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FINANCIAL ECONOMICS | RESEARCH ARTICLE

Expected lifetime range ratio to find mean
reversion: Evidence from Indian stock market
Muneer Shaik1* and S. Maheswaran1

Abstract: We use the expected lifetime range (ELR) ratio based on the extreme
values of asset prices to detect the presence of mean reversion in stock returns. We
find that the actual cross-sectional average of the ELR ratio is significantly less than
its bootstrap means, thereby indicating a considerable amount of mean reversion.
We argue that ELR ratio is more conclusive in detecting mean reversion when
compared to the traditional Lo and MacKinlay variance ratio variance ratio. On the
empirical side, we find that mean reversion is a robust feature among the consti-
tuents of India’s BSE SENSEX stock index.
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Keywords: mean reversion; extreme value estimators; expected lifetime range ratio; Lo
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JEL classification: C12; C15; C58; G10

1. Introduction
It is well established in financial time series literature, that if stock prices follow the random walk
behavior, one cannot predict future stock returns based on the history of past returns. On the other
hand, if the stock prices follow mean reverting behavior, it is possible to at least partially predict
future returns based on the past returns as any shock to stock prices has a temporary component
and there exists a tendency for the price series to return to its trend or path over time. Hence, it
becomes important to understand the behavior of the stock price movements, i.e., whether the
stock prices follow random walk or mean reversion. In this article, we contribute to the literature

ABOUT THE AUTHOR
Muneer Shaik is a Faculty Associate at Institute
for Financial Management and Research (IFMR),
Chennai India. He holds PhD in finance at IFMR.
He worked with J.P.Morgan in a managerial
position in the equity and fixed income depart-
ment. He has participated and presented his
research papers at multiple conferences both in
India and abroad. Some of his research papers
have won the best paper awards. His research
interests mainly include in the areas of volatility
modeling, financial econometrics, and market
efficiency.

PUBLIC INTEREST STATEMENT
Suppose, if stock prices move randomly over a
period of time, then it becomes impossible for an
informed or uninformed investor to predict the
future price of an asset. However, if the stock
prices follow mean reversion, then it becomes at
least partially possible for an investor to predict
the future price of an asset based on the move-
ment of the past prices over a period of time.
Hence, it becomes essential for any investor to
understand the movement of the stock prices
over a period of time. That is, an investor can
make better investment in asset markets if he
knows whether stock prices are moving randomly
or having mean reverting behavior. In this
research article, we come up with a model which
captures the mean reverting behavior in a stock
market in a much better way when compared to
the existing model in the literature.

Shaik & Maheswaran, Cogent Economics & Finance (2018), 6: 1475926
https://doi.org/10.1080/23322039.2018.1475926

© 2018 The Author(s). This open access article is distributed under a Creative Commons
Attribution (CC-BY) 4.0 license.

Received: 8 November 2017
Accepted: 3 May 2018
First Published: 16 May 2018

*Corresponding author: Muneer Shaik,
Finance Department, Institute for
Financial Management and Research
(IFMR), No: 24, Kothari Road,
Nungambakkam, Chennai 600034,
India
E-mail: muneer.shaik@ifmr.ac.in

Reviewing editor: David McMillan,
University of Stirling, UK

Additional information is available at
the end of the article

Page 1 of 23

http://crossmark.crossref.org/dialog/?doi=10.1080/23322039.2018.1475926&domain=pdf&date_stamp=2018-05-16
http://creativecommons.org/licenses/by/4.0/


using the expected lifetime range (ELR) ratio to detect the presence of mean reversion in stock
returns using the extreme values of asset prices unlike the traditional variance ratio tests proposed
by Lo and MacKinlay (1988) which is based on closed prices alone.

Mean reversion in financial markets is credited to overreaction to short-term events which are often
not realized in the long-term. In the literature, one of the earliest observations about overreaction in
markets has been made by Keynes (1936): “The day-to-day variations in the profits of existing invest-
ments, which are obviously of a short-lived and ephemeral nature, have an altogether excessive, and
even an absurd, influence on the market.”Mean reversal or momentum in stock prices is far away from
the efficient market hypothesis, or equivalently that stock prices do not follow randomwalks.

Shiller (1981) concludes that dividends do not rationally explain stock price movements, because
there is excess volatility due to overreaction. The experimental evidence of Tversky and Kahneman
(1981) suggests that subjects tend to overreact to new information in probabilistic judgments. De
Bondt and Thaler (1985) tested the overreaction theory for monthly return data for New York Stock
Exchange (NYSE) common stocks for the period between January 1926 and December 1982 and
found that the overreaction effect is asymmetric: it is much larger for losers than for winners. That
is, in revising their beliefs, individuals overweight recent information and underweight prior data.

It was reported in the survey article (Fama 1970) that most of the studies were unable to reject
the efficient market hypothesis for common stocks. Summers (1986) examines the power of the
statistical tests commonly used to evaluate the efficiency of the speculative markets. The presence
of long memory or mean reversion in stock markets supports the notion of market inefficiency.
Although unit root tests1 are widely used to test the random walk hypothesis2 in the literature,
they suffer from the drawback of having low power against the alternative of mean reversion in
small samples (DeJong, Nankervis, Savin, and Whiteman 1992). Therefore, even the rejection of
random walk hypothesis does not let us interpret that there exists mean reversion.

The other alternative test in the study of the random walk hypothesis is the variance ratio (VR) test.
Poterba and Summers (1988) used VR test to check for mean reverting behavior in stock returns. The
randomwalk hypothesis is strongly rejected for equal-weighted and value-weighted portfolios based on
stocks from NYSE and AMEX for the period 1962–1985 using weekly returns based on the simple
specification test proposedbyLoandMacKinlay (1988). Furthermore, since thevariance ratio fordifferent
holding periods ismore than unity, it cannot be explained by themean reversion property of asset prices.

Lo and MacKinlay (1988) test is based on the assumption that returns are at least identically
distributed, if not normally distributed and the variance of the randomwalk increments in finite
sample is linear in sampling interval. The limitation of LM test is that they are asymptotic tests.
Even though the VR test is quite powerful against homoscedastic or heteroscedastic i.i.d. null
hypothesis as per Smith and Ryoo (2003), the sampling distribution of the VR statistic can be far
from normal in finite samples, showing severe bias and skewness. In relatively small samples, VR
tests can suffer from serious test-size distortions or low power as per Lo and MacKinlay (1989)
using Monte Carlo methods. Other studies in the existing literature on mean reversion in stock
prices include the panel data tests (Chaudhuri andWu, 2004; Narayan and Smyth, 2005; Narayan
and Smyth, 2007; Choi and Chue, 2007), bootstrap tests (Caporale and Gil-Alana, 2002; Mukherji
2011), and tests for nonlinear behavior inmean reversion process (Limand Liew, 2007; Turan et al.
2008).

The recent growth in equity markets and in emerging markets has created much interest in both
practitioners and academics. Emerging markets have seen a huge inflow of capital that increases the
cross-border investment. Some of the articles on emergingmarkets in the literature include theworks of
Harvey (1995), Madhusoodanan (1998), Malliaropulos and Priestley (1999), Chaudhuri and Wu (2004),
Lock (2007), Al-Khazali, Ding, and Pyun (2007), Wang, Zhang, and Zhang (2015), and Neaime.S (2015).
The recentwork byMaheswaran, Balasubramanian, and Yoonus (2011) has found significant evidence of
excess volatility in stock prices in India by way of excessive path dependence.
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In this article, wemake use of the ELR ratio, based on high and low prices, to test for the presence
of mean reversion in the emerging Indian stock market3. What we find is that the cross-sectional
(CS) average of the actual ELR ratio is significantly less than its bootstrapmean, indicating there is
a considerable amount ofmean reversion. Interestingly enough, we also find that the CS average
of the traditional LM statistic proposed by Lo andMacKinlay (1988), based on closing prices alone,
is equal to its bootstrap mean, which would ordinarily be taken to imply that there is no mean
reversion. This is so because the LM statistic has less power to reject the null hypothesis of random
walk and fails to find the evidenceofmean reversion.Wedocument that ELR ratio is superior to LM
statistic in detecting the evidence of mean reversion in the stock markets.

The rest of the article is organized as follows. In Section 2, we explain the ELR ratio and the Lo and
MacKinlay (LM) variance ratio statistic in the MA (1) specification model. In Section 3, we perform
Monte Carlo simulation experiments for different number of steps and MA (1) parameter θ to find
the connection of ELR and LM statistic to mean reversion. In Section 4, we show the empirical
evidence in the data on the presence of mean reversion in the Indian stock market. In Section 5,
we undertake a check on the robustness of our findings by analyzing sub-samples periods from
before and after the global financial crisis of 2008. In Section 6, we conclude the article with a
summary of our main findings.

2. Methodology
Let us define the stock price for n steps as

Sn ¼ x1 þ x2 þ x3 þ . . .þ xn

where S0 ¼ 0 and then xi follow an MA (1) model given by:

xi ¼ �i þ θ�i�1 ; i � 1 ; θj j � 1 (1)

where �i are independently and identically distributed as N (0,1). It is easy to see from Equation (1)
that

EðxiÞ ¼ 0; &

VarðxiÞ ¼ 1þ θ2

Covðxi; xi�1Þ ¼ θ

Therefore, the first order autocorrelation is given by

ρð1Þ ¼ θ

1þ θ2
(2)

Let the normalized series of partial sums for 0 � n � N be given by

~Sn ¼ 1ffiffiffiffi
N

p Sn

By making use of the Functional Central Limit Theorem (FCLT), we can show that, as N gets large,

the sequence f~Sn : 0 � n � Ng converges to the Brownian Motion with zero mean and variance

equal to σ2, where σ2 ¼ ð1þ θÞ2 and θ is the MA (1) parameter.

Now let us make use of the results of Cochrane (1988) and Lo and MacKinlay (1988) to express
the LM variance ratio in terms of autocorrelation coefficients as

LM ¼ Varð~SNÞ
Varðx1Þ ¼ 1þ 2∑N�1

j¼1 ð1� j
NÞρðjÞ

¼ 1þ 2ð1� 1
NÞρð1Þ

¼ ð1þθÞ2
ð1þθ2Þ

(3)
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where ρðjÞ ¼ 0; " j � 2

According to the LM variance ratio statistic, the null hypothesis is that the variance ratio = 1, and
the alternate hypothesis is that variance ratio is not equal to 1.

If the null of random walk is rejected and the variance ratio > 1, then positive first order
autocorrelations do exist in the return series, and hence, variances of returns grow faster than
linearly (mean aversion).

If the null is rejected and variance ratio is < 1, then negative first order correlation is detected in
return series, and hence, variance of returns grow slowly than linearly (mean reversion).

Now let us define the ELR ratio in terms of the first order autocorrelation coefficients.

Let ~Mn be the maximum and ~mn be the minimum of ~Sn, the normalized series of partial sums, for
0 � n � N. Based on the FCLT, we can show that

lim
N!1

Eð~MNÞ ¼ 2ϕð0Þσ

where ϕðzÞ is the standard normal density function. Using the symmetry of Sn, it follows that

Eð~MNÞ ¼ Eð� ~mNÞ

Therefore, the expectation of the normalized N-step range is given by:

lim
N!1

Eð~RNÞ ¼ 4ϕð0Þσ (4)

To find the ELR ratio, we need to consider the base case when N = 1.

If x1 > 0, then M1 ¼ x1;m1 ¼ 0 and so, R1 ¼ x1. Similarly

If x1 < 0, then M1 ¼ 0;m1 ¼ x1 and so, R1 ¼ �x1.

Thus we have,

EðR1Þ ¼ Eð x1j jÞ

Also from Equation (1), we know that x1 ,Nð0;1þ θ2Þ: Therefore, we can write

EðR1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ θ2

p
Eð x1j jÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ θ2

p
( )

where Eð x1j jÞffiffiffiffiffiffiffiffiffi
1þ θ2

p
� �

,Nð0;1Þ:

Using the properties of standard normal density, it can be shown that if Z,Nð0;1Þ then
Eð Zj jÞ ¼ 2ϕð0Þ. Therefore, we have,

Eð~R1Þ ¼ 2ϕð0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ θ2

p
(5)

By combining Equations (4) and (5), we get that

ELR Ratio ¼
lim
N!1

Eð~RNÞ
Eð~R1Þ

¼ 2ð1þ θÞffiffiffiffiffiffiffiffiffi
1þ θ2

p
(6)

Naturally, we are interested in estimating the MA (1) parameter θ based on data. Using the first
order autocorrelation of the close-to-close return and Equation (14), we get that
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ρ ¼ θ

1þ θ2
where θj j � 1 and ρj j � 0:5

which implies that

θ ¼ 1
2ρ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2ρ

2

� 1

s

Since it must be that θj j � 1, the only admissible solution is given by:

θ ¼ x� signðρÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p
(7)

where x ¼ 1
2ρ .

We can show that ELR ratio will be less than its bootmean4 (mean reversion) if and only if the LM
statistic is less than its bootmean (mean reversion) and vice versa, in case of the fixed parameter θ

in the MA (1) model. However, when we consider the stochastic parameter ~θ in the MA (1) model,
we can show that ELR ratio will be less than its bootmean (mean reversion) even when the LM
statistic is not less than its bootmean (no mean reversion).

Now let us show that the ELR ratio will always be increasing with respect to k-day when daily
returns are independent over time, unlike the LM statistic which stays flat at unity for all k-day. In
order to do so, we work with the Gaussian random walk with N steps, with drift μ and unit variance.
We make use of Spitzer’s Identity given in Spitzer (1956) to compute the level of ELR for various N
and then convert it to the ELR ratio defined with respect to initial N=1.

From Table 1, we observe that ELR ratio5 for k-day = 1 is equal to 1 for μ ¼ 0;�1;�2 . Also, we
observe that the ELR ratio increases as k-day increases from k-day = 1 to k-day = 20. We also find
that the rate at which the ELR ratio increases with respect to the k-day decreases as the μj j
increases. That is to say, the value of ELR ratio from k-day = 1 to k-day = 20 increases from 1 to
1.70 when μ ¼ 0;1 to 1.39 when μj j ¼ 1 and from 1 to 1.13 when μj j ¼ 2.

The graph of the ELR ratio in Figure 1 clearly shows that it will be increasing with respect to
k-day, when daily returns are independent over time, regardless of what happens to the drift
parameter θ. This explains the random walk effect in the ELR ratio.

3. Monte Carlo simulation experiment
We conduct the Monte Carlo simulation experiments and show that there is a deep connection
between the degree of mean reversion and the ELR ratio, whether we consider the ELR ratio as a
function of the MA parameter θ or, for that matter, the deviation of the ELR ratio from its bootstrap
mean as a function of the deviation of the LM statistic from its bootstrap mean.

First, we conduct the simulation experiments for LM statistic and ELR ratio in MA (1) model as a
function of fixed parameter θ and different values of N with m ¼ 105 simulations. Table 2 presents
the simulation results of LM statistic and ELR ratio. We find that the value of the LM statistic at
θ ¼ 0 remains almost same and equals to 1.00 for N = 10;20; ::100;1f g steps. In case of the ELR
ratio, at θ ¼ 0, the value of the ELR ratio increases from 1.59 to 2.00 as the number of steps
increases from N = 10 to N = 1. Also we observe that the value of LM statistic and the ELR ratio
increases as the fixed parameter θ increases from θ = −1 to +1 at each N steps.

Figure (2.a) shows that there is an increasing and nonlinear relationship between LM statistic
and fixed parameter θ in the MA (1) model. The impact of increasing the steps N is not felt strongly
because the curves for different values of N lie more or less on top of each other. Figure (2.b)
displays the relationship between the ELR ratio and fixed parameter θ in MA (1) model. We can see
that for every fixed N, the ELR ratio is increasing with respect to θ, although in a nonlinear fashion.
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Furthermore, this monotone curve becomes steeper as N increases. Therefore, based on the
simulation experiments, when we consider the fixed parameter θ in the MA (1) model, conditionally
both LM statistic and ELR ratio show that there is an increasing and nonlinear relationship.

Second, we conduct the simulation experiments for LM statistic and ELR ratio in MA (1) model as
a function of stochastic parameter ~θ and different values of N with m ¼ 105 simulations. Table 3
presents the simulation results of LM statistic and ELR ratio. We find that the value of the LM

statistic almost exactly equals to 1.00 for each setting of the stochastic parameter ~θ ¼
f0;0:2;0:4;0:6;0:8;1:00g and for N = 10;20; ::100;1f g steps. However, in case of the ELR ratio,

we observe that the value of ELR ratio decreases as the stochastic parameter ~θ increases from 0 to
1.00 at each N steps.

Figure (3.a) shows that LM statistic remains to be equal to its bootmean value 1 irrespective of
the value of the stochastic parameter ~θ in the MA (1) model. It is for this reason the LM statistic will
not be able to detect the presence of mean reversion as the LM statistic will always be equal to its
bootmean value. Figure (3.b) displays the relationship between the ELR ratio and stochastic

parameter ~θ in the MA (1) model. We can see that for every fixed N, the ELR ratio is decreasing

with respect to ~θ, although in a nonlinear fashion. Therefore, based on the simulation experiments,

when we consider the stochastic parameter ~θ in the MA (1) model, unconditionally LM statistic is

always equal to its bootmean value whereas ELR ratio is decreasing with respect to ~θ in a nonlinear
fashion.

Third, in Table (4.a), we present the deviation of LM statistic and ELR ratio from their respective
bootmeans in fixed parameter MA (1) model for different values of N, i.e., for
N ¼ 10;N ¼ 100;N ¼ 1f g. We find that when the MA parameter θ is negative, the deviation of

the LM statistic and ELR ratio from their respective bootmeans is also negative. Similarly, we find
that when the MA parameter θ is positive, the deviation of the LM statistic and ELR ratio from their
respective bootmeans is also positive. Figure (4.a) shows the plot between deviation of LM statistic
from its bootmean on X-axis with respect to the deviation of ELR ratio from its bootmean on Y-axis.
It shows that when LM statistic is negative, ELR ratio is also negative and vice versa. It shows the
nonlinear relationship between the two and the impact gets only stronger as the value of N
increases from N = 10 to N ¼ 1. Furthermore, in Table (4.b), we present the deviation of LM
statistic and ELR ratio from their respective bootmean in stochastic parameter MA (1) model for
different values of N, i.e., for N ¼ 10;N ¼ 100;N ¼ 1f g. We find that there is no deviation of LM
statistic from its bootmean in case of stochastic parameter for different values of N in MA (1)
model. The deviation of ELR ratio from its bootmean is negative and its impact increases as the
value of N moves from N = 10 to N ¼ 1. Figure (4.b) shows the plot between deviation of LM
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statistic and ELR ratio from its bootmean for different values of N, i.e., for
N ¼ 10;N ¼ 100;N ¼ 1f g in case of stochastic parameter MA (1) model. It shows that deviation

of ELR ratio from its bootmean increases from N = 10 to N = 1 even though when there is no
deviation of LM statistic from its bootmean.

4. Empirical work

4.1. Data description
Our data set consists of the daily (opening, high, low, and closing) prices of the constituents of the
BSE SENSEX, which is a free float market weighted Indian stock market index. It comprises of 30
most actively traded companies listed on the Bombay Stock Exchange, also called as BSE 30.

We collect the daily data of 22 constituent stocks6 of BSE SENSEX for the overall sample period
from January 2001 to September 2015 (3671 daily observations). The reason for selecting only 22
stocks of SENSEX index out of 30 constituent stocks is twofold. First, to keep the daily observations
of the panel, data of constituent stocks of the SENSEX index remain same across different sample
periods to avoid the impact of the companies which leave or join the index in our empirical work.
Second, the unavailability of open, high, low, and close price series data during different sample
periods for all the constituent stocks of the index. Because of the above-mentioned reasons, we
have cleaned the data and selected the panel data of 22 constituent stocks which remain same
across different sample periods so that we can compare our empirical findings based on two
different test statistics.

The daily data are collected from the source: Bloomberg. Table 5 shows the descriptive statistics
of the daily return series7 of 22 individual stocks of BSE SENSEX. We observe that 12 out of 22
stocks are negatively skewed. The average mean return and standard deviation of the individual
22 stocks are 0.0007 and 0.0240, respectively.

4.2. Findings of overall sample period
(January 2001 to September 2015):

We perform the empirical test on the Indian stock market by considering the daily data of BSE
SENSEX for the overall sample period from January 2001 to September 2015.

4.2.1. LM statistic
Table (6.a) shows the CS average of the LM statistic values for horizons up to k-day = 20. We can
find that if we were to consider each k-day separately, we can reject the random walk hypothesis
for k-day = 2, because the individual t-statistic is significant at 95% level of confidence and is equal
to 2.45. Since the value of CS average of actual LM statistic is 1.04 at k-day = 2, it supports
momentum in the stock market but not mean reversion. In addition, we report the values of the
generalized method of momemts (GMM) statistic as per Richardson & Smith.T. (1991) for the joint
hypothesis that the CS average of the LM statistic is equal to its bootstrap mean for all lags from

0

0.5

1

1.5

2

2.5

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

L
M

 S
ta

ti
st

ic

θ

a) LM Statistic

N=10

N=20

N=30

N=40

N=50

N=60

N=70

N=80

N=90

N=100

N = ∞

0

0.5

1

1.5

2

2.5

3

-1 -0.5 0 0.5 1

E
L

R
 R

at
io

θ

b) ELR Ratio

N=10

N=20

N=30

N=40

N=50

N=60

N=70

N=80

N=90

N=100

N = ∞

Figure 2. LM statistic and ELR
ratio in the MA (1) model for
different values of N and fixed
parameter θ.

Shaik & Maheswaran, Cogent Economics & Finance (2018), 6: 1475926
https://doi.org/10.1080/23322039.2018.1475926

Page 9 of 23



Ta
bl
e
3.

LM
st
at
is
ti
c
an

d
th
e
EL

R
ra
ti
o
in

th
e
M
A
(1
)
m
od

el
as

fu
nc

ti
on

s
of

st
oc

ha
st
ic

pa
ra
m
et
er

~ θ
an

d
N
w
it
h
m

¼
10

5
si
m
ul
at
io
ns

LM
st
at
is
ti
c

EL
R
ra
ti
o

θ
0

0.
2

0.
4

0.
6

0.
8

1
0

0.
2

0.
4

0.
6

0.
8

1

N
=
10

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
59

1.
57

1.
53

1.
49

1.
45

1.
44

N
=
20

1.
01

1.
01

1.
01

1.
01

1.
01

1.
01

1.
70

1.
68

1.
62

1.
55

1.
50

1.
48

N
=
30

1.
00

1.
00

1.
00

1.
01

1.
01

1.
01

1.
76

1.
73

1.
67

1.
59

1.
52

1.
49

N
=
40

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
79

1.
76

1.
69

1.
60

1.
53

1.
49

N
=
50

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
80

1.
77

1.
70

1.
61

1.
53

1.
49

N
=
60

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
82

1.
79

1.
72

1.
62

1.
53

1.
49

N
=
70

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
83

1.
80

1.
72

1.
63

1.
53

1.
49

N
=
80

1.
01

1.
01

1.
01

1.
01

1.
01

1.
01

1.
85

1.
82

1.
74

1.
64

1.
54

1.
49

N
=
90

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
85

1.
82

1.
74

1.
64

1.
54

1.
49

N
=
10

0
1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
86

1.
83

1.
75

1.
64

1.
54

1.
49

N
=
∞

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

2.
00

1.
96

1.
86

1.
71

1.
56

1.
41

Shaik & Maheswaran, Cogent Economics & Finance (2018), 6: 1475926
https://doi.org/10.1080/23322039.2018.1475926

Page 10 of 23



the k-day = 1 to k-day = 20. We display the p-value, i.e., the right tail probability of the GMM χ2

statistic for testing the joint hypothesis across different k-days. We observe that p-values across
different k-days are insignificant, and hence, we cannot reject the random walk hypothesis, or that
returns are independent over time, for lag more than 2. Thus, if we were to go by the LM statistic,
then we cannot find any evidence of mean reversion in asset prices for the overall sample period
from January 2001 to September 2015. Also, Figure (5.a) justifies the argument we have made
based on the evidence from Table (6.a). That is, the CS average of the LM statistic for different
k-days all resides within the range of the 95% confidence interval.

4.2.2. ELR ratio
In Table (6.b), we report the CS average of the ELR ratio for horizons from k-day = 1–20 for the
combined sample period from January 2001 to September 2015. We can find that all the individual
t-statistics are highly significant at 99% level of confidence and so are the GMM χ2 statistics based
on the joint hypothesis test. Thus, we can reject null hypothesis of random walk by individual t-
statistics. Also we can reject the null hypothesis that CS average of the ELR ratio is equal to its

bootmean based on the joint GMM χ2 statistic. Furthermore, the sign is negative for all individual
t-test statistics, which shows evidence of mean reversion in the Indian stock market. We observe
that the CS average of the actual ELR ratio is much less than its bootstrap mean across different
k-days indicating the presence of mean reversion. The CS average of ELR ratio and its 95%
confidence interval are shown in Figure (5.b), where it is evident that the deviation from the
bootstrap mean lies wholly outside the 95% confidence band. Thus, from both Table (6.b) and
Figure (5.b), we see that there is no ambiguity in rejecting the random walk hypothesis in favor of
mean reversion in the Indian BSE SENSEX using the CS average of the ELR ratio.

4.2.3. Comparitive analysis
We have shown so far that it is possible for the CS average of the LM statistic to be equal to unity
which is its bootstrap mean, while the CS average of the ELR ratio to be less than its bootstrap
mean, when mean reversion is present in the MA (1) model. Therefore, we argue that ELR ratio is
superior to the traditional LM statistic when it comes to detecting mean reversion, such as what
we find to be in the case of India’s BSE SENSEX.

To study the relationship between the ELR ratio and the LM statistic in the data, we computed
the deviation of the ELR ratio and the LM statistic from their respective bootmean for each
individual company of BSE SENSEX. The scatterplot of LM statistic and ELR ratios from their
respective bootmeans for k-day = 10 and k-day = 20 in Figure 6 display that there is a nonlinear
relationship in the data as expected as in Figure (4.a). The curvature of the scatterplot of the
deviation of ELR ratio versus that of the LM statistic is more pronounced in the case of k-day = 20.

In addition, we estimated the θ parameter in the MA (1) model for each individual 22 stocks
under consideration in India’s BSE SENSEX using the first order autocorrelation of close-to-close
returns. In Figure 7, we plot the relationship between the deviation from the CS average of actual θ
and that of actual ELR ratio for the combined sample for k-day = 10 and k-day = 20. We can see
that the left of zero in the horizontal axis, the star symbol (*) representing k-day = 20 stays below
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that of the circle representing k-day = 10. Similarly to the right of the horizontal axis, the star
symbol (*) representing k-day = 20 stays above that of the circle representing k-day = 10. This is
exactly what we expect to see in the data as per our ELR ratio in the MA (1) model for different
values of N and fixed parameter θ as shown in Figure 2. Thus, we say that MA (1) model is well
suited for the data and the ELR ratio is capable of detecting mean reversion in the India’s BSE
SENSEX much better when compared to the traditional LM statistic.

5. Robustness check
In this section, we undertake a check on the robustness of our findings by analyzing sub-
samples from before and after the global financial crisis of 2008. Specifically, we split the
combined sample of 2001–2015 into sub-sample 1 based on data from January 2001 to
December 2007 (1756 daily observations) and sub-sample 2 from January 2008 to September
2015 (1919 daily observations). We performed all the analysis similar to what we have done for
the combined sample.

5.1. Pre-crisis period (January 2001 to December 2007)
Table (7.a) presents CS average of the LM statistic in sub-sample 1 (2001–2007). We find that
we cannot reject the random walk hypothesis based on the individual t-stat values and the
GMM stat values. The CS average of the LM statistic and its 95% confidence interval are shown
in Figure (8.a), where it is evident that the deviation from the bootstrap mean lies within the
95% confidence band. Thus, if we were to go by the CS average of the LM statistic, we cannot
find any evidence of mean reversion in asset prices during the pre-crisis period from January
2001 to December 2007.

In Table (7.b), we report the CS average of the ELR ratio for horizons up to k-day = 20. We can see
from the table that all the individual tstatistics are highly significant and so are the GMM χ2

statistics based on the joint hypothesis test. Thus, based on the individual t-test statistics, we
reject the random walk hypothesis using the ELR ratio for the pre-crisis period (2001–2007). Thus,
from both Table (7.b) and Figure (8.b), we see that there is no ambiguity in rejecting the random
walk hypothesis in favor of mean reversion in the Indian BSE SENSEX in the pre-crisis sample period
using the CS average of the ELR ratio.

In addition, the scatterplot of CS average of the LM statistic and ELR ratios from their respective
bootmeans for k-day = 10 and k-day = 20 displays that there is a nonlinear relationship in the data
as shown in Table (9.a, 9.b). In Table (9.e), we plot the relationship between the deviation from the
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CS average of actual θ and that of actual ELR ratio for the sub-sample for k-day = 10 and
k-day = 20. We find that MA (1) is well suited and ELR ratio is able to detect mean reversion in
the pre-crisis period even though the LM statistic is not able to do so.

5.2. Crisis and post-crisis period
(January 2008 to September 2015)

Based on the empirical results shown in Table (8.a) and Figure (9.a), we can clearly say that we
cannot find any evidence of mean reversion as per the CS average of the LM statistic in the sub-
sample period from January 2008 to September 2015. However, we can show that their is enough
evidence of mean reversion in the crisis and post-crisis period as per the CS average of the ELR
ratio, based on the significant individual t-stat values and the joint hypothesis GMM stat values as
in Table (8.b) and also as per Figure (9.b).

In addition, the scatterplot of CS average of the LM statistic and ELR ratios from their respective
bootmeans for k-day = 10 and k-day = 20 displays that there is a nonlinear relationship in the data
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a) LM StatisticFigure 5. LM statistic and ELR
ratio on cross-sectional (CS)
average of BSE SENSEX with 95%
confidence interval in the over-
all sample period (January
2001 to September 2015).

Figure 6. Scatterplot of LM ata-
tistic and ELR ratio from its
bootmean for k-day = 10 and
k-day = 20 in the combined
sample.

Figure 7. Scatterplot of ELR
ratio and θ for k-day = 10 and
k-day = 20 in the combined
sample.
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as shown in Table (9.c, 9.d) in the post-crisis sample period. In Table (9.f), we plot the relationship
between the deviation from the CS average of actual θ and that of actual ELR ratio for the sub-
sample for k-day = 10 and k-day = 20. We find that MA (1) is well suited and CS average ELR ratio in
BSE SENSEX is able to detect mean reversion in the post-crisis period.

6. Conclusion
The presence of mean reversion makes the stocks less risky which can have an important
economic implications especially for long time investors. In this article, we use the ELR ratio
based on high and low prices, and test for the presence of mean reversion. We show that the
proposed ELR ratio is superior in detecting the presence of mean reversion when compared to the
traditional Lo and MacKinlay (1988) test statistic. We prove the superiority theoretically using
simulations and also test the same empirically by way of the CS average of the constituent stocks
of the BSE sensex index.

Using Monte Carlo simulation experiments, we show that there is a deep connection between
the degree of mean reversion and the ELR ratio. Especially, we have found that when we consider
the fixed parameter θ in the MA (1) model, conditionally both the traditional Lo and MacKinlay
(1988) statistic and the ELR ratio show that there is an increasing and nonlinear relationship.

However, when we consider the stochastic parameter ~θ in the MA (1) model, we found that ELR
ratio decreases whereas the LM statistic remains flat.

We have shown in the data that the actual CA average of the ELR ratio is significantly less than
its bootstrap mean, indicating there is a considerable amount of mean reversion. Whereas, the
actual CS average of the LM statistic proposed by Lo and MacKinlay (1988), based on closing prices
alone, is almost exactly equal to its bootstrap mean, which would ordinarily be taken to imply that
there is no mean reversion.

The empirical analysis is carried out in three different sample periods, i.e., from 2001 to 2015
(overall sample period), from 2001 to 2007 (pre-crisis period), and from 2008 to 2015 (crisis and
post-crisis period). The idea to choose three different sample periods is for checking the robustness
of our results across different sample periods based on two different test statistics, i.e., ELR and LM
statistic. It is important to note that the CS average of ELR ratio is able to detect mean reversion in
not just the crisis and post-crisis period from 2008 to 2015 but also during the pre-crisis period
from 2001 to 2007 and also during the overall period from 2001 to 2015. However, the LM statistic
fails to find the evidence of mean reversion during all the three different sample periods. Therefore,
we argue that ELR ratio is superior and more conclusive in detecting the presence of mean
reversion when compared to the LM statistic.

The analysis is not just restricted to the constituent stocks of any index but it can be replicated
to other individual stock indices and other asset classes such as currency pairs and precious metals
in future research to detect the presence of mean reversion. Further, we can also conduct analysis
in other emerging and developed markets to detect the presence of mean reversion using the ELR
ratio.
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Notes
1. The most commonly used unit root tests include aug-

mented Dickey–Fuller test (Dickey and Fuller, 1979) and
Phillips–Perron test (Phillips and Perron, 1988).

2. Some other tests to detect the random walk hypoth-
esis include Chow and Denning (1993), Wright (2000),
ARIMA, and GARCH tests.

3. Turan et al. (2008) investigate the predictive power of
the extreme daily returns observed in a fixed time
interval.

4. We perform the bootstrap alaysis as per Efron and
Tibshirani (1986).

5. We use Spitzer’s identity to show the random walk
effect in ELR ratio in Appendix A.

6. The 8 stocks that were excluded are BHARTI, BJAUT,
COAL, LPC, LT, MSIL, NTPC, and TCS.

7. The daily returns are calculated from the daily closing
prices of the individual stocks using the standard for-
mula: rt = log(Pt/Pt−1) where Pt and Pt−1 are the
closing prices on days t and t − 1, respectively.
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Appendix A
Spitzer’s identity for the maximum of a random walk is given by

EðMNÞ ¼ ∑
N

k¼1

1
k
EðSþk Þ (8)

where MN ¼ maxðSn : 0 � n � NÞ and Sþk ¼ maxð0; SkÞ.

Since we are interested in the range of a random walk, i.e., RN ¼ MN �mN, we can modify the
identity as,
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EðRNÞ ¼ ∑
N

k¼1

1
k ½EðSþk Þ þ EðS�k Þ�

¼ ∑
N

k¼1

1
k E Skj j

(9)

where Sk,Nðμk; kÞ. From above equation (8), we have

E Skj j ¼ �
1

�1
Skj jfSkðSkÞds

¼ �
0

�1
�xkfXðxÞdxþ �

1

0
xkfXðxÞdx

(10)

Part 2 of Equation (10) is given by

�
1

0
xkfXðxÞdx ¼ μkΦðμ

ffiffiffi
k

p
Þ þ

ffiffiffi
k

p
φðμ

ffiffiffi
k

p
Þ (11)

Similarly, Part 1 of Equation (10) is given by

�
0

�1
�xkfXðxÞdx ¼ �μkΦð�μ

ffiffiffi
k

p
Þ þ

ffiffiffi
k

p
φðμ

ffiffiffi
k

p
Þ (12)

Combining Equations (11) and (12) we get that

EðRNÞ ¼ μ ∑
N

k¼1
½2Φð�μ

ffiffiffi
k

p
Þ � 1�

þ2 ∑
N

k¼1
½ 1ffiffi

k
p φðμ

ffiffiffi
k

p
Þ�

(13)

Appendix B
8.1. Procedure to compute ELR in data
Let us call Ot;Ht; Lt; Ctf g as the daily Open;High; Low;Closef g prices of an asset at time t,
respectively.

Let us define xt; bt; ctf g as below

xt ¼ log
Ct
Ot

� �

bt ¼ log
Ht

Ot

� �

ct ¼ log
Lt
Ot

� �

Now let us define the expected lifetime range (ELR) at time t as

ELRt ¼ ðb� cÞt

We first calculate the one-day ELR as

ELR j1day ¼ Eðb� cÞj1day

We then calculate the N-day ELR as

ELR jNday ¼ Eðb� cÞjNday
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Finally, we find the ELR ratio defined as

ELR Ratio ¼ 1ffiffiffi
N

p
n o

� ELR jNday
ELR j1day

n o
(14)

8.2. Procedure to compute LM Statistic in data

We first convert the daily observations of Open;High; Low; Closef g of an asset at time t to
xt; bt; ctf g as explained above.

We calculate the LM statistic as below

LM Statistic ¼ 1
N

� � � VarianceðN�dayÞ
Varianceð1 dayÞ

n o
(15)
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