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CAPM with various utility functions: Theoretical 
developments and application to international data
Rihab Bedoui1*† and Houda BenMabrouk1‡

Abstract: This paper presents an extension of the Capital Assets Pricing Model 
(hereafter CAPM) where various utility functions are applied. Specifically, we 
propose an overall CAPM beta that accounts for the higher order moments and 
reflects the investor preferences and attitudes toward risk. We particularly develop 
CAPM betas for different classes of utility function: the negative exponential utility 
function, power utility function or “Constant Relative Risk Aversion (CRRA) Utilities” 
and hyperbolic utility function or “HARA Utilities” (hyperbolic absolute risk 
aversion). In order to validate our theoretical results, we analyze the impact of 
investors’ preferences on the valuation equation. Applying the International CAPM, 
the results indicate that our utilities-based betas differ largely from the traditional 
CAPM betas. Moreover, the results confirm the importance of higher order 
moments on the pricing equation. Finally, the results both empirically and 
theoretically post to the consistent effect of the risk aversion degree on our 
utilities-based CAPM.
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1. Introduction
The traditional version of the CAPM of Sharpe (1964) and Lintner (1965) assumes that assets’ returns 
are a linear function of their equivalent systematic risk measured by � CAPM, the slope from the re-
gression of securities’returns on the market risk premium. 

The CAPM relies on several restrictive assumptions. In particular, the validity of the model sup-
poses verifying the normality of stock returns and investors’ homogeneous anticipations. Under The 
first condition, the expected utility can be expressed with an exact function of the mean and vari-
ance of the returns’ distributions. However, the second one is necessary to legitimate the formaliza-
tion problem of the investor choice in a risky situation. For the mean variance approach to be valid, 
we require a quadratic utility function. This means that returns? distribution is fully described by the 
two first moments, i.e. the mean and the variance. This makes the theoretical derivation of the 
CAPM, as well as its applicability, questionable at best. Indeed, many studies (see, for instance: Fama 
(1965), Arditti (1971), Singleton and Wingender (1986), and, more recently, Chung, Johnson and 
Schill (2006)) show that stock returns do not follow the Gaussian assumption, since assets returns 
distributions are asymmetrical with heavy tails. Several studies, then (see, for instance, Roll (1977), 
Fama and French (1992) among others) have announced daringly the death of the CAPM. Specifically, 
the unability of the �CAPM to explain the cross section of expected stock returns. Although a large 
body of empirical literature, developed in the following decades, provide varying results and the 
validity of CAPM is still between offenders and defenders. In fact, Shah, Abdullah, Khan, and Khan 
(2011) compare the performance of the CAPM and the Fama and French (1993) three factor model. 
Their results favor the use of the CAPM model to estimate expected returns. Fama and French (2015) 
propose a five-factor model aims at capturing the size, value, profitability, and investment patterns 
in average stock returns. They find that by the inclusion of profitability and investment factors, the 
value factor (book to market) of the FF three-factor model becomes redundant for describing aver-
age returns. This is not strange since, the �CAPM is based on traditional risk measures. Traditionally, 
Markowtiz (1952) proposes the variance as a measure of risk (see Bouchaud & Potters, 1997; Duffie 
& Richardson, 1991) and the “mean-variance” approach to determine the optimal portfolio, mini-
mizing the variance or maximizing returns. Nevertheless, this model is valid only on a quadratic 
utility function framework and supposes that returns follow a normal distribution. To solve this prob-
lem, Markowitz (1959) suggests the semi-variance to account for the downside risk. Other risk meas-
ures are proposed, such as the partial order moments and the value-at-risk (see Bouchaud & Selmi, 
2001; Coombs & Lehner, 1981, 1984; Fishburn, 1982, 1984; Luce, 1980; Pollatsek & Tversky, 1970; 
Sarin, 1987; Stone, 1973).

However, these attempts do not appear to bring definitive solutions. Indeed, it seems that the 
question is quite controversial. In fact, modeling the non linear distribution suffers from the lack of 
a pertinent risk measure to capture for investors preferences. This problem is getting worse when 
cumulated together with the necessity to specify a utility function, because only the investors utility 
function can determine their preferences.

Bell (1988) proposed an exponential utility function plus a linear function U(x) = ax − be−cx with 
a ≥ 0, b > 0 and c > 0 in order to determine a measure of risk in the following form E

[
e−c(x−E(x))

]
. 

Bell (1995) applied the same technique for measuring risk using other types of utility functions. 
Always in the utility function context Heston (1993) proposed a general risk measure of the form, 
U(E(X)) − E(U(X)). In the same context, Jia and Dyer (1996) suggested a general risk measure in the 
form: R = −E[U(X − E(X))]. Bellalah and Selmi (2002) showed that that a maximization program of 



Page 3 of 21

Bedoui & BenMabrouk, Cogent Economics & Finance (2017), 5: 1343230
https://doi.org/10.1080/23322039.2017.1343230

the expected utility can be equivalent under certain conditions, to the minimization of some risk 
measure. Yet their risk measure is valid only for some utility functions classes. Particularly, the ap-
plication of this measure to a power utility function leads to a zero risk which is very far from reality. 
Nevertheless, these risk measures are a quite vague. Indeed, since they are not developed from 
utility functions, one cannot expect that they fully describe investors’ preferences. In these sense, 
our objective is threefold: first, we develop several risk measures based on diverse classes of utility 
functions. More concretely, we propose risk measures for the negative exponential utility function or 
“CARA Utilities” (constant absolute risk aversion), power utility function or “CRRA Utilities” (constant 
relative risk aversion), and hyperbolic utility function or “HARA Utilities” (hyperbolic absolute risk 
aversion). We, then determine the CAPM systematic risk (� CAPM) based on the risk measures ex-
tracted from utilities. For robustness check, we, finally, apply the CAPM with various risk attitudes to 
international data.

The structure of the paper is as follows. In Section 2, we develop our theoretical risk measures 
based on utility functions. In Section 3, we determine a general CAPM beta that can be applied to 
different utility functions as well as betas for the negative exponential utility function, the power 
utility function, and hyperbolic utility function. In Section 4, we apply these betas to international 
data and compare them with the traditional CAPM betas. Section 5 concludes the paper.

2. Risk measures and utilities functions: Theoritical developments
In this section, we theoretically determine risk measures based on investors’ utility functions that 
accounts for the moments of order three and four (the skewness and the kurtosis), which are indica-
tors of the asymmetry and peakedness of the probability distribution. Bellalah and Selmi (2002) 
showed that a program of the expected utility maximizing can be equivalent under certain condi-
tions, to the minimization of some risk measure (they used cubic and negative exponential utility 
functions to test their approach). However, this risk measure can be used only for some defined 
utility functions. Specifically, the application of this measure to a power utility function leads to a 
zero risk which is very far from reality. To overcome these limitations, remaining in the context of the 
expected utility approach, we determine an overall risk measure for different classes of utility func-
tions. We propose risk measures for the negative exponential utility function, power utility function 
or “CRRA Utilities” (constant relative risk aversion), and hyperbolic utility function or “HARA Utilities” 
(hyperbolic absolute risk aversion).

2.1. The expected utility approach

2.1.1. The approach presentation
We consider that each agent has at time t an initial wealth W and a von Neumann–Morgenstern util-
ity function, strictly increasing and concave. We further assume that the utility function of the inves-
tor is continuously differentiable and satisfies the following properties:

with U(i) the i-th derivative of the utility function.

Under these assumptions, the utility function can be expanded in Taylor series in the neighbor-
hood of the expected future wealth �(W):

where �n+1(W) is defined as follows :

with:

U(1) > 0, U(2) < 0, U(3) > 0, U(4) < 0

(1)U(W) =

N∑
i=0

1

n!
U(i)

(�(W))�

[
(W − �(W))

i
]
+ �N+1(W)

�N+1(W) =
U(N+1)

(� )

(N + 1)!

[
W − �(W)

](N+1)



Page 4 of 21

Bedoui & BenMabrouk, Cogent Economics & Finance (2017), 5: 1343230
https://doi.org/10.1080/23322039.2017.1343230

Assuming that the Taylor approximation of U in the neighborhood of �(W) is convergent and the 
distribution F(W) is only determined by its moments, and supposing that n tends to the infinity of the 
expected value of the Equation (7), we get :

which implies:

with

Let �2 = �

[
(W − �(W))

2
]
, �3 = �

[
(W − �(W))

3
]
 and �4 = �

[
(W − �(W))

4
]
 be, Respectively, the 

variance, the third- and the fourth-order moments. Equation (9) becomes:

This equation takes into account all centered moments of the probability distribution of the ran-
dom wealth, namely the third (skewness) and the fourth (kurtosis) moments, and not only the first 
two moments. It shows that the investor has a preference for the mean and the asymmetry (posi-
tive) and an aversion to variance and kurtosis.

2.1.2. Why an expected utility approach?
This approach can be justified by two reasons. On the one hand, the Markowitz “mean- variance” 
approach assumes that the probability density of wealth is Gaussian, meaning that it is perfectly 
defined by its first two moments. However, several empirical studies have shown that the mean and 
variance are not sufficient to fully define the probability distribution. This issue has led many authors 
to propose alternative forms of the probability density function than the Gaussian. For example, 
Simaan (1993) proposed a non-spherical distribution, Adcock and Shutes (1999) assumed that the 
financial asset returns distribution follows a multivariate Skew-Normal, Rachev and Mitnik (2000) 
defined a Levy–Pareto stable distribution for returns. It seems thus necessary to define an approach 
that accounts for the first four moments. On the other hand, we need to consider particular utility 
functions because only utilities can describe investors preferences. For example, assume that inves-
tor preferences are represented by a quadratic utility function of the form (see Maillet & Jurczenko, 
2006):

with �i ∈ R
∗, i = 1, 2, 3, 4.

By applying the mathematical mean, we get:

𝜁 ∈]W, �(W)[si W < �(W) ou𝜁 ∈]�(W), W[si W < �(W) et N ∈ N
∗

(2)�(U(W)) =

+∞

∫
−∞

{
lim
N→∞

[
N∑
i=0

1

i!
U(i)

(�(W))�

[
(W − �(W))

i
]
+ �N+1(W)

]}
dF(W)

(3)

�[U(W)] = U(�(W)) +
1

2
U(2)

(�(W))�

[
(W − �(W))

2
][
+
1

3!
U(3)

(�(W))�

[
(W − �(W))

3
]]

×

[
+
1

4!
U(4)

(�(W))�

[
(W − �(W))

4
]][

+

N∑
i=5

1

n!
U(i)

(�(W))�

[
(W − �(W))

i
]]

lim
N→∞

�N+1(W) = 0

(4)

�[U(W)] = U(�(W)) +
1

2
U(2)

(�(W))�2 +
1

3!
U(3)

(�(W))�3

×

[
+
1

4!
U(4)

(�(W))�4 +

N∑
i=5

1

n!
U(i)

(�(W))�

[
(W − �(W))

i
]]

(5)U(W) = �0 + �1W + �2W
2
+ �3W

3
+ �4W

4

(6)�(U(W)) = �0 + �1�(W) + �2�(W
2
) + �3�(W

3
) + �4�(W

4
)
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while:

This allows us to get:

It remains to verify the stochastic dominance of this utility function. That is

The first four derivatives from the Equation (5) are:

whereas, we know that U(3) > 0 et U(4) < 0, so we have:

We note that the second derivative of the utility function is a simple second-order equation that 
must satisfy these conditions1:

It remains to verify that the first derivative of the quartic utility function is positive. We note that the 
first derivative is a simple third- order equation which shall, after some calculations, verify the fol-
lowing three conditions:

⎧
⎪⎨⎪⎩

�(W2
) = �2(W) + �(W)

2

�(W3
) = �3(W) + 3�(W)�2(W) + �(W)

3

�(W4
) = �4(W) + 4�(W)�3(W) + 6�(W)

2�2(W) + �(W)
4

(7)

�(U(W)) = �0 + �1�(W) + �2�(W)
2
+ �3�(W)

3
+ �4�(W)

4

+

[
�2 + 3�3�(W) + 6�4�(W)

2
]
�2(W)

+
[
�3 + 3�4�(W)

]
�3(W) + �4�4(W)

U(1) > 0, U(2) < 0, U(3) > 0, U(4) < 0

⎧⎪⎪⎨⎪⎪⎩

U(1)
= �1 + 2�2W + 3�3W

2
+ 4�4W

3

U(2)
= 2�2 + 6�3W + 12�4W

2

U(3)
= 6�3 + 24�4W

U(4)
= 24�4

⎧⎪⎨⎪⎩

𝛼3 > 0

W < −

�
𝛼3

4𝛼4

�

𝛼4 < 0

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝛼
2
<

3𝛼2
3

8𝛼
4

if Δ < 0

W < −

�
𝛼
3

4𝛼
4

�
+

√
(9𝛼23−24𝛼2𝛼4)

12𝛼
4

W < −

�
𝛼
3

4𝛼
4

�
−

√
(9𝛼23−24𝛼2𝛼4)

12𝛼
4

0 < 𝛼
2
≥ 3𝛼

3
2

8𝛼
4

if Δ < 0

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝛼1 > 0�
−

𝛼23

16𝛼24
+

𝛼2

6𝛼4

�3
+

�
𝛼33

16𝛼34
−

𝛼2𝛼3

16𝛼24
+

𝛼1

8𝛼4

�2
> 0

W < −

�
𝛼3

4𝛼4

�
+

A2+(9𝛼23−24𝛼2𝛼4)
12𝛼4A

A =

�
B+
√

−108(3𝛼23−8𝛼4𝛼2)
3
+B2

2

� 1

3

B =

�
−54𝛼33 − 432𝛼

2
2𝛼1 + 216𝛼4𝛼3𝛼2

�
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If the investor preferences are represented by a quartic utility function, it is easy to verify that the 
agent has a preference for the mean and the asymmetry and an aversion to variance and kurtosis.

2.2. Risk measures and utility functions

2.2.1. A Jia and Dyer (1996) risk measure
Jia and Dyer (1996) have proposed a risk measure which is consistent with the utility theory. 
Specifically, they showed that there is a negative relationship between investor preferences and risk. 
In this section, we present this “pure” risk measure within Jia and Dyer framework.

Definition 2.2.1 Let P be a convex set of all probability distribution of the set of lotteries {X,  Y,  Z,  ...}. 
Let P0, the all normal probability distributions set, which is a subset of P defined by2:

We call P0 “the risk set” of the probablity distribution of X′ the standard risk of the lottery X.

Definition 2.2.2 Let X�
, Y

�
∈ P

0, we have X′ >
R
Y
′ if and only if Y ′ >

P
X
′.

We refer by >
R
 to a binary relation of risk and by >

P
 a binary relation of preference in P0.

It is important to note that if the preference relation >P satisfies the von Neumann–Morgenstern 
(1944) expected utility axioms, then the agent preferences can be represented by an expected utility 
function.

Theorem 2.2.1  For all X�
, Y

�
∈ P

0, X′ >
R
Y
′ if and only if R(X�

) > R(Y �
), with R(X�

) a risk measure:

where U is a von Neumann–Morgenstern (1944) utility function.

Remark 2.2.1 This risk measure is called general because it imposes no restriction, neither on the 
shape of the probability distribution nor on the utility function of the lottery.

According to this theorem, Jia and Dyer assume that there is a negative relationship between the 
preference of the investor as measured by �

[
U(X − �(X))

]
 and the risk measure denoted R. They 

assume, in addition, that this risk measure must satisfy two conditions. The first concerns derivatives 
that is, U(2n) < 0 and U(2n+1) > 0. In other words, the utility function should check stochastic domi-
nance of order n. The second deals with the investor risk aversion, preferring even-order moments 
and being adverse to odd-order moments. This result is well known: Markowitz (1952)3 showed that 
an individual having a concave utility function for low values of the lottery and convex for high val-
ues of the lottery, would prefer the mean and skewness. Therfore, he prefers the right side of asym-
metric distributions (gain) and hates the variance and kurtosis that is the left side of asymmetric 
distributions (loss).

Another important point is that the risk measure defined by Equation (8) is applied to the centered 
variable R − �(X). If we play again in the lottery, the mathematical mean �(X) may serve as a 

⎧
⎪⎪⎨⎪⎪⎩

𝜕�[U(W)]

𝜕�(W)
= 𝛼1 + 2𝛼2�(W) + 3𝛼3�(W

2
) + 4𝛼4

�
�(W3

) + �(W)
3
�
> 0

𝜕�[U(W)]

𝜕𝜎2(W)
= 𝛼2 + 3𝛼3�(W) + 6𝛼4�(W)

2 < 0
𝜕�[U(W)]

𝜕𝜆3(W)
= 4𝛼4�(W) > 0

𝜕�[U(W)]

𝜕𝜆4(W)
= 𝛼4 < 0

P
0
= {X

�|X�
= X − �(X), X ∈ P}

(8)R(X
�
) = −�

[
U(X − �(X))

]
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preference value. In this case, X̃ = X − �(X) is a centered lottery that reflects the “pure” risk of the 
original lottery R.

We will now give examples of risk measures for some utility functions.

The exponential utility function 

If the investor’s preferences are represented by an exponential utility function of the form:

with 𝜃 > 0, the risk measure corresponding to this function is given by (see Jia & Dyer, 1996):

This risk measure is confused with that of Bell (1988) for an exponential utility function as well as 
linear utility function of the form:

with a ≥ 0, b > 0 et c > 0.

The quadratic utility function 

If the investor’s preferences are represented by a quadratic utility function of the form:

with 𝛼 > 0 and 𝜃 > 0, the risk measure corresponding to this utility function is:

Remark 2.2.2 This is nothing other than the variance of W. This result is already seen in the previous 
paragraph where we justified the Markowitz “mean-variance” approach.

Quadratic utility functions pose two problems. The first is that these functions are decreasing 
beyond a certain value of �R >

𝛼

2𝜃
 and the second is that they are characterized by an increasing risk 

aversion function. To overcome this problem, Levy (1969) proposed a cubic utility function of the 
form:

with �, �, and � are positive and constant parameters.

Remark 2.2.3 Note that the choice of parameters �, �, and � is not arbitrary. For example, if this 
function must be increasing, it is necessary that 𝜃2 < 3𝛼𝛾 and to ensure the concavity, it is necessary 
that R <

𝜃

3𝛾
.

The risk measure according to Equation (14) is:

with 𝛾 � = 𝛾

𝜃
> 0

U(R) = −e−� R

 = −�(U(R̃)) = −�[U(R − �(R))] = �
[
e−�(R−�(R))

]

U(R) = aR − be(−cR)

U(R) = � R − � R2

(R̃) = � �
[
(R − �(R))2

]

U(R) = � R − � R2 + � R3

 = �

[
(R − �(R)2)

]
− � � �

[
(R − �(R))3

]
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Note that this risk measure is a linear combination of the second-order moment (variance) and 
the third-order moment (the skewness). It is clear that this risk measure is a decreasing function of 
the asymmetry (since 𝛾 � = 𝛾

𝜃
> 0). In other words, a transformation of the weight to the right side of 

the distribution (that is the gain side) reduces the risk.

The quartic utility function

We assume now that the investor’s preferences are represented by a quartic utility function of the 
form:

with 𝛼 > 0 𝜃 < 0 𝛾 > 0 and 𝛿 < 0. Applying Equation (14) for this utility function, we obtain:

We remark that this risk measure is a linear combination of the second-order moment, the third-
order moment, and the fourth-order moment. It is clear that it depends negatively of the skewness 
and positively of the kurtosis, as it should. This reinforces the intuition according to which the risk is 
actually dependent to the loss and not to the profit and it is related to the great fluctuations rather 
than the small ones.

2.2.2. Theoretical developments of risk measures based on utilities functions
Our aim is to determine risk measures for various classes of utility functions and, hence, for diverse 
degrees of risk aversion. We, particularly, determine risk measures for the the negative exponential 
utility function (constant risk aversion), power utility function (decreasing risk aversion), and hyper-
bolic utility function (the risk aversion is dependent to the function parameters). To extract risk 
measures from utility functions, we use the same technique as in Jia and Dyer (1996) but the trun-
cated Taylor approximation of order four in return.

2.2.2.1. The general framework. We assume that the von Neumann–Morgenstern utility function is 
strictly increasing, concave and at least fourth-order differentiable. We assume further that the 
probability distribution of W is entirely determined by its moments. It is important to note that the 
utility function shall satisfy these four properties:

with U(i) the i-th derivative of the utility function.

Under these assumptions, the mathematical mean applied to the Taylor series, truncated to order 
four, in the neighborhood of �(R) leads to the following approximation:

where �2, �3 and �4 are, respectively, the variance, the skewness, and the kurtosis.

Maximizing the expected utility applied to the final wealth, �(U(R)), is equivalent to maximizing 
the following quantity:

Theorem 2.2.2  We consider a probability space (Ω, 𝔽 , ℙ). Let Γ be a set of random variables defined on 
(Ω, 𝔽 , ℙ). A random varibale X ∈ Γ is identified to the future income of a given act.

U(R) = � R − � R2 + � R3 − � R4

 = � �
[
(R − �(R)2)

]
− � �

[
(R − �(R))3

]
+ � �

[
(R − �(R))4

]

U(1) > 0, U(2) < 0, U(3) > 0, U(4) < 0

(9)�[U(R)] = U(�(R)) +
�2

2
U(2)

(�(R)) +
�3

3!
U(3)

(�(R)) +
�4

4!
U(4)

(�(R))

U(�(R)) +
�2

2
U(2)

(�(R)) +
�3

3!
U(3)

(�(R)) +
�4

4!
U(4)

(�(R))
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One places oneself within the expected utility hypothesis. An agent forms choices on the set Γ ac-
cording to the following criterion:
X is preferred to Y, denoted X ⪰ Y, if and only if:

where U:ℝ → ℝ is a strictly increasing and concave utility function.

According to this theorem, the lottery X is less risky than Y (having the same mathematical mean), 
this implies that:

This leads to consider the following quantity as a measure of risk denoted :

This risk measure is consistent with the risk mesure of Markowitz (1952) and that of Scott and 
Horvath (1980) who have shown that a rational investor would prefer the odd-order moments and 
hate even ones. Indeed,

In reality, this risk measure coincides with that of Jia and Dyer (1996). According to them, if we play 
once the lottery, �(R) can serve as a reference value. In this case, R̃ = R − �(R) is a centered lottery 
that reflects the pure risk. Under this condition, the risk measure  defined by Equation (10) 
becomes:

We consider the risk measure defined by Equation (16) as a general risk measure for all utility func-
tions in order to determine theoretically risk measures applicable to all types of utility functions.

In the remainder of this subsection, we will theoretically determine for each of the different types 
of utility functions a corresponding risk measure.

2.2.2.1. A risk measure for the Negative Exponential Utility Function. An agent that has preferences 
described by a negative exponential utility function is a risk-averse agent. Moreover, his risk aversion 
is constant with respect to the amount of wealth.

where 𝜃 > 0 is the absolute risk aversion, which is constant.

It is necessary to verify if this utility function satisfies the four stochastic dominance properties 
that is: U(1) > 0, U(2) < 0, U(3) > 0, U(4) < 0 with U(i) the i-th derivative of the utility function.

�
[
U(X)

] ≥ �
[
U(Y)

]

1

2

(
𝜎2X − 𝜎2Y

)
U(2)

(�(R)) +
1

3!

(
𝜆X3 − 𝜆Y3

)
U(3)

(�(R)) +
1

4!

(
𝜆X4 − 𝜆Y4

)
U(4)

(�(R)) > 0

(10) = −�2U(2)
(�(R)) −

1

3
�3U

(3)
(�(R)) −

1

12
�4U

(4)
(�(R))

𝜕
𝜕𝜎2

= −U(2)
(�(R)) > 0

𝜕
𝜕𝜆3

= −U(3)
(�(R)) < 0

𝜕
𝜕𝜆4

= −U(4)
(�(R)) > 0

(11)
 = −�2U(2)

(0) −
1

3
�3U

(3)
(0) −

1

12
�4U

(4)
(0)

U(R) = − exp (−� R)
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The Taylor approximation truncated to the fourth order applied to the expected utility of this func-
tion implies:

Maximizing this quantity is equivalent to minimize the risk defined as follows:

As required, this risk measure is a linear combination of the variance, the skewness and the kurtosis 
as it is fourth-order differentiable. We note in addition that the moments weights depend on risk 
aversion. More specifically, this provides an opportunity for investors to weight weakly or heavily the 
wealth distribution tails according to their attitude toward risk. It is worth noting that if the final 
wealth follows a Gaussian law, our risk measure is reduced to the variance. Indeed, this result is well 
known under the assumption of the model of Markowitz (1952).

An agent that has a power utility function is risk-averse with a decreasing absolute risk aversion 
and a constant relative risk aversion with reference to the amount of wealth. This utility function is 
called CRRA4 because it has a constant relative risk aversion function equal to �. This utility function 
has been the subject of several theoretical and empirical studies, such as Rubinstein (1976), Coutant 
(1999), Bliss and Panigirtzoglou (2004), Guidolin and Timmermann (2005a, 2005b) and Jondeau and 
Rockinger (2003, 2005, 2006) among others.

This function is translation invariant, we can write as follows: U(W) =
1

1−�
R1−� = exp

{
log(R)(1−�)

1−�

}

that tends to log(R) when � → 1. As for the negative exponential utility function and before deter-
mining the corresponding risk measure of the power utility function, we must check if this function 
satisfies the four following properties:

Similarly, if � = 1, we have U(1) > 0, U(2) < 0, U(3) > 0 and U(4) < 0

The Taylor approximation truncated to the fourth order applied to the expected utility of this func-
tion implies:

Maximizing this quantity is equivalent to minimize the risk defined as follows:

⎧
⎪⎪⎨⎪⎪⎩

U(1)
= 𝜃 exp (−𝜃 R) > 0

U(2)
= −𝜃2 exp (−𝜃 R) < 0

U(3)
= 𝜃3 exp (−𝜃 R) > 0

U(4)
= −𝜃4 exp (−𝜃 R) < 0

�
[
U(R)

]
= exp (−� E(R))

[
−1 −

1

2
�2�2 +

1

3!
�3�

3
−
1

4!
�4�

4

]

(12)
exp = �2 −

1

3
�3� +

1

12
�4�

2

U(R) =
1

1 − �
R1−�

⎧⎪⎪⎨⎪⎪⎩

U(1)
= R−𝛾 > 0

U(2)
= −𝛾 R−𝛾−1 < 0

U(3)
= 𝛾(1 + 𝛾)R−𝛾−2 > 0

U(4)
= −𝛾(1 + 𝛾)(2 + 𝛾)R−𝛾−3 < 0

⎧⎪⎪⎨⎪⎪⎩

�

�
1

1−�
R1−�

�
≃ (1 − �)−1�(R)(1−�) − �

2
�(R)−(1+�)�2

+
�(1+�)

3!
�(R)−(�+2)�3 −

�(1+�)(2+�)

4!
�(R)−(�+3)�4

�
�
log (R)

�
≃ log (�(R)) − 1

2
�2�(R)−2 + 2

3!
�3�(R)

−3
−

6

4!
�4�(R)

−4
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As far as the risk measure of the previous function, this measure is likewise a linear combination of 
the variance, the skewness, and the kurtosis. We note in addition that the moments weights depend, 
this time, on the relative risk aversion (�) and the final wealth mean.

2.2.2.3. A risk measure for the Hyperbolic Utility Function. We assume that the investor’s preferences 
are specified by the hyperbolic utility function or HARA “Hyperbolic absolute risk aversion”5 of the 
form6:

with:

It is easy to show that this function checks the four stochastic dominance properties.

The Taylor approximation truncated to the fourth order applied to the expected utility of this func-
tion implies:

Maximizing this function is equivalent to minimize the risk defined as follows:

That is to minimize this quantity:

(13)

{ iso(�≠1) = �2 −
(1+�)

3
�(R)−1

[
�3 −

(2+�)

4
�4�(R)

−1
]

iso(�=1) = �2 −
2

3
�3�(R)

−1
+

1

2
�4�(R)

−2

U(R) =
�

1 − �

(
� +

�

�
R

)(1−�)

⎧⎪⎨⎪⎩

𝜃 +
𝛼

𝛾
R > 0

1

𝛾
> −

1

2

𝛼 > 0 𝜃 ≥ 0

⎧⎪⎪⎪⎨⎪⎪⎪⎩
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= 𝛼

�
𝜃 +

𝛼

𝛾
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�
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𝛼

𝛾
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𝛾

��
𝜃 +

𝛼

𝛾
R
�−(2+𝛾)
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�
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𝛼

𝛾
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We can remark that this risk measure depends on the final wealth R and the parameters (�, �, �). 
It is a linear combination of the variance, the skewness, and the kurtosis. Their weights depend on all 
utility function parameters and on the final wealth. We obviously note that our risk measure nega-
tively depends on the skewness and positively on the variance and the kurtosis, but we cannot judge 
on the variation of this measure in relation to various utility function parameters, namely (�, �, �).

Our three risk measures include the two, third- and fourth-order moments. They give a good idea 
on the dissymmetry and tails of the distribution that inform us on the frequency of extreme 
movements.

3. Model specifications: Utilities-based CAPM
The CAPM is based on a certain number of simplifying assumptions making it applicable. These as-
sumptions are presented as follows:

•  The markets are perfect and there are neither taxes nor expenses or commissions or asymmet-
ric information of any kind;

•  All the investors are risk-averse and maximize the mean–variance criterion;

•  The investors have homogeneous anticipations concerning the distributions of the returns prob-
abilities (Gaussian distribution);

The aphorism behind this model is as follows: the return of an asset is equal to the risk-free rate 
raised with a risk premium which is the risk premium average multiplied by the systematic risk coef-
ficient of the considered asset. Thus, the expression is a function of:

•  The systematic risk coefficient which is noted as �i;

•  The market return noted E(RM) ;

•  The risk-free rate (Treasury bills), noted Rf .

This model is explained as follows:

where E(RM) − Rf  represents the risk premium and �i corresponds to the systematic risk coefficient 
of the considered asset.

From a mathematical point of view, this one corresponds to the ratio of the covariance of the as-
sets’ returns and that of the market and the variance of the market returns.

where �M represents the standard deviation of the market return (market risk) and �i is the standard 
deviation of the assets’ returns.

Subsequently, if an asset has the same characteristics as those of the market (representative as-
set), then, its equivalent � will be equal to 1. Conversely, for a risk-free asset, this coefficient will be 
equal to 0.

The � coefficient is the back bone of the CAPM. Indeed, the beta is an indicator of profitability since 
it is the relationship between the assets volatility and that of the market. Volatility is related to the 
returns variations which are an essential element of profitability. Moreover, it is an indicator of risk, 

(15)
E(Ri) = Rf + �i

[
E(RM) − Rf

]

(16)

{
�i =

cov(Ri ;RM)

V(RM)

�i =
��M

��i

�i

�M
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since if this asset has a � coefficient which is higher than 1, this means that if the market is in reces-
sion, the return on the asset drops more than that of the market and less than it if this coefficient is 
lower than 1.

The covariance can be written as follows:

Hence, the � of a particular asset i becomes:

Therefore, the CAPM Model can be written as follows:

Genaral-based utility CAPM

Considering our general risk measure, the CAPM is expressed as follows:

Replacing ℜ by its experssion in Equation (10), the � becomes:

so, the CAPM equation based on our general risk measure is:

Negative exponential utility function CAPM 

Now consider an investor whose preferences are described by a negative exponantial utility func-
tion, his � is :

Hence, his CAPM valuation equation is presented as follows:

(17)cov(Ri ;RM) =
V(Ri + RM) − V(Ri) − V(RM)

2

(18)
�i =
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−
1

2
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]
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We can note from Equation (24) that our beta is divided into three risks: the volatility risk, the skew-
ness risk, and the kurtosis risk. The volatility effect is positive which means that higher volatility (of 
both the asset and the market return) leads to a higher risk premium. This is a direct consequence of 
risk-averse investors who require higher return for supporting higher risk. Whereas, the skewness 
effect is negative which means that returns are left skewed. The negative effect proves that inves-
tors hate downside movements. This is a normal behavior for risk-averse investors. Meanwhile, in-
vestors have preferences for the kurtosis (positive effect) indicating that they prefer central values. 
We can conclude that investors prefer even moments and hate odd ones. The moment effect de-
pends also from the weights, that is as higher as the moments order is as lower as the effect on beta 
will be.

Power utility function CAPM 

If the investor has a power utility function, then his valuation equation differs with refrence to the 
paramater � as follows:

Equation (26) indicates that the moments effect is the same as in the negative exponential utility 
function. Higher volatility and kurtosis lead to higher risk premium. However, higher skewness re-
sults in lower risk premium.

Hyperbolic utility function CAPM We assume that the investor’s preferences are specified by the 
hyperbolic utility function or HARA “Hyperbolic absolute risk aversion”. His � is as follows :

Besides, his CAPM valuation equation is:

We note from Equation (27), like the negative exponential and the power utility functions, in the 
hyperbolic power utility function, investors are variance–kurtosis seekers. As we can see, the beta 
determined from utility functions depends not only on the mean and the variance but also on the 
third and the fourth moments.
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4. Application and results discussion

4.1. Data and methodology
We collect returns of indexes listed in the MSCI classification including the MSCI World Index, the 
MSCI Emerging Markets Index, the MSCI European Index, the MSCI South Africa, as well as specific 
market indexes, the bel 20, CAC 40, DAX, SP500, Tunindex, on a daily basis from January 2003 
through January 2014. All empirical investigations are conducted on the CAPM. The MSCI World 
Index is used as a proxy for the global market portfolio and the three-month US Treasury bill is used 
as a proxy for the risk-free rate. We calculate, firstly, the traditional CAPM beta, then our betas ex-
tracted theoretically from various utility functions. We, afterward, compare the estimated beta to 
not only the traditional CAPM beta but also to our different betas developed from various utility 
functions.

To assess the risk of different utility function, we use the risk aversion parameters (� and �) as in 
the literature summarized in Table 1.

4.2. Results and discussion
We, firstly, present the results related to the calculation of the traditional beta. Then, an application 
of our different betas extracted theoretically from utility functions is done. We, finally, compare the 
estimated value of beta to their calculated values from utilities and the traditional version as well. 
To apprehend the distribution of our sample, we use descriptive statistics presented in Table 2.

Table 2 reports the summary statistics of daily returns for the following indexes: BEL 20, CAC40, 
DAX, TUNINDEX, SP500, MSCI Emerging Markets, MSCI Europe, MSCI South Africa, and MSCI World 
Index. The results indicate that the mean of all indexes lies on both sides of 0 with a highest value 
of 0.00022 for the MSCI South Africa index. All returns exhibit negative skewness which indicates 
that the distribution of returns is shifted on the right of the median, and thus the tail of the distribu-
tion is left- skewed. All indexes have high kurtosis with the biggest value is found for the TUNINDEX 
(2,432.70). The high values of kurtosis indicate that returns are highly concentrated around the 
mean, due to lower variations within observations. The high values of the asymmetry and flatness 
coefficients are due to the significant difference between the two bonds of the distribution (min and 
max). This means that all indexes are left-skewed, have heavy tails and are picked which is an ex-
plicit departure from the normality assumption, which implies that returns are dispersed and 

Table 1. Estimated values of the constant coefficient of relative risk aversion
Study CRRA range
Arrow (1971) 1

Friend and Blume (1975) 2

Hansen and Singleton (1982, 1984) 0–1

Mehra and Prescott (1985) 55

Ferson and Constantinides (1991) 0–12

Epstein and Zin (1991) 0–12

Cochrane and Hansen (1992) 40–50

Normandin and Saint-Amour (1998) <3

Sophie Coutant (1999) 0–11.404

Aït-Sahalia and Lo (2000) 12.7

Guo and Whitelaw (2001) 3.52

Bliss and Panigirtzoglou (2004) 0.37–15.97
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therefore the risk is important, which leads us to conclude that the distribution is leptokurtic creating 
a vulnerability to the risks of extreme loss.

4.2.1. Traditional beta
Table 3 reports the values of betas calculated from the CAPM equation for different market indexes 
with reference to the global market index (MSCI World). The beta of an index gives its sensitiveness 
to the market movements. It gives the contribution of a specific index to the overall market risk and 
represents the systematic risk. The results indicate that the beta is always high ranging between 
0.758 and 1.044. The Tunindex and the MSCI South Africa has the lowest value of beta (respectively, 
0.758 and 0.907). Whereas, the highest value are found for the MSCI indexes and the European in-
dexes. This is not strange since African countries remain on the edge of the global market which 
explains their relatively low values of beta. 

However, since the beta is calculated basing on the normality assumption and hence determined 
from only the first two moments of the distribution, the conclusion is not straightforward. In fact, 
basing on the descriptive statistics, our study sample diverge from the Gaussian distribution. Hence, 
a risk measure based on simply the mean and the variance may lead to a misinterpretation of the 
results. So, a pertinent risk measure should rather include further the higher order moments.

4.2.2. Utilities-based beta 
Results from Table 4 indicate firstly the remarquable difference of the values of the traditional beta 
(Table 3) and the negative exponetional utilility beta. This finding highlights the impact of different 
risk aversion degrees. Secondly, we remark that the values of beta based on the negative exponen-
tial utility function7 increase with the aversion parameter � for different indexes. In other words, the 

Table 2. The sample descriptive statistics
Indexes Mean Median Standard 

deviation
Skewness Kurtosis Min Max

CAC40 −0.00012 0.00021 0.02350 −26.65 1,136.70 −1 0.11180

DAX 0.00017 0.00067 0.02340 −27.08 1,160.60 −1 0.11400

BEL20 −0.00012 0.00022 0.02260 −29.96 1,326.60 −1 0.09780

SP500 −0.00002 0.00048 0.02240 −30.94 1,382.00 −1 0.11580

Tunindex 0.00018 0.00010 0.01950 −47.33 2,432.70 −1 0.04190

MSCI Europe 0.00000 0.00056 0.02370 −26.27 1,113.60 −1 0.11290

MSCI Emerging 
Markets

0.00014 0.00130 0.02470 −23.09 932.44 −1 0.13680

MSCI South Africa 0.00022 0.00062 0.02240 −30.99 1,384.00 −1 0.06140

MSCI World −0.00004 0.00078 0.02150 −35.14 1,635.10 −1 0.09520

Table 3. Calculation of the traditional CAPM beta
Indexes �

CAC40 1.023

DAX 1.017

BEL20 0.978

SP500 1.007

Tunindex 0.758

MSCI Europe 1.044

MSCI Emerging Markets 1.022

MSCI South Africa 0.907
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systematic risk increases with the absolute risk aversion. We obviously remark from this table the 
effect of changes in our CAPM beta value according to �. It is important to note that the Tunindex 
presents the lowest value of beta resulting from the negative exponential utility. This consolidates 
the results previously found with the traditional CAPM beta. Though, the traditional systematic risk 
measures do not reflect the investor preferences. 

Since the negative exponential beta includes extreme values of the distribution. That’s why this 
latter exhibits high kurtosis and negative skewness. It’s not strange to find that the negative expo-
nential betas differ largely from the traditional ones. Indeed, according to Equation (13), our CAPM 
beta is a combination of the variance, the skewness and the kurtosis. It positively depends on the 
variance and kurtosis (�4) and negatively on the skewness (−�3). If � → +∞ , � (−�3) increases (be-
cause 𝜆3 < 0) and �2 �4 increases also, which explains this variation of negative exponential beta 
according to the traditional one. The effect of higher moments is much bigger than the volatility ef-
fect. All indexes have low volatility and high skewness and kurtosis. Moreover, the weights of those 
moments depend on the risk aversion (�) and are bigger than the weight of the volatility. That’s why 
the negative exponential betas are negative with reference to the traditional betas.

Table 5 reports the values of � extracted from the power utility function for different values of the 
parameter �. The values of � are almost positive for all indexes except for the MSCI Europe index 
which means that index returns vary in the same direction as the global market portfolio. However 
for the MSCI Europe, the � is negative indicating that the variation is inversely related to the market 
portfolio. We note that the value of � tend to increase with the increase of the risk aversion param-
eter �. This result means that the higher the risk aversion the higher the risk premium is. For the MSCI 
Europe, the results are a bit striking since it goes beyond the theoretical presumption: in fact, it is 
found that the risk premium is negative which means that we require lower return for higher risk. 
Hence, we note the remarquable difference of the CAPM beta based on the power utility function 
and the one based on the negative exponential utility function which highlight the impact of consid-
ering various risk aversion degrees.

Table 4. Calculation of the CAPM beta extracted from the negative exponential utility function 
10

−2

� 0.5 1 2 10 20
CAC40 −49.90 −49.87 −49.67 −47.35 −40.41

DAX −49.9 −49.87 −49.76 −45.35 −40.40

BEL20 −49.91 −49.87 −49.76 −47.35 −40.41

SP500 −49.9 −49.87 −49.76 −47.35 −40.41

Tunindex −49.92 −49.88 −49.77 −47.36 −40.42

MSCI Europe −49.9 −49.87 −49.76 −47.34 −40.40

MSCI Emerging Markets −49.9 −49.87 −49.76 −47.34 −40.40

MSCI South Africa −49.91 −49.87 −49.77 −47.35 −40.41

Table 5. Calculation of the CAPM beta extracted from the power utility function 104

� 0.5 2 3 4 10 0
CAC40 2.9301 9.3767 15.628 23.442 103.15 1.5626

DAX 4.8733 15.5594 25.99 38.984 171.53 2.5991

BEL20 3.1618 10.118 16.864 25.296 111.31 1.6862

SP500 6.9744 22.319 37.199 55.798 245.52 3.7195

Tunindex 4.6299 14.815 24.692 37.037 162.96 2.4693

MSCI Europe −6,161.31 −19,716 −32,860 −49,290 −216,880 −3,286

MSCI Emerging Markets 7.8865 25.236 42.06 63.09 277.59 4.2062

MSCI South Africa 4.6299 14.815 24.692 37.037 162.96 2.4693
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Table 6 shows the calculations of our CAPM beta based on the HARA utility function.8 It illustrates 
the variation in our CAPM beta based on the HARA utility function for different values of �, � and �. 
All things being equal, we note that beta is undergoing positive variation in terms of � for different 
indexes. We also remark that the systematic risk variation in terms of � is not affected by the choice 
of the parameters � and �. Contrary to the positive variation of beta according to �, the absolute risk 
aversion for a HARA utility function is decreasing according to �. Moreover, this table shows the vari-
ation of beta based on the HARA utility function according to �. These variations are not negligible, if 
we increase the parameter � all things being equal for �. Nevertheless, this variation of the beta 
based on the HARA utility function according to � is almost zero if we opt for different choices of the 
parameter � while keeping the parameter � constant. As for the absolute risk aversion of a HARA 
utility function, it also has two regimes: (i) decreasing if 𝛾 > 0, in this scenario the value of risky as-
sets held by the fund manager tends to increase and (ii) increasing for 𝛾 < 0, thus it presents differ-
ent attitudes toward risk depending on the parameter �. Furthermore, the variation in the beta 
based on the HARA utility function depending on the parameter �, indicates that, unlike the other 
parameters � and �, beta remains often constant as a function of � for all indexes. This means that 
� has no effect on the quantification of systematic risk. The betas based on the HARA utility and 
negative exponential one converge when � = +∞. In fact, the negative exponential utility is a par-
ticular case of the HARA specifically when � = +∞ and � = 1.

4.2.3. Estimation of the CAPM: Utilities based versus traditional CAPM 
Systematic risk is the risk that is correlated with the return to the market; when the return to the 
market goes up, systematic return should also increase. Since the largest component of the variance 
is the sum of squares, many say that the R2 is the proportion of variance that is explained by the 
regression model. When we translate this approximation to the CAPM model, then the R-squared is 

Table 6. Calculation of the CAPM beta extracted from the hyperbolic utility function 10−2

Indexes � = −10; � = 2 � = −3; � = 1 � = 10; � = 2

� = 1 � = 10 � = 1 � = 2 � = 1 � = 10

CAC40 −49.91 −49.36 −49.91 −49.9 −49.9 −48.99

DAX −49.91 −49.35 −49.92 −49.9 −49.9 −48.99

BEL20 −49.91 −49.36 −49.92 −49.9 −49.9 −48.99

SP500 −49.91 −49.36 −49.92 −49.9 −49.9 −48.99

Tunindex −49.92 −49.37 −49.93 −49.91 −49.91 −49

MSCI Europe −49.91 −49.35 −49.91 −49.9 −49.9 −48.99

MSCI Emerging 
Markets

−49.91 −49.35 −49.91 −49.9 −49.9 −48.99

MSCI South Africa −49.91 −49.36 −49.92 −49.91 −49.91 −48.99

Table 7. Regression results of the CAPM equation
Index Constant term CAPM � R

2

Value p-value Value p-value
CAC40 9.3010 × 10

−5 0.5539 0.9983 0 0.9991

DAX −1.91339.3010 × 10
−4 0.223 0.9971 0 0.9991

BEL20 7.1362 × 10
−5 0.6503 1.0005 0 0.9991

SP500 −1.5909 × 10
−5 0.8842 0.9989 0 0.9996

Tunindex −2.2774 × 10
−4 0.3038 1.0016 0 0.9982

MSCI Europe −2.6437 × 10
−5 0.8516 0.9981 0 0.993

MSCI Emerging Markets −1.7314 × 10
−4 0.4155 0.9984 0 0.9984

MSCI South Africa −2.5250 × 10
−4 0.2296 0.9992 0 0.9984
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an approximate measure of the amount of systematic risk contained in the total variation. According 
to the CAPM the non-systematic risk can be diversified away. Table 7 shows that the R2 for all indexes 
is of 0.99, then about 99% of all risk in this stock is systematic, meaning non-diversifiable. That also 
means that 1% of the risk displayed of returns appears to be diversifiable. The P-Value of the t- sta-
tistic is less than 0.05, then the model is estimated with sufficient confidence to use. This means that 
over our estimation period, the price for the firm has been influenced by the systematic component 
in the estimation. Moreover, the estimated betas are near the traditional ones which is not surprising 
till both of them is based on the sample Linear Model.

5. Conclusion
The aim of this paper is to develop a new CAPM extracted from various utility functions. We particu-
larly develop, theoretically, new risk measures extracted from the negative exponential utility func-
tion, the power utility and the hyperbolic utility. We, then, replace the traditional beta of the CAPM 
by our new betas based on our risk measures that include the higher order moments. It’s found that 
our beta is divided into three risks: the volatility risk, the skewness risk and the kurtosis risk. It’s 
found, that higher volatility leads to a higher risk premium which confirms risk aversion. Moreover, 
we find that investors have preferences for even moments and hate odd ones.

We empirically tested our approach on a sample data consisting of daily returns of the following 
indexes : BEL20 CAC40, SP500, DAX, TUNINDEX, MSCI World, MSCI Europe, MSCI Emerging markets, 
MSCI South Africa, and the one month US treasury Bills. The results indicate that our utility-based 
betas outstrip the traditional CAPM beta in the way that they capture the real investor’s preferences. 
The results show also that our betas are in roughly all cases negative (except the power utility) which 
is not the case of the traditional beta. In fact, the inclusion of higher moments has shifted the sys-
tematic risk to negative. This typically logic since the risk premium required depends on the investors 
risk tolerance and their preferences and is not only determined linearly. 

Our finding is crucial for academicians and practitioners because it underlines the real investors? 
behavior in determining their pricing equation. In fact, we have demonstrated both theoretically and 
empirically, that the risk measure and the pricing equation differ with regards to investors? aversion 
degree.

Finally, our approach may be beneficial for investors in the market, since it gives a more powerful 
tool to estimate the risk based beta and to check how returns co-vary with the global market when 
considering their preferences because only utility function can determine investor’s preferences.
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Notes
1. The resolution of this equation depends on the sign of 

Δ. As a first step, we assume that Δ is negative so the 
sign of the equation is the same as �

4
 (negative) and as 

a second step, we assume that Δ is positive so we can 
determine the conditions for the various parameters.

2. It is easy to show that the set P0 is a convex set if the set 
P is convex.

3. See also Scott and Horvath (1980) who demonstrated 
the same result as Markowitz.

4. In the case where � = 0, the investor is risk neutral.
5. This function is called hyperbolic, because its risk aversion 

function is increasing for 𝛾 > 0 and decreasing for 𝛾 < 0.
6. If 𝛾 > 0 and � = 0, we have the power utility function 

and if � → +∞ and � = 1, we have the negative 
exponential utility function.
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7. This function characterizes a risquophobe individual 
whose aversion toward risk is constant regardless of 
wealth and the value of his risky assets will remain 
constant.

8. for the case 𝛾 > 0 and � = 0, we find a power utility 
function and for the case � = +∞ and � = 1, we find the 
negative exponential utility function.
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