set up.

Agent-based modelling approach

The underlying mechanisms following which peer effects occur in a diffusion process
are generally nuanced and subtle. Empirical analysis is largely restricted because of the
difficulty of data collection. Moreover, traditional approaches such as regression anal-
ysis are not capable to explicitly represent dynamic behavioural mechanisms of such.
Additionally, negative peer effects in diffusions seldom enter researchers’ notice. This
is because failed or incomplete diffusions, which negative effects often end up with, do
not draw much attention. In this study, we conducted a theoretical study following the
agent-based modelling approach. This approach is able to incorporate micro-level adop-
tion mechanisms, individuals’ heterogeneity, and social relationships among individuals
(Kiesling et al. 2012). Particularly for this study, it allows for the incorporation of the nega-
tive externality effect. This approach has been used to examine, for instance, the negative
effects of word of mouth (Goldenberg et al. 2001; Deffuant et al. 2005).
We developed an agent-based model with peer interactions being structured in a mul-

tiplex network, that is, a network consisting of multiple layers, on each of which a type of
relationship is mapped (Arenas et al. 2014). This approach allows us to identify different
peer effects in the system (Bramoulle et al. 2009; Goldsmith-Pinkham and Imbens 2013).
To keep the model simple, we only include two effects: experience and externality. The
development of our model is based on two assumptions.
Assumption 1: Peer effects exist and impose impacts on the diffusion process in the

social system in study.
This assumption is made based on the theoretical analysis above as well as the obser-

vations from the real world. It permits us to circumvent the quagmire of whether peers
affect each other and be focusing on the discussion on how this influence occurs (Guryan
et al. 2008). This assumption is the prerequisite of to the simulation of the impact of peer
effects, though it is often not explicitly stated in literature.
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Assumption 2: Different types of specific peer effect (mainly) occur through different
types of social relationship.
In our study, specific peer effects are distinguished according to the kind of social

interactions through which they take place. It is observed that a particular type of social
interaction tends to mainly take place through a particular type of social relationship (or a
particular set of different types). Therefore, it is plausible that researchers are able to spec-
ify through which type(s) of relationship different specific peer effect occur in a system.
This assumption enables us to model different specific peer effects on different network
layers and examine how the characteristics of a network layer shape the peer effect on
that layer.

Setup of network structure

We took the real-world case described in the “Background and data” section as a reference
to design the simulation. Wemodelled the diffusion of the new crop using an agent-based
model. In the model, the social system (environment) is village, represented as a social
network. The agents were the households in the village, represented as nodes on the social
network. In the villages, the interactions among households that substantially shape the
diffusion mainly occurred through kinship ties, house neighbourhood ties and land plot
neighbourhood ties2.
In the model, a small portion of households are set to have adopted the innovation in

the initial time. They can be considered as those adopted due to the awareness of the
innovation. In other words, our model ignores information effect and focuses on expe-
rience effect and externality effect. According to the previous discussion, we reasonably
assumed that experience effect occurs through kinship ties and house neighbourhood
ties, whereas externality effect occurs through land plot neighbourhood ties. Since the
kinship ties and house neighbourhood ties are highly overlapped in these villages (as the
land for building houses were to large extent allocated based on extended family, house
neighbours are often family members), we term the network consists of the two types of
ties as kinship network for the sake of simplicity. The network consists of land plot neigh-
bourhood ties is thus termed as neighbourhood network. The social network on which
the peer effects occur are structured thus has two layers: the kinship network layer and
the neighbourhood network layer, as demonstrated in Fig. 3.
We then simulated the kinship network as a Watts-Strogatz (WS) small-world network

(Watts and Strogatz 1998) and simulated the neighbourhood network as an Erdös-Rényi
(ER) random network (Erdős and Rényi 1959). These settings are reasonable. First, the
kinship networks in these villages are very similar to small-world networks according
the empirical study (Xiong and Payne 2017) and this finding echoes the classic theory
of ‘acquaintance society’ on the structure of traditional Chinese structure. Second, the
land plot neighbourhood networks are close to random networks according to the same
empirical study. This is the case because the plots were originally distributed by lot.
The parameters defining the network structures were roughly calibrated according to the
network characteristics of the villages in our real-world case.

Simulation of agents’ decision-making

Two approaches are widely utilised to describe diffusion in social groups. One is a
probability-based approach (e.g. (Banerjee et al. 2013; Peres 2014)), where individuals’
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Fig. 3 A two-layer multiplex network

probability of adopting the innovation increases as the fraction of peers that adopt
increase. The other is a threshold-based approach (e.g. (Granovetter 1978; Singh et al.
2013)), where individuals change their adoption state when a certain threshold of utility is
reached. In the case of this study, on the kinship network, the more an individual’s peers
have adopted the new crop, the more likely that the individual gains information and thus
follow suit. We therefore simulated experience effect on the kinship network following
the probability-based approach. The probability for an individual to adopt is proportional
to the fraction of his family members who have adopted. Meanwhile, the externalities of
planting the new crop are mainly determined by the nature of the crop itself, such as its
compatibility with the existing crop. This can be viewed as a threshold that all practi-
tioners face. Once the fraction of one’s neighbours who adopt reaches the threshold, an
individual will adopt for sure. Thus, the externality effect occurring on the neighbourhood
network is modelled using a threshold.
Suppose there areN nodes in the network, i.e. on each of the two layers. On the kinship

network, node (household) i chooses to adopt the innovation with a probability pi. The
probability is determined by the fraction of his adopting peers f kini as well as his risk pref-
erence (a representative of the individual’s personal characteristics) xi ∈ (0, 1). Therefore,
pi = θ f kini xi, where θ ∈ (0, 1) is a coefficient indicating the degree of information effect
(namely information coefficient). On the neighbourhood network, household i changes
his adoption state when the fractions of his adopting neighbours f geoi reaches a unified
adoption threshold (namely externality threshold, denoted by δ), which is determined by
the characteristics of the new crop. When the threshold is reached, in the scenario of the
positive externality effect, the non-adopters switch to adopting state; in the scenario of
negative externality effect, the adopters change back to non-adopting.
A household has two adoption status: adopting or non-adopting. We track households’

adoption states and the ratio of adopting households (namely the adoption rate) at the
village level. The basic algorithm of the simulation is as follows:
(i) Initial time t = 0
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A fraction λ of seed adopters is selected from the population of the households at
random. Meanwhile, their adoption states are set to be adopting.

(ii) Iteration at time t,
Households update their state through kinship ties and neighbourhood ties
simultaneously.

(a) Updating on the kinship network
The non-adopters adopt with probability pit = θ f kinit xi.

(b) Updating on the neighbourhood network
In the scenario of positive externality effect, non-adopting household i
transmits to adopting state once the fraction of his adopting neighbours
reaches the externality threshold, i.e. f geoit > δ.
In the case of negative externality effect, adopting household i transmits to
non-adopting state once the fraction of his adopting neighbours reaches the
externality threshold, i.e. f geoit > δ.

The two updating mechanisms occur simultaneously in reality, so we set the order to be
random when updating on the two layers in the model. The process repeats until any of
the following termination rules is satisfied: (i) the adoption rate is lower than 5% (which is
the lowest ratio of seed adopters), (ii) the adoption rate is higher than 95% (i.e. complete
diffusion), and (iii) it iterates for 20 times—this is sufficient for the system to converge in
most cases (both in the simulation and in the real world).

Model parameterisation

The parameters in the simulation model are set using the survey data from the 10
reference villages. Parameter values are set to the mean estimates from the data. The
parameters were set up as follows:

• Number of nodes (the population) N ∈ [ 20 : 20 : 80]
• Fraction of rewiring nodes in the generation of WS small-world networks

WSf ∈ {0.05, 0.s, 0.15}
• Rewiring probability in the generation of ER random networks

ERprob ∈ {0.10, 0.15, 0.20}
• Experience coefficient θ ∈ [ 0.05 : 0.05 : 0.25]
• Externality threshold δ ∈ [ 0.6 : 0.05 : 0.80]
• Ratio of seed adopters s ∈ [ 0.05 : 0.05 : 0.20]
• Risk preference of household i, xi. The value is generated as a positive random

number with normal distribution (mean 1 and standard deviation 0.3; truncated to 0
and 2 for values less than 0 and greater than 2 respectively).

We run each parameter combination 100 times. There are 3600 (full factorial) combina-
tions in total, and the model runs each of these combinations 100 times. Finally, 360,000
sets of simulation results were generated.

Results and discussion
Convergence adoption rates and diffusion curves

Scenario of positive externality effect

Convergence adoption rates. The densities of convergence adoption rates and conver-
gence rounds are presented in Fig. 4. The left panel shows that approximately 85% of the
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runs converge to full adoption (that is, as we defined, more than 90% of the population
have adopted) within 20 iterations. It means that most individuals adopt eventually. The
right panel indicates how many rounds it takes for the runs to converge. More than 40%
of the runs converge in five rounds. The density decreases with the number of rounds3.
In this scenario, both the two diffusion mechanisms are positive feedback mechanisms,
so it is very likely that the system will converge to complete diffusion.

S-shaped diffusion curves. The S-shaped adoption curve is a typical pattern of the dif-
fusion. It holds because most innovations bear the following feature: The adoption rate
grows slowly at the beginning of the diffusion process. When the diffusion reaches the
critical mass, it will have a sharp increase. After that, it will slowly approach complete
diffusion. The variance lies in the slope of the curve. The innovations diffusing rapidly
generate steep curves, whereas those diffusing slowly generate flat curves. Our simula-
tions successfully generate S-shaped diffusion curves. Figure 5 displays the curves for
the diffusions converge at the sixth round, and the ratio of seed adopters is 0.05 and 0.1,
respectively4.

Scenario of negative externality effect

Convergence adoption rates. The diffusion converges to diverse adoption rates in this
scenario. As shown in Fig. 6, nearly 70% of the simulations converge to an adoption rates
between 40 and 80%. Specifically, more than 25% converge to a value in the interval of
50−60% and more than 25% converge to a value between 60 and 70%. Only about 5% end
up with full adoption. More than 90% of the simulations converged within 20 rounds.
When a negative effect is introduced, the diffusion curve dramatically changes its shape.

Converging to full adoption is not a certain outcome any more. At which adoption rate
the diffusion will converge depends on the competition between the positive effect and
the negative effect. This result provides an interpretation of the incomplete diffusion phe-
nomena in the real world. For instance, in the case of mircofinance (Banerjee et al. 2013),
the average take-up rate is 18.5% over all rural communities that were studied. Most inno-
vations end up with not been taken up by all potential adopters in the social group. New
fashionable clothes can be a typical example. When they go from high fashion to street

Fig. 4 Histograms of convergence adoption rates and convergence rounds (positive externality effect)
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Fig. 5 S-shaped diffusion curves (convergence round = 6)

fashion, they are not considered fashionable any more, and thus become less attractive.
This negative effect leads the diffusion to converge before reaching full adoption.

Fluctuating diffusion curves. Figure 7 displays the diffusion curves for the simulations
that converge, again, at the sixth round with the ratios of seed adopters 0.05 and 0.1,
respectively. To exhibit the trends of the curves, the adoption rates after the convergence
are also plotted. The graph shows that the diffusion curves fluctuate around a value in the
middle of 0 and 1 (approximately 0.6 in our case). The specific convergence value depends
on the relative strength of the two opposite effects in the diffusion process.
Overall, when all specific diffusion mechanisms in the system are in favour of diffusion,

the system will almost always converge to complete diffusion, and an S-shaped diffusion
curve will be generated. When there is a negative mechanism, it reshapes the diffusion to
fluctuate around a middle-level rate, hence generating fluctuating diffusion curves.

Experience effect and externality effect

We explore how experience effect and externality effect influence the effectiveness of dif-
fusion, which is measured by the reach of the diffusion and its speed. The two measures
are both related to adoption rate, the fraction of households that have adopted at a round

Fig. 6 Histograms of convergence adoption rates and convergence rounds (negative externality effect)
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Fig. 7 Fluctuating diffusion curves (convergence round = 6)

to the whole population. Specifically, convergence adoption rate, reflecting the reach of
the diffusion, is defined as the adoption rate at which the diffusion converges. Diffusion
speed is defined as the increase of the adoption rate per round, or namely, the expression
of the adoption rate achieved by the number of rounds to achieve it5. However, the two
metrics cannot be both used in positive and negative externality effect at the same time.
When the externality effect is positive, the diffusion almost always converges to 100%, so
the convergence adoption rate is not a feasible metric. Likewise, the diffusion speed does
not apply when the externality effect is negative because the adoption rate oscillates over
the diffusion process, but we can use convergence speed (how fast the diffusion process
converges) as a substitute. It is the quotient of convergence adoption rate by the number of
rounds it takes to achieve the rate. Therefore, the diffusion speed is used in the scenario of
positive externality effect, whereas the convergence adoption rate and convergence speed
are employed in the scenario of negative externality effect.
In the model, the experience effect and the externality effect are reflected by the experi-

ence coefficient and the externality threshold, respectively. Higher experience coefficient
indicates higher experience effect, whereas higher externality threshold indicates lower
externality effect. To estimate their impact on the effectiveness of diffusion, we run a
multivariate regression using the following equation:

y = α0 + α1θ + α2δ + α3s + W ′α4 + ε (1)

where y is the diffusion speed (in the scenario of positive externality effect) or the con-
vergence adoption rate (in the scenario of negative externality effect), θ is the experience
coefficient, δ is the externality threshold, s is the ratio of initial seed adopters, and W ′

is the network characteristic controls, including number of nodes N, parameters used in
generating ER network (i.e. rewiring probability ERprob), and WS network (i.e. fraction of
rewiring nodesWSf ).
We note that the traditional null hypothesis test is not well suited for simulation stud-

ies because with a sufficient number of simulated trajectories one can make the p value
arbitrarily small (Heard et al. 2014). Thus, we conduct a traditional minimum-effect test.
We test that the difference is bigger than an a priori defined minimal meaningful effect
(MME). Parameter values significantly smaller than theMME signify no effect. Parameter
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values significantly large than MME signify significant difference, and when the statisti-
cal significance is not achieved, it signifies that no conclusion could be made given the
data. Under such paradigm, the increase in the number of simulations will increase the
precision and reduce the p values but will not produce artificially significant small-effect
sizes (Wellek 2010). Such approach is also the basis for a classic power analysis, which
requires to explicitly define a minimally meaningful effect size. In our study, we have
selected the MME to be 0.1 standard deviation. Our judgement on the significance of
estimated values in the regression results in this study are based on the minimum-effect
test (whether they are significantly larger than the minimal effect defined as 0.1 of the
standard deviation).

Scenario of positive externality effect

We regress the diffusion speed when the adoption rate reaches 30%, 40%, up to 90%.
Table 1 presents the results6. First, all the estimated values were significantly larger
than the minimal effect defined as 0.1 of the standard deviation. Specifically, both the
experience coefficient and the externality threshold in the simulation are highly sig-
nificantly associated with the diffusion speeds, and the signs are in accordance with
expectations. This indicates that they both impose a significant influence on the diffu-
sion. More importantly, we found the influence of the experience effect wanes as the
adoption rate increases (i.e. the diffusion process), while the influence of the exter-
nality effect continuously grows. At the earlier stage, the adopters are few, so only a
small number of households can reach the externality thresholds. Consequently, the
externality effect has a limited impact on the diffusion. Meanwhile, the experience
effect, which is continuous and steady, has a major contribution. At the later stage,
there are more adopters; thus, more households can reach the externality thresh-
old. Externality effect, therefore, become relatively higher. However, this could under-
mine the influence of experience effect, because the two effects can substitute each
other—a household can make the adoption decision because of either experience effect
or externality effect. Such a substitution effect becomes larger as the adoption rate
increases.

Scenario of negative externality effect

We run the regression also using Eq. (1). The same explanatory variables as in the scenario
of positive externality effect (the experience coefficient, the externality threshold, the ratio

Table 1 Regressions of adoption speed at different diffusion levels (positive externality effect)

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

(30%)∗ (40%) (50%) (60%) (70%) (80%) (90%)

(Intercept) − 0.53 − 0.50 − 0.47 − 0.45 − 0.43 − 0.32 − 0.32

Number of households 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Ratio of seed adopters 0.90 0.84 0.81 0.80 0.78 0.57 0.57

Experience coefficient 2.04 2.02 2.01 1.99 1.94 1.54 1.54

Externality threshold − 0.18 − 0.21 − 0.23 − 0.25 − 0.26 − 0.28 − 0.28

% of neighbours to connect in WS 3.23 3.24 3.23 3.21 3.16 2.53 2.53

Rewiring probability in ER − 0.15 − 0.14 − 0.12 − 0.10 − 0.08 0.09 0.09

R2 0.75 0.78 0.80 0.80 0.80 0.72 0.72
∗The adoption rate level for diffusion speed in the present regression. This is the same for Tables 4, 5, and 6
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of initial seed adopters, and the network characteristics) are employed. They are regressed
against two response variables, the convergence adoption rate (model 1 in Table 2) and
the convergence speed (model 2 in Table 2). The results show that both the experience
effect and the externality effect are significantly correlated to these response variables
with expected signs, suggesting that they both have significant impacts on diffusion7.

Network characteristics and peer effects

The diffusion of innovation is usually influenced by the structure of the network in
which it takes place (Peres 2014). We measure the structure of the networks used in our
simulation using three metrics: average degree, clustering coefficient, and average path
length. They are chosen because they reflect different aspects of the characteristics of a
network: average degree indicates how connected the network is (i.e. the connectivity);
clustering coefficient measures how clustered the nodes are and thus how well the infor-
mation can transmit (i.e. the transitivity); and average path length represents how many
intermediaries it needs for one node to reach another (i.e. the network distance).
To estimate the impact of these network topological metrics on the corresponding net-

work layer, we introduce a interaction term into the regressions. The interaction term is
generated by multiplying the experience coefficient or the externality threshold by each of
the topological metrics on the corresponding network layer. The interaction effect can be
interpreted from the regression coefficients of the interaction terms. As different topolog-
ical metrics and the network generation parameters are highly correlated with each other
(as presented in Table 3 for the scenario of positive externality effect, and those for the sce-
nario of negative externality effect are similar), we run the regression for each topological
metric separately (and drop the network generation parameters served as controls).
The resultant regression equation is the following:

y = β0 + β1θ + β2δ + β3Net_char + β4Inter_term + β5s + ε (2)

whereNet_char denotes the vector of topological metrics on the kinship network and the
neighbourhood network, respectively, and Inter_term denotes the vector of interaction
terms. The interaction term is the product of a topological metric and the corresponding
peer effect indicator occurring on the network. For instance, the interaction term of aver-
age degree and peer effect on kinship network is (average degree of kinship network)× θ .
One topological metric is run for each regression. As there are two scenarios, the
regression runs in a total of 6 times (3 × 2).

Table 2 Regressions of convergence adoption rate and convergence speed (negative externality
effect)

Model 1 Model 2

(Conv. Adp. rate) (Conv. speed)

(Intercept) 0.90 − 0.31

Number of households 0.00 0.01

Ratio of seed adopters 0.17 0.57

Experience coefficient 0.19 1.53

Externality threshold − 0.05 − 0.28

% of neighbours to connect in WS 0.39 2.53

Rewiring probability in ER − 0.02 0.06

R2 0.11 0.72
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Table 3 Correlations between network characteristics (positive externality effect)

(Var 1) (Var 2) (Var 3) (Var 4) (Var 5) (Var 6) (Var 7) (Var 8)

WSf 1

Avg. Dg. of Kin. 0.65 1

Clu. Coef. of Kin. 0.83 0.69 1

APL of Kin. − 0.73 − 0.64 − 0.86 1

ERprob 1

Avg. Dg. of Nei. 0.49 1

Clu. Coef. of Nei. 0.71 0.43 1

APL of Nei. − 0.65 − 0.76 − 0.58 1

Scenario of positive externality effect

As discussed previously, we use the diffusion speed as the response variable in the regres-
sions. Results for average degree, clustering coefficient, and average path length are
displayed in Tables 4, 5, and 6, respectively.
First, the coefficients of all the interaction terms with the three metrics are signifi-

cant, indicating that interaction effects do exist. Specifically, average degree significantly
enhances both the experience effect and the externality effect, that is, with the increase
of average degree, their impacts on diffusion speed grow. As the system proceeds to
a higher diffusion level, the interaction effect on the experience effect shrinks, while
that on the externality effect grows. The degree of clustering also strengthens these two
effects, although the influence is not significant for the externality effect when the dif-
fusion is at the early stage. As the overall adoption rate grows, it turns significant and
becomes stronger, while the influence for the experience effect falls gradually. The dis-
tance between households also significantly affects the performance of the two effects, but
in an opposite direction (i.e. a lower distance corresponds to a higher experience effect
or externality effect and vice versa). Comparing the three metrics, the clustering coeffi-
cient produces a much higher impact (while it is significant) than the others, whereas the
average degree and the average path length have a weak influence. In other words, the
transitivity of the network matters more than the connectivity and the distance in shaping
peer effects.

Table 4 Regressions of adoption speed on average degree (positive externality effect)

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

(30%) (40%) (50%) (60%) (70%) (80%) (90%)

(Intercept) − 0.07 − 0.05 − 0.04 − 0.03 − 0.01 0.02 0.02

Number of households − 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Ratio of seed adopters 0.90 0.84 0.81 0.80 0.78 0.57 0.57

Experience coefficient (Var 1) 0.87 0.99 1.07 1.08 1.02 0.74 0.74

Externality threshold (Var 2) − 0.16 − 0.19 − 0.21 − 0.23 − 0.23 − 0.22 − 0.22

Average degree of Kin. (Var 3) 0.01 0.01 0.02 0.02 0.01 0.01 0.01

Average degree of Nei. (Var 4) − 0.00 0.00 0.00 0.00 0.00 0.01 0.01

Var 1 × Var 3 0.12 0.10 0.10 0.09 0.09 0.08 0.08

Var 2 × Var 4 − 0.01 − 0.00 − 0.00 − 0.00 − 0.00 − 0.01 − 0.01

R2 0.80 0.81 0.82 0.82 0.82 0.75 0.75
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Table 5 Regressions of adoption speed on clustering coefficient (positive externality effect)

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

(30%) (40%) (50%) (60%) (70%) (80%) (90%)

(Intercept) − 0.17 − 0.17 − 0.17 − 0.16 − 0.15 − 0.08 − 0.08

Number of households 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Ratio of seed adopters 0.91 0.84 0.81 0.80 0.78 0.57 0.57

Experience coefficient (Var 1) 0.21 0.35 0.43 0.45 0.41 0.31 0.31

Externality threshold (Var 2) − 0.18 − 0.20 − 0.21 − 0.22 − 0.23 − 0.25 − 0.25

Clustering coefficient of Kin. (Var 3) 0.12 0.22 0.29 0.31 0.30 0.24 0.24

Clustering coefficient of Nei. (Var 4) − 0.10 − 0.03 0.04 0.07 0.12 0.22 0.22

Var 1 × Var 3 7.06 6.47 6.10 5.9 5.80 4.77 4.77

Var 2 × Var 4 − 0.00 − 0.08 − 0.16 − 0.20 − 0.24 − 0.25 − 0.25

R2 0.70 0.72 0.74 0.75 0.75 0.68 0.68

Scenario of negative externality effect

In the scenario of negative externality effect, the converged adoption rate and the speed
of convergence are used as response variables to run regression using the Eq. (2). Results
are presented in Table 7 (average degree), Table 8 (clustering coefficient), and Table 9
(average path length).
We also found that interaction effects with all the three metrics are significant. Specifi-

cally, on the kinship network, average degree undermines the impact of experience effect
on the converged adoption rate, but enhances its impact on convergence speed. On the
neighbourhood network, the average degree enlarges the impact of externality effect on
converged adoption rate, but dilutes its impact on convergence speed. Interaction effects
with clustering and distance between households are more prominent. On the kinship
network, the interaction effect largely reduces the impact of experience effect on the
converged adoption rate and raises it on diffusion speed, thus contributing to a reduced
converged adoption rate and helping speed up the convergence of the system. On the
neighbourhood network, interaction effect amplifies the impact of externality effect on
converged adoption rate and largely reduces that on diffusion speed, which leads the
adoption rate to converge to a lower value but at a higher speed. The interaction effect
with average path length follows the same pattern but in an opposite direction. The
shorter path length is generally associated with lower converged adoption rate and higher

Table 6 Regressions of adoption speed on average path length (positive externality effect)

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

(30%) (40%) (50%) (60%) (70%) (80%) (90%)

(Intercept) − 0.18 − 0.08 − 0.01 0.03 0.06 0.23 0.23

Number of households 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Ratio of seed adopters 0.90 0.84 0.81 0.80 0.79 0.57 0.57

Experience coefficient (Var 1) 4.29 4.11 3.99 3.91 3.84 3.05 3.05

Externality threshold (Var 2) − 0.25 − 0.30 − 0.34 − 0.36 − 0.39 − 0.50 − 0.50

APL of Kin. (Var 3) 0.01 − 0.01 − 0.02 − 0.02 − 0.02 − 0.02 − 0.02

APL of Nei. (Var 4) 0.00 − 0.01 − 0.02 − 0.02 − 0.03 − 0.07 − 0.07

Var 1 × Var 3 − 1.01 − 0.94 − 0.89 − 0.87 − 0.85 − 0.68 -0.68

Var 2 × Var 4 0.03 0.04 0.05 0.05 0.06 0.09 0.09

R2 0.67 0.69 0.71 0.72 0.72 0.65 0.65
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Table 7 Regressions of convergence adoption rate and convergence speed on average degree
(negative externality effect)

Model 1 Model 2

(Conv. Adp. rate) (Conv. speed)

(Intercept) 0.85 0.08

Number of households 0.00 0.00

Ratio of seed adopters 0.50 0.34

Experience coefficient (Var 1) 0.50 0.90

Externality threshold (Var 2) − 0.05 − 0.28

Average degree of Kin. (Var 3) 0.01 0.02

Average degree of Nei. (Var 4) 0.01 − 0.01

Var 1 × Var 3 − 0.03 0.02

Var 2 × Var 4 − 0.04 0.09

R2 0.11 0.74

diffusion speed. Overall, these results suggest that stronger connectivity, higher transitiv-
ity, or shorter distance shape the peer effects in a way that the system converges at a lower
adoption rate and more speedily.

Conclusions
This study distinguishes three basic underlying mechanisms through which peer effects
in the diffusion of innovation occur: information transmission, experience sharing, and
externalities. Correspondingly, peer effects are classified as information effect, experience
effect, and externality effect. In the case of diffusion of a rural innovation, we found that
each of the three effects played a dominant role at the early, intermediate, and late stages,
respectively. Peer effects can be better understood by investigating the specific effects and
their roles at different stages of the dynamic diffusion process.
By referring to the diffusion process of a rural innovation in the real world, we devel-

oped an agent-based model that incorporates experience and externality effects on a
multiplex network. The model allows us to estimate the influence of each specific effect
and investigate the interplay of positive and negative effect. In particular, we examined
how experience effect and externality effect shape the diffusion jointly. By conducting
experiments using the model, we obtained several findings. First, our model successfully
replicates the widely acknowledged S-shaped diffusion curve in the scenario of positive

Table 8 Regressions of convergence adoption rate and convergence speed on clustering coefficient
(negative externality effect)

Model 1 Model 2

(Conv. Adp. rate) (Conv. speed)

(Intercept) 0.78 − 0.18

Number of households 0.00 0.00

Ratio of seed adopters 1.02 0.24

Experience coefficient (Var 1) 0.20 1.43

Externality threshold (Var 2) − 0.05 − 0.28

Clustering coefficient of Kin. (Var 3) 0.66 0.79

Clustering coefficient of Nei. (Var 4) 0.00 − 0.08

Var 1 × Var 3 − 3.29 1.29

Var 2 × Var 4 − 0.10 0.72

R2 0.18 0.66
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Table 9 Regressions of convergence adoption rate and convergence speed on average path length
(negative externality effect)

Model 1 Model 2

(Conv. Adp. rate) (Conv. speed)

(Intercept) 1.28 0.04

Number of households 0.00 0.00

Ratio of seed adopters − 0.98 0.97

Experience coefficient (Var 1) − 0.44 2.87

Externality threshold (Var 2) − 0.05 − 0.28

APL. of Kin. (Var 3) − 0.10 − 0.10

APL. of Nei. (Var 4) − 0.04 0.08

Var 1 × Var 3 0.52 − 0.18

Var 2 × Var 4 0.28 − 0.59

R2 0.22 0.63

externality effect. This finding is consistent with the pattern argued in the theory of diffu-
sion of innovations (Rogers 2003). However, when there is a negative effect in the system
(the negative externality effect, in our case), the diffusion will vibrate around a middle-
level rate between 0 and 100%. Accordingly, the diffusion curve will be a fluctuating one.
This curve demonstrates the trajectory of the interplay of opposite effects. In reality, many
innovations do not end up being adopted by the whole population of potential adopters.
This could be accounted for by the existence of negative effects. However, the role of
negative effects is usually left undiscussed in literature.
Second, our simulation results show that experience effect has a relatively higher influ-

ence on diffusion at the earlier stage, whereas externality effect dominates at the later
stage in the scenario of positive externality effect. Along with the findings regarding the
information effect we learnt in the real-world case, it is likely to be true that each of
the three effects plays a dominant role at a different stage of a complete diffusion pro-
cess, one after another. This pattern is not found in the scenario of negative externality
effect, although both influences are still significant. This is perhaps due to the fact that
the opposite effects can offset each other in the diffusion process, which leaves the feature
associated with the strength of the effects inconspicuous. In general, the result suggests
that a diffusion process should be examined from a dynamic perspective, and the influ-
ence of each specific peer effect needs to be estimated by the period in the diffusion
process. Although a couple of attempts to distinguishing mechanisms underlying peer
effects can be found (Banerjee et al. 2013; Bursztyn et al. 2014), none of them examines
the mechanisms at different periods of the diffusion process.
Third, we found that network properties of connectivity, transitivity, and network dis-

tance can indirectly influence diffusion through the specific peer effect that occurs on
the network. Specifically, in the scenario of positive externality effect, both experience
effect and externality effect are generally enhanced in networks that are well connected,
highly transitive, and with low distance between individuals. The effectiveness of the dif-
fusion is thus improved. These findings are in line with existing studies (Janssen and Jager
2003; Laciana et al. 2013; Peres 2014). However, we find no studies considering the nega-
tive effect. In the case of negative effect, our work shows that these characteristics shape
the two effects in a way that helps speed up diffusion, but tends to lower the coverage it
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could reach. These together suggest that each specific peer effect is reshaped by the struc-
ture of the network where it occurs. This could further influence the effectiveness of the
diffusion.
Overall, our study shows that it needs to delve into the specific underlying causal mech-

anisms when we study peer effects. The influence of each underlying mechanism varies
by the stages of the diffusion process and by the topological characteristics of the underly-
ing network. In addition, the negative effect, if exists, should be taken into account. It can
substantially modify how the diffusion proceeds and its outcome. Our study also suggests
that it could be an effective approach to investigate specific peer effects by conducting
simulation on social networks.

Endnotes
1 Refer to Xiong et al. (2016) for a detailed survey.
2 This is what is found in the empirical study. Refer to Xiong and Payne (2017) for a

detailed discussion.
3 The density at the 20th round is as high as over 15% because it also contains the cases

that take more than 20 rounds to converge and those do not converges to full adoption.
4 To have a better visualisation, we average the adoption rates over repetitive runs. The

speed at which the adoption rate grows varies significantly over different settings, so a fat
midsection of the integrated graph is observed when plotting all the curves in one frame
of axes.

5 To measure the number of rounds over all runs with a unified standard, we split the
values of adoption rate into 10 diffusion bins. The values higher than 10% and less than
20% are in the 10% bin, those higher than 20% and less than 30% are in the 20% bin,
and so on, up to the 90% bin. For instance, it takes 4 rounds for the diffusion to first
achieve the diffusion level of, say, 58%. The actual adoption rate at the 4th round is 58%.
Suppose the seed ratio is 10%, then the growth rate for the system to achieve 50% diffu-
sion in this setting is (58% − 10%)/4 = 12%. There are cases that the diffusion speed is
the same for several diffusion bins. For instance, suppose the adoption rate jumps from
34 to 66% at the fourth round, and the seed ratio is 10%, the diffusion speed for the
30% bin is thus (34% − 10%)/3 = 8%, and that for the 40%, 50%, and 60% bins are all
(66% − 10%)/4 = 14%.

6All effect sizes reported in the table were significantly larger than theminimally mean-
ingful effect of 0.1 standard deviations. This is the same for all the following tables that
report regression results.

7 The quality of fit for the models using convergence adoption rate as the response vari-
able (model 1 in Table 2, 7, 8, and 9) is low. Other factors or non-linear structures could
provide a better model fit. However, in here, we have focused on specific models, and the
exploration of the best fitted models is beyond the scope of the study.
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