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On accuracy of survey forecasts of US mortgage 
spread
Hamid Baghestani1*

Abstract: The cyclical variation behavior of the mortgage spread has motivated 
some studies to investigate its relationship to economic activity. Indeed, recent 
empirical findings indicate that the mortgage spread is a determinant/predictor 
of economic activity. We define the mortgage spread as the difference between 
the 30-year mortgage and 10-year Treasury rates and ask whether the Blue Chip 
(consensus) forecasts of these series are accurate for 1988–2015. Our findings 
indicate that the Blue Chip forecasts of both the 30-year mortgage and 10-year 
Treasury rates are biased, fail to outperform the random walk benchmark, and are 
directionally inaccurate. However, the Blue Chip forecasts of the mortgage spread 
are generally unbiased, outperform the random walk benchmark, and are direction-
ally accurate—thus of value to a user. Given such evidence, a natural extension for 
future research is to explore whether the predictive information content of Blue Chip 
forecasts of the mortgage spread is a better predictor of output growth and whether 
it helps improve Blue Chip forecasts of output growth.
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1. Introduction
A strand of research asks whether financial spreads contain useful predictive information for output 
growth and inflation (Aretz & Peel, 2010; Estrella & Hardouvelis, 1991; Estrella & Mishkin, 1997; Stock 
& Watson, 2003). Estrella (2005) constructs a formal macroeconomic model to provide the theoreti-
cal rationale for predictive information of the term spread (defined as the difference between yields 
on long and short maturity debt). A survey of the literature by Wheelock and Wohar (2009) points to 
the term spread as a predictor of output growth and recessions, although the findings show varia-
tions across countries and time.1

More recent studies have focused on the mortgage spread as a determinant/predictor of eco-
nomic activity. Walentin (2014, p. 62) identifies three channels through which mortgage spreads can 
influence economic activity: “(i) house prices and residential investment through the user cost of 
housing, (ii) as one relevant rate in the consumption/savings decision and, (iii) the post-interest dis-
posable income of any household with a mortgage.” He cites Hubbard and Mayer (2009), Guerrieri 
and Lorenzoni (2011) and Hall (2011a, 2011b) who have alluded to the relationship and then goes 
on to add to the literature by providing empirical evidence indicating that mortgage spread shocks 
have economically and statistically significant impacts on economic activity. The study by 
Hännikäinen (2016) provides further evidence by showing that the mortgage spread has useful pre-
dictive information for both real GDP and industrial production.

As noted by Darrat, Dickens, and Al-Khazali (2006), the mortgage industry uses the 10-year 
Treasury rate as the benchmark for pricing fixed rate mortgages. As such, we follow Hännikäinen 
(2016) and define the mortgage spread as the difference between the 30-year mortgage rate and 
the 10-year Treasury rate and ask whether the Blue Chip forecasts of these series are accurate for 
1988–2015. Theory suggests that the best forecast of the long-term interest rate is the random walk 
forecast, defined as the most recent rate known at the time of the forecast (Pesando, 1979; 
Reichenstein, 2006). Consistent with this theory and related existing empirical evidence (Baghestani, 
2006, 2008, 2009a; Brooks & Gray, 2004), our findings indicate that Blue Chip forecasts of both the 
30-year mortgage rate and the 10-year Treasury rate are biased, fail to outperform the random walk 
benchmark, and are directionally inaccurate.2 However, Blue Chip forecasts of the mortgage spread 
are generally unbiased, outperform the random walk benchmark, and are directionally accurate. As 
noted by Schnader and Stekler (1990, 1991), a forecast is of value if it accurately predicts directional 
change. Accordingly, our findings indicate that, unlike Blue Chip forecasts of 30-year mortgage and 
10-year Treasury rates, Blue Chip forecasts of the mortgage spread are of value to a user since they 
are directionally accurate. Such results are generally consistent with existing evidence on survey 
forecasts of financial spreads (Baghestani 2005b, 2009b, 2010a).

Put together, our findings in this study contribute to the literature on the survey forecasts of finan-
cial spreads, with respect to comparing the accuracy of mortgage spread forecasts and the accuracy 
of the forecasts of the variables (mortgage rate and treasury rate) used to calculate the mortgage 
spread. Section 2 presents the methodology by first describing Blue Chip and random walk forecasts 
and then discussing the forecast evaluation test results. Section 3 concludes.

2. Methodology
As a long-running survey, Blue Chip asks approximately 50 analysts at major US banks, corporations, 
and consulting firms for their forecasts of major economic and financial indicators. The survey is 
conducted around the beginning of every month with the participants providing their forecasts for 
the current quarter and the following four quarters. Blue Chip utilizes the individual responses to 
calculate the consensus (mean) forecasts, which are then published in Blue Chip Financial Forecasts.3 
Since the survey is conducted monthly, there are three sets of forecasts for each quarter. In this 
study, we focus on the one-, two-, three-, and four-quarter-ahead Blue Chip consensus forecasts of 
the 30-year mortgage rate and the 10-year Treasury rate made around the beginning of the second 
month of the quarter.
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In generating the random walk forecasts of the 30-year mortgage rate (and the 10-year Treasury 
rate), we make use of the latest actual weekly rate available at the time of the survey published in 
Blue Chip Financial Forecasts along with the quarterly forecasts. The latest weekly rate for the sur-
veys conducted in the second month of quarter t is the rate for the third week in the first month of 
quarter t. More specifically, let At + f be the actual rate in quarter t + f and Rt + f be the random walk 
forecast of At + f made in the second month of quarter t (with the forecast horizon f = 1, 2, 3, and 4 
quarters).4 Then, the random walk forecast Rt + f = Awt (where Awt is the latest weekly rate known at 
the time of the survey).

As noted above, we follow Hännikäinen (2016) and calculate the actual mortgage spread as the 
difference between the actual 30-year mortgage rate and the actual 10-year Treasury rate. We then 
calculate the Blue Chip (random walk) forecast of the mortgage spread as the difference between 
the Blue Chip (random walk) forecast of the 30-year mortgage rate and the Blue Chip (random walk) 
forecast of the 10-year Treasury rate.

In evaluating Blue Chip forecasts of the 30-year mortgage rate, 10-year Treasury rate, and mort-
gage spread, we focus on answering the following three questions:

(1)  Are Blue Chip forecasts unbiased?

(2)  Are Blue Chip forecasts more informative than the random walk benchmark?

(3)  Are Blue Chip forecasts directionally accurate?

Figure 1 plots the actual rates of the 30-year mortgage and 10-year Treasury for 1988Q1–2015Q4. 
As indicated, the 30-year mortgage has a mean rate of 6.77% with a high (low) rate of 10.82 (3.36), 
and the 10-year Treasury has a mean rate of 5.12% with a high (low) rate of 9.21 (1.64). Figure 2 
plots the actual mortgage spread for 1988Q1–2015Q4. Again, as indicated, the spread has a mean 
rate of 1.65% with a high (low) rate of 2.59 (1.23). We focus on Blue Chip and random walk forecasts 
of these series that are made in the first quarter of 1988 through the fourth quarter of 2014. As such, 
the sample periods for the one-, two-, three-, and four-quarter-ahead forecasts are, respectively, 
1988Q2–2015Q1, 1988Q3–2015Q2, 1988Q4–2015Q3, and 1989Q1–2015Q4, with 108 observations 
for each forecast horizon.

2.1. Are Blue Chip forecasts unbiased?
We start with specifying the following test equations for unbiasedness,

(1)At+f − At−1 = � + �(Pt+f − At−1) + ut+f

Figure 1. 30-year mortgage 
rate vs. 10-year Treasury rate: 
1988Q1–2015Q4.
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where At+f and At−1 are the actual series for, respectively, quarters t + f and t − 1, and Pt+f is the Blue 
Chip forecast of At+f made in quarter t. We subtract At-1 from both the actual and forecast series in 
Equation (1) in order to alleviate problems arising from the non-stationarity of the series (Fair & 
Shiller, 1990). The forecast is unbiased when the individual null hypotheses that α = 0, β = 1, and 
α′ = 0 cannot be rejected (Holden & Peel, 1990). With the forecasts made in quarter t, the error term 
ut+f follows an f-order moving-average process under the null hypothesis of unbiasedness. Since 
forecast errors are generally heteroscedastic, we utilize the Newey and West (1987) procedure to 
estimate the above test equations in order to correct for both heteroscedasticity and serial correla-
tion over f quarters.

Rows 1–4 of Table 1 (Table 2) report, respectively, the OLS estimates of Equations (1) and (2) with 
the correct standard errors for the one-, two-, three-, and four-quarter-ahead Blue Chip forecasts of 
the 30-year mortgage rate (10-year Treasury rate). As indicated by superscript “a,” these forecasts 
fail to be unbiased since we reject the individual null hypotheses that α = 0, β = 1, and α′ = 0.

Rows 1–4 of Table 3 report, respectively, the OLS estimates of Equations (1) and (2) with the cor-
rect standard errors for the one-, two-, three-, and four-quarter-ahead Blue Chip forecasts of the 
mortgage spread. As can be seen, the one-, two-, and three-quarter-ahead forecasts are all unbi-
ased since we cannot reject the individual null hypotheses that α = 0, β = 1, and α′ = 0. However, the 
four-quarter-ahead forecasts fail to be unbiased since we reject the null hypotheses that α = 0 and 
β = 1 both individually and jointly. Further inspection reveals that the one- through four-quarter-
ahead Blue Chip forecasts of the mortgage spread in rows 1–4 are all free of systematic bias since 
we cannot reject the null hypothesis that α′ = 0. This conclusion is consistent with the mean forecast 
error (ME) and mean absolute forecast error (MAE) estimates reported in rows 1–4 of Table 3. That is, 
the ME estimates, ranging from 0.027 to 0.066, are small compared to the MAE estimates, ranging 
from 0.148 to 0.219.

2.2. Are Blue Chip forecasts more informative than the random walk benchmark?
In answering, we estimate the following encompassing test equation,

(2)At+f − Pt+f = �
�
+ ut+f

(3)At+f − At−1 = �
0
+ �

B
(Pt+f − At−1) + �

R
(Rt+f − At−1) + ut+f

Figure 2. Mortgage spread: 
1988Q1–2015Q4.
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where, again, At+f and At-1 are the actual series for, respectively, quarters t + f and t − 1, and Pt+f (Rt+f) 
is the Blue Chip (random walk) forecast of At+f made in quarter t. A significant and positive estimate 
of γB with an insignificant estimate of γR indicates that the Blue Chip forecast contains more predic-
tive information than the random walk benchmark; the converse is also true. Blue Chip and random 
walk forecasts contain distinct predictive information when the estimates of γB and γR are both posi-
tive and significant. Blue Chip and random walk forecasts contain similar predictive information 
when the estimates of both γB and γR are insignificant.

Table 1. Forecast accuracy test results: 30-year mortgage rate

Notes: At + f and At − 1 are the actual 30-year mortgage rates for, respectively, quarters t + f and t − 1, and Pt + f (Rt + f) is 
the Blue Chip (random walk) forecasts of At + f made in quarter t; f is the forecast horizon. ME is the mean forecast error, 
and MAE is the mean absolute forecast error. The correct (Newey–West) standard errors are in parentheses. P1 is the p-
value for testing the joint null hypothesis of unbiasedness (α = 0 and β = 1). The sample periods for f = 1, 2, 3, and 4 are, 
respectively, 1988Q2–2015Q1, 1988Q3–2015Q2, 1988Q4–2015.3, and 1989Q1–2015Q4, with 108 observations for each 
forecast horizon. Superscript “a” indicates significance at the 10% or lower level of significance.

Panel A. Unbiasedness test results

Row No.  f At + f – At – 1 = α + β (Pt + f − At − 1) + ut + f At + f − Pt + f = α′ + ut + f

 α  β  R2  P1 α′s = ME  MAE
1  1 −0.142a (0.045) 0.636a(0.120)  0.16  0.001  −0.152a (0.046) 0.413

2  2 −0.225a (0.076) 0.464a(0.170)  0.07  0.001  −0.274a (0.077) 0.558

3  3 −0.317a (0.110) 0.451a(0.189)  0.06  0.001  −0.406a (0.104) 0.704

4  4 −0.392a (0.140) 0.384a(0.208)  0.05  0.001  −0.534a (0.126) 0.820

Panel B. Encompassing test results: At + f – At – 1 = γ0 + γB (Pt + f – At − 1) + γR (Rt + f – At − 1) + ut + f

 f  γ0  γB  γR R2

 5  1 −0.069 (0.046) −0.060 (0.168) 0.970a(0.188) 0.28

 6  2 −0.151a(0.087)  0.069 (0.223) 0.723a(0.301) 0.14

 7  3 −0.243a(0.123)  0.197 (0.254) 0.611a(0.278) 0.11

 8  4 −0.356a(0.151)  0.292 (0.263) 0.294 (0.259) 0.06

Table 2. Forecast accuracy test results: 10-year Treasury rate

Notes: See the notes in Table 1. At + f and At − 1 are the actual 10-year Treasury rates for, respectively, quarters t + f 
and t − 1, and Pt + f (Rt + f) is the Blue Chip (random walk) forecasts of At + f made in quarter t. Superscript “a” indicates 
significance at the 10% or lower level of significance.

Panel A. Unbiasedness test results

Row No. f At + f − At − 1 = α + β (Pt + f – At − 1) + ut + f At + f – Pt+f = α′ + ut + f

 α  β  R2  P1 α′ = ME  MAE
 1  1 −0.159a (0.053) 0.640a(0.137)  0.13  0.001 −0.179a(0.053) 0.477

 2  2 −0.241a (0.085)  0.456a(0.173)  0.05  0.001 −0.307a(0.086) 0.620

 3  3 −0.358a (0.118) 0.527a(0.190)  0.07  0.001 −0.455a(0.112) 0.775

 4  4 −0.447a (0.146) 0.469a(0.200)  0.06  0.001 −0.600a(0.131) 0.891

Panel B. Encompassing test results: At+f – At – 1 = γ0 + γB (Pt + f – At-1) + γR (Rt+f – At-1) + ut+f

 f  γ0  γB  γR R2

 5  1  −0.079 (0.054) −0.155 (0.225) 1.032a(0.261) 0.23

 6  2  −0.174a(0.092)  0.080 (0.220) 0.620a(0.302) 0.09

 7  3  −0.294a(0.127)  0.300 (0.237) 0.483a(0.256) 0.09

 8  4  −0.409a(0.150)  0.239 (0.244) 0.257 (0.250) 0.06
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Rows 5–8 of Table 1 (Table 2) report, respectively, the OLS estimates of Equation (3) with the cor-
rect standard errors for the one-, two-, three-, and four-quarter-ahead forecasts of the 30-year 
mortgage rate (10-year Treasury rate). As can be seen, for the one-, two-, and three-quarter-ahead 
forecasts, the estimates of γB are insignificant but the estimates of γR are both positive and signifi-
cant, meaning that random walk forecasts are more informative than Blue Chip forecasts. For the 
four-quarter-ahead forecasts, the estimates of γB and γR are both insignificant, indicating that Blue 
Chip and random walk forecasts contain similar predictive information.

Rows 5–8 of Table 3 report, respectively, the OLS estimates of Equation (3) with the correct stand-
ard errors for the one-, two-, three-, and four-quarter-ahead forecasts of the mortgage spread. As 
can be seen, the estimates of both γB and γR in row 5 are positive and significant, meaning that the 
one-quarter-ahead Blue Chip and random walk forecasts contain distinct predictive information. 
However, the estimates of γB in rows 6–8 are both positive and significant but the estimates of γR are 
insignificant, indicating that the two-, three-, and four-quarter-ahead Blue Chip forecasts contain 
more predictive information than the random walk benchmark.

2.3. Are Blue Chip forecasts directionally accurate?
We follow the literature and employ the test procedure first introduced by Merton (1981) and 
Henriksson and Merton (1981) and later refined by Schnader and Stekler (1990), among others. 
Table  4 presents the two-by-two contingency table in which the actual change is (At+f − Awt) and the 
predicted change is (Pt+f − Awt), with four elements representing the numbers of correct directional 

Table 3. Forecast accuracy test results: Mortgage spread

Notes: See the notes in Table 1. At + f and At − 1 are the actual mortgage spreads for, respectively, quarters t + f and t − 1, 
and Pt+f (Rt + f) is the Blue Chip (random walk) forecast of At + f made in quarter t. Superscript “a” indicates significance at 
the 10% or lower level of significance.

Panel A. Unbiasedness test results

Row No.  f  At+f – At-1 = α + β (Pt+f – At-1) + ut+f At+f –Pt+f =α‘ + ut+f

 α β R2 P1  α‘ = ME  MAE
 1  1  0.030 (0.018)  1.134a(0.261)  0.23  0.223  0.027 (0.020)  0.148

 2  2  0.045 (0.028)  1.399a(0.290)  0.32  0.137  0.033 (0.029)  0.179

 3  3  0.066 (0.041)  1.370a(0.355)  0.28  0.150  0.049 (0.039) 0.199

 4  4  0.104a(0.046)  1.655a(0.372)  0.38  0.049  0.066 (0.045) 0.219

Panel B. Encompassing test results: At + f − At – 1 = γ0 + γB (Pt + f − At − 1) + γR (Rt + f  − At − 1) + ut + f

 f  γ0  γB  γR R2

 5 1  0.029 (0.018)  0.738a(0.372) 0.505a(0.207) 0.28

 6  2  0.044 (0.027)  1.327a(0.340) 0.109 (0.217) 0.31

 7 3  0.065a(0.036)  1.227a(0.389) 0.293 (0.219) 0.28

 8  4  0.103a(0.046)  1.605a(0.412) 0.120 (0.197) 0.38

Table 4. Contingency table

Notes: With Awt measuring the most recent rate known at the time of the survey, ΔAt + f = (At + f − Awt) is the actual 
change, and ΔPt + f = (Pt+f  − Awt) is the predicted change. The sign (+) represents an upward move, and the sign (−) 
represents a downward move in the series. The numbers of correct (incorrect) sign predictions are n1 and n2 (n3 and n4). 
As such, the sample size is n (=n1 + n2 + n3 + n4).

Actual
Upward Downward

Correct directional predictions n1: ΔAt + f (+) & ΔPt + f (+) n2: ΔAt + f (−) & ΔPt + f (−)

Incorrect directional predictions n3: ΔAt + f (+) & ΔPt + f (−) n4: ΔAt + f (−) & ΔPt + f (+)
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predictions (n1 and n2) and incorrect directional predictions (n3 and n4). As such, the overall direc-
tional accuracy rate is πAll = (n1 + n2)/n, with n representing the sample size. In addition, the propor-
tion of correctly predicted upward moves is πUp = n1/(n1 + n3), and the proportion of correctly predicted 
downward moves is πDown = n2/(n2 + n4).

Table 5 reports these statistics for the Blue Chip forecasts of the 30-year mortgage rate in rows 
1–4, the 10-year Treasury rate in rows 5–8, and the mortgage spread in rows 9–12. In testing the null 
hypothesis of no directional association between actual and predicted changes, we use Fisher’s ex-
act test and the chi-square tests with and without Yate’s continuity correction (Sinclair, Stekler, & 
Kitzinger, 2010). As can be seen, we cannot reject this null hypothesis for the forecasts in rows 1–8, 
meaning that the one-, two-, three-, and four-quarter-ahead Blue Chip forecasts of the 30-year 
mortgage rate and the 10-year Treasury rate fail to be directionally accurate. These test results are 
consistent with the low overall accuracy rates (πAll), ranging from 0.41 to 0.55. Further results indi-
cate that, for each forecast in rows 1–8, the proportion of correctly predicted upward moves (πUp), 
ranging from 0.59 to 0.86, is high, but the proportion of correctly predicted downward moves (πDown), 
ranging from 0.24 to 0.37, is quite low. As such, it appears that the directional inaccuracy of the Blue 
Chip forecasts of the 30-year mortgage rate and the 10-year Treasury rate is due to inaccurately 
predicting the downward moves. Baghestani and Kherfi (2008) report a similar finding using the 
data from the Michigan Surveys of Consumers. They argue that “When interest rates are relatively 
stable, consumers may be more concerned with the explicit cost of borrowing since the declines in 
interest rates are perceived to be too small for the implicit cost to matter. Therefore, it becomes less 
important for them to accurately predict the downward moves in interest rates” (p. 727).

Table 5. Directional accuracy test results

Notes: See the notes for Table 4. The overall directional accuracy rate is πAll = (n1 + n2)/n, the proportion of correctly 
predicted upward moves is πUp = n1/(n1 + n3), and the proportion of correctly predicted downward moves is πDown = n2/
(n2 + n4). Superscript “b” indicates that the p-values of Fisher’s exact test and the chi-square tests with and without 
Yate’s continuity correction are all below 0.10, and thus the null hypothesis of no directional association between 
the actual and predicted change is rejected. P2 is the chi square test p-value for examining the null hypothesis of “no 
asymmetry,” which is defined as the proportion of incorrectly predicted upward moves (1 − πUp) equals the proportion of 
incorrectly predicted downward moves (1 − πDown).

Row No. f Correct Incorrect πAll πUp πDown P2
n1 n2 n3 n4

30-year mortgage rate

 1  1  26  22 18 42  0.44  0.59  0.34 –

 2  2  31  24 12 41  0.51  0.72  0.37  –

 3  3  28  23 9 48  0.47  0.76  0.32  –

 4  4  24  22 8 54  0.43  0.75  0.29  –

10-year Treasury rate

 5  1  29  15 16 48  0.41  0.64  0.24  –

 6  2  38  21  6 43  0.55  0.86  0.33  –

 7  3  31  18  6 53  0.45  0.84  0.25  –

 8  4  28  20  6 54  0.44  0.82  0.27  –

Mortgage spread

 9  1  35  34  22 17  0.64b  0.61  0.67  0.570

10  2  32  42  21 13  0.69b  0.60  0.76  0.073

11  3  30  42 26 10  0.67b  0.54  0.81  0.003

12  4  25  40 33 10  0.60b  0.43  0.80  0.001
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For the one-, two-, three-, and four-quarter-ahead Blue Chip forecasts of the mortgage spread in 
rows 9–12, the overall accuracy rate (πAll), ranging from 0.60 to 0.69, happens to be high. As indi-
cated by superscript “b,” we reject the null hypothesis of no directional association for these fore-
casts, meaning that they are directionally accurate and thus are of value to a user. Further results 
for every forecast in rows 9–12 indicate that the proportion of correctly predicted downward moves 
(πDown), ranging from 0.67 to 0.81, is much more than the proportion of correctly predicted upward 
moves (πAll), ranging from 0.43 to 0.61. In testing the null hypothesis of no asymmetry, which is de-
fined as the proportion of incorrectly predicted upward moves (1 − πUp) equals the proportion of in-
correctly predicted downward moves (1 − πDown), we use the chi-square test described in Berenson, 
Levine, and Rindskopf (1988, sec. 11.4.1). With the chi-square test p-value of 0.570 greater than 0.10 
in row 9, we cannot reject the null hypothesis of “no asymmetry,” meaning that the one-quarter-
ahead Blue Chip forecast is of value to a user who assigns the same loss (cost) to both incorrect 
upward and downward moves in the mortgage spread. However, with the chi-square test p-values 
(in rows 10–12) lower than 0.10, we reject the null hypothesis of “no asymmetry.” As such, we con-
clude that the two-, three-, and four-quarter-ahead forecasts are of value to a user who assigns high 
(low) cost to incorrect downward (upward) moves in the mortgage spread.

3. Conclusions
Recent studies have focused on the mortgage spread as a determinant/predictor of economic activ-
ity. Walentin (2014) shows that mortgage spread shocks have economically and statistically signifi-
cant impacts on economic activity, and Hännikäinen (2016) shows that the mortgage spread has 
useful predictive information for both real GDP and industrial production. We define the mortgage 
spread as the difference between the 30-year mortgage rate and the 10-year Treasury rate and ask 
whether the Blue Chip forecasts of these series are accurate for 1988–2015. Our findings indicate 
that Blue Chip forecasts of both 30-year mortgage and 10-year Treasury rates are biased, fail to 
outperform the random walk benchmark, and are directionally inaccurate. However, the Blue Chip 
forecasts of the mortgage spread are generally unbiased, outperform the random walk benchmark, 
and are directionally accurate – thus of value to a user.

A strand of research focuses on using survey data to generate accurate forecasts and/or improve 
professional forecasts of economic and financial indicators (Baghestani, 2005a, 2015; Baghestani & 
AbuAl-Foul, 2017; Christiansen, Eriksen, & Møller, 2014; Dees & Soares Brinca, 2013; Kellstedt, Linn, 
& Hannah, 2015; Lahiri, Monokroussos, & Zhao, 2016). Given the evidence presented in this study, a 
natural extension for future research is to explore whether Blue Chip forecasts of the mortgage 
spread are more useful than the actual mortgage spread in predicting output growth, and whether 
Blue Chip forecasts of the mortgage spread can help improve Blue Chip forecasts of output growth. 
Further future analysis may involve controlling for mortgage-related developments, such as those 
during the US recession of 2007–2009, and exploring the reason(s) behind the accuracy of mortgage 
spread forecasts and the inaccuracy of the forecasts of the variables used to compute the spread 
(i.e. mortgage rate and treasury rate).
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1. Term spreads have also been found useful in predicting 
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2016). In another study, Baghestani and Toledo (2017) 
show that the Blue Chip forecasts of the Australian–US 
(UK–US) term spread differential helps predict direction-
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2. There are studies which have produced more ac-
curate forecasts than the random walk. For example, 
Baghestani (2010b) utilizes the information in expected 
inflation to generate the 10-year Treasury rate forecasts 
that are superior to the random walk benchmark. Also, 
Baghestani (2017) shows that consumer survey data 
on both mortgage interest rates and expected inflation 
can help produce more accurate 30-year mortgage rate 
forecasts than the random walk benchmark.
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3. The historical Blue Chip Financial Forecasts were pur-
chased from Aspen Publishers, Inc.

4. The actual quarterly rates of the 30-year mortgage 
and the 10-year Treasury are obtained from the Federal 
Reserve Bank of St. Louis database.
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