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Abstract: The objective of the paper is to extend the results in Fournié, Lasry, Lions, 
Lebuchoux, and Touzi (1999), Cass and Fritz (2007) for continuous processes to jump 
processes based on the Bismut–Elworthy–Li (BEL) formula in Elworthy and Li (1994). 
We construct a jump process using a subordinated Brownian motion where the 
subordinator is an inverse �-stable process (Lt)t≥0 with (0, 1]. The results are derived 
using Malliavin integration by parts formula. We derive representation formulas for 
computing financial Greeks and show that in the event when Lt ≡ t, we retrieve the 
results in Fournié et al. (1999). The purpose is to by-pass the derivative of an (irregu-
lar) pay-off function in a jump-type market by introducing a weight term in form 
of an integral with respect to subordinated Brownian motion. Using MonteCarlo 
techniques, we estimate financial Greeks for a digital option and show that the BEL 
formula still performs better for a discontinuous pay-off in a jump asset model set-
ting and that the finite-difference methods are better for continuous pay-offs in a 
similar setting. In summary, the motivation and contribution of this paper demon-
strates that the Malliavin integration by parts representation formula holds for sub-
ordinated Brownian motion and, this representation is useful in developing simple 
and tractable hedging strategies (the Greeks) in jump-type derivatives market as 
opposed to more complex jump models.
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1. Introduction
The problem of computating the Greeks of derivatives with smooth pay-off functions has been ex-
tensively studied. The problem where the pay-off function is not necessarily regular poses a different 
level of difficult and requires a different approach. See for instance Fournié, Lasry, Lions, Lebuchoux, 
and Touzi (1999) and Cass and Fritz (2007). Notice that existing techniques avoid differentiating the 
pay-off function by introducing a weight function. The Bismut–Elworthy–Li (BEL) representation for-
mula (Elworthy & Li, 1994) is one scenario of such innovations. In this paper we show that the known 
relationship between the Malliavin derivative and the first variation process still holds for an alpha-
stable subordinated Brownian motion and results in an explicit martingale weight factor. This allows 
for an extension of the BEL formula to subordinated Brownian motion and as a result, Greeks can be 
easily computed in jump-type and/or emerging markets. The subordinator belongs to the Lévy fam-
ily of four parameter alpha-stable distributions. Price dynamics of almost all financial instruments in 
the different financial markets are observed to deviate from the Gaussian distribution. Various mod-
els in literature have been developed to closely estimate the dynamics of these markets. The rich 
and robust family of alpha-stable distributions has proven successful over most traditional models 
in capturing skewed and heavy tailed distributions. An application to estimate the densities of solu-
tions to stochastic differential equation with subordinated Brownian motion under Malliavin frame-
work is discussed in Kusuoka (2010). A rather different approach is discussed in Wyłomańska (2012) 
where the authors, in addition to investigating the densities of subordinated Brownian motion, also 
discuss some properties related to transforms and averaged mean squared displacements of the 
process. They consider and compare both cases of stable processes and their inverses. In addition 
they provide some parameter estimation techniques. An intuitive study related to the work in this 
current paper is Elworthy and Li (1994). However, this is limited to the Delta. The authors derived 
derivatives of solutions of diffusion equations and demonstrate that these derivatives exhibit and 
allow for the estimation of a diffusion equations’ smoothing properties. In addition, they use their 
results to study the logarithmic gradient of heat kernels. Their results can be extended to deriving 
representation formulas for more Greeks. A less related but still interesting work is by Song and 
Vondraček (2003) where properties of a killed subordinated Brownian motion by an �∕2-stable are 
compared with those of an �-stable subordinated Brownian motion. They show possible comparabil-
ity in their killing measures and propose bounds on the Green function and a jumping kernel of a 
subordinated (�∕2) process. The work by Zhang (2012) on the derivative and gradient estimate for 
SDEs driven by stable processes is another intuitive literature vital to our study. Other related works 
that are recent include Takeuchi (2010), Khedher (2012) and Kawai and Kohatsu-Higa (2010). There 
is more existing literature on stable distributions that we cannot exhaustively discuss. Interested 
readers can refer to Sun and Xie (2014) for a comprehensive literature on stable distributions.

In summary, the motivation and contribution of this paper demonstrates that Malliavin integra-
tion by parts representation formula holds for subordinated Brownian motion and, this representa-
tion is useful in developing simple and tractable hedging strategies (the Greeks) in jump-type 
derivatives market as opposed to more complex jump models.

The rest of the paper is organised as follows: In Section 2 we review some traditional techniques 
for computing the Greeks. In Section 3 we derive some useful results about stable processes and 
Malliavin Calculus with regards to subordinated Brownian motion. In Section 4 we analyse the dif-
ferential calculus of our choice of process and show that the integration by parts formula exists. In 
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Section 5 we present the BEL formula for subordinated Brownian motion and use the result to derive 
the main results of the paper. In Section 6 we discuss some applications. Section 7 concludes.

2. Sensitivity analysis
The theory of risk-neutral valuation asserts that given a complete filtered probability space 
(Ω,  , (t)t≥0, �) with a subjective probability measure � and a filtration (t)t≥0 satisfying the usual 
conditions, we can construct a pay-off function Φ of an option under an equivalent martingale 
measure whose price is given by

where Φ̃ = e−rTΦ is a discounted pay-off function by a risk free interest rate, r and XT is the value of 
the underlying at maturity time T. A Greek is a derivative of (1) with respect to a certain model pa-
rameter p which could be the initial value X0 of the underlying, the volatility parameter �, time to 
maturity � = T − t, the option strike, E or the interest rate, r i.e.

Clearly, (2) poses a problem if Φ̃(XT) is not differentiable. Different techniques in literature have been 
explored to resolve this challenge. For instance the Likelihood method (Fournié et al., 1999) suitable 
for known distribution of the underlying. It takes the form

where � denotes the density of the underlying. Another widely known approach is the method of 
Malliavin calculus (see Bavouzet & Messaoud, 2006; Bayazit & Nolder, 2013; Bermin, 2000; Di Nunno, 
Øksendal, & Proske, 2008; Nualart, 1995). It eliminates differentiation of the pay-off function by in-
troducing a weight term composed of Malliavin derivative and the Ornstein–Uhlenbeck operator 
terms, i.e.

where the weight factor  consists of Malliavin derivatives of random variables X and G belonging to 
some space with nice properties e.g. L2. This approach is more flexible than the previous one in the 
sense that the distribution of the underlying is irrelevant in computing the Greeks. However, it is 
computationally expensive. Another approach is the Bismut–Elworthy–Li representation formula 
Elworthy and Li (1994), Cass and Fritz (2007) and Baños, Duedahl, Meyer-Brandis, and Proseke 
(2015),

where p = x, the underlying initial spot price and at is some bounded function satisfying

The Bismut–Elworthy–Li Formula (5) applies to continuous diffusion processes but can be adapted to 
finite (see Cass & Fritz, 2007) and infinite (see Chen, Song, & Zhang, 2015) jump processes. The use-
fulness of this formula is its allowance for an explicit representation of the Delta of a financial 
derivative.

(1)Vt = �[Φ̃(XT)|t],

(2)Greek =
�Vt
�p
.

(3)
𝜕Vt
𝜕p

= �[Φ̃(p)𝜕p ln(𝜌(p))|t],

(4)
𝜕Vt
𝜕p

= �[Φ̃(X(p))(X(p), G(p))|t],

(5)
�Vt
�x

= �

⎡⎢⎢⎣
Φ(XT)

T

�
0

as
�Xs
�x
dBs�t

⎤⎥⎥⎦
; X0 = x,

(6)

T

∫
0

asds = 1 e.g. a =
1

T
.
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For instance by employing the theory of Malliavin calculus, the weight  can be obtained explicitly 
for different Brownian motion functionals. Malliavin calculus for both continuous and jump diffusion 
processes has been extensively discussed in literature and there exist enormous applications on the 
subject (see Baños et al., 2015; Bavouzet & Messaoud, 2006, Bayazit & Nolder, 2013; Cass & Fritz, 
2007; Di Nunno et al., 2008; Elworthy & Li, 1994; Kusuoka, 2010). The focus of this paper is to com-
pute the Greeks for a wide range of pay-offs irrespective of their structure by employing the BEL 
formula in the framework of subordinated Brownian motion by �∕2-stable distributions, with 
� ∈ (0, 2).

3. Stable distributions
In this section we shall adapt some of the definitions and notations from Kateregga, Mataramvura, 
and Taylor (2017).

Definition 3.1 A stable distribution is a four-parameter family of distributions denoted by S(�, �, �, �) 
where

  � ∈ (0, 2] is the characteristic exponent responsible for the shape of the distribution.

  � ∈ [−1, 1] is responsible for skewness of the distribution.

  𝜈 > 0 is the scale parameter (it narrows/extends the distribution around �).

  � ∈ ℝ is the location parameter (it shifts the distribution to the left or the right).

In this paper we are only interested in positive, non-decreasing, stable cádlág processes denoted by 
(St)t≥0 whose density functions are defined on ℝ

+
. For simplicity, we shall denote by  the set of all 

such processes. More so, we shall denote the inverse of St by Lt, t ≥ 0. The purpose is to introduce 
jumps in asset returns through subordinated Brownian motion and in turn, provide pricing and hedg-
ing (the Greeks) representation formulas.

However, the density of St does not have a closed-form representation formula except for Gaussian 
(� = 2), Cauchy (� = 1, � = 0) and Inverse Gaussian or Pearson (� = 0.5, � = ±1) distributions.

Essentially, densities of stable processes are estimated using characteristic functions through 
Fourier transforms.1 The characteristic function of St is obtained using its domain of attraction and 
the Lévy-Khinchine representation formula (see Applebaum, 2004) and it’s given by

Consequently, the density of St is given by

Definition 3.2 Let St ∈ . Its inverse Lt, t ∈ [0, T] is defined by (see Meerschaert & Straka, 2013):

For l ∈ [0, T], it is easy to see that the following equivalence relation holds:

(7)Φ(�) = �[exp(i�S)] =

⎧⎪⎨⎪⎩

exp
�
−������

�
1 − i� sign(�) tan

�
��

2

��
+ i��

�
; for � ≠ 1.

exp
�
−����

�
1 + i� sign(�) 2

�
log ���

�
+ i��

�
; for � = 1.

(8)hSt
(u) =

1

�

∞

∫
0

e−iutΦ(t)dt.

(9)Ls: =

{
inf

{
t:St > s

}
if s ∈ [0, St).

T if s = ST .

(10)Sl < t ⟺ Lt ≥ l.
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The process Lt is also interpreted as the first passage time of S. Moreover

Let hL(l;t) denote the density function of Lt. Using relation (10) we deduce 

F(t;l): = �(Sl < t) = �(Lt ≥ l) =
∞�
0

hL(𝜏;t)d𝜏 which implies

We can therefore approximate hL(l;t) by estimating the integral in (12) using the density hS(t;l) in (8) 
and its characteristic function (7).

3.1. Subordination
Let 

(
Bt
)
t≥0, denote standard Brownian motion and (Lt, � ∈ (0, 1]) be an inverse stable process in-

dependent of B. Then the process BLt is referred to as stable subordinated Brownian motion.

Definition 3.3 (Joint Probability Space)    Suppose 
{
Bt
}
t≥0 is standard Brownian motion defined on 

(W, (W), �W) and let (U, (U), �U) be the space of non-decreasing càdlàg processes 
(
Lt
)
t≥0, t ∈ [0, T] 

starting at zero. We define a joint product probability space

where Ω = ([0, LT]) endowed with the natural filtrations:

We further introduce a separable Hilbert space defined by

to obtain a complete abstract probability space (, Ω, �, (t)t≥0).
The first and second moments of subordinated Brownian motion follow by applying semigroup prop-
erties. Literature on semigroups and infinitesimal generators is detailed in Song and Vondraček 
(2003) and Applebaum (2004).

Definition 3.4 Suppose B: = (Bt , �x) =
√
2B∗t where (B∗t )t≥0 is standard Brownian motion in ℝ. The 

transition density p(x, y; t) of B is given by

and its semigroup (Pt)t≥0 given by

where f is a nonnegative Borel function on ℝ.

Definition 3.5 Suppose Xt: = BLt , t ≥ 0 is a subordinated Brownian motion. Then we define the op-
erator (Qt :t ≥ 0) satisfying

(11)LSt
= t and SLt−

≤ t ≤ SLt .

(12)hL(l;t) = −
�F(t;l)

�l
= −

�

�l

t

∫
−∞

hS(u, l)du.

(13)(Ω,  , �): = (W × U, (W) × (U), �W × �U),

(14)t : = �
{
BL

�
:� ≤ Lt

}
, W

t : = �
{
B
�
:� ≤ Lt}.

(15)
: = {

h ∈ (Ω;ℝ), h is absolutely continuous and ḣ ∈ 2(Ω;ℝ)
}
,

(16)
p(x, 0; t) = p(x; t) =

1

2
√
𝜋t
exp(−�x�2∕4t), t > 0, x, y ∈ ℝ,

(17)Ptf (x) = �x[f (Bt)] = ∫
ℝ

p(x, y; t)f (y)dy,
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The operator (Qt)t≥0 has a transition density q(x, y; t) defined by

Lemma 3.6 The mean and variance of BLt are computed by

Proof Suppose f in Definitions 3.4 and 3.5 is such that f (z) = z. Using (17) and (18) we immediately 
observe that

Equation (21) follows immediately by definition of variance of BLl. That is  

 ✷

Note that for � ∈ (0, 1], �[Lt] exists and can be computed. If Lt ≡ t in (20) and (21) we recover 
standard Brownian motion with mean 0 and variance t. In general, the k-th moment of Lt is given by

where k ≥ 1, (k ∈ ℝ) and Γ(a) =
∞∫
0

xa−1e−xdx is the Gamma function.

Lemma 3.7 The covariance of BLt is given by

Proof Let s ≤ t then Ls ≤ Lt and we have

Since for all t ∈ ℝ
+
, BLt has independent increments with zero mean, we have

Similarly for Lt ≤ Ls we have the covariance as �[Lt]. Then, we write 

(18)Qtf (x; t) = �x[f (Xt ; t)] = �x[f (BLt
)] =

∞

∫
0

Plf (x; l)hL(l; t)dl.

(19)q(x; t) =

∞

∫
0

p(x; l)hL(l; t)dl.

(20)�x[BLt
] = 0.

(21)�x[B
2
Lt
] = �x[Lt].

�x[BLt
] =

∞

∫
0

�x[Bl]hL(l;t)dl = 0.

�x[B
2
Lt
] =

∞

∫
0

�[B2l ]hL(l;t)dl =

∞

∫
0

lhL(l;t)dl = �x[Lt].

(22)⟨Lkt ⟩ =
Γ(k + 1)tk�

Γ(k� + 1)
,

Cov[BLt
, BLs

] = min(�[Lt], �[Ls]).

BLt
= BLs

+ (BLt
− BLs

).

BLt
BLs

= B2Ls
+ BLs

(BLt
− BLs

).

Cov[BLt
, BLs

] = �[BLt
BLs

]

= �[B2Ls
] + �[BLs

(BLt
− BLs

)]

= �[B2Ls
] + �[BLs

]�[(BLt
− BLs

)]

= �[B2Ls
]

= �[Ls].
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 ✷

4. Malliavin derivative in the direction of jump processes
In this section we explore the differential calculus of BLt using directional derivatives. Little has been 
done on this, a few references include Kusuoka (2010) and Zhang (2012).

Lemma 4.1 Following Definition 3.3, we let f be an (t)-adapted right-continuous process with left 
limits satisfying

Then its (t)-martingale stochastic integral exists, it’s well defined and can be expressed as an (W
t )

-martingale stochastic integral i.e.

where St is the inverse stable process of Lt.

Proof This follows from the standard change of time. ✷

Following Definition 3.3, we denote by D the Malliavin derivative operator defined on  such that 
ḣ represents differentiation of h with respect to Lt. In addition, Dh will denote Malliavin differentiation 
in direction h.

Lemma 4.2 Let 
(
BLt

)
t≥0 be subordinated Brownian motion associated with (, Ω, (t)t≥0, �). Then 

DhBLt
= h(Lt), for all h ∈ H and t ∈ [0, T]. Moreover, for a Càdlàg process f we have

where St is the inverse stable process of Lt.

Proof It is easy to see that DhBLt = h(Lt) since by definition

for F ∈ (, Ω,  , (t)t≥0, �), provided the limit exists.

For the second part of the lemma we notice that since Lt is of bounded variation, the contribu-
tion of its small jumps is almost negligible and the number of jumps is finite. We partition [0, T] 
as 0 = 𝜏0 < 𝜏1 < ⋯ < 𝜏n−1 < 𝜏n = T where �i , i = 1, … , n − 1 are the jump times of BLt and let {
ti, j ; j = 0, 1, 2, … , Ni

}
 be a partion of [�i−1, �i). Suppose Δ: = maxi, j(ti, j − ti, j−1), we have

Cov[BLt
,BLs

] = min(�[Lt], �[Ls]).

(23)�

⎡⎢⎢⎣

T

∫
0

�f (𝜏−)�2dL
𝜏

⎤⎥⎥⎦
< ∞.

(24)

T

∫
0

f (t−)dBLt
=

LT

∫
0

f (S
�
−)dB

�
,

(25)Dh

T

∫
0

f (t−)dBLt
=

LT

∫
0

f (St−)dh(t),

(26)(DhF)(Lt) = lim
�→0

F(Lt + �h) − F(Lt)

�
, h ∈ H,

(27)

Dh

T

∫
0

f (t)dBLt
= lim

Δ→0

n∑
i=1

[
n−1∑
j=1

f (ti, j−1−)
[
h(Lti, j

) − h(Lti, j−1
)
]

+ f (ti,ni−1
−)[h(Lti,n

i

−) − h(Lti,n
i
−1
)]

+f (ti,ni
−)[h(Lti,n

i

) − h(Lti,n
i

−)]

]
.
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Now if we let ui, j : = Lti, j then Sui, j = ti, j for j = 0, 1, 2, … , Ni − 1 and as a consequence we write

Note that Su is constant on u ∈ [L
�i−
, L

�i
]. Therefore

The result follows immediately, i.e.  ✷

Lemma 4.3 Suppose f is a right continuous function with left limits, then

where St is the inverse stable process of Lt.

Proof This follows from standard change of time computations.  ✷

Lemma 4.4 Let g be an (t)-adapted right-continuous process with left limits satisfying,

then

This holds for all t ∈ [0, T].

Proof This follows a similar argument as in the previous Lemma.  ✷

4.1. Discrete multiple stochastic integral
In this section we derive the integration by parts formula associated with our choice of random 
process BLt. We denote by �k the time between the k-th and (k + 1)-th jumps of BLt.

We start with the triplet (, Ω, �), a joint probability space introduced in Definition 3.3 with a real 
seperable Hilbert space , with a scalar product ⟨⋅, ⋅⟩ and the norm for an element g ∈ , denoted 
by ‖g‖, Ω is the completion of  and � is the extension to the Borel �−algebra of Ω of a cylindrical 

Dh

T

∫
0

f (t)dBLt
= lim

Δ→0

n∑
i=1

[
n−1∑
j=1

f (Sui, j−1
−)[h(ui, j) − h(ui, j−1)]

+ f (Sui,n
i
−1
−)[h(ui,ni

−) − h(ui,ni−1
)]

+f (Sui,n
i

−)[h(ui,ni
) − h(ui,ni

−)]

]
.

=

n∑
i=1

L
�
i
−

∫
L
�
i−1

f (Su−)dh(u) +

n∑
i=1

f (Sui ,ni
−)[h(�i) − h(�i−)].

f (Sui ,ni
−)[h(L

�i
) − h(L

�
−)] =

L
�
i
−

∫
L
�
i−1

f (Su−)dh(u), i = 1, 2, … , n.

(28)Dh

T

∫
0

f (t−)dBLt
=

LT

∫
0

f (St−)dh(t),

(29)

T

∫
0

f (�−)dL
�
=

LT

∫
0

f (S
�
−)d�,

(30)�

⎡
⎢⎢⎣

T

∫
0

�g(𝜏−)�2dL
𝜏

⎤
⎥⎥⎦
< ∞,

(31)

T

∫
0

g(�−)dBL
�
=

LT

∫
0

g(S
�
−)dB

�
a.s.
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measure. We define independent stable random variables �k: = BLk − BLk−1 which are canonical pro-
jections from Ω to ℝ. We assume Lk is a form of subordinator introduced in Janicki and Weron 
(1993, p. 33) which is an �∕2-stable totally skewed Lévy motion with increasing sample paths 
(� ∈ (0, 2), � = 1). This is a symmetric alpha-stable process (S�S) with positive Poisson jumps. 
Therefore, BLk belongs to a class of S�S Lévy motion processes with its jumps only at the jump times 
of Lk. As a consequence, we use Charlier polynomials to define the multiple stochastic integrals with 
respect to our process.

Definition 4.5 The Charlier polynomials are defined as

They can also be expressed explicitly as

where (x)k: = x(x − 1)⋯ (x − k + 1).

The Charlier polynomials form an orthogonal basis of 2(Ω,  , �) with respect to the Poisson 
measure �(dx) = �x

x!
e�dx. Moreover, we have:

where �nm = 0 when n ≠ m and �nm = 1 for n = m. Therefore any function F ∈ 2(Ω,  , �) can be 
uniquely represented as

with the corresponding norm given by ‖f‖2 = ∑
n≥0

�fn�2�nn!.

Next, we construct the discrete multiple stochastic integral using the Wick product following simi-
lar arguments in Privault (1990).

Suppose ∗ is a set of all functionals of the form Q(�0, … , �n−1) where Q is a real polynomial and 
n ∈ ℕ, we regard ∗ as an algebra generated by 

{
C(�)

n (�k):k, n ∈ ℕ
}

 and define the Wick product in 
the following manner.

Definition 4.6 The Wick product of two elements F, G ∈ ∗ denoted by F ⋄ G is defined (relaxing � 
for simplicity) as:

where for a ∈ ℕ
d, a! = a1!…ad! and n = (n1, … , nd), m = (m1, … , md) and k1 ≠ ⋯ ≠ kd.

Let  = l2(ℕ) be a space of square-summable sequences. There exists a discrete chaotic decom-
position of 2(Ω, �) whose elements F can each be represented as a sum of multiple stochastic in-
tegrals of kernels of ◦n = l2(ℕ)◦n. That is,

(32)C(�)

n (x) = (−1)n�−xe�
dn

d�n
(e−��x).

C(�)

n (x) =

n∑
k=0

(
n

k

)
(x)k(−�)

n−k, x ∈ Ω,

∞∑
x=0

𝜆x

x!
C(𝜆)

n (x)C(𝜆)

m (x) =
n!e−𝜆

𝜆n
𝛿nm, 𝜆 > 0,

F(x) =
∑
n≥0

fnC
(�)

n (x), fn ∈ ℝ
+
.

(Cn1
(�k1

)⋯Cnd
(�kd

)) ⋄ (Cm1
(�k1

)⋯Cmd
(�kd

))

=
(n +m)!

n!m!
Cn1+m1

(�k1
)⋯Cnd+md

(�kd
),

(33)
F =

∞∑
n=0

In(fn),
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where fn ∈ ◦n, n ∈ ℕ and In(fn) is the discrete multiple stochastic integral of symmetric functions 
of discrete variable.

The stochastic integral of f ∈ l2(ℕ) is an isometry from  = l2(ℕ) to 2(Ω,  , �) as follows:

Proposition 4.7 Let f ∈ l2(ℕ) and define I1(f ): =
+∞∫
0

f (BLt
)dBLt

. Then

Proof Consider a partition 𝜏1 < ⋯ < 𝜏m−1 where �i , i = 1, … , m − 1 are the jump times of BLt and let {
ti, j ; j = 0, 1, 2, … , ni

}
 be a partion for each [�i−1, �i). Suppose Δ: = maxi, j(ti, j − ti, j−1), we have

where ni = max
{
j:tj ≤ 1

}
. Consequently

We notice that for j1 < j2 on each [�i , �i+1), we have

which is arrived at by conditioning with respect to ti, j
2

 and applying the tower property. Meanwhile 
for j1 = j2 = j we have

The last equation follows from the law of total expectation. The result follows immediately by com-
bining both cases.  ✷

The discrete multiple stochastic integral In(fn), fn symmetric in l2(ℕn) with finite support can be 
defined directly using the Wick product.

Definition 4.8 The symmetric tensor product f1◦⋯◦fn is defined as

where f1, … , fn ∈  and Σn is the set of all permutations of {1, … , n}. Moreover, suppose 
g1, … , gn ∈ l

2(ℕ) with finite supports, we have

(34)�[I1(f )
2] =

�
k, l∈ℕ

fkfl�[�k�l] =

∞�
0

f 2k = ‖f 2‖2([0, LT ],Ω).

I1(f ) = lim
Δ→0

i=m−1∑
i=1

0≤j≤n
i

f (BLt
i, j

)(BLt
i, j+1

− BLt
i, j

) + f (BLt
n
i

)(BL1
− BLt

n
i

),

�[I1(f )
2] = lim

Δ→0

M∑
i=1

0≤j
1
,j
2
≤n
i

�

[
f (BLt

i,j
1

)f (BLt
i,j
2

)

×(BLt
i,j
1
+1

− BLt
i,j
1

)(BLt
i,j
2
+1

− BLt
i,j
2

)

]
.

�[f (BLt
i, j
1

)f (BLt
i, j
2

)(BLt
i, j
1
+1

− BLt
i, j
1

)(BLt
i, j
2
+1

− BLt
i, j
2

)] = 0,

�[f 2(BLt
i, j

)(BLt
i, j+1

− BLt
i, j

)2].

= �[f (B2Lt
i, j

)�[(BLt
i, j+1

− BLt
i, j

)2|ti,j ]].
= �[f 2(BLt

i, j

)�[(Lti, j+1
− Lti, j

)|ti, j ].
= �[f 2(BLt

i, j

)(Lti, j+1
− Lti, j

)].

(35)f1◦⋯◦fn =
1

n!

∑
𝜎∈Σn

f
𝜎(1) ⊗⋯⊗ f

𝜎(n)
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where I1(gi) =
∞∑
k=0

gi(k)C1(k), 1 ≤ i ≤ n.

The definitions above suggest the results (Privault, 1990, Prop. 2 and 3) for the Poisson process, 
also hold for our choice of process BLt with similar proofs.

Lemma 4.9  

(1)  Suppose (en)n∈ℕ is a canonical basis in l2(ℕ)◦n. Then

(a) For k1 ≠ ⋯ ≠ kd and n1 +⋯ + nd = n, we have 

b Suppose f =
∞∑
k=0

fkek ∈ l
2(ℕ) has finite support, then 

(c) If fn ∈ l
2(ℕn), gm ∈ l2(ℕm) are symmetric with finite supports, then 

(2)  Let n =
{
(k1, … , kn) ∈ ℕ

n:∃ i ≠ j such that ki = kj
}

 which represents the diagonals in ℕn and 
let n = ℕ

n ⧵n. Suppose fn ∈ l
2(ℕn) and gm ∈ l2(ℕm) are symmetric with finite supports, then 

Proof See Privault (1990).              ✷

Lemma 4.10 Suppose n defines chaos of order n ∈ ℕ in 2(Ω) given by n =
{
In(fn):fn ∈ l

2(ℕ◦n)
}

. Then 
2(Ω) has a chaotic decomposition:

Moreover, if Kn is the tensor product ◦n, endowed with the norm

equivalent to ‖ ⋅ ‖l2(ℕ) then the Fock space  (): =
⨁∞

n=0 Kn is isometrically isomorphic to 2(Ω).

Proof The n’s are orthogonal according to Lemma 4.9. Secondly, Q is dense in 2(Ω) since the poly-
nomials of ∗ are dense in 2(ℝ

+
, �

x

x!
e�dx): Suppose F ∈ 2(Ω) and �[FQn(�0)⋯Qn(�n)] = 0,, for any 

Q0, … , Qn, n ∈ ℕ, then �[F|�0, … , �n] = 0, n ∈ ℕ. This implies

since �[F|�0, … , �n] is a discrete-time martingale. Therefore F = 0, � − a.s. and ∗ is dense in 2(Ω). ✷

In(gn◦⋯◦gn) = I1(g1) ⋄ ⋯ ⋄ I1(gn),

In(e
◦n1
k1

◦⋯◦e
◦nd
kd

) = n1!⋯nd!Cn1
(�k1

)⋯Cnd
(�kd

).

In(f
◦n) = n!

∑
k
1
≠⋯≠k

d
n
1
+⋯+n

d
=n

n
1
,…,n

d
>0

f
n1
k1

⋯ f
nd
kd
Cn1

(𝜁1)⋯Cnd
(𝜁d).

In(fn) ⋄ Im(gm) = In+m(fn◦gm).

⟨In(fn), Im(gm)⟩2(Ω) =
�

n!⟨fn, gm⟩l2(n) + (n!)2⟨fn, gm⟩l2(n)
if n = m

⟨In(fn), Im(gm)⟩2(Ω) = 0 if n ≠ m.

(Ω,  , �) =
∞⨁
n=0

n.

�‖fn‖�2n = n!⟨fn, fn⟩l2(n) + (n!)2⟨fn, fn⟩l2(n)
,

lim
n→∞

�[F|�0, … , �n] = F � − a.s.,
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The annihilation operator defined in (26) has an equivalent in the discrete chaotic decomposition 
of 2(Ω,  , �) given by

Moreover, the following lemma holds.

Lemma 4.11 Suppose   denotes a dense set of elements of u ∈ 2(Ω)⊗ l2(ℕ) such that uk = �khk, k ∈ ℕ 
where h:ℕ → Q has finite support in ℕ and define an operator �: → 2(Ω) by

Then for any F ∈ Dom(D) and u ∈ Dom(�), we have

where Dom represents domain and the operators D and � are also closable and adjoint to each other.

Proof See Privault (1990).  ✷

The above results can be extended 2(Ω)⊗ l2(ℕ) to 2(Ω)⊗ 2(ℝ
+
) yielding: 

This in turn leads to the following duality relation:

The duality formula is an important tool for finding alternative representations of derivatives of ex-
pectations of irregular functions. We discuss this later.

Note that for the rest of the article we shall use abbreviations SDE and SSDE to represent stochas-
tic differential equation and subordinated stochastic differential equation respectively.

4.2. Malliavin derivative of solutions to subordinated SDEs
In the following, K is defined as a Hilbert space, D1, 2(K) as a Sobolev space of K-valued functions as-
sociated with the H-derivative, 2(H;K) as a total set of a K-valued linear operator of Hilbert-Schmidt 
class on H, 1, 2(dBLt

;K) as the total set of (t)-predictable (ℝ × K)-valued functions � such that for 
�(t, X) ∈ D1, 2(ℝ × K), t ∈ [0, T] with

where h is given in (15). We denote (dt;K) as the total set of (t)-predictable (ℝ × K)-valued func-
tions b satisfying b(t, X) ∈ D1, 2(ℝ × K), t ∈ [0, T] with

(36)Dk(In(fn)) =

n−1�
p=0

n!

p!
Ip

⎛
⎜⎜⎜⎝
fn(∗, k, … , k

⏟⏟⏟
n−p times

)

⎞
⎟⎟⎟⎠
; k ∈ ℕ.

�(u) = −

∞∑
k=0

(uk + Dkuk),

(37)�[(DF, u)l2(ℕ)] = �[F�(u)],

(38)

LT

�
0

Fu(B
�
)dB

�
= F

LT

�
0

u(�)dB
�
−

LT

�
0

(DtF)u(�)d�, t ≤ �.

(39)�

⎡⎢⎢⎣

LT

�
0

(DtF)u(�)d�
⎤⎥⎥⎦
= �

⎡⎢⎢⎣
F

LT

�
0

u(�)dB
�

⎤⎥⎥⎦
, t ≤ �.

(40)‖𝜎‖(dBL
t
;K): = �

�
�Dh𝜎(t−, X)�22(H;ℝ×K)

dLt

�1∕2
< ∞,

(41)
‖b‖(dt;K): =

T

�
0

��Dhb(t−, X)��22(H;K)
dt < ∞.
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Let (Ω,  , �) represent a joint probability space introduced in the previous sections and consider the 
following stochastic differential equation:

A scenario of (14) with Lipschitz coefficients and standard Brownian motion has been discussed in 
Fournié et al. (1999) and Bayazit and Nolder (2013) to compute financial Greeks. The case of non-
Lipschitz coefficients with subordinated Brownian motion is handled in Bavouzet and Messaoud 
(2006), Sun and Xie (2014) and much less related in Cass and Fritz (2007) and Di Nunno et al. (2008). 
For non-Lipschitz with standard Brownian motion, (see for instance Baños et al., 2015). In the cur-
rent paper we are interested in a model with Lipschitz coefficients and subordinated Brownian 
motion.

Proposition 4.12 Suppose in the stochastic differential equation (42) has Lipschitz coefficients and 
assume �(t, X) ∈ D1, 2(ℝ × K) and b(t, X) ∈ D1, 2(ℝ × K). Then the solution Xt to (42) exists, is unique 
and belongs to D1, 2 for all t ∈ [0, T].

Proof The proof is based on Picard’s successive approximation and it follows similar steps of (Ku-
suoka, 2010, Thm 3.1 and Prop 2.1).  ✷

Let [⋅, ⋅] denote the dot product endowed on  in (15). A representation of the derivative of Xt fol-
lows in the following proposition.

Proposition 4.13 Denote the directional derivative of Xt by DrXt[h], r ≤ t where Dr is the Malliavin 
derivative operator. Then from (42) we have

If we assume 
{
h
}
 is a complete orthonormal basis in H, then

Moreover, if � ≡ 1, then

Proof First, represent (42) in its integral form:

Then apply the product rule and (26) to the second term on the RHS of (46) to obtain (43).

If 
{
h
}
 is an orthogonal basis, we can express � as

(42)dXt = b(t, Xt)dt + �(t, Xt)dBLt
; X0 = x,

(43)DrXt[h] =

t

∫
r

Drb(s)[h]ds +

t

∫
r

Dr�(s−)[h]dBLs
+

t

∫
r

�(s−)dh(Ls).

(44)

DrXt =

t

∫
r

Drb(s)ds +

t

∫
r

Dr𝜎(s−)dBLs

+

∞∑
i=1

hi(s)⊗

Lt

∫
Lr

𝜎(Ss−)ḣ
i(s)ds.

(45)DrXt =

t

∫
r

b�(X(s))DrX(s)ds +

∞∑
i=1

hi(t)⊗

Lt

∫
Lr

ḣi(s)ds.

(46)Xt = x +

t

∫
0

b(�, X
�
)d� +

t

∫
0

�(�, X
�
)dBL

�
.

(47)� =

∞�
i=1

[�,hi]

‖hi‖ h
i ,
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where h = ‖h‖ĥ and ĥ is a unit vector of h. For h orthonormal gives (44).          ✷

If � ≡ 1 the last term of (45) is zero and by the Grönwall’s inequality, we have:

Also note from (46) that the first variation process can be deduced as:

Combining (48) and (49) results into the following useful relation

Alternatively,

5. BEL formula for subordinated stochastic differential equations
Bismut–Elworthy–Li formula for general Lévy processes is studied in Cass and Fritz (2007). We derive 
representations for subordinated Brownian motion based on (Elworthy & Li, 1994).

Proposition 5.1 Let Xt be the solution to (42) on the horizon [0, T] where Lt ≡ t (see for instance 
Baños et al., 2015; Cass & Fritz, 2007) and let Φ:ℝ → ℝ denote some bounded function. Suppose we 
can define a functional Vt(XT) of XT by

Then the derivative of V with respect to x is given by

where at is some bounded function satisfying

Proof Apply the classical chain rule on �[�xΦ(XT)] and use the relation (51) followed by the chain 
rule in the Malliavin sense. Finally apply the duality relation (39), in that order. A similar proof is pro-
vided in Sturm (2004) using the identity DtXT = JTJ

−1
t �(t, Xt−)1{t≤T}, where Jt: =

�Xt

�X0
, X0 = x.  ✷

Equation (53) is Bismut–Elworthy–Li formula for Geometric Brownian motion.

(48)DrXt = exp
⎛
⎜⎜⎝

t

∫
r

b�(Xs)ds
⎞
⎟⎟⎠
.

(49)
�Xt
�x

= exp
⎛
⎜⎜⎝

t

∫
0

b�(Xs)ds
⎞
⎟⎟⎠
.

(50)DrXt =
�Xt
�x

exp
⎛⎜⎜⎝
−

r

∫
0

b�(Xs)ds
⎞⎟⎟⎠
.

(51)
�Xt
�x

= DrXt
�Xr
�x
, r ≤ t.

(52)Vt(XT) = �[Φ(XT]; X0 = x.

(53)
�Vt
�x

= �

⎡
⎢⎢⎣
Φ(XT)

T

∫
0

as
�Xs
�x
dBs

⎤
⎥⎥⎦
,

(54)

T

∫
0

asds = 1.
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Proposition 5.2 Suppose (46) has Lipschitz coefficients. Let R(t, Xt) denote the right inverse of �(t, Xt) 
where �(t, Xt) is elliptic. For any function Φ ∈ C1b (ℝ) and h ∈ ℝ, we have (the x argument is relaxed 
for simplicity)

where

Proof Working backwards and using the results obtained above we have

Next we apply the duality relation (39), Equation (50), Grönwall’s inequality and (45) for some 
arbitrary h not necessarily an orthonormal basis and � ≥ 1 in that order, where we have chosen 
at = T for all t ∈ [0, T]. ✷

We provide a detailed analysis on the above result in the following section.

5.1. Main results
This section presents the main results of the paper. The idea is to extend the results by Fournié et al. 
(1999) to a subordinated stochastic differential equation model by deriving the first- and second-
order derivative representation for the expectation of a function that is not necessarily regular. 
Specifically, the idea is to by-pass the derivative of the expected (irregular) function by introducing a 
weight term in form of an integral with respect to subordinated Brownian motion. The results in this 
section are employed in the following section to estimate the Greeks using MonteCarlo 
simulations.

In this section, operators � and D will be used interchangeably to represent weak derivatives, and 
Jt shall denote the first variation process given by

 shall denote a space of bounded integrable functions, (Qt:t ≥ 0) shall denote the semigroup of the 
solution Xt to (46). Lastly, 

{
St
}
t≥0 shall denote a non-decreasing cádlág �-stable process and 

{
Lt
}
t≥0 

its inverse with � ∈ (0, 1]. We require Xt to be complete to enforce some integrability conditions on 
DXt.

Corollary 5.3 Let U:ℝ → (ℝ) with bounded first derivative such that �Qt(U):ℝ → (ℝ) and define 
UX : = (df )X = Df (Xt). Then the weak derivative of Qt with respect to the initial state x is given by

provided the last term exists. Moreover

(55)Dh�[Φ(Xt)] =
1

Lt
�

⎡⎢⎢⎣
Φ(Xt)

t

∫
0

R(�) ⋅ DhX�dBL
�

⎤⎥⎥⎦
,

(56)DhXt = h(t) +

t

∫
0

b�(s,Xs) ⋅ DhXsds.

Dh�[Φ(XT)] = �[DrΦ(Xt)[h]] = �[Φ�(Xt)DrXt[h]].

(57)Jt =
�Xt
�x
, and J0 =

�Xt
�x

|||||t=0
.

(58)�Qt(U)x[J0] = �[UX [Jt]] = �[Df (Xt)[Jt]],

(59)(�Qt(df ))x[J0] = d(Qtf )x[J0].
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Since Xt is non-explosive, the weak derivative �Qt is well defined.

Proof This follows directly from the application of a weak chain rule.         ✷

Corollary 5.4 Suppose Xt ∈ ℝ is non-degenerate and elliptic, there exist an inverse R(t, Xt) of �(t, Xt) 
smooth in Xt such that |R(X)[Y]| ≤ �|Y|2 for all X, Y ∈ ℝ for some 𝜀 > 0. Moreover, if

then,

Proof Recall that the result holds for the case of continuous processes (Cass and Fritz, 2007; Elwor-
thy & Li, 1994). We can therefore employ similar arguments of partitioning as in the second part of 
the Proof of Lemma 4.2 and apply similar steps as in the continuous case but piece-wise, to arrive at 
the required result.  ✷

Theorem 5.5 Let Φ:ℝ → ℝ with its first derivative bounded and continuous:

Moreover, for x ∈ ℝ, T > 0, the derivative with respect to x is given by

where 
LT�
0

R(S
�
, XS

�
)JS

�
dB

�
, T ≥ 0 is a martingale.

Proof From Corollary 5.4, let T > 0, applying Itô’s formula to

yields

As t → T, and applying the knowledge from Lemmas 4.3 and 4.4 yields

Multiplying (66) by a martingale 
LT∫
0

R(S
�
, XS

�
)(JS

�
)dB

�
 yields

(60)

Lt

∫
0

�[|JS
𝜏
|2]d𝜏 < ∞.

(61)

Lt

∫
0

�[|R(S
𝜏
, XS

𝜏
)JS

𝜏
|]d𝜏 < ∞.

(62)�Qt(dΦ) = d(QtΦ) a.s. t ≥ 0,

(63)�x�[Φ(XT)] =
1

LT
�

⎡
⎢⎢⎢⎣
Φ(XT)

LT

∫
0

R(S
�
, XS

�
)JS

�
dB

�

⎤
⎥⎥⎥⎦
,

(64)(t, Xt) ↦ QT−tΦ(Xt), 0 ≤ t < T,

(65)QT−tΦ(Xt) = QTΦ(x) +

t

∫
0

d(QT−�Φ)X
�
�(�, X

�
)dBL

�
, for t ∈ [0, T].

(66)
Φ(XT) = QTΦ(x) +

LT

∫
0

d(QST−S�
Φ)XS

�

(�(S
�
, XS

�
)dB

�
.
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Since J0 = 1 and �QT(dΦ)x = �[(dΦ)x] = �x�[Φ]. The required result follows.  ✷

Corollary 5.6 Suppose Xt ∈ ℝ
2, t ≥ 0 and indexes 0 ≤ j, k ≤ m, then

and

and

where | ⋅ | denotes the Euclidean norm.

Proof The proof follows directly by applying (5) where h ≡ J0.  ✷

Theorem 5.7 From Corollaries 5.4 and 5.6, let Φ:ℝ2
→ ℝ be such that its first and second derivatives 

are bounded and continuous and,

such that for almost all xj , xk ∈ x for 0 ≤ j, k ≤ 2,

where

Then

(67)

�

⎡
⎢⎢⎢⎣
Φ(XT)

LT

∫
0

R(S
�
, XS

�
)(JS

�
)dB

�

⎤
⎥⎥⎥⎦
= �

⎡
⎢⎢⎢⎣

LT

∫
0

d(QST−S�
Φ)XS

�

JS
�
d�

⎤
⎥⎥⎥⎦
.

= �

⎡⎢⎢⎢⎣

LT

∫
0

((�QST−S�
)(dΦ))XS

�

(JS
�
)d�

⎤⎥⎥⎥⎦
.

=

LT

∫
0

((�QS
�
)((�QST−S�

)(dΦ)))x(J0)d�.

=

LT

∫
0

(�QST
(dΦ))x(J0)d�.

= LT�QT(dΦ)x(J0).

(68)

LT

�
0

�[|DXS
𝜏
, x(J

j

0
)|2]d𝜏 ≤ 𝜀|Jj

0
|2, 𝜀 > 0.

(69)sup
0≤S

�
≤t
sup
x∈ℝ2

�[|D2XS
�
, x(J

j

0
, Jk0)|] ≤ �|Jj

0
||Jk0|,

(70)sup
0≤S

�
≤t
sup
x∈ℝ2

�[|tDXS
�
, x|] ≤ �.

(71)d(QtΦ) = �Qt(dΦ) a.s. t ≥ 0

(72)
D2QtΦ(x)(J

j

0
)(Jk0) = �

[
D2Φ(Xt)(DXSt , x

J
j

0
, DXSt , x

Jk0)
]

+ �

[
DΦ(Xt)�(St , XSt

)(J
j

0
, Jk0)

]
,

(73)X0 = x, J
j

0
=

�XSt
�xj

|||||t=0
and Jk0 =

�XSt
�xk

|||||t=0
.
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Proof From Equation (72) we deduce

Suppose LT = Lt∕2 and 0 ≤ � ≤ t∕2 then

Applying Itô formula to 
{
Qt−𝜏Φ(X

𝜏
):0 ≤ L

𝜏
< Lt

}
 at L

�
= Lt∕2, yields

�2

�xjxk
�[Φ(XT)] =

4

L2T
�

⎡
⎢⎢⎢⎣
Φ(XT)

LT

∫
LT∕2

�
R(St, XSt−

)
�XSt−

�xj

�
dBt

×

LT∕2

∫
0

�
R(St, XSt−

)
�XSt−

�xk

�
dBt

⎤⎥⎥⎥⎦

+
2

LT
�

⎡⎢⎢⎢⎣
Φ(XT)

LT∕2

∫
0

�
DR(St , XSt−

)
�XSt−

�xj

�XSt−

�xk

�
dBt

⎤⎥⎥⎥⎦

+
2

LT
�

⎡⎢⎢⎢⎣
Φ(XT)

LT∕2

∫
0

⎛
⎜⎜⎝
R(St, XSt−

)
�2XSt−

�xjxk

����t=0
⎞
⎟⎟⎠
dBt

⎤⎥⎥⎥⎦
.

LT

�
D2QTΦ(x)(J

j

0
, Jk0)

�
= �

⎡
⎢⎢⎢⎣
DΦ(XT)(JT)

LT

∫
0

R(S
�
, XS

�
−
)(JS

�
)dB

�

⎤
⎥⎥⎥⎦

− �

⎡⎢⎢⎢⎣

LT

∫
0

D(QST−S�
Φ)(XS

�
−
)

×(D�(S
�
, XS

�
−
)(JkS

�
)R(S

�
, XS

�
−
)(J

j

S
�

)d�
�

+ �

⎡⎢⎢⎢⎣

LT

∫
0

(QST−S�
Φ)(XSt−

)(D2XSt−, x
)(J

j

0
, Jk0)d�

⎤⎥⎥⎥⎦
.

D2Qt∕2Φ(x)(J
j

0
, Jk0) =

4

L2t
�

⎡
⎢⎢⎢⎣
Φ(Xt)

Lt

∫
Lt∕2

R(S
�
, XS

�
)J
j

S
�

dB
�

×

Lt∕2

∫
0

R(S
�
, XS

�
−
)JkS

�
dB

�

⎤⎥⎥⎥⎦

−
2

Lt
�

⎡⎢⎢⎢⎣

Lt∕2

∫
0

D(QSt∕2−S�
Φ)(XS

�
−
)

×(D�(S
�
, XS

�
−
)(J

j

S
�

)(R(S
�
, XS

�
−
)(JkS

�
)d�

�

+
2

Lt
�

⎡
⎢⎢⎢⎣

Lt∕2

∫
0

D(QSt∕2−S�
Φ)(XS

�
)(D2XS

�
, � )(J

j

0
, Jk0)d�

⎤
⎥⎥⎥⎦
.

(74)
Qt∕2Φ(Xt) = QtΦ(x) +

Lt∕2

∫
0

D(QSt∕2−S�
Φ)(XS

�
)(�(S

�
, XS

�
−
)dB

�
.
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Multiply (74) by ∫ Lt∕2
0

DR(S
�
, XS

�
)J
j

S
�

JkS
�
dB� and ∫ Lt∕2

0
R(S

�
, x)(J

j

0
, Jk0)dB�. Next, taking expectations and ap-

plying the identity (see Elworthy & Li, 1994)

yields the required result. ✷

6. Applications
This section is dedicated to estimating the Delta, Gamma and Vega from two stochastic models of 
the asset price namely; the subordinated stochastic differential equation (SSDE) and the Geometric 
Brownian motion (GBm).

6.1. Hedging discontinuous-pay-off type options in Black–Scholes framework
We focus only on the digital option but the analysis could be extended to other discontinuous-pay-
off type or irregular pay-off options (see Fournié et al., 1999 for instance). The Delta and Gamma 
follow directly from Theorems 5.5 and 5.7 respectively.

Let Xt satisfy the stochastic differential equation

with the solution given by

Figure 1 shows the dynamics of solutions to SSDE and GBm.

The Greeks are computed by conditioning on LT = �, as follows :

(75)D�JjRJk + �DRJjJk = 0,

(76)dXt = rXtdLt + �XtdBLt
; X0 = x,

(77)Xt = x exp(rLt + �BLt
).

Figure 1. Price evolution from 
SSDE and GBm models.
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6.1.1. Delta
According to Theorem 5.5

Assume a discounted pay-off of a digital option i.e. Φ(XT) = e
−rT

�E<XT
 where E is the strike price, then 

we can express the Delta by

Figure 2 shows the digital option delta from both the SSDE and GBm models. Observe that the delta 
from SSDE is slightly higher due to existence of jumps and its convergence is slightly slower.

6.1.2. Gamma
Consider n = 2 and let X1t = X2t  in Theorem 5.7 then we deduce

Suppose LT∕2 ≡ LT. We obtain a similar expression of the Gamma as in the case of continuous 
Brownian motion by applying the identity �[B2LT BLT ] = �[BLT

(B2LT
− BLT

) + B2LT
] and simplying. That is

Figure 3 shows digital option gamma from the SSDE and GBm models. Again we observe that the 
gamma from SSDE is slightly higher than that from GBm.

(78)�x�[Φ(XT)] =
1

�
�

⎡
⎢⎢⎣
Φ(XT)

T

∫
0

1

�Xt

�Xt
�x
dBLt

⎤
⎥⎥⎦
.

(79)𝜕x�[Φ(XT)] = �

[
e−rT�{E<XT}

BLT
x𝜎𝜏

]
.

(80)

�2

�x2
�[Φ(XT] =

4e−rT

x2�2�2
�[Φ(XT)BLT∕2

(BLT
− BLT∕2

)]

−
2e−rT

x2��
�[Φ(XT)BLT∕2

]

+
2e−rT

x2��
�[Φ(XT)BLT∕2

].

(81)�2

�x2
�[Φ(XT] = e

−rT
�

[
Φ(XT)

1

x2��

(
B2LT
��

− BLT
−
1

�

)]
.

Figure 2. Digital option delta: 
�= 0.8, r = 0.1, � = 0.2,

S
0
= 110, E = 100, T = 1.
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6.2. Vega
The Vega can be deduced similarly using integration by parts. That is

Figure 4 shows the Vega from the SSDE and GBm models. Note that the Vega from SSDE is slightly 
higher. Observe that despite fact the SSDE model has jumps, the convergence rate for the estimation 
of the Greeks from the model is as good as in the GBm model.

(82)�

��
�[Φ(XT] = e

−rT
�

[
Φ(XT)

(
B2LT
��

− BLT
−
1

�

)]
.

Figure 3. Digital option gamma: 
� = 0.8, r = 0.1, � = 0.2,

S
0
= 110, E = 100, T = 1.
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Figure 4. BEL formula with 
� = 0.8, r = 0.1, � = 0.2,

S
0
= 110, E = 100.
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As a matter of interest, we apply the finite-difference method on the subordinated Brownian mo-
tion model to estimate the Greeks for a call option from the SSDE model. Recall from Fournié et al. 
(1999) that the finite-difference method is recommended for computing the Greeks from European 
options compared to the BEL formula, it performs better in this case. Figure 5 shows the estimation 
of the Greeks of a European call option using the SSDE model.

(83)
�x�[Φ(XT)] = �

[
e−rTmax(XT − E, 0)

BLT
x�LT

]
.

Figure 5. Finite-
difference method for Call 
Greeks from SSDE with 
� = 0.7, r = 0.1, � = 0.2,

S
0
= 110, E = 100.
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7. Conclusion
We extended the integration by parts formula approach to computing the Greeks of options with 
discontinuous pay-offs presented in Fournié et al. (1999) to markets with jumps. As an application, 
we estimated Greeks from the SSDE model and observed that BEL formula still performs well for 
SSDE as in the continuous diffusion models. As a concrete practical application, our model can be 
applied by investors in emerging/illiquid markets to construct hedge portfolios.
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