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ABSTRACT.	Zipf’s	 law	has	 two	striking	regularities:	excellent	fit	and	an	exponent	close	 to	
1.0.	When	the	exponent	equals	1.0,	Zipf’s	law	collapses	into	the	rank-size	rule.	This	paper	alters	
the	sample	size,	 the	 truncation	point,	and	the	mix	of	cities	 in	 the	sample	 to	analyze	 the	Zipf	
exponent.	Our	results	demonstrate	that	the	exponent	is	close	to	1.0	only	for	a	number	of	selected	
sub-samples.	Small	samples	of	large	cities	provide	higher	values,	while	samples	of	small	cities	
produce	 lower	values.	Using	 the	estimated	values	of	 the	exponent	derived	from	the	 rolling	
sample	method	revealed	elasticity	in	the	exponent	with	regard	to	sample	size.	Our	results	also	
suggest	that	the	rank-size	rule	should	be	interpreted	with	caution.	Although	it	is	well-known	and	
commonly	used,	the	rank-size	rule	may	be	more	of	a	statistical	phenomenon	than	an	economic	
regularity.	
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1. INTRODUCTION

Zipf’s	law	describes	an	empirical	regularity	observed	in	both	the	natural	and	social	sciences	(e.g.,	
Zipf,	1949;	Shiode	and	Batty,	2000;	Sinclair,	2001;	Li	and	Yang,	2002;	Tachimori	and	Tahara,	
2002).	It	states	 that	 the	rank	associated	with	a	given	size	S	 is	 inversely	proportional	 to	S	at	a	
given	power.	If	this	power	is	equal	to	one,	Zipf’s	law	collapses	into	what	is	commonly	called	the	
rank-size	rule.	This	implies	that	in	the	case	of	cities,	the	second	largest	city	is	one-half	the	size	
of	the	first	and	the	third	largest	city	is	one-third	the	size	of	the	largest	and	so	on.	In	cases	where	
the	power	is	greater	than	one,	Zipf’s	law	suggests	that	the	second	largest	city	is	more	than	half	as	
large	as	the	largest	city	and	the	third	largest	city	is	more	than	a	third	as	large	as	the	largest	city,	
and	so	on.	Conversely,	an	exponent	of	less	than	one	would	suggest	that	the	second	largest	city	is	
less	than	half	the	size	of	the	largest	city,	and	so	on.	Linearizing	the	relationship	between	rank	and	
size	using	a	log	transformation	can	facilitate	the	estimation	of	the	negative	exponent.	

One	of	 the	striking	characteristics	of	Zipf’s	 law	 is	 its	excellent	 fit.	Numerous	empirical	
studies	have	shown	that	a	 linear	regression	of	 log-rank	on	log-size	generates	an	excellent	fit	
(very	high	R2-value).		Using	data	from	44	countries,	Rosen	and	Resnick	(1980)	found	that	R2-
values	were	above	0.95	for	36	countries	and	only	Thailand	had	an	R2-value	below	0.9	(0.83).	
Mills	and	Hamilton	(1994)	obtained	an	R2-value	of	0.99	using	1990	data	on	366	urbanized	
areas	in	the	U.S.	Song	and	Zhang	(2002)	obtained	an	R2-value	of	0.91	for	665	Chinese	cities	in	
1998.	This	astonishing	regularity	led	Krugman	(1995,	p.44)	to	claim	that	 the	rank-size	rule	is	
“a	major	embarrassment	for	economic	theory:	one	of	 the	strongest	statistical	phenomenon	we	
know,	lacking	any	clear	basis	in	theory.”	Fujita	et	al.	(1999,	p.	219)	stated	“the	regularity	of	the	
urban	size	distribution	poses	a	real	puzzle,	one	that	neither	our	approach	nor	the	most	plausible	
alternative	approach	to	city	sizes	seems	to	answer.”

The	second	notable	observation	 is	 related	 to	Zipf’s	coefficient.	 In	studies	related	 to	urban	
development,	 the	coefficient	is	very	close	to	1.0,	thus	the	rank-size	rule	holds.	Gabaix	(1999a,	
b)	argued	that	 the	rank-size	rule	 is	 theoretically	a	natural	result	of	urban	growth	independent	
of	the	initial	size	of	the	city.	Fujita	et	al.	(1999)	suggested	that	 the	rank-size	rule	does	indeed	
approximate	the	long-run	spatial	distribution	of	a	mature	spatial	system.	Among	the	44	countries	
empirically	studied	by	Rosen	and	Resnick	(1980),	the	estimated	coefficient	ranged	from	0.809	
for	cities	 in	Morocco	to	1.963	for	cities	 in	Australia.	Nitsche	(2005)	analyzed	515	estimates	
from	29	studies	related	to	the	rank-size	relationship	and	found	that	two-thirds	of	the	estimated	
coefficients	were	between	0.80	and	1.20,	with	a	median	estimate	of	1.09.	This	implies	that	city-
size	distributions	tend	to	be	more	even	than	what	is	suggested	by	the	rank-size	rule.

Some	have	used	economic	theory	to	explain	why	Zipf’s	law	holds,	others	cited	Gibrat’s	law,	
and	still	others	counted	it	as	a	purely	statistical	phenomenon.	The	economic	explanation	relies	
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on	a	delicate	balance	between	 transportation	costs,	positive	and	negative	externalities,	and	
differences	in	productivity	(Gabaix,	1999b;	Fujita	et	al.,	1999).	However,	 this	approach	poses	
a	number	of	inherent	difficulties.	For	example,	it	 is	difficult	 to	imagine	how	radically	different	
economies,	such	as	those	of	the	U.S.,	China,	and	India,	could	maintain	the	same	delicate	balance	
of	forces	over	time.	Gabaix	(1999a)	proved	that	Zipf’s	law	can	be	derived	from	Gibrat’s	law,	as	a	
matter	of	steady	state	distribution.	“The	existence	of	power	law	can	be	thought	as	due	to	a	simple	
principle:	 the	scale	 invariance.	Because	the	growth	process	 is	 the	same	at	all	scales,	 the	final	
distribution	process	should	be	scale	invariant.	This	forces	it	to	be	a	power	law”	Gabaix	(1999a,	
p.	744).	A	more	recent	explanation	was	provided	by	L.	Gan	et	al.	(2006),	who	proved	that	a	high	
R2-value	exists	because	the	dependent	variable	(rank)	is	generated	from	the	independent	variable	
(size).	Using	randomly	generated	data	as	well	as	data	from	China	and	the	U.S.,	they	concluded	
that	Zipf’s	law	does	not	need	a	basis	in	economic	theory	to	show	a	high	degree	of	explanatory	
power.	In	other	words,	Zipf’s	law	is	a	statistical	phenomenon.	This	explanation	is	supported	by	
the	fact	that	Zipf’s	law	holds	in	many	other	cases,	such	as	firm	size	and	web	server	domains.

Despite	these	attempts	at	an	explanation,	the	tendency	of	Zipf	coefficient	to	stay	so	close	to	1.0	
remains	puzzling.	Is	it	an	economic	regularity	or	statistical	phenomenon?	In	an	attempt	to	solve	
this	puzzle,	this	study	uses	data	from	Chinese	cities	(1985	and	1999)	and	U.S.	urbanized	areas	
(1980,	1990	and	2000)	to	identify	the	factors	driving	the	distribution	of	the	estimated	coefficient.	
We	selected	the	U.S.	and	China	for	two	reasons.	First,	both	countries	have	many	cities,	and	a	
larger	number	of	cities	allows	for	more	rigorous	statistical	analysis.	Second,	 they	have	very	
different	economic	systems,	which	could	help	to	indicate	whether	the	Zipf	coefficient	is	sensitive	
to	economic	factors.

Gaining	a	better	understanding	of	the	Zipf	exponent	is	no	trivial	matter.	The	validity	of	the	
rank-size	rule	hinges	on	this	exponent	having	a	value	close	to	1.	If	 the	value	of	this	exponent	
fluctuated	very	far	from	1,	the	rule	could	be	put	in	jeopardy	and	support	the	assertion	by	Gan	et	
al.	(2006)	that	Zipf’s	law	is	merely	a	statistical	phenomenon,	rather	than	an	economic	regularity.	
Using	rolling	sample	methods	with	and	without	replacement	as	well	as	Monte	Carlo	simulation,	
this	study	determined	how	sample	size	affects	the	Zipf	exponent.		To	the	best	of	our	knowledge,	
this	is	 the	first	study	to	provide	a	systematic	examination	of	the	relationship	between	the	Zipf	
exponent	and	the	size	of	samples	used	in	regression.

In	 the	following	section,	we	outline	 the	methodologies	used	in	 this	analysis,	 including	the	
rolling	sample	method	and	 the	 random	rolling	sample	with	 replacement.	The	 third	section	
provides	our	 results.	The	final	section	summarizes	 the	empirical	 results	and	discusses	 their	
economic	significance.	In	short,	this	paper	is	an	attempt	to	determine	the	impact	of	sample	size,	
truncation	point,	and	the	mix	of	cities	on	the	estimated	exponent	of	Zipf’s	law.
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2. THE MODEL AND METHODOLOGY

Before	outlining	the	model,	 it	might	be	helpful	to	visualize	Zipf’s	law.	In	accordance	with	the	
example	provided	by	Gabaix	(1999a),	we	can	take	a	country	such	as	the	U.S.	and	order	the	cities	
by	population:	No.	1,	New	York;	No.	2,	Los	Angeles,	and	so	on.	We	then	draw	a	graph	in	which	
the	y-axis	is	the	log	of	rank	and	the	x-axis	is	the	log	of	population.	This	provides	a	straight	line,	
as	shown	in	Fig.	1,	with	a	slope	close	to	-1.

Figure 1. Log Size versus Log Rank for the 1�0 Largest U.S. Cities in 1��0

The	most	common	approach	to	estimating	the	slope	in	Fig.	1	is	as	follows:
log(Ri)	=	α－βlog(Si)	+	ε	 (1)

where	Ri	is	the	rank	of	the	ith	city,	Si is the size of the city, and α is a constant term. Equation (1) 
is	a	log	transformation	of	the	regular	Zipf	law,	which	is	generally	expressed	as	Eq.	(2):	

Ri	=	ASi
－β	 (2)

Although	Eq.	(1)	is	a	popular	means	of	estimating	the	Zipf	exponent,	Gabaix	and	Ibragimov	
(2011)	showed	 that	 the	model	produces	bias	when	using	small	 samples.	Specifically,	 they	
determined	 that	 the	standard	error	 related	 to	 the	Zipf	exponent	 is	not	OLS	standard	error,	
but	 rather	asymptotically	 (2/ $ni)0.5β]	 ,	where	 $ni	 is	 the	corresponding	sample	size.	They	further	
demonstrated	 that	a	shift	of	1/2	 for	 the	 rank	 is	optimal	 to	correct	 this	bias.	Therefore,	 it	 is	
preferable	to	make	these	estimations	using	Eq.	(3),	rather	than	Eq.	(1):

log(Ri－0.5)	=	α－βlog(Si)	+	ε	 (3)
This	corrected	version	is	known	as	the	rank	minus	half	rule.	Throughout	this	paper,	we	provide	

results	using	both	calculation	methods	and	comment	on	the	differences	between	them.
The	main	purpose	of	 this	 research	 is	 to	 investigate	how	sample	size	 influences	 the	Zipf	
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exponent.	The	first	method	we	employ	is	 the	rolling	sample	method.	This	involves	estimating	
exponent	 coefficient	β	 using	OLS,	 and	 repeating	 the	 estimation	process	using	a	moving	
truncation	point.	The	start	point	of	each	sub-sample	is	fixed	at	the	largest	city	and	the	truncation	
point	moves	down	by	one	city	at	a	time,	thereby	increasing	the	sub-sample	size	by	one	each	time.	
For	example,	the	full	sample	size	of	urbanized	areas	in	the	U.S	for	1990	is	396.	These	urbanized	
areas	are	ordered	from	the	largest	urbanized	area,	New	York	(16,044,012	persons),	to	the	smallest	
urbanized	area,	Brunswick,	GA	(50,066	persons).	The	first	sub-sample	size	of	regressions	(1)	and	
(3)	is	 $ni,	the	10	largest	cities	for	example.	Thus,	the	second	sub-sample	is	 $n2	=	 $n1	+	1,	comprising	
the	11	largest	cities.	The	third	sub-sample	size	is	 $n3	=	 $n2	+	1,	or	the	12	largest	cities;	and	so	on.	
This	process	is	continued	until	the	last	sub-sample	is	equal	to	the	full	sample	size	of	396.	

The	advantage	of	the	rolling	sample	method	is	that	 it	constructs	the	distribution	of	the	Zipf	
exponent	with	respect	to	sample	size;	an	approach	commonly	used	in	the	literature.	Nearly	all	
previous	studies	on	Zipf’s	law	have	listed	the	largest	cities,	such	as	the	top	50	cities	in	Rosen	
and	Resnick	(1980),	 the	top	140	cities	in	Gabaix	(1999a),	and	full	U.S.	and	China	samples	in	
Gan	et	al.	 (2006).	We	believe	 that	adopting	rolling	samples,	 including	 large	sample	sizes	as	
well	as	smaller	ones,	will	provide	more	intuitive	results.	This	approach	will	also	help	to	reveal	
how	the	Zipf	exponent	responds	to	changes	in	sample	size	when	smaller	cities	are	added	one	
by	one.	However,	one	disadvantage	of	 the	rolling	sample	method	 is	 its	 inability	 to	untangle	
the	pure	effect	of	sample	size	on	the	Zipf	exponent.	This	is	because	the	rolling	sample	method	
simultaneously	captures	the	truncation	point	effect	and	sample	size	effect	as	well	as	variations	in	
the	size	of	cities.	

To	more	precisely	examine	 the	 relationship	between	sample	size	and	 the	estimated	Zipf	
exponent,	 this	study	employed	the	random	rolling	sample	method	with	replacement.	We	first	
determined	the	sample	size	 ñ1	(	ñ1=5	in	this	research).	From	the	full	sample,	we	then	randomly	
selected	ñ1	cities.	The	selected	cities	were	then	ranked	and	the	Zipf	exponent	was	estimated	using	
Eqs.	(1)	and	(3).	We	then	repeated	this	process	100	times	to	obtain	an	average	estimated	Zipf	
exponent	for	 ñ1.	We	increased	the	sample	sizes	one	by	one	(	ñ2	=	 ñ1+1,	and	so	on)	and	repeated	
the	above	four	steps	for	each	new	sample	size.	All	samples	were	selected	independently	and	
randomly,	and	100	regressions	were	run	for	each	sample	size;	therefore,	we	were	able	to	show	
how	sample	size	affects	the	Zipf	exponent.	

We	also	employed	Monte	Carlo	simulation	to	verify	 the	robustness	of	our	results	from	the	
random	rolling	sample	method	described	above.	For	the	Monte	Carlo	simulation,	we	randomly	
generated	1000	numbers	 from	a	normal	distribution,	 instead	of	using	actual	data	 related	 to	
urbanized	areas	in	the	U.S.	We	then	applied	the	random	rolling	sample	method	and	examined	the	
relationship	between	the	average	estimated	Zipf	exponent	and	sample	size.



2� Nota, Song

3. EMPIRICAL RESULTS

Table	1	shows	 the	 full-sample	 results	 related	 to	Zipf’s	 law.	As	expected,	all	 cities	 in	both	
countries	(in	all	years)	provided	high	R2-values	(0.857	to	0.989).	It	is	interesting	to	note	that	the	
estimated	coefficients	(β]	’s)	are	slightly	higher	for	the	OLS	bias	corrected	model	than	the	original	
uncorrected	version.	Thus,	we	conclude	that	the	uncorrected	Zipf’s	law	(Eq.	1)	has	a	downward	
bias	on	the	estimated	coefficient.	

Table 1. Zipf’s Law Regression Results Using City Size Data from China and the U.S.

Nation Year β]	
OLS Bias 
Corrected β]	

R2

(from unadjusted) Sample Size

U.S. 1980 0.91 0.925 0.989 366

U.S. 1990 0.895 0.913 0.989 396

U.S. 2000 0.875 0.895 0.989 452

China 1985 0.856 0.875 0.857 324

China 1999 1.075 1.09 0.927 667

Data	Sources:	U.S	Census	Bureau	and	Urban	Statistical	Yearbook	of	China	(1986;	2000)

3.1 Results from the Rolling Sample Method

Figures	2-6	present	 the	results	 from	the	rolling	sample	method,	revealing	several	 interesting	
findings.	First,	a	negative	relationship	exists	between	the	estimated	Zipf	exponent	and	sample	
size,	 for	both	countries	 in	all	 sample	years.	This	 implies	 that	 the	estimated	Zipf	exponent	
depends	on	the	size	of	samples	used	in	the	regression.	Small	samples	of	large	cities	yield	higher	
coefficients	than	large	samples	that	include	smaller	cities.	In	fact,	Figs.	2-4	even	suggest	that	the	
estimated	exponent	follows	a	lognormal	distribution	with	respect	to	sample	size.	This	is	tested	in	
Section	3.4.	

Second,	all	solid	curves	are	located	above	the	dashed	curves,	 indicating	that	 the	unadjusted	
regression	model	has	a	downward	bias	on	 the	estimated	coefficient,	particularly	 for	 small	
samples.	This	is	consistent	with	the	findings	of	Gabaix	and	Ibragimov	(2011).	
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Third,	 the	estimated	Zipf	exponent	is	generally	higher	for	Chinese	cities	than	for	urbanized	
areas	in	the	U.S.,	even	though	the	sample	size	is	 larger	for	China.	This	suggests	 that	cities	 in	
China	are	more	evenly	distributed	than	those	in	the	U.S.	One	explanation	may	be	China’s	long-
time	policy	of	strict	control	of	 the	large-sized	cities,	reasonable	development	of	 the	medium-
sized	cities,	and	aggressive	development	of	the	small-sized	cities.	

Fourth,	 the	 rank-size	 rule	 (i.e.,	β=1)	holds	only	for	a	selected	range	of	sample	sizes.	For	
urbanized	areas	in	the	U.S,	the	95%	confidence	interval	includes	β=1	when	using	a	sample	size	
of	between	180	and	205	in	1980,	between	140	and	195	in	1990;	and	between	140	and	205	in	
2000.	For	Chinese	cities,	 the	rank-size	rule	holds	only	when	the	sample	includes	between	315	
and	320	cities	 in	1985;	all	estimated	Zipf	exponents	are	statistically	greater	 than	1.0	in	1999.	
This	suggests	 that	 the	well-known	rank-size	 rule	 for	city-size	distribution	 is	not	a	uniform	
phenomenon.	

Zipf's Law: U.S Urban Areas 1980
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Figure 2. Zipf’s Law: Urbanized Areas in the U.S in 1��0
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Zipf's Law: U.S Urban Areas 1990

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

10 25 40 55 70 85 100

115

130

145

160

175

190

205

220

235

250

265

280

295

310

325

340

355

370

385

Sample Size

Pa
re

to
 E

xp
on

en
t

Adj_beta Unadj

Figure 3. Zipf’s Law: Urbanized Areas in the U.S in 1��0

Zipf's Law: U.S Urban Areas 2000
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1985 Chinese Cities: Adjusted & Unadjusted betas 
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Figure 5. Zipf’s Law: Chinese Cities in 1���

1999 Chinese Cities: Adjusted & Unadjusted betas
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Figure 6. Zipf’s Law: Chinese Cities in 1���



2� Nota, Song

3.2 Results from Random Rolling Sample Method

As	we	discussed	in	the	methodology	section,	 the	rolling	sample	method	begins	with	a	sample	
that	includes	the	largest	cities,	increasing	the	sample	size	by	adding	one	smaller	city	with	each	
iteration.	Thus,	the	truncation	point	effect,	sample	size	effect,	and	variations	in	the	size	of	cities	
are	captured	simultaneously.	The	purpose	of	the	random	rolling	sample	method	is	to	single	out	
the	influence	of	sample	size	on	the	Zipf	exponent.	Through	replacement	and	random	sampling,	
variations	in	the	size	of	cities	become	random,	thereby	avoiding	bias	for	samples	that	 include	
only	large	cities.	Replacement	and	random	sampling	enable	random	changes	in	the	truncation	
point,	which	eliminates	the	truncation	point	bias	inherent	in	the	rolling	sample	method.

Figure	7	presents	 the	 average	estimated	Zipf	 exponent	using	100	 regressions	 for	 each	
sample	size.	Both	curves	show	that	 the	estimated	Zipf	exponent	 is	quite	sensitive	 to	sample	
size	when	they	are	relative	small;	however,	 it	becomes	stable	for	larger	samples.	For	example,	
when	examining	urbanized	areas	 in	 the	U.S.	 in	1990,	 the	estimated	Zipf	exponent	decreases	
dramatically	with	sample	size	until	50,	whereupon	the	effect	of	sample	size	disappears	(i.e.,	the	
estimated	coefficient	remains	nearly	constant).	In	2000,	the	estimated	Zipf	exponent	decreased	
dramatically	before	 the	sample	size	 reached	65.	This	again	suggests	 that	 the	Zipf	exponent	
decreases	with	sample	size,	particularly	when	the	sample	size	is	relatively	small.

U.S. UA 2000: Random Sampling
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U.S. UA1990: Random Sampling
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Figure 7. Results from Random Rolling Sampling

3.3 Simulation Results Using Random Sampling with Replacement

We	conducted	a	Monte	Carlo	simulation	using	1000	numbers	with	normal	distribution	to	verify	
the	robustness	of	the	above	findings.	We	then	used	the	random	rolling	method	with	replacement,	
as	in	Section	3.1.	Figure	8	presents	the	average	estimated	Zipf	exponent	from	100	regressions	for	
each	sample	size.	Interestingly,	we	still	captured	the	effect	of	small	sample	sizes	on	the	estimated	
Zipf	exponent.	The	estimated	Zipf	exponent	decreased	dramatically	before	 the	sample	size	
reached	35,	continued	decreasing	until	 the	sample	sized	reached	200,	and	then	stabilized.	This	
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confirms	our	earlier	conclusion	that	the	Zipf	exponent	decreases	with	sample	size,	particularly	
when	samples	are	relatively	small.

Simulations Results: Randomly generated Numbers
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Figure 8. Simulation Results Using Random Sampling with Replacement

3.4 Further Evidence on the Relationship between Sample Size and the Zipf Exponent

As	mentioned	in	Section	3.1,	Figs.	2-4	suggest	a	 lognormal	relationship	between	sample	size	
and	the	Zipf	exponent.	This	section	outlines	a	regression	we	ran	to	empirically	determine	the	
relationship	between	the	estimated	exponent	( }β)	and	sample	size	(SS).	This	analysis	 involves	
running	the	following	equation,	the	results	of	which	are	presented	in	Table	2.

log(}βi)	=	α－δlog(SSi)	+	ε	 (4)

Table 2. Elasticity of Estimated Zipf Exponent with Respect to Sample Size

Nation Year }δ
OLS Bias 
Corrected}δ

R2

(from adjusted)
Number of 
observations

U.S. 1980 -0.10*** -0.15*** 0.98 355

U.S. 1990 -0.11*** -0.16*** 0.96 385

U.S. 2000 -0.13*** -0.17*** 0.97 441

***:	significant	at	1%
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The	numbers	in	Table	2	are	the	number	of	estimated	exponents	(}β’s)	obtained	using	the	rolling	
sample	method	(see	Section	3.1).	Using	data	from	urbanized	areas	in	the	U.S.,	Eq.	4	yields	very	
high	R2-values	(0.96	or	higher)	and	highly	significant	results.	Based	on	the	OLS	bias-corrected	
model	 (Eq.	3,	column	4	 in	Table	2),	 the	elasticity	of	 the	estimated	exponent	with	respect	 to	
sample	sizes	are	-0.15,	-0.16,	and	-0.17	for	1980,	1990,	and	2000,	respectively.	An	increase	of	
approximately	one	percent	in	the	number	of	urban	areas	used	in	regression	causes	a	0.16	percent	
reduction	in	the	value	of	the	estimated	exponent	(for	the	adjusted	model).	The	unadjusted	model	
(Eq.	2,	column	3	in	Table	2)	shows	a	smaller	decrease	in	the	value	of	the	estimated	exponent	as	
the	size	of	the	sample	increases;	which	explains	why	the	unadjusted	model	converges	with	the	
adjusted	model	in	Figs.	2-4.

These	results	are	important.	If	the	value	of	the	estimated	exponent	is	influenced	significantly	
by	sample	size,	we	cannot	expect	the	value	of	this	exponent	to	remain	close	to	1.0	in	all	cases.	
Therefore,	the	validity	of	the	rank-size	rule	depends	largely	on	the	size	of	the	sample.	In	other	
words,	the	rank-size	rule	is	not	necessarily	an	economic	regularity	and	may	in	fact	be	a	statistical	
phenomenon.	

4. CONCLUSIONS

This	paper	examined	the	validity	of	the	rank-size	rule	according	to	the	estimated	Zipf	exponent.	
Using	a	rolling	sample	technique,	we	proved	that	small	samples	of	large	cities	tend	to	generate	
higher	values	for	the	estimated	exponent	compared	to	samples	dominated	by	smaller	cities.	We	
demonstrated	that	the	rank-size	rule	holds	only	for	a	number	of	selected	sub-samples.	Among	the	
U.S.	samples,	 the	estimated	Zipf	exponent	remains	close	to	1.0	for	between	only	180	and	205	
cities	(1980),	between	140	and	195	cities	(1990),	and	between	140	and	205	cities	(2000).	Among	
the	Chinese	cities,	 the	estimated	Zipf	exponent	is	close	to	1.0	only	for	sub-samples	containing	
between	315	and	320	cities	 (1985)	and	never	approached	1.0	 for	 the	1999	data.	Empirical	
evidence	from	a	random	rolling	sample	method	and	 the	results	of	a	Monte	Carlo	simulation	
confirm	that	the	Zipf	exponent	is	negatively	related	to	the	size	of	samples	used	in	regression.	

The	double	log	regression	model	for	the	estimated	Zipf	exponents	and	sample	sizes	yielded	
high	R2-values	and	significant	 results.	 It	 revealed	elasticity	 in	 the	estimated	exponent	with	
respect	to	sample	size.	For	urbanized	areas	in	the	U.S	in	1980,	1990,	and	2000,	an	increase	of	
approximately	one	percent	in	the	number	of	urban	areas	used	in	regression	would	cause	a	0.16	
percent	reduction	in	the	value	of	the	estimated	exponent.	This	statistically	determines	how	the	
Zipf	exponent	responds	(negatively)	 to	changes	in	sample	size.	It	also	suggests	 that	 the	rank-
size	rule	should	be	interpreted	with	caution.	In	other	words,	this	well-known	and	commonly	used	
rank-size	rule	may	be	more	of	a	statistical	phenomenon	than	an	economic	regularity.	
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