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Abstract: This paper explores the theory behind the rich and robust family of  
�-stable distributions to estimate parameters from financial asset log-returns data. 
We discuss four-parameter estimation methods including the quantiles, logarithmic 
moments method, maximum likelihood (ML), and the empirical characteristics 
function (ECF) method. The contribution of the paper is two-fold: first, we discuss 
the above parametric approaches and investigate their performance through error 
analysis. Moreover, we argue that the ECF performs better than the ML over a wide 
range of shape parameter values, � including values closest to 0 and 2 and that the 
ECF has a better convergence rate than the ML. Secondly, we compare the t 
location-scale distribution to the general stable distribution and show that the 
former fails to capture skewness which might exist in the data. This is observed 
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1. Introduction
The motivation for this paper derives from the fact that parameter estimation from historical data is 
an important analysis to financial market participants. It provides useful information for portfolio 
managers, speculators, and hedgers. It is therefore, imperative that the most accurate estimation 
method is established. It is a known fact that in general, market data deviates from the Gaussian 
distribution, its distribution is either skewed, high or low peaked, and/or with fat or skinny tails. The 
current paper is geared towards establishing a better parameter estimation method among the 
commonly known ECF, ML, quantile, and logarithm moments methods used in economic and finan-
cial analysis for skewed data assumed to flow stable distributions.

The application of stable distributions in finance is traced way back in the late 50s when Mandelbrot 
(1959, 1962, 1963) developed a hypothesis that revolutionalized the way economists viewed and 
interpreted prices in speculative markets such as grains and securities markets. The hypothesis sug-
gested that prices were not Gaussian as it had been previously believed by market participants 
based on Bachelier (1900). Mandelbrot’s hypothesis was therefore, an extension of the widely em-
braced breakthrough of Bachelier (1900).

In the following years Zolotarev (1964) developed integral representations of stable laws and the 
results have been used to develop parameter estimation techniques for the stable laws. Fama (1963) 
reviewed the validity of Mandelbrot’s hypothesis and came up with statistical tools suitable for deal-
ing with speculative prices. Dumouchel (1971) employs this class of distributions in statistical infer-
ence for long-tailed data. Graphical representation of their densities and the estimation of their 
parameters via interpolation appear in Holt and Crow (1973) and in Koutrouvelis (1980) using regres-
sion. Parameter estimation methods based on quantile methods are presented in Fama and Roll 
(1971) for symmetric stable distributions but this approach faces a problem of discontinuity of the 
traditional location parameter in the asymmetrical cases when the exponent parameter passes 
unity. A remedy and generalization of the quantile approach is later introduced by McCulloch (1986).

A different parameter estimation technique based on fractional lower order moments (FLOM) ap-
pears in Ma and Nikias (1995) where the authors develop new methods for estimating parameters in 
impulsive signal environments. However, their methods only cover symmetric stable distributions. 
There was a need to extend the method to asymmetric systems. This came through by Kuruoğlu 
(2001) where a generalized FLOM method is introduced. Generally, FLOM methods pose a challenge 
of having to estimate the Sinc function and this in turn affects the accuracy of the results. As a con-
sequence a better estimation approach referred to as logarithmic moments method (LM) is pro-
posed by Kuruoğlu (2001) to avoid having to compute the Sinc.

The third estimation method utilizes the maximum likelihood (ML). It is known that the ML ap-
proach is widely favored in economic and financial applications due to its generality and asymptotic 
efficiency (see for instance, Yu, 2004). However, there are cases where the ML method can be unreli-
able especially when the likelihood function is not tractable, or its not bounded over the parameter 
space or does not have a closed form representation. For instance, in this current paper the densities 
considered do not have closed form expressions. However, since there is a one-to-one correspond-
ence between the density function and its Fourier transform it could be worth exploiting the latter 
since it always exists and its bounded. This leads us to next estimation method.

The fourth estimation approach is the empirical characteristic function (ECF) method discussed in 
Yu (2004). Although the likelihood function can be unbounded, its Fourier transform is always 
bounded and, while the likelihood function might not be tractable or could not be of a closed form, 
the Fourier transform could have a closed form expression. The Fourier transform of the density 
function is the characteristic function (CF), hence the name empirical characteristic function (ECF) 
method. In this paper we aim to show that this approach performs better than all the previously 
mentioned methods. A useful software package that can be used to estimate stable distributions is 
provided in Nolan (1997). A more theoretical approach to statistical estimation of the parameters of 
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stable laws is extensively discussed in Zolotarev (1980). Readers interested in how to simulate stable 
process can refer to two excellent literatures of Weron and Weron (1995) and Zolotarev (1986).

This paper explores the theory behind the rich and robust family of �-stable distributions to esti-
mate parameters from financial asset log-returns data. We discuss four-parameter estimation 
methods including the quantiles, logarithmic moments method, ML, and the empirical characteris-
tics function (ECF) method. The contribution of the paper is two-fold: first, we discuss the above 
parametric approaches and investigate their performance through error analysis. Moreover, we ar-
gue that the ECF performs better than the ML over a wide range of shape parameter values, � includ-
ing values closest to 0 and 2 and that the ECF has a better convergence rate than the ML. Secondly, 
we compare the t location-scale distribution to the general stable distribution and show that the 
former fails to capture skewness which might exist in the data. This is observed through applying the 
ECF to commodity futures log-returns data to obtain the stable parameters.

The rest of the paper is organized as follows: in Section 2 we define a stable process and its con-
struction from independent and identically distributed random variables based on a generalized 
central limit theorem and discuss its characterization. In Section 3 we study the density and distribu-
tion properties of stable processes through their characteristic functions. Section 4 explains how the 
four-parameter estimation methods discussed in this paper work and provides an analysis on their 
accuracy. In Section 5 we study and analyze some commodity data and show that the data deviates 
from the normal distribution hypothesis. We use the ECF to obtain the four stable parameters from 
the data and in addition, fit the data to various distributions to determine the closest shape of the 
data which turns out to be the t location-scale distribution for all our data. This distribution is suited 
for data that is highly peaked and heavily tailed with outliers. However, we propose stable distribu-
tion fitting to check for any existing tails. Section 6 concludes.

2. Stable processes
Stable also known as alpha-stable (or equivalently �-stable) processes belong to a general class of 
Lévy distributions. They are limiting distributions with a definitive exponent parameter � that deter-
mines their shape.

2.1. Definition and construction

Definition 2.1 Let X1, X2, … , Xn be independent and identically distributed random variables and 
suppose a random variable S defined by

where “⇒” represents weak convergence in distribution, an is a positive constant and bn is real. Then 
S is a stable process and the constants an and bn need not to be finite.

Definition 2.1 allows modeling of a number of natural phenomenon beyond normality using stable 
distributions. The fact that an and bn do not necessarily have to be finite provides the generalized 
central limit theorem.

Definition 2.2 (Generalized Central Limit Theorem Rachev (2003))      Suppose X1, X2, … denotes a 
sequence of independent and identically distributed random variables and let sequences an ∈ ℝ and 
bn ∈ ℝ

+. Then we can define a sequence

of sums Zn such that their distribution functions weakly converge to some limiting distribution:

(1)S ⇒
1

an

(
n∑
i=1

Xi − bn

)
,

(2)Zn: =
1

bn

(
n∑
i=1

Xi − an

)
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where H(x) is some limiting distribution.

The traditional central limit theorem assumes finite mean a: = �[Xi] and finite variance 
�
2: = �ar[Xi] and defines the sequence of sums

such that the distribution functions of Zn weakly converge to hsG(x):

where hsG(x) denotes the standard Gaussian distribution.

Suppose the independent and identically distributed random variables Xi equal to a positive con-
stant c almost surely and the sequences an and bn in (2) are defined by an = (n − 1)c and bn = 1, 
then Zn is also equal to c for all n > 0 almost surely. In this case the random variables Xi are mutually 
independent and as a result, the limiting distribution for the sums Zn belong to the stable family of 
distributions by definition. This is one reason why they are regarded as stable.

2.2. Parametrization

Definition 2.3 A stable distribution is a four-parameter family denoted by S(�, �, �, �):

(1)  � ∈ (0, 2] is the characteristic exponent responsible for the shape of the distribution.

(2)  � ∈ [−1, 1] is responsible for skewness of the distribution.

(3)  𝜈 > 0 is the scale parameter (it narrows or extends the distribution around �).

(4)  � ∈ ℝ is the location parameter (it shifts the distribution to the left or the right).

Suppose a random variable s follows a stable distribution S(�, �, �, �) then the random variable 
z = (s − �)∕� has the same-shaped distribution as s but with the location parameter � = 0 and the 
scale parameter � = 1. This is another reason why they are referred to as stable, the shape is main-
tained after any rescaling.

Densities of �-stable distributions do not have closed-form representations except for the case of 
a Gaussian (� = 2), Cauchy (� = 1, � = 0) and Inverse Gaussian or Pearson (� = 0.5, � = ±1) 
distributions.

(1)  Gaussian distribution N(�, �2): S
�
2, 0, �√

2
, �

�
. 

(2)  Cauchy distribution: S(1, 0, �, �). 

(3)𝙿(Zn < x) ⇒ H(x), n⟶ ∞,

(4)Zn: =
1

�

√
n

�
n�
i=1

Xi − na

�
,

(5)𝙿(x1 < Zn < x2) ⇒

x2

∫
x1

hsG(x)dx, n⟶ ∞

(6)hsG(x) =
1√
2�

exp(−x2∕2).

hG(x) =
1

𝜎

√
2𝜋

exp

�
−
(x − 𝜇)2

2𝜎2

�
; −∞ < x < ∞.

hC(x) =
1

𝜋

𝜈

𝜈
2 + (1 − x)2

; −∞ < x < ∞.
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(3)  Levy distribution (Inverse-Gaussian or Pearson): S(1∕2, 1, �, �). 

The densities are generally computed using characteristic functions through transformations such 
as the Fourier.1 One can also refer to the work of Zolotarev (1964, 1980, 1986) for straight-forward 
and easy-to-compute integral representations of stable distribution and density functions. The dis-
tribution functions for the different � values have been tabulated in Dumouchel (1971), Fama and 
Roll (1968) and Holt and Crow (1973).

3. Density and distribution properties

3.1. Special case
Let (Xt, t ≥ 0) denote a Lévy process. The characterization of Xt is deduced from the Lévy-Khintchine 
formula.

Definition 3.1 (Lévy-Khintchine & Applebaum, 2004)    Let X = (Xt)t≥0 be a Lévy process. There exist 
b ∈ ℝ, � ≥ 0 such that the characteristic function of X is given by

where 1
{⋅}

 is an indicator function and m is a �-finite measure satisfying the constraint

Definition 3.2 (The Lévy-Itô Decomposition Applebaum (2004))    If Xt is a Lévy process, there exist 
b ∈ ℝ, a Brownian motion B

�
(t) with variance � ∈ ℝ

+ and an independent Poisson random measure N 
on ℝ+ × (ℝ − {0}) such that, for each t ≥ 0,

where

The compensated compound Poisson random measure is defined by ̃N = N − t𝜆 to preserve the mar-
tingale property. The Lévy measure � satisfies (8).

A stable distribution can be constructed by setting � to zero in (7) or the second term on the right 
of (9) to zero and the Lévy measure in (8) to

hL(x) =

√
𝜈

2𝜋
(x − 𝜇)−3∕2 exp

(
−

𝜈

2(x − 𝜇)

)
; 𝜇 < x < ∞.

(7)
Φ(t): = �[eitX] = exp

⎛
⎜⎜⎝
itb −

1

2
𝜎
2t2 + ∫

ℝ−{0}

(eitx − 1 − itx1�x�<1)m(dx)
⎞
⎟⎟⎠
,

(8)
∫

ℝ−{0}

min(1, |x|2)m(dx) < ∞; alternatively ∫
ℝ−{0}

|x|2
1 + |x|2m(dx) < ∞.

(9)
Xt = bt + B𝜎(t) + �

|x|<1
x ̃N(t, dx) + �

|x|≥1
xN(t, dx),

(10)
b = �

⎡
⎢⎢⎣
X1 − �

�x�≥1
xN(1, dx)

⎤
⎥⎥⎦
.
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This gives a pure jump Lévy process which is a simple example of a stable family of distributions. We 
discuss a general case in the following.

3.2. General case
In the following, (St)t≥0 will represent a stable process. Its characteristic function Φ is obtained using 
the definition of domain of attraction of stable random variables and the Lévy-Khinchine represen-
tation formula in Definition 3.1 (see Applebaum, 2004):

Alternative forms of parametrization are discussed in McCulloch (1986) for easier numerical anal-
ysis. More discussion on this to follow in Section 3.4.

The density of St is computed from (12) using the Fourier transform:

Figure 1 shows density graphs for different exponent parameter values. The density is defined 
over the whole real line and for application purposes in finance log-returns data is usually used in-
stead of raw asset prices to fit this family of distributions.

(11)m(dx) =
C

|x|1+𝛼 dx; C > 0,

(12)Φ(�) =

⎧
⎪⎨⎪⎩

exp
�
−������

�
1 − i� sign(�) tan

�
��

2

��
+ i��

�
; for � ≠ 1.

exp
�
−����

�
1 + i� sign(�) 2

�

log ���
�
+ i��

�
; for � = 1.

(13)hSt
(s) =

1

2�

∞

∫
−∞

e−istΦ(t)dt.

Figure 1. �-stable densities for 
� ∈ (0, 2].
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The drawback in approximating (13) is that elementary techniques such as expressing the integral 
in terms of simple functions or using infinite polynomial expressions of the density function are not 
sufficient for meaningful numerical analysis. Some authors propose a standard parameterized inte-
gral expression of the density given by (see Ament & O’Neal, 2016)

However, this representation consists of an oscillating integrand which in turn leads to another 
alternative approach presented in Zolotarev (1986) where the density of St is given by

where � = arctan
(
� tan ��

2

)
2

��

sign(s − �).

3.3. Some properties of stable distribution functions
Firstly, recall that for any two admissible sets of parameters of stable distributions we can find two 
unique numbers a > 0 and b such that

where

The intuition is that a general stable distribution can be expressed in terms of a standard stable 
distribution. That is, we can write S(�, �, �, �)

d
= aS(�, �, 1, 0) + b where

Secondly, suppose h, H and Φ denote the respective probability, cumulative density and character-
istic functions of a stable random variable, S, where

then it is readily seen that the following properties hold:

(1)  h(−s, �, �) = h(s, �, −�).

(2)  H(−s, �, �) = 1 − H(s, �, −�).

(3)  Φ(−s, �, �) = Φ(s, �, −�).

The above three relations can be verified by trigonometric properties.

(14)hSt
(�, �, �, �) =

1

��

∞

∫
0

e−t
�

⋅ cos
(
t ⋅

(s − �

�

)
− �t� tan

(
��

2

))
dt.

(15)hSt
(�, �, �, �) =

⎧
⎪⎨⎪⎩

�� s−�
�
� 1

�−1

2���−1�

1�
−�

U
�
(�, �) exp

�
−
���
s−�

�

���
�

�−1
U

�
(�, �)

�
d�; if s ≠ �

1

��

⋅ Γ
�
1 + 1

�

�
⋅ cos

�
1

�

arctan
�
� ⋅ tan

�
��

2

���
; if s = �

(16)U
�
(�, �) =

⎛
⎜⎜⎜⎝

sin
�

�

2
�(� + �)

�

cos
�

��

2

�
⎞
⎟⎟⎟⎠

�

1−�

⋅

⎛
⎜⎜⎜⎝

cos
�

�

2
(� − 1)� + ��

�

cos
�

��

2

�
⎞
⎟⎟⎟⎠
,

(17)S(�, �, �, �)
d
=aS(�, �, ��, ��),

(18)a =
�

�
�
, b =

{
� − �

� �

�
� , � ≠ 1

� − �
� �

�
� + ��

2

�

log �

�
� , � = 1.

(19)a = �, b =

{
�; � ≠ 1
� + ��

2

�

log �; � = 1.

h(s, �, �) =
1

2�

∞

∫
−∞

(cos st − i sin st)Φ(t, �, �)dt,
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3.4. Simulating �-stable random variables
The two excellent references for simulating stable processes are Zolotarev (1986) and Chambers, 
Mallows, and Stuck (1976).

Definition 3.3 Suppose St is a stable process with parameters (�, �2, �2, �), the characteristic func-
tion is given by

where

Lemma 3.4 Let � ∈
[
−

�

2
, �

2

]
 be a uniformly distributed random variable and let W be an independent 

exponential random variable with mean 1. Then

is a standard �-stable process with parameters (�, �2, 1, 0).

Proof See Zolotarev (1986).  ✷

A stable random variable can be easily generated using Lemma 3.4. Programming languages such 
as R or MATLAB can be utilized to generate a uniformly distributed random variable U on the interval (
−

�

2
, �

2

)
 and an independent exponential random variable E with mean 12. Then the stable random 

variable would be generated by computing

where A
�, � =

(
1 + �

2 tan2 ��

2

) 1

2�

 and B
�, � =

tan−1 (� tan ��

2
)

�

.

3.5. Moments of stable processes
Statistical moments �[| ⋅ |k] of stable distributions are finite only when k ≤ �. Moreover, for 𝛼 < 2 the 
variance is infinite, for � ∈ (0, 1] the mean does not exist and the mean is zero when � ∈ (1, 2). This 
is not always the case for symmetric stable distributions where � = 0.

3.5.1. Fractional lower order moments
The FLOM is an alternative for computing moments of �-stable random variables especially in situa-
tions where the mean and/or variance are infinite. FLOM representation formulas are discussed in 

(20)lnΦ(t) =

⎧
⎪⎨⎪⎩

i�t − �
�

2 �t�� exp(−i�2sign(t)) �2K(�)), � ≠ 1;
i�t − �2�t�

�
�

2
+ i�2sign(t)) ln �t�

�
; � = 1;

(21)K(�) = � − 1 + sign(1 − �) =

{
�; � ≠ 1
� − 2; � = 1

(22)(�2, �2) =

⎧
⎪⎨⎪⎩

2

�K(�)
tan−1

�
� tan ��

2

�
, �
�
1 + �

2 tan2 ��

2

� 1

2�

; � ≠ 1
�, 2

�

�; � = 1

(23)S =

⎧
⎪⎪⎨⎪⎪⎩

sin �
�
�+

�

2
�2

K(�)

�

�

(cos �)
1
�

�
cos

�
�−�

�
�+

�

2
�2

K(�)

�

��

W

� 1−�

�

; � ≠ 1
�

�

2
+ �2�

�
tan � − �2 log

�
W cos �
�

2
+�2�

�
; � = 1

(24)S =

⎧⎪⎨⎪⎩

A
�, �

sin(�(U+B
�, � ))

(cosU)
1
�

�
cos(U−�(U+B
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Ma and Nikias (1995) for symmetric stable random data and its generalization to asymmetric stable 
random data in Kuruoğlu (2001). In the latter, if Si ∼ S(�, �, �, �) and � ≠ 1, then

where � = arctan
(
� tan ��

2

)
 and Γ denotes the Gamma function. From the above representations, 

moments with negative values of p are attainable. This results into the logarithmic moments ap-
proach that provides an easier way of estimating stable distribtuion parameters compared to the 
FLOM.

3.5.2. Logarithmic moments
This approach is as a result of the challenges encountered when using the FLOM method which re-
quires computing Gamma functions, the inversion of the sinc function and it only works for some p. 
The current method suggests computing derivatives with respect to the moment order p resulting in 
moments of the logarithms of the stable process. We illustrate in the following.

Lemma 3.5 Let S denote a symmetric stable random variable and let p ∈ ℝ. Then

The moments follow readily for n = 1, 2, …. i.e.

where � = arctan(� tan ��∕2) and terms �k are given by �0 = −0.57721566, �1 = �
2∕6, � = 1.2020569 

derived from the polygamma function

Proof 3.6 The proof is provided in Kuruoğlu (2001).  ✷

4. Parameter estimation of stable processes
The four common methods for estimating parameters of stable processes include: quantiles method 
(see Fama & Roll, 1971; McCulloch, 1986, 1996), the logarithmic moments method (see Kuruoğlu, 
2001), the empirical characteristics method (see Yang, 2012), and the ML method (see Nolan, 2001). 
We investigate their accuracy in the following.

4.1. The quantiles method
The quantile method was pioneered by Fama and Roll (1971) but was much more appreciated 
through McCulloch (1986) after its extension to include asymmetric distributions and for cases 
where � ∈ [0.6, 2] unlike the former approach that restricts it to � ≥ 1.

�[S<p>] =
Γ
(
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p

𝛼

)
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||||
𝛾
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)
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2
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�[|S|p] =
Γ
(
1 −

p

𝛼

)

Γ(1 − p)

||||
𝛾

cos 𝜃
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Suppose ŝ is a given data sample then the estimates for � and � are given by �̂� = Θ1(�̂�𝛼
, �̂�

𝛽
) and 

𝛽 = Θ2(�̂�𝛼
, �̂�

𝛽
) where

The notation ŝq represents the qth quantile of sample ŝ and, �̂� and 𝛽  are obtained by functions 
Θ1(�̂�𝛼

, �̂�
𝛽
) and Θ2(�̂�𝛼

, �̂�
𝛽
) given in Tables III and IV in McCulloch (1986) through linear interpolation. 

Consequently, the scale parameter is given by

where Θ3(�̂�, 𝛽) is given by Table V in McCulloch (1986). The consistent estimator � is then obtained 
through interpolation.

Finally the location parameter � is estimated through a new parameter defined by

Moreover, � is estimated by

where Θ5(�̂�, 𝛽) is obtained from Table VII (McCulloch, 1986) by linear interpolation. The location 
parameter is estimated consistently by

4.2. Empirical characteristic function method
Suppose a set of observable data {s1, s2, … , sN} follows a stable distribution. Then we can approxi-
mate the characteristic function of this data by applying a basic Monte Carlo approach based on the 
law of large numbers i.e.

We can express the characteristic function (12) in terms of the cosine and sine function from basic 
trigonometric principles, i.e.

where

As a result, we observe that

(30)�̂�
𝛼
=
ŝ0.95 − ŝ0.05
ŝ0.75 − ŝ0.25

, �̂�
𝛽
=
ŝ0.95 + ŝ0.05 − 2ŝ0.05

ŝ0.95 − ŝ0.05
.

(31)�̂� =
ŝ0.75 − ŝ0.25

Θ3(�̂�, 𝛽)
,

(32)� =

{
� + �� tan ��

2
; � ≠ 1

�; � = 1.

(33)𝜁 = ŝ0.5 + �̂�Θ5(�̂�, 𝛽),

(34)�̂� = 𝜁 + 𝛽�̂� tan
𝜋�̂�

2
.

(35)Φ(u) = �[eiusj ] ≈ Φ̂(u) =
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N

N∑
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eiusj .

(36)Φ(u) = e−|�u|
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The estimated characteristic function relates to the model parameters by

Solving this system leads to the estimation representation formulas for the stability and variance 
parameters:

The real and imaginary parts of the characteristic function (36) provide estimates for 𝛽  and �̂�:

Suppose Υ(u): = arctan(ImΦ(u)∕ReΦ(u)) and choose another set of positive numbers 
uk, k = 3, 4 together with �̂� and �̂� then the estimates of the location and skewness parameters are 
given respectively by

Notice, it can be deduced from Equation (36) that

This provides an alternative way to envision the regression estimation method:

where yk = log(− log |Φ̂(uk)|2), m = log(2𝜈𝛼), xk = log(uk) and �k is an error term. The stability 
parameter � and the scale parameter � can be estimated by selecting uk =

�k

25
, k = 1, 2, … , M; of 

real data (see Koutrouvelis, 1980, Table I). The estimates �̂� and �̂� are then used to estimate � and � 
using the following relation

where zl = Υn(ul) + �kn(ul), 𝜂l = �̂�lu − |�̂�lu|�̂�𝛽 sign(u)𝜔(u, �̂�) and �l is some random error. The pro-
posed real data set for Q (see Koutrouvelis, 1980, Table II) is ul =

�l

50
, l = 1, 2, … , Q.

4.3. Logarithmic moments method
This approach follows the theory discussed in Section 3.5.2. The key innovation with this method is 
that there is no need of computing Gamma functions and the sinc function as in the FLOM. Secondly, 
techniques of parameter estimation for symmetric stable random variables (i.e. � = 0) can be 

(37)|Φ(u)| = e−|�u|� .

(38)log |Φ̂(uk)| = 𝜈
𝛼|uk|𝛼 ; for k = 1, 2, uk > 0, 𝛼 ≠ 1.
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||||
.

(39)arctan
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.

log(− log(|Φ(u)|2)) = log(2��) + � log(u).

yk = m + �xk + �k; k = 1, 2, … , M;

zl = �l + �l, l = 1, 2, … , Q.
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applied to skewed stable random variables (i.e. � ≠ 0) and, techniques of parameter estimation for 
centered stable random variables (i.e. � = 0) to non-centered ones (i.e. � ≠ 0) through centro-sym-
metrization. However, this comes at a cost of losing almost half of the sample data. Therefore to 
obtain better estimates one has to use large sample data sets.

4.3.1. Centro-symmetrization of stable random data sets
Let Sk be a sequence of n independent stable random variables distributed according to

Then the distribution of a weighted sum of the above sequence with weights ak can be estimated 
using their characteristic function:

where the pth power of a number x is defined by

As a result, it is easy to obtain sequences of independent stable random variables with zero �, zero 
� as well as both zero � and zero � for � ≠ 1. This yields the centred, deskewed, and symmetrized 
sequences:

4.3.2. Parameter estimation
Suppose Sk is a data set assumed to be drawned from S(�, �, �, �). Then the exponent parameter � 
is estimated by setting � = 0 in (27), and the log moment M2 is estimated from the obverted data 
(45). That is,

The estimated �̂� is used to estimate � using (26) where M1 is estimated from the obverted data 
(44). That is,

From the definition of �, |�0| can be estimated by

Centering (see (43)) requires |𝛽0| to be multiplied by (2 + 2�)∕(2 − 2�) to obtain |𝛽| of the original 
data where the sign of � is determined by

Sk ∼ S(�, �, �, �).
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n�
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⎛
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where Smax, Smd, Smin is the maximum, median and minimum of the original data.

Next we estimate the scale parameter �̂�0 using (26) where M1 is estimated from the obverted data 
(43). That is

Again centering (see (43)) gives the parameter estimate �̂� of the original data by �̂� = �̂�0(2 − 2
1∕𝛼)−1.

Finally, the location parameter � is estimated by

where �0 is the median or mean of the obverted data ().

4.4. Maximum likelihood method
The ML method is the most favored parameter estimation method in economic and financial appli-
cations. The method relies on the density function which in the case of stable distributions poses a 
closed form representation problem. In this case we propose a numerical estimation of the density 
function. For a vector s = (s1, s2, … , sn) of independent identically distributed random variables 
assumed to follow a stable distribtion, the ML estimate of the parameter vector Θ = (�, �, �, �) is 
obtained by maximizing the log-likelihood function given by

where ̃h(s;Θ) denotes a numerically estimated stable probability density function. It is shown for 
instance in Mittnik, Rachev, Doganoglu, and Chenyao (1999) that the best algorithms to compute the 
ML is by using Fast Fourier Transforms (FFT) or by direct integration method as in Nolan (2001).  
The ML algorithms require carefully chosen initial input parameters which in our case can be ob-
tained for example, through the quantiles method described above. The FFT is faster for large data 
sets and the direct integral approach is suitable for smaller data sets since it can be evaluated at any 
arbitrary point.

In the following section, we analyze commodities and apply the empirical characteristic functions 
method to estimate the stable distribution parameters.

It is important to mention the restrictions on the parameters under which the different estimation 
methods operate.

4.5. Error analysis
In this section we simulate datasets from the stable family of distributions based on the theory in 
Chambers et al. (1976) and Weron and Weron (1995). Then use the above four methods to retrieve 
the stable parameters from the simulated data. Our focus is on the � and � but the arguments ex-
tend to the other two parameters.

K = sign(|Smax − Smd| − |Smin − Smd|), such that 𝛽 = K|𝛽|.

(49)�̂�0 = | cos �̂�| exp((M1 − 𝜑0)�̂� + 𝜑0).

(50)�̂� = �̂�0(2 − 2
1∕𝛼)−1.

(51)L
Θ
(s) =

n∑
i=1

ln ̃h(si ;Θ),
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First, it is important to mention that all the four methods perform poorly close to the boundaries 
i.e. � → 0, � → 2 and � → ±1. Moreover, literature shows that the methods operate efficiently un-
der the parameter restrictions in Table 1.

In addition, the MLE seems the most preferred and used estimation method. However, we observe 
in our analysis that this method fails for particular parameter ranges and it is not robust. For in-
stance in estimating 0.1 < 𝛼 < 1.0 with respect to �, the MLE fails to converge and returns huge 
unrealistic errors. This is why we do not include it in Figure 2(a). Similarly, for � = 0.4 estimation with 
respect to �, the logarithm moments method returns either negative or very large � values which is 
expected according to the constraints in Table 1. We omit its graph in Figure 2(b). Meanwhile, we 

Table 1. Estimation methods and their parameter restrictions
Estimation method Parameter restrictions
Quantile � ≥ 0.1
Logarithm moments � = � = 0

Maximum likelihood � ≥ 0.4
Empirical characteristic function � ≥ 0.1

Figure 2. Method comparison 
for � = 0.4 and � = 0.4 
estimation.

(a)

(b)
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notice that in both cases, the quantile and ECF methods work well with the latter providing relatively 
the best estimates.

The graphs in Figure 3 show the error associated with estimating 1.0 < 𝛼 < 2.0 for different � 
values. Note that all the four methods work well and we still notice the ECF being relatively the 
most accurate and robust method. Recall that for � → 1 and � → 2 the estimation methods 
perform poorly. An example is Figure 3(a) (for � = 1.4) which was the closest for which the ML 
would converge but for higher 𝛼 > 1.4 values but far less than 2.0 (see for instance, Figure 3(a) 
for � = 1.7) the methods performed relatively better except for the logarithm moments 
methods.

Figure 3. Method comparison 
for � = 1.4 and � = 1.7 
estimation.

(a)

(b)
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The graphs in Figure 4 illustrate convergence of the quantile, ECF and the MLE in estimating 
� = 1.4 and � = 1.7. We simulated 50,000 points and divided it into 100 sets starting with a 
500-sized set and increasing it by 500 to 50,000. The logarithm moments method performed 
extremely poorly and incomparable to the above three methods. It is not included in Figure 4(a) 
and (b). The ECF is seen to perform better than the quantile and ML methods with a relatively 
better convergence rate. Similary Figure 5 shows the convergence rates for the quantile, ECF 
and ML estimation methods. The ECF still provides a better precision in both cases i.e.  
Figure 5(a) and (b).

Figure 4. � estimation for 
differing data set sizes and � 
values.

(a)

(b)
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In summary the empirical characteristic function method outperforms all the three other meth-
ods discussed in this paper in the following way:

(1)  It is robust and can consistently estimate a wide range of � and � parameters.

(2)  It provides a better precision compared to the quantile, logarithm moments and MLE methods 
for a wide range of � and � parameters.

(3)  It has a better convergence rate.

Therefore the quantile, logarithm moments or the ML methods can be used to provide initial pa-
rameters for the ECF method. Similarly, the latter can be used to provide initial parameters for better 
future estimators.

The following section is devoted to extracting stable parameters from log-returns commodity 
futures data using the ECF method.

5. Commodity data
The data sets used here are obtained from Quandl Financial and Economic Data website. The sets 
differ in sizes and include settled prices of Corn Futures Continuous Contract C#1 from 1959-07-01 

Figure 5. � estimation for 
differing data set sizes for 
� = 0.4 values.

(a)

(b)
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to 2017-02-10; Crude Oil Futures Continuous Contract C#1 from 1983-03-30 to 2017-02-10; Gasoline 
Futures Continuous Contract C#1 from 2005-10-03 to 2017-02-10; Gold Futures Continuous Contract 
C#1 from 1974-12-31 to 2017-02-10; Natural Gas Futures Continuous Contract C#1 from 1990-04-
03 to 2017-02-10; Platinum Futures Continuous Contract C#1 from 1969-01-02 to 2017-02-10; 
Silver Futures Continuous Contract C#1 from 1963-06-13 to 2017-02-10; Soybeans Futures 
Continuous Contract C#1 from 1959-07-01 to 2017-02-10; Wheat Futures Continuous Contract C#1 
from 1959-07-01 to 2017-02-10. To avoid multi-distributional effects, we work with log-returns of 
the data sets.

5.1. The t-location-scale distribution
The t-location-scale distribution is most suited for modeling data distributions with heavier tails, 
more prone to outliers than the Gaussian distribution. The distribution uses the following 
parameters

Parameter Description Support
� Location parameter −∞ < 𝜇 < ∞

� Scale parameter 𝜈 > 0

�
∗ Shape parameter 𝛼

∗
> 0

The probability density function (pdf) of the t-location-scale distribution is given by

where Γ(⋅) denotes the gamma function. The mean of the t-location-scale distribution is given by � 
and it is defined for 𝛼∗

> 1 and undefined otherwise. The variance is given by

The t-location-scale distribution approaches the Gaussian distribution as �∗ approaches infinity and 
smaller values of �∗ yield heavier tails. This distribution does not take skewness into consideration 
and its three parameters are usually estimated using the ML estimation method.

Using algorithms by Sheppard (2012) on our log-returns commodity futures data we obtained 
 fittings in Figures 6–8.

According to the �∗ values, the log-returns data exhibit some tails. To determine the nature of the 
details one would require to run some QQ plots but this can also be observed directly from the 
Figures 6–8.
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Figure 6. Energy: The data 
exhibits high peaks and skinny 
tails.
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Figure 7. Grains: The data 
exhibits high peaks and skinny 
tails.
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Figure 8. Metals: The data 
exhibits high peaks and skinny 
tails.
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It is important to mention that QQ plots do not straight away provide conclusive evidence about 
the nature of the tails. More tests would still need to be made. For instance under the t-location scale 
it is not obvious to observe any skewness in the data. We however, view this effect when we fit the 
data to stable distribution (see Table 2) as discussed in the following section.

5.2. Stable distribution fitting
On the other hand, by assuming stable distribution for our log-returns commodity futures data, we 
employed the ECF method and obtained the stable parameters in Table 3.

Log-returns of commodity futures are not only high peaked but they also have left and right skinny 
tails with extreme outliers as observed from the QQ-plots for energy commodities (i.e. Crude oil, 
Natural gas and Gasoline) in Figure 9, the grains commodities in Figure 10 and the precious metals 
in Figure 11.

Table 3 shows stable distribution parameters extracted from the log-returns data using the em-
pirical characteristic function parameter estimation method. We notice that the data exhibit a bit of 
skewness which is not reflected in the t-location-scale distribution fitting.

Table 2. t-location-scale distribution parameters extracted from the log-returns data
t-location scale parameters

� � �
∗

Energy Gasoline 0.000905848 0.0193048 4.45922

Natural gas 0.000117668 0.0181944 2.50848

Crude oil 0.000313708 0.00912801 1.75246

Grains Corn 5.52294e − 05 0.00439924 3.03782

Soy beans 0.000400308 0.00535733 2.43218

Wheat 1.63112e − 05 0.0113397 3.41863

Metals Gold 0.000905944 0.0108491 2.70553

Platinum 0.00044219 0.0110761 3.13631

Silver −1.72459e − 05 0.000682631 0.512196

Table 3. Stable distribution parameters extracted from the log-returns data
Stable distribution parameters

� � � �

Energy Gasoline 1.7504 −0.3806 0.0152 −0.0005

Natural gas 1.5329 0.0371 0.015 0.0005

Crude oil 1.2322 −0.1526 0.0075 −0.0022

Grains Corn 1.651 0.2117 0.0036 0.0004

Soy beans 1.4665 −0.0968 0.0043 0.0001

Wheat 1.638 0.0929 0.0091 0.0003

Metals Gold 1.5007 −0.1324 0.0088 0.0001

Platinum 1.5943 −0.1339 0.0089 −0.0001

Silver 0.4461 0.0176 0.0011 −0.0001
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Figure 9. Energy: In all, the left 
and right tails are skinny.

(a)

(b)

(c)
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Figure 10. Grains: In all, the left 
and right tails are skinny.

(a)

(b)

(c)
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Figure 11. Metals: In all, the left 
and right tails are skinny.

(a)

(b)

(c)
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6. Conclusion
First we showed that the ECF provides the best precision in estimating a wide range of � and � pa-
rameters, it is robust and provides better convergence compared to the quantile, ML, and the loga-
rithm moments. Secondly, we have illustrated that in general, the distribution of the commodity 
futures log-returns data is closest to a t-location-scale distribution due to its high peaks, skinny tails 
and extreme outliers. Moreover, by using the ECF estimation method we realize some minor skew-
ness effects not captured in the t-location-scale fitting. We recommend the ECF as a suitable ap-
proach for estimating parameters of any skewed financial market data and could be used to obtain 
initial input parameters for future and better estimation techniques.
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