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Robust critical values for unit root tests for series 
with conditional heteroscedasticity errors: An 
application of the simple NoVaS transformation
Panagiotis Mantalos1*

Abstract: In this paper, we introduce a set of critical values for unit root tests that 
are robust in the presence of conditional heteroscedasticity errors using the normal-
izing and variance-stabilizing transformation (NoVaS) and examine their properties 
using Monte Carlo methods. In terms of the size of the test, our analysis reveals 
that unit root tests with NoVaS-modified critical values have actual sizes close to 
the nominal size. For the power of the test, we find that unit root tests with NoVaS-
modified critical values either have the same power as, or slightly better than, tests 
using conventional Dickey–Fuller critical values across the sample range considered.

Subjects: Statistical Computing; Statistics for Business, Finance & Economics; Econometrics

Keywords: critical values; normalizing and variance-stabilizing transformation; unit root tests

JEL classification codes: C01; C12; C15

1. Introduction
Recently, there has been great interest by researchers and practitioners in the simultaneous pres-
ence of high-persistence and conditional heteroscedasticity. The main reason is their occurrence in 
many economic time series, including stock index and exchange rate series, both a common subject 
for unit root tests. Alongside burgeoning interest in the second moment (or variance), the first 
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financial time series exhibit trending behaviour 
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trending, then some form of trend removal is 
required. Two common trend removal procedures 
are first differencing and time-trend regression. 
Unit root tests can be used to determine the kind 
of the trend and their null hypothesis is that the 
series is trend stationary.

However, the limiting distributions of the test 
statistics are affected by the volatility, the time 
dynamic in variance of the financial series.
We introduce here a technique by modifying the 
variance of the time series to be approximately 
standard normal (NoVaS), so the test procedures 
do not be effected by possible volatility. We show 
also by simulation experiments that this technique 
work well under different models of volatility.
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difference of economic variables—here, stock index returns and exchange rate changes—has also 
been the subject of a sizeable modelling literature in finance and related disciplines, with the most 
representative approach being the autoregressive conditional heteroscedasticity (ARCH) and gener-
alized ARCH (GARCH) family of models.

Subsequent to the seminal work on ARCH/GARCH by Engle (1982) and Bollerslev (1986), the intro-
duction of new models has continued apace, a common feature being that they estimate and allow 
for time-varying volatility. A number of suitable surveys of GARCH models is available, with Giraitis, 
Leipus, and Surgailis (2006) providing a useful reference of existing work across the various models 
that have predictive ability for squared returns (or variance). Of this body of work, Pantula (1989) is 
one of the first studies investigating non-stationary univariate autoregressive models with a regular 
unit root and a first-order ARCH error, deriving the asymptotic distribution of the least squares esti-
mator (LSE) of the unit root, the same as that given by Dickey and Fuller (1979).

Subsequently, Kim and Schmidt (1993) employed Monte Carlo simulation to show that the Dickey–
Fuller (DF) tests tended to over-reject in the presence of GARCH errors. However, they also found that 
the problem was not very serious, the exception being near-integration of the GARCH process errors 
where the volatility parameter was not small. Ling and Li (1998a) later investigated an autoregres-
sive-integrated moving average (ARIMA) model with GARCH (p, q) errors and derived the asymptotic 
distribution of the maximum likelihood estimation (MLE). They found that the asymptotic distribu-
tion of the MLE of various unit roots involves a series of bivariate Brownian motions and that the MLE 
of unit roots is more efficient than the corresponding LSE when GARCH innovations are present. 
Using these asymptotic distributions, Ling and Li (1998b) later constructed some new unit root tests 
and showed that these tests could provide better performance than DF tests in Monte Carlo 
simulations.

While there are differences across these and other studies, they all suggest that unit root tests 
require a set of robust critical values that apply in the presence of GARCH errors. For this purpose, this 
paper provides a simple and easy-to-apply algorithm using the normalizing and variance-stabilizing 
transformation (NoVaS) in Politis (2007) to produce robust critical values for ensuring DF tests have 
appropriate size and adequate power in the presence of conditional heteroscedasticity. However, 
because the subject of unit root tests is large, we limit the analysis here to investigating and demon-
strating our procedure as it applies to unit root tests in the absence of serial correlation.

The remainder of the paper is organized as follows: Section 2 presents the simple NoVaS and the 
unit root test applying in the absence of serial correlation. In Section 3, we present our simulations 
and use these to establish the size and power properties of the tests. Section 4 provides a brief sum-
mary and the main conclusions.

2. NoVaS transformation and the unit root test

2.1. Simple NoVaS transformation
Politis (2007) first defined and analysed the properties of the NoVaS transformation. Let us consider 
the NoVaS more closely and thereby observe the motivation for our study.

Let {εt} be a sequence of random variables following the ARCH(q) model

 

where ω > 0, ai ≥ 0, 1 ≤ i ≤ q and the innovations et are i.i.d N(0,1).

Note that we use the innovations et as a standard normal because we can interpret the quantity

(1.1)�t = et

√
ht ht = � +

q∑

i=1

ai�
2

t−i
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as a “studentized” {εt} sequence. Moreover, this provides an intuitive explanation of the following 
NoVaS (2.3) quantity.

where Wt,a = �s2t−1 + a0�
2

t +
k∑
i=1

ai�
2

t−i, s
2

t−1 =
t−1∑
k=1

�
2

k, γ ≥ 0, ai ≥ 0 for all i ≥ 0 and � +
k∑
i=0

ai = 1.

Equation (1.3) describes the NoVaS transformation proposed by Politis (2007) under which the 
data series {εt} is mapped to the new series {ut,a}.

The practitioner needs to select the order k(≥0) and the vector of non-negative parameters with 
the twin goals of normalization/variance-stabilization in mind. With a focus on that primary goal of 
normalization and variance stabilization, Politis (2007) introduced the so-called simple NoVaS trans-
formation for choosing the order k(≥0) of the parameters ai in (1.3). Mantalos and Karagrigoriou 
(2012) subsequently modified the algorithm for the simple NoVaS as follows.

Let γ = 0 and then ai = 1∕(k + 1) for all 0 ≤ i ≤ k.

Select the order k( >0) such that the p-value of the Jarque–Bera statistic for the ut,a NoVaS-
transformed series is maximized. In our analysis, we undertake this in a loop for k = 1 to 25.

Consider now that uat = �t∕
√
Wt,a is the new NoVaS-transformed innovation. Then the trans-

formed series has the following mean:

 

It is not difficult to show that, based on the assumption that the innovations et are i.i.d N(0,1) (see 
Equation (1.1)), that (1.4) becomes zero, that is

 

As shown in Appendix A, the variance of the Simple NoVaS transformed series is

 

The skewness of the innovations et is i.i.d N(0,1) is zero. Lastly, as also shown in Appendix A, the 
kurtosis is

 

As Equations (1.5) and (1.6) provide zero skewness and kurtosis close to three, the transformed se-
ries exhibits the same properties as an i.i.d N(0,1) variable.
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2.2. DF unit root tests in the absence of serial correlation
It is well known (Hamilton, 1994) that when testing for unit roots, it is important to specify the null 
and alternative hypotheses appropriately based on the type of the data at hand. For example, if the 
data do not display any increasing or decreasing trend, then we should not include a time trend in 
the test regression. Moreover, the inclusion of deterministic terms will also influence the asymptotic 
distribution of the unit root test statistics. Consequently, given the importance of the correct alterna-
tive hypothesis and the trend type, the data will determine the form of the test regression used. For 
this reason, and also because non-trending financial series, such as interest and exchange rates and 
spreads, exhibit non-zero means and GARCH errors; the following first model is considered.

2.2.1. Model 1: Constant term in the regression
The test regression is
 

and the hypotheses to be tested are

 

 The test statistic we use is that proposed by DF: t
𝜙
=

𝜙̂−1

SE(𝜙̂)
.

We remind ourselves here that εt follows an unknown ARCH/GARCH process that we could esti-
mate, but which we do not require for the purpose of our test procedure.

The second model we consider is as follows:

2.2.2. Model 2: Time trend and constant term in the regression
The test regression is
 

In this case, we assume that the data under the null hypothesis, with an example being a GDP series, 
follow a simple random walk with drift. That is

 

whereas under the alternative hypothesis it is an AR(1) model with |𝜙| < 1 and trend. However, even 
here we use the DF test statistic t

𝜙
=

𝜙̂−1

SE(𝜙̂)
. Note that this formulation is appropriate for time series 

such as asset prices, that is, trending time series with several possible kinds of GARCH errors.

2.3. NoVaS critical values for DF unit root tests in the presence of GARCH errors
The underlying idea and method we use in our procedure to produce robust critical values is simple 
and identical to the manner in which Dickey and Fuller (1979) produced their critical values for the 
unit root test, that is, using Monte Carlo methods we can approximate the finite-sample distribution 
of the unit root test.

Model 1:

Consider a sequence of T observations 
{
y
1
, y

2
,… , yT

}
 for which we wish to test if there is a unit 

root in the series. In addition, we assume that our observed data do not display any increasing or 
decreasing trend while at the same time exhibiting a non-zero mean.

The first step is to estimate the test regression

(1.8)yt = c + �yt−1 + �t

(1.9)H
0
:� = 1⇒ yt = I(1) without a drift

(1.10)HA:|𝜙| < 1 ⇒ yt = I(0) with non-zero mean.

(1.11)yt = c + �yt−1 + bt + �t.

(1.12)yt = c + yt−1 + �t
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and calculate the DF test statistic t
𝜙
=

𝜙̂−1

SE(𝜙̂)
.

We perform the simple NoVaS transformation on the estimated residuals from (1.13) 

𝜀̂t = yt − ĉ − 𝜙̂yt−1, that it is, Wt,a = a0𝜀̂
2

t +
k∑
i=1

ai 𝜀̂
2

t−i.

Based on the simple NoVaS properties (1.5, 1.6, and 1.7), ut =Wt,a ∗ zt, is a good approximation 
of the error term in (1.13), where zt, are T i.i.d random numbers from the standard normal 
distribution.

The next step is to calculate the new series under the null hypothesis y∗t =
T∑
1

ut.

We then estimate the regression y∗t = c
∗ + �

∗y∗t−1 + et and afterwards the DF test statistic 
t∗
𝜙
=

𝜙̂
∗−1

SE(𝜙̂∗)
.

Repeating steps 3–4 a large number of times, NMC (in our Monte Carlo simulations, N = 1,000), we 
are able to approximate the finite sample distribution of the DF unit root test.

By taking the (1 − α) quintile of the approximate finite-sample distribution of t∗
�
, we obtain the α-

level “critical values” (c∗t�) and finally reject Ho if t∗
�
 ≥ c∗t�.

A Monte Carlo estimate of the p-value for testing is P∗
{
t∗
�
≥ t

�

}
. We use this to study the size and 

power of the unit root test (with the assistance of the p-value plot).

Model 2:

In the case of a trend

The first step is to estimate the test regression

and calculate the DF test statistic t
𝜙
=

𝜙̂−1

SE(𝜙̂)
.

We perform the simple NoVaS transformation on the estimated residuals from (1.14), such that

 

That is, Wt,a = a0𝜀̂
2

t +
k∑
i=1

ai 𝜀̂
2

t−1.

The next step is to calculate ut =Wt,a ∗ zt, where zt are as previously T i.i.d random numbers from 
the standard normal distribution.

The next step is to calculate the new series under the null hypothesis y∗t =
T∑
1

(ĉ + ut).

We then estimate the regression y∗t = c
∗ + �

∗y∗t−1 + b
∗t + et and afterwards the DF test statistic 

t∗
𝜙
=

𝜙̂
∗−1

SE(𝜙̂∗)
.

Steps 6–8 are the same as in Model 1.

(1.13)yt = c + �yt−1 + �t

(1.1.4)yt = c + �yt−1 + bt + �t

(1.15)𝜀̂t = yt − ĉ − 𝜙̂yt−1 − b̂t.
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Note that in Model 1, the null hypothesis does not contain a drift term, while in Model 2, the null 
hypothesis contains a drift term, for that reason y∗t  in the Model 1 is: y∗t =

T∑
1

ut and in Model 2: 

y∗t =
T∑
1

(ĉ + ut).

3. Simulations

3.1. Monte Carlo
In this section, we perform a simple Monte Carlo experiment by generating data for the size of the 
test for Model 1 using
 

For the power test, we generate data using

 

The data-generating process for the size of the test for Model 2 is

 

For the power test, we generate data using

 

We study the performance of the NoVaS critical values with error terms i.i.d N(0,1). We assume white 
noise and in all other cases, the errors follow a GARCH (1, 1) model with the following data-generat-
ing process

 

For each model, we perform 5,000 replications for the calculation of size and 1,000 replications for 
the power functions. Our results are based on 600, 1,100 and 2,100 replications, where the first 100 
time series observations in each replication are discarded to avoid possible initial value effect. We 
calculate the estimated size of the test by counting how many times we reject the null hypothesis in 
repeated samples under conditions where the null is true.

3.2. The p-value plots
The conventional way of reporting the results of a Monte Carlo experiment is to tabulate the propor-
tion of times we reject the null hypothesis in repeated samples under conditions where the null is 
true. Concerning the significance levels used when judging the properties of the tests, different stud-
ies have advocated both larger and smaller significance levels. For example, Maddala (1992) sug-
gests significance levels of as much as 25% in diagnostic testing, while MacKinnon (1992) suggests 
going in the other direction.

To address this problem, in this study we use mainly graphical methods that potentially provide 
more information about the size and power of the tests. We use the simple graphical methods devel-
oped and illustrated in Davidson and MacKinnon (1998) as they are relatively easy to interpret. We 
employ the p-value plot to assess the size of the tests and size–power curves to evaluate the power 
of the tests. The graphs of the p-value plots and size–power curves are based on the empirical distri-
bution function (EDF) of the p-values, denoted F̂

(
xj

)
. For the p-value plots, if the distribution being 

used to compute the ps terms is correct, each of the ps terms should be distributed uniformly about 
(0,1). Therefore, the resulting graph should be close to the 45o line. The p-value plots also make it 
possible and easy to distinguish between tests that systematically over-reject or under-reject the null 
hypothesis and those tests that reject the null hypothesis near the right amount of time.

(1.16)yt = yt−1 + �t.

(1.17)yt = 0.1 + 0.99yt−1 + �t.

(1.18)yt = 0.1 + yt−1 + �t.

(1.19)yt = 0.1 + 0.99yt−1 + 0.08t + �t.

(1.20)
�
t

= e
t

√
h
t

h
t
= 0.001 + 0.199�2

t−1
+ 0.800h

t−1

e
t
∼ i.i.dN(0, 1)

.
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To judge the reasonableness of the results, we use a 95% confidence interval for the actual size 
(π0) given �

0
± 2

√
�
0
(1−�

0
)

N
, where N is the number of Monte Carlo replications. We consider any re-

sults that lie between these bounds as satisfactory. For example, if we consider 5,000 Monte Carlo 
replications and a nominal size of 5%, we define a result as reasonable if the estimated size lies be-
tween 4.39 and 5.61%.

3.3. White noise case
We begin our study of the behaviour of our test procedure with the simple case of white noise errors, 
that is, series without GARCH errors. The results for 500 observations given that there is no difference 
between these and those for 1,000 or 2,000 observations, we find also no difference between these 
and those for small samples as 75, 100 and 200 observations. As shown in Figure 1(a), in Model 1, 
the unit root test behaves well, with both the DF and NoVaS critical values indicating estimated sizes 
that are inside the confidence interval lines. As we observe the same behaviour for the unit root in 
Model 2, as shown in Figure 1(b), we conclude that the NoVaS critical values work as well as we ex-
pect for the case of white noise.

Figure 2 depicts the power of the tests. The first thing we observe is that the unit root tests display the 
same power when using both the DF and NoVaS critical values. It is also obvious that there is a sample 
effect (the lowest curves are for 500 observations, followed by 1,000 observations, and the highest 
curves are for 2,000 observations). In sum, the unit root tests with NoVaS critical values assuming only 
white noise error work equally as well as the unit root tests with conventional DF critical values.

Figure 1. Size of the unit root 
tests of models 1 and 2 for 
500 observations with white 
noise errors: (a) Model 1 and (b) 
Model 2.

Notes: Solid line is unit root 
test with NoVaS critical values; 
dot–dash line is unit root test 
with DF critical values.

(a) (b)

Figure 2. Power of the unit 
root tests of Model 1 for 500 
observations with white noise: 
(a) Model 1 and (b) Model 2.

Notes: Solid line is unit root 
test with NoVaS critical values; 
dot–dash line is unit root test 
with DF critical values.

(a)
(b)
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3.4. GARCH case

3.4.1. The size of the tests
In this subsection, we present the results of our Monte Carlo experiment concerning the size of the 
unit root test given GARCH errors. As shown in Figure 3(a) for Model 1 and Figure 3(b) for Model 2 for 
500, 1,000 and 2,000 observations, the p-value plots make it possible to easily distinguish that unit 
root tests with DF critical values systematically over-reject the null hypothesis, whereas unit root 
tests with NoVaS critical values reject the null hypothesis at about the right amount of time. Once 
again, we recall that we use the constant term in the regression for Model 1 and a time trend and 
constant term in the regression in Model 2. As shown, the unit root test with DF critical values over-
rejects by almost three times the nominal size, that is, for a 5% nominal size and Model 1, we esti-
mated sizes of 15.35% for 500 observations, 14.9% for 1,000 observations and for 14.35% for 2,000 
observations. We observe a similar picture for the unit root test with DF critical values for Model 2, 
where for a 5% nominal size we estimated sizes of 14.85% for 500 observations, 16.26% for 1,000 
observations, and 15.9% for 2,000 observations. Overall, the unit roots tests with NoVaS critical val-
ues unlike those with DF critical values work well in the presence of GARCH errors.

3.4.2. The power of the tests
In this subsection, we analyse the power of the Wald and bootstrap tests using sample sizes of 500, 
1,000, and 2,000 observations. We estimate the power function by calculating the rejection frequen-
cies for 1,000 replications using Equation (1.17) for Model 1 and Equation (1.19) for Model 2. We 
employ the size–power curves to compare the estimated power functions of the alternative test 
statistics. We follow the same process to evaluate the EDFs denoted by F̂⊕

(
xj

)
 using the same se-

quence of random numbers used to estimate the size of the tests.

Figure 4 displays the results using the size–power curves. As shown, the unit root tests with the DF 
critical values are now superior to the unit root tests with the NoVaS critical values. We also again 
observe a sample effect, such that the larger the sample, the greater the power of the tests. To en-
sure a fair comparison of the power of the unit tests with the DF and NoVaS critical values, we apply 
the size–power curves on a correct size-adjusted basis.

Figure 4 plots the size–power curves and the estimated power functions against the nominal size. 
By plotting the estimated power functions against the true size, that is F̂⊕

(
xj

)
 against F̂

(
xj

)
, we 

obtain size–power curves on a correct size-adjusted basis. As the unit root tests with DF and NoVaS 
critical values now share the same power, they are even better for a small nominal size (less than 
15%), as shown in Figure 5. The main finding for our power investigation is that unit root tests with 
NoVaS critical values generally perform adequately in both the white noise and GARCH error cases.

Figure 3 Size of the unit root 
tests for 500, 1,000 and 2,000 
observations with GARCH 
errors: (a) Model 1 and (b) 
Model 2.

Notes: Solid line is unit root 
test with NoVaS critical values; 
dotted, dot–dash, and dashed 
lines are unit root tests with 
DF critical values for 500, 
1,000, and 2,000 observations, 
respectively.

(a) (b)
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4. Brief summary and conclusion
In this section, we summarize the results of our investigation. The purpose of this study has been to 
study the unit root test in the presence of conditional heteroscedasticity errors with newly proposed 
critical values modified using the NoVaS method. The main conclusion is that NoVaS-modified criti-
cal values are robust, with respect to both white noise and conditional heteroscedasticity errors. 
Moreover, given the actual size that lies close to their nominal size and adequate power, it makes 
sense that we would select our NoVaS-modified critical values ahead of the conventional DF critical 
values, especially in the presence of conditional heteroscedasticity errors.

In summarizing our methodology, we studied the estimated size and power of the unit root test in 
the presence of conditional heteroscedasticity errors using two sets of critical values: namely, con-
ventional DF values and our newly proposed NoVaS-modified values. In terms of the size of the tests, 
we used Monte Carlo methods to investigate their properties using 5,000 replications per model, 
with 500, 1,000, and 2,000 observations. We employed p-value plots to investigate the size of the 
tests and found that the unit root tests perform better with NoVaS-modified critical values across all 
of our samples. Importantly, when we consider the power results using the size–power curves, when 
considered on a correct size-adjusted basis, the unit root tests with NoVaS-modified critical values 
share the same power as tests using DF critical values or at least the difference is very small across 
all of our samples.

Figure 4. Power of the unit 
root tests for 500, 1,000, and 
2,000 observations with GARCH 
errors: (a) Model 1 and (b) 
Model 2.

Note: Solid line is unit root 
test with NoVaS critical values; 
dotted, dot–dash, and dashed 
lines are unit root tests with 
DF critical values for 500, 
1,000 and 2,000 observations, 
respectively.

(a) (b)

Figure 5. Size-adjusted power 
of the unit root tests for 500, 
1,000, and 2,000 observations 
with GARCH errors: (a) Model 1 
and (b) Model 2.

Notes: Solid line is unit root 
test with NoVaS critical values; 
dotted, dot–dash, and dashed 
lines are unit root tests with 
DF critical values for 500, 
1,000, and 2,000 observations, 
respectively.

(a) (b)
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Appendix A

Mean, variance, kurtosis and skewness of NoVaS
Let us consider the model yt = E

(
yt|�t−1

)
+ �t with �|�t−1 ∼ f (0, ht), where f is the unknown density 

function of the εt conditional on the set of past information ψt-1.

The first moment “the mean of NoVaS”

First we remind ourselves that for the simple NoVaS, γ = 0. Now for the simple NoVaS with one lag, 
that is, Wt,a = a�

2

t + a�
2

t−1, such that we always take account that εt is variance stationary and 
m
2
= E

(
�
2

t

)
, then the mean is

 

For two lags, the mean is E
(
Wt,a

)
= 3am

2
, while for three lags it is E

(
Wt,a

)
= 4am

2
, and finally for the 

general (k) lags, the mean is

 

The second moment of NoVaS

For the simple NoVaS model with one lag, we have Wt,a = a�
2

t + a�
2

t−1. By taking the squares of this 
and then the expectation, we have

If εt is fourth-order stationary with m
4
= E(�4t ) and m

2
= E(�2t ), then we have

 

(1.21)E
(
Wt,a

)
=
[
a�2t + a�

2
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]
= aE(�2t ) + aE(�
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In the same manner, we can show that the simple NoVaS model with two lags has

 

for three lags

 

and finally for the general (k) lags

 

Now the variance is Var(Wt,a) = E(W
2

t,a) −
[
E(Wt,a)

]2.

Consequently, we have

 

Kurtosis

Consider that zt = �t∕
√
Wt,a is the new NoVaS-transformed series. Then the kurtosis of this series is

 

We can see from (1.22) that the mean of the simple NoVaS is E
(
Wt,a

)
= (k + 1)aE(�2t ). It is easy to see 

that for a = 1∕ (k + 1) then (1.22) becomes

 

Based on this, we have the kurtosis of the new transformed series as

Recall that we derived the second moment of the NoVaS for the general (k) lags in (1.27). Now given 
we expect that �t∕

√
Wt,a is i.i.d normal, and E(𝜀4t ) < ∞, then

 

Consequently, for a simple analysis of (1.33) with the substitution of the E
(
W2

t,a

)
, and the right-hand 

side of (1.27), the kurtosis of the NoVaStransformed series becomes

Moreover, for a = 1∕ (k + 1), (1.34) becomes

 

The last part of this equation is the kurtosis of the simple NoVaS-transformed series.
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