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On skewed, leptokurtic returns and pentanomial 
lattice option valuation via minimal entropy 
martingale measure
Ivivi J. Mwaniki1*

Abstract: This article develops, a lattice-based approach for pricing contingent claims 
when parameters governing the logs of the underlying asset dynamics are modelled 
by generalized hyperbolic distribution and normal inverse Gaussian distribution. The 
pentanomial lattice is constructed using a moment matching procedure. Moment 
generating functions of generalized hyperbolic distribution and normal inverse 
Gaussian distribution are utilized to compute probabilities and jump parameters 
under historical measure ℙ. Minimal entropy martingale measure (MEMM) is used to 
value European call option with a view of comparing the results with some of the 
existing benchmark model such as Black Scholes model. Empirical data from S&P500 
index, RUTSELL2000 index and RUI1000 index are used to demonstrate how the 
model works. There is a significant difference especially for long term maturity (six 
months and above) type of contracts, the proposed model outperform the 
benchmark model, while performing poorly at short term contracts. Pentanomial NIG 
models seems to outperform the other models especially for long dated maturities.

Subjects: Mathematics & Statistics; Statistics & Probability; Computer Science; 
Computational Numerical Analysis; Data Preparation & Mining

Keywords: binomial; pentanomial lattice; generalized hyperbolic distribution; normal 
inverse Gaussian; minimal entropy martingale measure; European call option

1. Introduction
In the past decade option pricing has become one of the major areas of financial theory and practice. 
Since the introduction of the celebrated Black Scholes option pricing which assumes that the underly-
ing stock prices follow a geometric Brownian motion; there is an explosive growth in trading 
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derivatives in the world wide financial market. Due to its compact and computational simplicity; the 
Black and Scholes (1973) model enjoys great popularity in the financial markets. Recently the formulae 
has been extended in various ways. Recent studies have shown that the normal distribution may not 
accurately describe observed properties of stock returns; see for example Barndorff-Nielsen (1998), 
Cont (2001), Carr, German, Madan, and Yor (2002) for a well documented stylized facts about returns. 
The deviations from normality become more severe when high frequency financial data are used.

A lattice is a graphical representation of all possible paths that might be followed any stochastic 
process say for example stock price. We construct a pentanomial lattice that approximates the evo-
lution stock price. Lattices are useful for valuing a wide variety of options such as path dependent 
contracts which may not have a closed form solution such as lookback options, American type op-
tions and barrier option. Since options cash flow are functions of the future value of the underlying 
asset, options can be valued in the lattice by taking the expectation of their payoff. The current op-
tion value equals the discounted expected option payoff.

Lattices for option pricing were first introduced in 1979 in the pioneering work of Cox, Ross, and 
Rubinstein (1979). In particular, they used binomial lattice to model geometric Brownian motion and 
Rendleman and Bartter (1979) used binomial lattice to model exponential Poisson process. An at-
tractive property of their model is that the binomial lattice for geometric Brownian motion is consist-
ent with the standard (Black & Scholes, 1973) formula for European options. Due to simplicity and 
versatility of lattice models, a number of extensions to the basic model have been proposed, see 
Derman and Kani (1994), Ritchken and Trevor (1999), Yamada and Primbs (2001), Wu (2006) for 
example. Florescu and Viens (2008) use quadrinomial tree to model stochastic volatility in option 
pricing, while Primbs, Rathianam, and Yamada (2007) price options with a pentanomial lattice. It is 
worthy noting that an efficient lattice method, may be significantly faster than a Monte Carlo meth-
od for valuing some types of path dependent options.

The objective of this paper is to develop an option pricing lattice model which combine skewness 
and the leptokurtic nature of daily log returns under an alternative distributional assumption, that is 
consistent with empirical stock returns. Minimal entropy martingale measure (MEMM) is used to 
change probability measure ℙ to a risk neutral economy within a pentanomial lattice framework. 
Parameters of the model are selected to match the first four central moments of the returns. Such a 
model, has the potential of estimating option prices that are more consistent with empirically 
observed stylized facts of returns.

This paper proceeds as follows. In Section 2, we establish the general dynamics of the asset price 
over a time interval Δ�. In Section 3, a brief review of binomial, and pentanomial lattice is outlined. 
In Section 4, option pricing formulaes are derived in pentanomial framework and minimal entropy 
martingale measure is applied to change measure ℙ to risk neutral world ℚ. Section 5 introduces 
numerical procedures in relation to derived formulaes using real market data. European call option 
is priced and numerical results compared. Section 6 draws conclusions.

2. Basic model setup
Consider the stochastic distribution of the price of non-divided paying stock in a risk-neutral econo-
my. Let the stock price be S(t) at time t in a period [t, T]. An option pricing model is generally based 
on assumed process of the stock price or return. The Black and Scholes (1973), for example assume 
that the stock price (under risk neutral measure ℚ), movement is governed by the following process

where r is the risk free rate and � is the instantaneous volatility rate of the stock return distribution. 
This is equivalent to assuming daily log returns are normally distributed with mean (r − �2∕2)(T − t) 
and variance �2(T − t). The resulting price of a contingent claim max(ST − K, 0) is given by

dS(t) = rS(t) dt + �S(t) dBt, ⇒ ST�t = St exp
��

r −
�2

2

�
(T − t) + �

√
T − tZt

�
, Zt ∼ N(0, 1)
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where t refers to the current time. However such a process does not incorporate skewness and lep-
tokurtic fat tails which are typically associated with empirical stock log returns.

We consider a discrete time economy for a period of [t, T] where the trading takes place at any of the 
n + 1 trading nodes t, t + Δ�, t + 2Δ�, … , t + nΔ� where Δ� =

T−t

n
. Suppose (Ω, 𝔽 , ℙ) is a given 

probability space, where ℙ is the statistical or data generating probability measure. Here, the sample 
space �  represents the uncertainty in our financial model. Let � be the time index set 
{t, t + Δ�, t + 2Δ�, … , t + nΔ�} of our financial model such that all economic activities take place 
at each time point t ∈ �. We equip our probability space (Ω, 𝔽 , ℙ) with the information structure 
 : = {j}j∈� to get a filtered probability space denoted by (Ω, 𝔽 , (t)t∈[0, T], ℙ). That is, for each 
j ∈ �, j represents the information set of all market information up to and including time j,  where 0 
contains all ℙ-null sets in � . In general, asset price SiΔ� is sometimes assumed to follow the process

where Zi ∼ N(0, 1), W
(j)

i
(Δ�) ∼ N(�(Δ�), �2(Δ�)), and Ni(Δt), i = 1, 2, … , n are sequences of in-

dependent Poisson random variables with parameter �Δ�. Changes of daily log returns are known to 
be leptokurtic and assumed to be laced with Poisson mixture of normal distributions. For more de-
tailed exposition on modeling the dynamics of the underlying risky asset see Hsieh (1989), Nieuwland, 
Verschoor, and Wolff (1994), Chan and Maheu (2002), Duan, Ritchken, and Sun (2006) etc. Without 
loss of generality, our focus is on developing lattice model for the underlying process, say

where mt is a well chosen constant. Let Yt = mt + Xt, and define Yi : = log(SiΔ�∕S(i−1)Δ�), i = 1, … , n, 
which are assumed to be random variable whose first four moments are known from the market data 
simply for the sake of developing a pentanomial lattice framework. For simplicity, we let Yt be mod-
elled by generalized hyperbolic distribution and normal inverse Gaussian which are as defined below.

2.1. The generalized hyperbolic distribution
In this subsection we provide definition of the generalized hyperbolic distribution along with normal 
inverse Gaussian as its special case.

Definition 2.1  The probability density function of the one-dimensional Generalized Hyperbolic dis-
tribution is given by the following:

where �2 = �2 − �2 and K� is the modified Bessel function of third kind with index � given by

According to Barndorff-Nielsen, the parameters domain is given by

(2.1)

CBS(t, K) = StΦ(d1) − Ke
−r(T−t)Φ(d2)

d1 =
ln(St∕Ke

r(T−t))

�
√
T − t

+
1

2
�
√
T − t

d2 =
ln(St∕Ke

r(T−t))

�
√
T − t

−
1

2
�
√
T − t

(2.2)
SiΔ�
S
(i−1)Δ�

= exp

(
� +

d∑
k=1

�k ln

(
S
(i−k)Δt

S
(i−k−1)Δt

)
+ �iΔt

[
Zi +

Ni (Δt)∑
j=1

W
(j)

i
(Δt)

])

(2.3)ST|t = St exp(mt + Xt).

(2.4)fGH(y; �, �, �, �, �) =
(�∕�)�√
2�K�(��)

⋅

K�− 1

2

(�

�
�2 + (y − �)2)

(

�
�2 + (y − �)2∕�)

1

2
−�

⋅ e�(y−�)

(2.5)K�(�) =
1

2

∞

∫
0

exp
[
−
�

2
(v−1 + v)

]
v�−1dv
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In all cases, � is the location parameter and can take any real value, � is a scale parameter; � and � 
determine the distribution shape and � defines the subclasses of GH and is related to the tail flatness.

Characteristic function of the GH is given by

while mean and variance are given respectively by the following

We consider normal inverse Gaussian (hereafter NIG) which is a special case of Generalized hyper-
bolic distributions when � = −0.5.

Definition 2.2  The Normal inverse Gaussian (hereafer NIG) distribution is a flexible four parameter 
distribution that can describe a wide range of shapes. A random variable Y ∼ NIG(�, �, �, �) if

where  K1 is the modified Bessel function of third kind, with the index 1 given by

It is interesting to note that NIG distribution can take a variety of different shapes. Having a heavier 
tail than that of normal distribution is considered suitable for modeling data sets with many extre-
mal observations. The moments of a random variable Y ∼ NIG(�, �, �, �) are

The characteristic function of NIG random variable say Y is given by

2.2. Parameterizations
Although the parametrization (�, �, �, �, �) is mostly used in literature we have other parameteri-
zations like (� , �, �, �) which is invariant under the transformation of the scale and location 

𝛼 > 0 𝛼2 > 𝛽2 𝛿 ≥ 0 for 𝜆 > 0,

𝛼 > 0 𝛼2 > 𝛽2 𝛿 > 0 for 𝜆 = 0,

𝛼 > 0 𝛼2 ≥ 𝛽2 𝛿 > 0 for 𝜆 < 0.

(2.6)�GH(u) = e
iu�

(
�2 − �2

�2 − (� + iu)2

)�∕2 K�

(
�

√
�2 − (� + iu)2

)

K�

(
�

√
�2 − �2

) ,

�(Y) = � +
��√
�2 − �2

K�+1(� )

K�(� )

� (Y) = �2

(
K�+1(� )

�K�(� )
+

�2

�2 − �2

[
K�+2(� )

K�(� )
−

(
K�+1(� )

K�(� )

)2
])

, where � = �

√
�2 − �2

(2.7)f NIG(y; �, �, �, �) =
�

�
exp

(
�

[√
�2 − �2 + �� (y)

])K1(��
√
1 + � (y)2)

√
1 + � (y)2

, � (y) =
(y − �)

�

K1(�) =
1

2

∞

∫
0

exp
[
−
�

2
(v−1 + v)

]
dv

(2.8)�[Y] = � + �
�

�
, � [Y] = �

�2

�3
, where � =

√
�2 − �2

(2.9)� NIG(u) = �[exp(iuy)] = exp(i�u)
exp(�

√
�2 − �2)

exp(�

√
�2 − (� + iu)2)
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parameters with � = (1 + �

√
�2 − �2)−1∕2 and � = ��∕�. McNeil, Frey, and Embrechts (2005) used 

the following parameterizations (�, � , � , �, �, �) where

The parametrization (𝜆, 𝛼̄, 𝜇, 𝜎, 𝛾), is derived if we set

Similar parametrization is used in ghyp R package.

The main challenge is to construct branching probabilities in the lattice. Our approach would be 
using moment matching technique.

3. Multinomial lattices
One of the most important joint distributions is the multinomial distribution, which arises when a se-
quence of n independent and identical experiments are performed. Suppose that each experiment can 
result in any one of  possible outcomes, with respective probabilities p1, p2, … , p


,
∑

j=1 pj = 1. If 
we let Xi denote the number of the n experiments that result in outcome number i, then

In multinomial lattice model, we need to determine the up and down rates u and d, and the proba-
bilities p1, … , p


 to fit the actual market data as closely as possible. This can be done by moment 

matching or directly from density function, see Kellezi and Webber (2004) for different ways of con-
structing branching probabilities in the lattice. Note that u and d may be thought of as up and down 
factors at each step. Also it can be shown that the multinomial lattice still recombines even if u and 
d are time dependent when un∕dn = c is satisfied for some constant c > 1 where un and dn
n = 0, 1, … , N − 1 are up and down factors in each time step, see Yamada and Primbs (2001), 
Yamada and Primbs (2004) for more details. Let the up and down rates, u and d, be given as

where  is the number of branches, and mt = �[Yt] and 𝛼 > 0 are real numbers.

We develop the basic theoretical set up to model the dynamics of the underlying with an objective 
to value options in discrete time. It is assumed that, trades occur only at discrete dates indexed by 
{0 < Δ𝜏, … , < nΔ𝜏}, and the stock price at date t + iΔ� can take on values only in a discrete set 
specified exogenously by

where the variables (t + kΔ�, j), index time , while  is the possible number of future states for 
S̃t+(k+1)Δ𝜏 from S̃t+kΔ𝜏, i.e.

with probabilities pl, l = 1, … , , satisfying p1 +⋯ + p

= 1. In this case, the stock may achieve 

k( − 1) + 1 possible prices at time t = kΔ�, k = 0, … , n given by

(2.10)� = �, � =
�

�2
, � = �

√
� , � =

�
�

�2
+ �2

𝛼̄ =
√
𝜓𝜒 , and

�
𝜒

𝜓

K𝜆+1(
√
𝜓𝜒)

K𝜆(
√
𝜓𝜒)

= 1, which implies, 𝜓 = 𝛼̄
K𝜆+1(𝛼̄)

K𝜆(𝛼̄)
, 𝜒 = 𝛼̄

K𝜆(𝛼̄)

K𝜆+1(𝛼̄)
.

(3.1)ℙ(X1 = n1, X2 = n2, … , X

= n


) =

n!

n1!n2! … n

!
p
n1
1
p
n2
2

… p
n



,

∑
j=1

nj = n.

(3.2)u: = exp

(
mt

 − 1
+ �

)
, d: = exp

(
mt

 − 1
− �

)

S̃
(t+kΔ𝜏, j), j = 1, … , ( − 1)k + 1, k = 0, … , n

(3.3)S̃
(t+(k+1)Δ𝜏, l) = u

−ldl−1S̃t+kΔ𝜏 , l = 1, … , .

(3.4)S̃
(t+kΔ𝜏, k) = u

k(−1)+1−kdk−1St, k = 1, … , n( − 1) + 1
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Let Yk = log(St+kΔ�∕St+(k−1)Δ�), then its jth central moment,

For more information about multinomial approximating models see Kamrad and Ritchken (1991), 
Kargin (2005). We briefly illustrat.e moment matching methodology, by considering the binomial 
and pentanomial models for a two time steps in the following subsection.

3.1. Binomial lattices
The binomial option pricing model is an iterative solution that models the price evolution over the 
whole option validity period [t, T]. Figure 1 represents the price evolution of the underlying asset as the 
binomial lattices of all possible prices at equally spaced time steps from today (t + 0Δt) under the 
assumption that at each step, the price can move, either up or down at a fixed rate and with respective 
pseudo-probabilities pu and pd. A standard (Cox et al., 1979) binomial tree, consists of a set of nodes, 
representing possible future stock prices, with a constant logarithmic spacing between these nodes.

The necessary equations for the binomial lattice are pu + pd = 1,

From these two equations, we obtain several possibilities of solutions e.g. pu = pd =
1

2
. or

where � is the variance of Y. A European call option with exercise price K and date n will have payoff 
in state [n, j] given by

3.2. Pentanomial lattice construction
We consider state space for risky stock price dynamics over two trading dates as shown in Figure 2. 
At each date kΔ�, the stock price can take on values in an exogenously specified discrete set indexed 
by j. The price S̃(t + kΔ𝜏, j) denotes the stock price in state j at date kΔ� for k = 1, ...,N and 
j = 1, … , 4k + 1 respectively.

�j = �

[
(Yk − �Yk)

j
]

= �j
∑
l=1

pl( − 2l + 1)j , j ≥ 2.

(3.5)
2∑
l=1

pl( − 2l + 1) = p1 − p2 = 0,  = 2.

pu =
1

2
+
1

2

�

�

√
Δ�, pd =

1

2
−
1

2

�

�

√
Δ� with u = e�Yi+� and d = e�Yi−� ,

(3.6)
C(n, j) =

n∑
j=0

q
j

1
(1 − q1)

j−n n!

j!(n − j)!
max[Stu

jdn−j − K, 0], q1 = 1 − q2 ∈ ℚ

Figure 1. Binomial lattice in two 
time steps.
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To construct a pentanomial model of stock prices, we examine the behavior of the stock price in 
an interval [t, t + Δ�]. The discrete distribution of Yi over the interval [t, t + iΔ�] is approximated to 
be pentanomial,as illustrated in Figure 2. To model the stock price movement as a pentanomial lat-
tice, the interval [t, T] is divided into n equal subintervals of length Δ� = (T − t)∕n, where T is the 
maturity date of an option. For convenience, define S∗T = ST∕St. To develop an option pricing model 
dependent on skewness and kurtosis, the distribution of S∗T is assumed to be fully specified by pa-
rameters via central moments.

Proposition 3.1  Let Mj(T) = �[S∗T�t]j = �Y (−iuj), i =
√
−1, and �j(T) = �[S∗T −M1(T)]

j , j = 1, 2, 3, 4 
where �Y is the characteristic function of random variable Y, and �j(T) is the central moment of S∗(T). 
Thus

It follows that skewness and kurtosis of S∗T is given by

The relation (3.8) is used to form system of linear equations.

where �k(T) are as defined above.

To calibrate the pentanomial lattice, we need to solve the following five equations

which implies that,

Making the column of the probabilities pj , j = 1, 2, 3, 4, 5 the subject, we get

�2(T) = M2(T) −M
2
1(T)

�3(T) = M3(T) − 3M2(T)M1(T) + 2M
3
1(T)

�4(T) = M4(T) − 4M3(T)M1(T) + 6M
2
1(T)(M

2
2(T) − 3M

4
1(T))

(3.7)�(S∗T|t) =
�3(T)

� (S∗T)
3∕2
, �(S∗T|t) =

�4(T)

� (S∗T)
2
.

(3.8)
5∑
l=1

(
[2l − 6]�

)k
pl = �k(T), k = 1, 2, 3, 4

(3.9)

p1 + p2 + p3 + p4 + p5 = 1,

−2p1 − p2 + p4 + 2p5 = 0,

16p1 + 4p2 + 4p4 + 16p5 = � (S∗T)∕�
2,

−64p1 − 8p2 + 8p4 + 64p5 = �(S∗T)� (S
∗

T)
3∕2∕�3,

256p1 + 16p2 + 16p4 + 256p5 = �(S∗T)� (S
∗

T)
2∕�4,

(3.10)

⎡⎢⎢⎢⎢⎢⎣

1 1 1 1 1

−2 −1 0 1 2

16 4 0 4 16

−64 −8 0 8 64

256 16 0 16 256

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

p
1

p
2

p
3

p
4

p
5

⎤⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

1

0
�
2
(T)

�2
�
3
(T)

�3
�
4
(T)

�4

⎤⎥⎥⎥⎥⎥⎥⎦

(3.11)

⎡⎢⎢⎢⎢⎢⎣

p
1

p
2

p
3

p
4

p
5

⎤⎥⎥⎥⎥⎥⎦

=
1

384

⎡⎢⎢⎢⎢⎢⎣

0 32 −4 −4 1

0 −256 64 8 −4

384 0 −120 0 6

0 256 64 −8 −4

0 −32 −4 4 1

⎤⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

1

0
� (S∗

T
)

�2
�
3
(T)

�3
�
4
(T)

�4

⎤
⎥⎥⎥⎥⎥⎥⎦

.
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The third and fourth equations arise from matching the third and fourth central moments of the 
approximating distribution to the third and fourth central moments respectively of the empirical 
distribution. How these central moments are related to skewness and excess kurtosis is described in 
Equation (3.8). On solving these five equations, we get Equation (3.12),

where

Note that � must be chosen in order to ensure positivity of probabilities p1, p2, p3, p4 and p5. It so 
happens that if �(S∗T) ≥ 3�(S

∗

T)
2
− 3 and �(S∗T) ≥

−23

16
 then, there exists a range of values of � (which 

includes � =

√
�(S∗T )

12
 ) which will ensure that all the probabilities are strictly positive (see Primbs et al., 

2007; Yamada & Primbs, 2001; Yamada & Primbs, 2004). This translates to the following proposition.

Proposition 3.2  For the choice of � =

√
�(S∗T )

12
, Equation (3.12) reduces to the following probabilities 

in (3.14) with guaranteed positivity, and the corresponding jump amplitudes for the pentanomial 
lattice in Equation (3.2) respectively.

(3.12)

⎡⎢⎢⎢⎢⎢⎣

p1
p2
p3
p4
p5

⎤
⎥⎥⎥⎥⎥⎦

=
1

384

⎡
⎢⎢⎢⎢⎢⎣

−4A − 4B + C

64A + 8B − 4C

384 − 120A + 6C

64A − 8B − 4C

−4A + 4B + C

⎤
⎥⎥⎥⎥⎥⎦

=
1

24

⎡
⎢⎢⎢⎢⎢⎣

−a − 2b + c

16a + 4b − 4c

24 − 30a + 6c

16a − 4b − 4c

−a + 2b + c

⎤⎥⎥⎥⎥⎥⎦

(3.13)A = �2(T)∕�
2, B = �3(T)∕�

3, C = �4(T)∕�
4, a = A∕4, b = B∕8, c = C∕16.

Figure 2. Pentanomial lattice 
for risky stock price dynamics 
over two trading dates.
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The notion of change of measure from ℙ to ℚ in an incomplete market implies existence of an 
equivalent measure which is not unique, with absence of arbitrage. One such martingale measure is 
minimal entropy martingale measure.

3.3. Minimal entropy martingale measure
One of the most important economic insight underlying the preference free option pricing result, is 
the concept of perfect replication of contingent claims, by continuously adjusting a self-financing 
portfolio under the no-arbitrage principle. Cox et al. (1979) provided further insight in the concept of 
perfect replication by introducing the notion of risk-neutral valuation and establishing its relation-
ship with no-arbitrage principle in a transparent way under a discrete-time binomial setting.

Harrison and Kreps (1979) and Harrison and Pliska (1981) established a solid mathematical foun-
dation for the relationship between no-arbitrage principal and the notion of risk-neutral valuation 
using the modern language of probability theory. They proposed the “Fundamental theorem for as-
set pricing” which states that the absence of arbitrage opportunities is equivalent to the existence of 
an equivalent martingale measure. If the securities market is complete, there is a unique martingale 
measure and hence the unique price of any contingent claim is given by its discounted payoff at 
expiry under the martingale measure. However, the assumption of market completeness is ques-
tionable in the real world securities market. Under an incomplete market, there is more than one 
equivalent martingale measure and hence a range of no-arbitrage prices for a contingent claim. One 
crucial issue is to identify an equivalent martingale measure which gives an economically consistent 
and justifiable price for the contingent claim.

Let n = 5 be the cardinality of Ω, R = 1 + r (where r denotes single period interest rate) and 
S = (St+0Δ𝜏 , S̃t+1Δ𝜏) be the price process of the risky asset. We assume that St+0Δ� is known and the 
random variable St+1Δ� takes five different positive values (a1, … , a5) = � with the probability

The minimal entropy martingale measure (MEMM) for the pentanomial lattice ℚ0 = (q1, … , q5) 
is the solution to the objective function say f (�)

(3.14)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

p1

p2

p3

p4

p5

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=
1

4(�(S∗T)
2)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1(�(S∗T) − �(S∗T)
√
3�(S∗T))

2(�(S∗T) + �(S∗T)
√
3�(S∗T))

2(2�(S∗T) − 3)�(S
∗

T)

2(�(S∗T) − �(S∗T)
√
3�(S∗T))

1(�(S∗T) + �(S∗T)
√
3�(S∗T))

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3.15)

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a1

a2

a3

a4

a5

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎧
⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

exp

�
mt − 4

�
�(S∗T )� (S

∗
T )

12

�
, with probability p1;

exp

�
mt − 2

�
�(S∗T )� (S

∗
T )

12

�
, with probability p2;

exp
�
mt

�
, with probability p3;

exp

�
mt + 2

�
�(S∗T )� (S

∗
T )

12

�
, with probability p4;

exp

�
mt + 4

�
�(S∗T )� (S

∗
T )

12

�
, with probability p5.

ℙ(S1Δ𝜏 = ai) = pi > 0, ∀ i = 1, … , 5, p1 +⋯ + p5 = 1.

(3.16)f (�) = min
q∈ℝ5,q>0

(
n∑
i=1

qi ln

(
qi
pi

))

s.t.

5∑
j=1

qj = 1,

5∑
j=1

qjaj = R. (3.17)
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It can be shown quite easily that ℚ is given by

where � ∈ ℝ is the unique real solution (that always exists under the assumption of no-arbitrage 
opportunities) of the following equation

This is part of lemma due to Frittelli (2000) in which, he links existence and uniqueness to � to no 
arbitrage assumption. See Ssebungenyi (2008), Miyahara (2001), Fujiwara and Miyahara (2003), 
Esche and Schweizer (2005), Choulli and Striker (2006), Ssebugenyi, Mwaniki, and Konlack (2013) for 
more application(s) of minimal entropy martingale measure.

Proposition 3.3  Let Ci, j be the option value at the node (i, j) where i refers to the time instant 
iΔ�, i = 1, 2, … , N and j is the one of the nodes in period i. Let j = 0, 1, 2, … , 4i. The price of the 
underlying asset in pentanomial node (i, j) is

where u and d parameters are given by

At maturity, we have CN, j = max{0, Su
NdN−j − K}, j = 0, 1, … , N and going backwards in time, en-

tropy price of the contingent claim is given by

4. Empirical results

4.1. Data description
The data set consists of three daily adjusted closing price of three major indices, that is S&P500 
January 2,1990 up to April 16, 2016, RUT2000 index from 2 January 1990 up to 11 March 2016 and 
RUI1000 10 December 1992 up to 8 March 2016. Basic statistics of the resulting data set are com-
puted as shown in Table 1. All the three data sets indicate that they are negatively skewed and 
highly leptokurtic. This implies that they are not normally distributed. Over the entire period, we have 
the daily closing (adjusted) values of the indexes which we use in estimating the volatility 
parameter.

Table2 provided maximum likelihood estimates of parameters of generalized hyperbolic distribu-
tion, normal inverse distribution for the three sets of log returns.

(3.18)qi =
pie

�ai

∑5

j=1 pje
�aj
, i = 1, … , 5,

(3.19)
5∑
i=1

pi(ai − R)e
�ai = 0

Ŝi,j = Stu
4i−jdj , i = 1, … , N, j = 1, … , 4i

u = exp
⎛⎜⎜⎝
mt

4
+

�
�(S∗T)� (S

∗

T)

12

⎞⎟⎟⎠
and d = exp

⎛⎜⎜⎝
mt

4
−

�
�(S∗T)� (S

∗

T)

12

⎞⎟⎟⎠
.

Ci, j =
1

1 + r

(
q1Ci+1, j+4 + q2Ci+1, j+3 + q3Ci+1, j+2 + q4Ci+1, j+1 + q5Ci+1, j

)
, for i = N − 1, … , 1.

(4.1)�̂H
2
=

1

N − 1

N∑
j=1

[
ln

(
SjΔt

S
(j−1)Δt

)
− �Yj

]2
, for historical data
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As discussed earlier, specifications of pentanomial lattices are developed using the numerical pro-
cedure outlined in the previous section, In Table 3 are risk neutral probabilities for S&P500 index, 
similar computation can be done for other indices.

Once the parameters of discrete distributions are specified, pentanomial lattice building proce-
dure is analogous to that of binomial lattices. Option values are obtained through a recursive proce-
dure, and the corresponding graphical results presented in Figures 3, 4, 5.

4.2. European call option prices
A call option gives the owner the right, but not the obligation, to buy a particular security at a pre-
specified price within a pre-specified time period. The value of such an option will be intimately 
related to the distribution of the price of the underlying instrument at the time of maturity. 

Table 1. Basic statistics for daily index log returns S&P500, RUT2000, RUI1000 indices
Basic stat. S&P500 RUT2000 RUI1000
n 6,626 6,600 5,851

min(Y) −0.09470 −0.12614 −0.09557

max(Y) 0.10957 0.08861 0.11039

Q
1
(Y) −0.00470 −0.00563 −0.00478

Q
3
(Y) 0.00567 0.00670 0.00570

�(Y) 0.00027 0.00028 0.00026

Q
2
(Y) 0.00053 0.00099 0.00059

� (Y) 0.00013 0.00018 0.00014
√
� (Y) 0.01135 0.01330 0.01171

�(Y) −0.23909 −0.37296 −0.27147

�(Y) 8.56308 6.42191 8.45529

From 2 January 1990 2 January 1990 10 December 1992

Up to 19 April 2016 11 March 2016 8 March 2016

Table 2. Parameter estimates for G. hyperbolic and NIG distributions

f
GH
(y;�, �, �, �, �) =

(�∕�)
�

√

2�K
�
(��)

⋅

K
�− 1

2

(�

√

�
2
+(y−�)

2
)

(

√

�
2
+(y−�)

2
∕�)

1
2
−�

⋅ e
�(y−�)

, �
2
= �

2
− �

2

f
NIG

(y;�, �, �, �) = �

�
exp

�

�

��

�
2
− �

2
+ ��(y)

��

K
1
(��

√

1+�(y)
2
)

√

1+�(y)
2

, �(y) = (y − �)∕�

� S&P500 RUT2000 RUI1000
GH NIG GH NIG GH NIG

� −4.67698E-01 
(5.1122E-02)

−0.5000 0.25638 (5.8226E-
03)

−0.50000 −0.30183 −0.50000

𝛼̄ 4.866862E-01 
(6.27963E-03)

4.80087E-01 
(5.7168E-03)

54.21381 70.21658 62.40262

� 1.1212E-02 
(2.9847E-04)

1.12318E-02 
(2.90078E-04)

−8.67378 −7.90709 −6.46815 −6.44461

� 6.9863E-04 
(4.4186E-08)

−6.8066E-04 
(4.4154E-08)

0.00675 0.00932 0.00715 0.00806

� 9.6012E-04 
(2.434E-08)

9.4687E-04 
(2.4215E-08)

0.00175 0.00166 0.00111 0.00111

llh 21,078.78 21,078.74 19,874.23 19,869.54 18,471.4 18,470.68
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Specifically the more volatile the underlying price process, the more valuable the option. The 
standard approach for pricing options rely on risk neutral valuation methods. In this risk-neutralized 
probability measure, the price of a call option, that does not allow for early exercise and pays no 
dividends, will be qual to the discounted expected value of the payoffs at the maturity date. Our 
analysis is meant to illustrate a possibility of modeling volatility dependencies when calculating 
option prices.

To that end, we compare the performance of three lattice models for short time and long term 
maturity level at the money and out of the money European call options priced in Black and Scholes 
(1973) world, i.e.

where we let t refer to the present time and � = T − t the time to expiry date in days. An option is 
said to be at the money if the exercise price, K, equal the current value of the underlying security. 

CBS(t, K) = SΦ(d1) − Ke
−r(T−t)Φ(d2)

d1 =
ln(St∕Ke

r(T−t))

�̂H

√
T − t

+
1

2
�̂H

√
T − t

d2 =
ln(St∕Ke

r(T−t))

�̂H

√
T − t

−
1

2
�̂H

√
T − t

Table 3. Probabilities ℙ and minimal entropy martingale probabilities ℚ of S&P500 daily log 
returns with � = −6.674105 for normal inverse Gaussian distribution and � = −21.09163 for 
generalized hyperbolic distribution. We assume annual interest rate of r = 2.5% p.a.

min
q∈ℝ

5
, q>0

�∑5

i=1 qi ln
�
qi

pi

��
, s.t.

∑5

j=1 qj = 1,
∑5

j=1 qjaj = 1 + (r∕250),

�qj=pj e
𝜓a
j

∑5
i=1 pi e

𝜓a
i
, j = 1, … , 5

NIG � = −6.674105 GHY � = −21.09163

ℙ ℚ a ℙ ℚ �

p
1

0.030711 q
1

0.034976 a
1

0.980718 p
1

0.032025 q
1

0.047541 a
1

0.982167

p
2

0.046761 q
2

0.049904 a
2

0.990459 p
2

0.049183 q
2

0.059780 a
2

0.991647

p
3

0.837727 q
3

0.837223 a
3

1.000297 p
3

0.830150 q
3

0.824572 a
3

1.001217

p
4

0.061421 q
4

0.057446 a
4

1.010232 p
4

0.064051 q
4

0.051890 a
4

1.010881

p
5

0.023380 q
5

0.020451 a
5

1.020266 p
5

0.024591 q
5

0.016217 a
5

1.020637

Figure 3. S&P500 call options 
price, model comparison 
S
t
= 2102, r = 2.5% p.a., 

� ≡ T − t = 431 days.
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Lattices are calibrated in data generating process ℙ and transformed to ℚ minimal entropy martin-
gale measure. In all the models same parameters are used and results plotted against real market 
data and compared to Black Scholes model of 1973.

4.3. Empirical performance of the proposed model
The pricing performance of our model is tested relative to 200 European call options on the S&P500 
index, RUT2000 index, and RUI1000 index at the close of the market on 11 April 2016. The data were 
taken from market watch website. On 11 April 2016,the closing price for the three indices 
(S&P500,RUT2000, RUI1000) were St= $2021,$1073, and $1117 respectively. We assumed general 
annual risk free rate of r = 2.5% with no divided yield. We took long term options with maturities, 
431, 320 and 455 days respectively. The performance evaluated based on real option prices of data 
of the proposed model is measured with three indicators: (i) the dollar root mean squared absolute 
error (RMSE), (ii) the average relative pricing error (ARPE) and (iii) the average absolute error (APE) 
given below.

Figure 5. RUI1000 European 
call options price, model 
comparison. S

t
= 1117, r = 2.5% 

p.a., T − t = 455 days.

Figure 4. RUT2000 European 
call options price, model 
comparison. S

t
= 1073, r = 2.5% 

p.a., T − t = 320 days.
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where N represents the total number of options and Cmarket is the average option price. Table 4 sum-
marizes the overall pricing errors of the various models considered here. We notice option prices 
computed based on pentanomial NIG lattice and Pentanomial GH lattice outperform the ones calcu-
lated based on BSM73 model for long term maturity days considered here as presented.

5. Conclusion
In this paper we establish the asset dynamics under the physical probability measure ℙ in incomplete 
market, also apply minimal entropy martingale measure to change dynamics to risk neutral ℚ. We 
assumed log-Lévy model to calibrate dynamics of the underlying price process and MEMM to change 
the historical probability risk neutral probability measure.

The valuation of contingent claims whose value depend on multiple sources of uncertainty is an 
important problem in financial economics. Since numerical methods for valuing such claims can be 
computationally expensive, the need for an efficient algorithm is clear. We made simplifying as-
sumptions in that direction, even though there is more to be refined.

Although the pentanomial lattice provided in this article are tractable as the standard binomial, 
the pentanomial lattices approach, and may be extended to the multinomial case. Pentanomial lat-
tices can be considered useful for relatively long term contracts (200 days and above) which can be 
used to solve American type options problems incorporating skewness and kurtosis. In depth study 
and more data sets are required to fine tune this observation.

Since option prices may react sensitively to changes in volatility, a proper specification of the condi-
tional means at each step may play a crucial role in the proposed pentanomial model. Under the 

(4.2)RMSE($) =

√√√√√
N∑
j=1

(Cmarketj − Cmodelj )2

N

ARPE(%) =
1

N

N∑
j=1

|Cmarketj − Cmodelj |
Cmarketj

× 100

APE(%) =
1

N

N∑
j=1

|Cmarketj − Cmodelj |
Cmarket

× 100

Table 4. European call option on 11 April 2016 Pricing performance under the three pricing kernels
Index Pricing Kernel S

t
N T − t

C
market RMSE($) ARPE(%) APE(%)

S&P500 2102 40 431 576.74

BSM73 78.25 181.91 13.37

PENT-NIG 29.83 119.28 4.54

PENT-GH 30.12 126.22 4.39

RUT2000 1073 21 320 190.85

BSM73 25.49 91.63 12.98

PENT-NIG 9.56 58.86 3.99

PENT-GH 10.43 59.26 4.87

RUI1000 1117 29 455 222.44

BSM73 40.55 37.42 18.12

PENT-NIG 10.12 13.00 3.35

PENT-GH 57.06 49.22 25.50

(4.3)

(4.4)
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proposed framework, the market is in general incomplete, which is challenging to handle for the im-
plication is a multitude of equivalent martingale measures and thus, a variety of no-arbitrage prices.

We note that under the proposed underlying dynamics, the proposed pricing model outperform 
bench mark model such as Black scholes model for the long term contract, pentanomial NIG lattice 
outperforms the other two models. We leave model refinement and extensions for future research. 
It would be interesting to incorporate changing volatility in the pentanomial framework and com-
pare the result.
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