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Abstract

Recent studies have proposed causal machine learning (CML) methods
to estimate conditional average treatment effects (CATEs). In this study, I
investigate whether CML methods add value compared to conventional CATE
estimators by re-evaluating Connecticut’s Jobs First welfare experiment. This
experiment entails a mix of positive and negative work incentives. Previous
studies show that it is hard to tackle the effect heterogeneity of Jobs First by
means of CATEs. I report evidence that CML methods can provide support
for the theoretical labor supply predictions. Furthermore, I document reasons
why some conventional CATE estimators fail and discuss the limitations of
CML methods.

Keywords: Labor supply, individualized treatment effects, conditional average treat-
ment effects, random forest.
JEL classification: H75, I38, J22, J31, C21.

The Manpower Demonstration Research Corporation (MDRC) provided the experimental data
used in this article. I remain solely responsible for how the data have been used and interpreted.
The study is part of the Swiss National Science Foundation (SNSF) project “Causal Analysis with
Big Data”, grant number SNSF 407540 166999, and is included in the Swiss National Research
Program “Big Data” (NRP 75). A previous version of the paper was presented at UC Berkeley,
University of St. Gallen, and SKILS Engelberg. I thank participants, particularly Ulrich Glo-
gowsky, Bryan Graham, Pat Kline, Michael Knaus, Michael Lechner, Davud Rostam-Afschar, and
Michael Zimmert, for helpful comments and suggestions. The usual disclaimer applies.

Address for correspondence: Anthony Strittmatter, Swiss Institute for Empirical Economic Re-
search (SEW), University of St. Gallen, Varnbüelstr. 14, CH-9000 St. Gallen, Switzerland,
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1 Introduction

Conditional average treatment effects (CATEs) estimate heterogeneous policy effects

by means of exogenous covariates. Recently, causal machine learning (CML) meth-

ods have been proposed to estimate CATEs (see, e.g., Athey, 2018, Chernozhukov,

Demirer, Duflo, and Fernández-Val, 2018, for comprehensive summaries). Com-

pared to more conventional estimation methods, CML methods have three potential

advantages. First, they make it convenient to incorporate many covariates that

are potentially responsible for effect heterogeneity. Several conventional estimation

approaches also make it possible to incorporate many covariates, but CML meth-

ods can avoid the potential risk of overfitting and are computationally feasible even

when the covariate space is very large. Some CML methods allow for more covari-

ates than observations. Second, CML methods are relatively flexible when dealing

with the covariates. Some CML methods incorporate nonlinear and interaction

terms automatically. Third, the systematic CML algorithms make it less likely to

overlook important effect heterogeneity. However, judiciously conducted conven-

tional approaches may also find important heterogeneity margins. Furthermore,

CML methods are largely black-box approaches, which is certainly a disadvantage.

Accordingly, it is unclear how much value CML methods can add to economic ap-

plications compared to more conventional estimation methods.

In this study, I revisit the effects of Connecticut’s Jobs First welfare experiment

on the labor supply. Well-established labor supply theory provides clear predictions

about the heterogeneity margins of this experiment (see, e.g., Kline and Tartari,

2016, for a comprehensive summary). However, Bitler, Gelbach, and Hoynes (2017)

document the limitations of a conventional CATE estimator in terms of its ability to

provide evidence for these theoretical predictions. This is puzzling because Bitler,

Gelbach, and Hoynes (2006) show that quantile treatment effects (QTEs) can un-

cover evidence for the theoretical labor supply model. It appears that the Jobs First

data contain relevant information that can support labor supply theory, but how to

uncover the appropriate heterogeneity by means of conventional CATE estimators

is not straightforward.

This study contributes to the aforementioned literature in at least three ways.

First, I investigate whether CATEs estimated with CML methods can provide evi-

dence supporting the theoretical labor supply predictions of the Jobs First program,

which would clearly represent value added compared to conventional CATE estima-

tors. Second, I reveal modeling restrictions that prevent the conventional CATE

estimators from revealing more effect heterogeneity. Third, I test whether the esti-

mates of the CATEs and QTEs are nested.

Bitler, Gelbach, and Hoynes (2017) consider local constant models, which are one
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of the workhorse methods used to estimate CATEs in empirical economics. Local

constant models stratify the sample into different groups defined by the covariates

and report subgroups’ average treatment effects. Local constant models uncover

effect heterogeneity across groups but report constant effects within groups. There

are three potential reasons why local constant models fail to support labor supply

theory. First, the choice of the subgroups could be suboptimal. Second, constant

effects within groups do not accurately approximate the possibly continuously dis-

tributed treatment effects. Third, the covariates used in the local constant models

may be insufficient for explaining effect heterogeneity.1 Suitable CML methods can

overcome all three possible disadvantages of local constant models. It is essential to

understand why local constant models fail to support theoretical predictions in the

Jobs First case because these models are widely used, hence, the disadvantages may

carry over to other applications.

My main analysis is based on the double machine learning approach proposed

in Chernozhukov, Chetverikov, Demirer, Duflo, Hansen, Newey, and Robins (2018).

This is a generic approach that can incorporate many different machine learning

estimators. Accordingly, it is suitable to compare machine learning estimators with

different modeling restrictions. I consider off-the-shelf machine learning estimators

that can be used with standard personal computers. These machine learning esti-

mators can be accessed by a widespread audience. Furthermore, no special IT in-

frastructure is required, in contrast to machine learning methods that require cloud

computing infrastructure (e.g., TensorFlow). This could be useful when dealing with

confidential data, such as data from the Manpower Demonstration Research Corpo-

ration (MDRC), because it is often easier to comply with data security regulations

and laws using a personal computer than using applications on a cloud.

In particular, I consider the “tree” and the “random forest” machine learning es-

timators (see, e.g., Hastie, Tibshirani, and Friedman, 2009). Tree estimators split

the data into mutually exclusive groups defined by the covariates and report effect

heterogeneity as the subgroups’ average treatment effects. Similar to local constant

models, tree estimators uncover effect heterogeneity across groups but report con-

stant effects within groups. However, tree estimators employ data-driven algorithms

to select subgroups, whereas for local constant models, subgroups must be manually

selected. Both methods could, in principle, incorporate many covariates. However,

it is more convenient to use tree estimators when the covariate space is large. In

particular, trees can automatically incorporate different subgroup definitions (based

on covariates and interactions between covariates) without precoding. Random for-

1Obviously, local constant models would also fail if the theoretical predictions are not good approx-
imations of the labor supply effects or if measurement error or other data problems prevent me
from finding empirical support for the labor supply predictions.
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est estimators are ensemble methods. They estimate many trees based on different

subsets of the data and covariates and then report the average of the different tree

estimates. These features imply that random forest estimators additionally relax

the restriction of constant effects within subgroups. Accordingly, the tree and ran-

dom forest estimators are suitable for relaxing, in a stepwise fashion, the modeling

restrictions of local constant models.

The results suggest that random forest estimators can provide evidence for the

theoretical labor supply model when they incorporate many covariates. This sug-

gests that including many relevant covariates and allowing for continuously dis-

tributed treatment effects are important ingredients for establishing a match be-

tween theoretical predictions and empirical results in the Jobs First application.

Using solely data-driven methods of selecting subgroups, without incrementing the

covariates and flexibility of the model, does not seem to improve the matches.

Furthermore, the results provide evidence that the CML estimates of the CATEs

and QTEs provide disparate sets of information for evaluating the Jobs First case,

suggesting that the estimated CATEs do not uncover all of the inherent effect het-

erogeneity of the Jobs First experiment. Both CATEs and QTEs have advantages

and disadvantages. CATEs could be useful to design welfare schemes that optimize

the labor supply response of specific target groups or to create assignment rules.

QTEs enable the study of the responses of the entire labor supply distribution (in a

fully flexible way), but it is difficult to assign these responses to specific groups.

Using case studies to demonstrate the capabilities of new methods is common

in economics. Recently, Kleinberg, Lakkaraju, Leskovec, Ludwig, and Mullainathan

(2018) illustrate how predictive machine learning methods can improve human deci-

sions, using the example of bail decisions made by judges. Doriey, Hill, Shalit, Scott,

and Cervone (2018) launched a causal inference data analysis challenge. Contrib-

utors received real-world data to estimate the effects of birth weight on child’s IQ.

The real-world data were slightly calibrated such that the ground truth was known

by the organizers of the challenge. Their main conclusion is that flexible methods

with fewer modeling restrictions perform better, which is coherent with my findings

for the Jobs First application.

Economic applications using CML methods to predict CATEs are still rare. Davis

and Heller (2017) estimate the heterogeneous effects of summer jobs on the prob-

ability of committing a violent crime. Taddy, Gardner, Chen, and Draper (2016)

investigate the heterogeneous effects of A/B experiments in online-auctions (eBay)

on customer responses. Bertrand, Crépon, Marguerie, and Premand (2017) estimate

the heterogeneous effects of a work experience program in Côte d’Ivoire on post-

participation employment and wages. Knaus, Lechner, and Strittmatter (2018a)

estimate the heterogeneous employment effects of a job search program in Switzer-
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land.

In the next section, I provide some background information about the Jobs First

welfare experiment. In Section 3, I introduce the MDRC data. In Section 4, I

describe the empirical framework of this study. In Section 5, I document the em-

pirical results. The final section concludes. The Online Appendices A-F provide

supplementary material and descriptive statistics.

2 The Jobs First welfare program

In 1996, Connecticut replaced the Aid for Families with Dependent Children (AFDC)

program with the Jobs First program. The Jobs First program created financial work

incentives for people on assistance that differed from those offered by the AFDC pro-

gram.

Figure 1 shows the earnings and welfare transfers in a stylized way. The max-

imum welfare payment W is similar under both welfare schemes, but additional

earnings lead to different welfare payment deductions. AFDC disregarded all earn-

ings below a fixed amount B, which was $120 per month during the first 12 months of

employment while on assistance and $90 per month afterward. Furthermore, 51% of

any additional earnings was disregarded during the first four months of employment

and 27% of any additional earnings afterward. By contrast, the Jobs First program

disregards all earnings below the federal poverty line (FPL). Earnings above the

FPL terminate all welfare benefit payments from the Jobs First program (which is

like a cliff in the benefits payment scheme). The Jobs First and AFDC programs

differ in other aspects besides the financial work incentives. The additional changes

are summarized in the Online Appendix A.

Figure 1 around here

Bitler, Gelbach, and Hoynes (2006) use a static labor supply model to develop

four hypotheses. First, the Jobs First program deducts fewer earnings from welfare

payments than the AFDC program. Thus, Jobs First should have a positive effect on

the extensive margin of the labor supply. Second, Jobs First recipients with relatively

low earnings (between B and E in Figure 1) can keep more of their additional

income than AFDC recipients. This should create positive work incentives when

the substitution effects dominate the income effects. Third, the FPL is considerably

higher than the earnings amount E at which participants lose their eligibility for

AFDC welfare benefit payments. Accordingly, this provides a lump-sum transfer to

Jobs First welfare recipients with earnings between E and the FPL, which reduces

the optimal earnings in the presence of negative income effects. Furthermore, the cliff
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construction of the Jobs First payment scheme creates incentives to reduce earnings

to just below the FPL, which might increase income or leisure time. Fourth, for

recipients sufficiently above the FPL, the AFDC and Jobs First programs provide

the same labor supply incentives.

The theoretical predictions and an additional data restriction lead to three em-

pirically testable hypotheses:

H1: The Jobs First program has positive earnings effects for some individuals with

zero earnings under AFDC. Furthermore, the earnings effects cannot be nega-

tive for this group because the earnings outcome cannot be negative (additional

data restriction).

H2: There is a mix of positive and negative earnings effects in the group of indi-

viduals with positive earnings below the FPL under AFDC.

H3: Jobs First has non-positive earnings effects for individuals with earnings above

the FPL under AFDC.

3 Experimental data

The Connecticut Department of Social Services required the MDRC to conduct a

randomized controlled trial to evaluate the Jobs First program. Experimental partic-

ipants were single-parent welfare applicants and recipients who lived in Manchester

or New Haven. Between January 1996 and February 1997, 4,803 experimental par-

ticipants were randomly assigned to either the AFDC (control group) or Jobs First

(treatment group) programs.2

3.1 Variable definitions

The MDRC’s public use files for the Jobs First program contain baseline data on

demographic and family composition variables merged with longitudinal administra-

tive information on welfare and food stamps payments and earnings provided by the

state unemployment insurance system. The outcome variable is earnings per quarter

in US dollars.3 The treatment is assignment to the Jobs First program. I follow

4,802 experimental participants for seven quarters after random assignment (RA)

to the Jobs First program or AFDC program. The total sample contains 33,614

observations.

2I drop one experimental participant who had extraordinarily high earnings. This does not change
the point estimates much but makes the estimation of the confidence intervals more stable.

3I do not observe the earnings reported by the experimental participants to the welfare agency, which
could matter when misreporting is a major practice (see discussion, e.g., in Kline and Tartari, 2016).
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Being above or below the FPL is one of the major factors driving effect hetero-

geneity according to the theoretical considerations. Similar to previous Jobs First

studies, I cannot observe the administrative assistance unit size, which determines

the FPL of the experimental participant. Following the suggestions of Kline and

Tartari (2016), I calculate the assistance unit size based on the number of children

at RA.4 This approach may lead to the underestimation of the FPL because moth-

ers may have more children during the seven quarters after RA. To account for this

potential disadvantage, I inflate the number of children by one for all mothers as a

robustness check (in the following, I call this calculation of the FPL “extra child”).

I distinguish between three sets of covariates that I use for the heterogeneity

analysis. I label them “baseline”, “decent”, and “kitchen sink” covariates. Table 1

summarizes the different covariate categories. The baseline covariates contain the

elapsed quarters since RA and the earnings in the seven quarters prior to RA. The

selection of the baseline covariates follows Bitler, Gelbach, and Hoynes (2017), who

use these two covariates in some of their main specifications.

Table 1 around here

The decent covariates include 13 variables. In addition to the baseline variables,

they include age, education, information about children, and more information about

earnings and welfare history. This set of covariates is still relatively small; however,

it may be difficult to consider even these relatively few variables with a standard

CATE estimator when including many non-linearities and interactions between the

covariates.

The kitchen sink covariates include 68 variables. I include all exogenous co-

variates for which data are available from the MDRC and that might affect effect

heterogeneity. The kitchen sink covariates include different measures of the vari-

ables that are already included in the decent covariates. The additional variables

are ethnicity, marital status, information about the residence, information on previ-

ous participation in education or labor market programs, and more information on

earnings and welfare history.

3.2 Descriptive statistics

Table 2 reports the descriptive statistics of the main variables. The mean earnings

do not differ greatly between the Jobs First and AFDC participants. Thus, the

average effects of the Jobs First experiment do not differ significantly from zero

(similar to previous findings, e.g., in Bitler, Gelbach, and Hoynes, 2006). However,

4I cannot calculate the assistance unit size for 160 experimental participants because the number
of children is not reported.
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fewer participants in the Jobs First program are unemployed compared to the par-

ticipants in the AFDC program. More participants in the Jobs First program have

employment with earnings below the FPL than participants in the AFDC program.

These descriptive findings are in line with the theoretical labor supply predictions.

The group of participants with earnings above the FPL is relatively small regardless

of whether I inflate the number of children used to calculate the FPL or not. The

share of participants with earnings above the FPL does not differ much between the

Jobs First and AFDC participants.

Table 2 documents the standardized difference in the baseline and decent co-

variates between the Jobs First and AFDC participants.5 Table B.1 in the Online

Appendix B shows the descriptive statistics of the kitchen sink covariates. If the RA

to the Jobs First and AFDC programs was appropriately random, then we expect all

pre-RA covariates to be balanced. Table 2 shows that there are no large differences

between the pre-RA covariates. However, there are some small differences. Jobs

First participants have slightly more children, less previous earnings, and received

more welfare than AFDC recipients.

Table 2 around here

4 Empirical approach

4.1 Estimation target

The treatment dummy Di equals one when an experimental participant is assigned

to Jobs First and zero when she is assigned to the AFDC welfare scheme. Fol-

lowing Rubin’s (1974) potential outcome framework, Yit(1) denotes the potential

earnings outcome under Jobs First for individual i in quarter t (for i = 1, . . . , N and

t = 1, ..., 7). Correspondingly, Yit(0) denotes the potential earnings outcome under

AFDC for individual i in quarter t. Each individual can be assigned to either the

Jobs First or AFDC but not to both welfare schemes simultaneously. Thus, only one

potential outcome is observable. Under the stable unit treatment value assumption

(SUTVA), the observed outcome equals

Yit = Yit(1)Di + Yit(0)(1−Di). (1)

5The standardized difference in variable X between samples A and B is defined as

SD =
|X̄A − X̄B |√

1
2 (V ar(XA) + V ar(XB))

· 100,

where X̄A denotes the mean of sample A and X̄B denotes the mean of sample B. Rosenbaum and
Rubin (1983) consider an absolute standardized difference higher than 20 to be “large.”
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Individual i’s causal effect of being assigned to Jobs First instead of the AFDC

welfare scheme on earnings is

δit = Yit(1)− Yit(0).

We cannot identify individual causal effects without assumptions that are implausi-

ble in many applications (e.g., the assumption of effect homogeneity). Nevertheless,

group averages of δit may be identifiable under plausible assumptions. For exam-

ple, the identification of the average treatment effect (ATE), ρ = E[δit], and the

average treatment effect on the treated (ATET), θ = E[δit|Di = 1], is standard in

policy evaluations (see, e.g., Imbens and Wooldridge, 2009). CATEs can potentially

uncover effect heterogeneity based on exogenous pre-treatment variables Xit. The

CATEs are

δ̄(x) = E[δit|Xit = x].

Under the random treatment assignment and SUTVA, the CATEs

δ̄(x) = E[Yit|Di = 1, Xit = x]− E[Yit|Di = 0, Xit = x],

are identified from observable data on (Yit, Di, Xit).

The CATEs are often labeled as individualized or personalized treatment ef-

fects. To some extent, this is misleading because these labels might suggest that

the CATEs closely approach the individual causal effects. However, to achieve this,

the individual causal effects must be (almost) deterministic, and all relevant deter-

mining variables must be observed. In many applications, these requirements are

too strong. Nevertheless, even when the CATEs are not equal to the individual

causal effects, they have the potential to provide a more complete picture of the

effect heterogeneity than the ATEs can.

4.2 Local constant model

The local constant model partitions the sample into mutually exclusive groups. Let

π = {g1, ..., g#(π)} be a specific sample partition, let gj ≡ gj(x, π) be the respective

group (for j = 1, . . . ,#(π)), and let #(π) be the number of groups in the partition

π. The group gj(x, π) of partition π is a function of the covariate space of Xit. For

an explicit example, consider that Xit contains only a binary indicator for gender.

Then, we can choose between two possible sample partitions; either keep men and

women together, π′ = {g1} = {men,women}, or we partition men and women into

two separate groups, π′′ = {g1, g2} = {{men}, {women}}.
Local linear models can be estimated with a linear model that incorporates the
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interaction terms with Di

Yit =

#(π)∑
j=1

γj · 1{Xit ∈ gj(x, π)}+

#(π)∑
j=1

δj ·Di · 1{Xit ∈ gj(x, π)}. (2)

The CATEs are δ̄(Xit) =
∑#(π)

j=1 δj · 1{Xit ∈ gj(x, π)}.
The empirical challenge is to find a useful sample partition π. Often the choice of

π is a rather discretionary decision. Not accounting for the selection of π (which may

include many manual model selection steps) can lead to invalid inference procedures.

4.3 CML approach

Given the discussion in the last section, it would be useful to select π in a data-

driven way based on some optimality criteria. In the ideal case, these optimality

criteria would be based on the individual causal effect δit. However, the fundamental

problem of causal analysis is the unobservability of δit.

To overcome the fundamental identification problem, a popular CML approach

is to modify the outcome. For example, I could replace the outcome with the

orthogonal score

Y ∗it = µ1(Xit)− µ0(Xit) +
Di(Yit − µ1(Xit))

p(Xit)
− (1−Di)(Yit − µ0(Xit))

1− p(Xit)
,

which goes back to Robins and Rotnitzky (1995). It includes the three nuisance

parameters µ1(Xit) = E[Yit|Di = 1, Xit], µ0(Xit) = E[Yit(0)|Xit] = E[Yit|Di =

0, Xit], and p(Xit) = E[Di|Xit] that model the potential outcomes and the selection

into treatment. Each of the nuisance parameters can be estimated with methods

suited to making predictions, such as machine learning estimators. The expected

value of the efficient score is the ATE, ρ = E[Y ∗it ], and the conditional expectations

are the CATEs, δ̄(x) = E[Y ∗it |Xit = x] (see the proof in the Online Appendix C). The

orthogonal score has the advantage that the causal effect estimates remain consistent

even when either µ0(x) and µ1(x) or p(x) is misspecified.

Chernozhukov et al. (2018) call this approach the double machine learning ap-

proach because it combines first-step auxiliary predictions of nuisance parameters

to estimate the causal effects in the second step. These authors discuss how it is

possible to obtain
√
N -consistent and asymptotically normal estimates of the ATE

and other low-dimensional causal parameters. An important finding is that, even if

the estimates of the nuisance parameter have a slow convergence rate (e.g., 4
√
N), the

ATE estimates can still converge with
√
N . However, much less is known about the

asymptotic properties of the modified outcome approach regarding the functions

of the efficient score, such as the CATEs (see discussion, e.g., in Chernozhukov,
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Demirer, Duflo, and Fernández-Val, 2018). Lee, Okui, and Whang (2017) discuss

the asymptotic properties of CATEs estimated with the orthogonal score, but they

assume that the covariates used to model effect heterogeneity are low-dimensional

and that the nuisance parameters are estimated at a parametric rate.

Another popular CML approach is the causal forest estimator (see Athey, Tib-

shirani, and Wager, 2018, Wager and Athey, 2018). Causal forest estimators are

consistent and asymptotically normal for the estimation of CATEs, but the con-

vergence rates are below
√
N . The modified outcome and causal forest approaches

have similar good finite sample properties for estimating CATEs (see, e.g., Knaus,

Lechner, and Strittmatter, 2018b, and references therein). I use the modified out-

come approach in the main specifications. Additionally, I show that the results do

not change considerably when using causal forest estimators.

Chernozhukov et al. (2018) suggest using a cross-fitting procedure to break

through the correlation structure between the estimated nuisance parameters and

the causal effect estimation. To implement this procedure, I partition the data into

two random samples. I use the first sample to estimate the nuisance parameters

and extrapolate the fitted values of the nuisance parameters to the second sample.

Then, I use the second sample to estimate the CATEs.6

4.4 Machine learning estimators

Many different machine learning estimators can be combined with the modified

outcome approach (see, e.g., Hastie, Tibshirani, and Friedman, 2009, for an overview

of different machine learning estimators). I focus on the regression tree and random

forest estimators (e.g., Breiman, 2001) because they mimic the modeling restrictions

of the local constant model. I use the R packages rpart and grf to implement those

estimators.

4.4.1 Tree estimator

Similar to the local constant model, regression trees partition the sample into mutu-

ally exclusive groups gj, which are now called leaves. For a specific sample partition

π, which is now called a tree, I can estimate the CATEs by

ˆ̄δ(x, π) =
1∑N

i=1

∑7
t=1 1{Xit ∈ gj(x, π)}

N∑
i=1

7∑
t=1

1{Xit ∈ gj(x, π)} · Ŷ ∗it ,

6For the forest estimators, I additionally switch the first and second samples and repeat the cross-
fitting procedure. Then, I report the average CATEs obtained from the first and second samples.
In the clustered bootstrap procedure that I use to compute the p-values and confidence intervals,
I ensure that each individual can enter only one cross-fitting sample and never both.
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where Ŷ ∗it is the estimate of Y ∗it , which I extrapolate from the retained cross-fitting

sample.

Regression trees select the partition π with a greedy algorithm, i.e., by adding

recursive sample splits to the tree without anticipating later splits (e.g., Breiman,

Friedman, Stone, and Olshen, 1984). Using the modified outcome approach, re-

gression trees seek to minimize the mean squared error (MSE) with regard to Ŷ ∗it .

Accordingly, they select the splits that fit the approximated CATEs best since the

group average of Ŷ ∗it approximates the CATEs. The first splits contribute more effect

heterogeneity than the last splits, because of the hierarchical partition structure. I

select the optimal tree π∗ and δ̄tree(x) = δ(x, π∗) based on the out-of-sample MSE,

which I calculate with a 10-fold cross-validation procedure. To stabilize the trees, I

impose the restriction that each leaf should contain at least 50 observations.

Following the suggestions of Athey and Imbens (2016), I use the so-called honest

inference procedure, which means that I split the sample into two parts of equal size.

Then, I use the first partition to build the tree (training sample) and the second

partition to estimate the CATEs (estimation sample).7 This separation between the

training and estimation samples avoids overfitting of the estimated CATEs.

4.4.2 Generalized random forest estimator

Generalized random forests are assembled from H decorrelated honest trees δ(x, πh)

(for h = 1, ..., H). The decorrelated honest trees are estimated using different sub-

samples of the data and subsets of the covariates. Decorrelation is necessary because,

without it, each tree would have a similar structure and I would not be able to gain

much from assembling the trees. The random forest estimator of the CATEs is the

average of these honest trees:

ˆ̄δRF (x) =
1

H

H∑
h=1

ˆ̄δtree(x, πh).

The honest trees of a random forest are built deep (i.e., with small terminal leaves).

Thus, I no longer try to optimize the leaf size of the trees with the cross-validation

procedure. Instead, I build many deep honest trees that have a small bias but a large

variance. Averaging across different honest trees reduces the variance (which is often

called “bagging”). Athey, Tibshirani, and Wager (2018) explore the consistency and

asymptotic normality of generalized random forests.

I build random forests with 1,000 decorrelated trees, each with a minimum leaf

size of 10 observations.8 In each subsample, I randomly select 50% of the individuals

7In the clustered bootstrap procedure that I use to compute p-values and confidence intervals, I
ensure that each individual can enter either the training or estimation sample, but never both.

8The number of trees H is an important tuning parameter for random forests. Table E.1 in the
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and two-thirds of the covariates.

4.5 Testing the theoretical hypotheses

To provide evidence for the theoretical predictions, I want to test whether the es-

timated CATEs are non-positive or non-negative in specific subsamples. From the

forest estimators, I obtain separate CATE estimates for each individual. Imposing

single hypothesis tests on each CATE would cause the multiple hypothesis testing

problem. To avoid this problems, I employ discrete versions of first-order stochastic

dominance tests and compute p-values using a clustered bootstrap procedure (e.g.,

Anderson, 1996, Barrett and Donald, 2003). First, I test the null hypothesis H+
0

that all estimated CATEs are non-negative. Second, I test the null hypothesis H−0

that all estimated CATEs are non-positive. I provide the details of the distributional

tests in the Online Appendix D.

For the tests, I restrict the sample to the AFDC participants, which does not

alter the expected CATE estimates because of the random treatment assignment.

However, it enables the identification of CATEs at specific earnings levels under

AFDC. According to the theoretical labor supply predictions, the estimated CATEs

should

H1: reject H−0 and not reject H+
0 in the subsample of unemployed AFDC partici-

pants,

H2: reject H+
0 and H−0 in the subsample of AFDC participants with positive earn-

ings below FPL, and

H3: reject H+
0 and not reject H−0 in the subsample of AFDC participants with

earnings above the FPL.

These are necessary but not sufficient conditions of the labor supply predictions.

4.6 Comparison between CATEs and QTEs

In contrast to the CATEs, QTEs do not identify heterogeneity by subgroups of

the population but rather by the potential earnings distributions.9 The potential

Online Appendix E shows that the out-of-sample MSE improves when I increase the number of
trees. However, with 100 trees, the prediction power of random forests is already almost saturated,
and the MSE improvements are marginal.

9Under very strong assumptions, the effects on the potential outcome distribution coincide with the
individual causal effects. These assumptions imply that individuals do not systematically change
their ranks in the potential outcome distributions as a result of treatment status (see the discussion
in, e.g., Chernozhukov and Hansen, 2005, Firpo, 2007).
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outcome distributions are defined by

FY (1)(y) = Pr(Yit(1) ≤ y) = Pr(Yit(0) + δit ≤ y), and

FY (0)(y) = Pr(Yit(0) ≤ y) = Pr(Yit(1)− δit ≤ y),
(3)

with Yit(1) = Yit(0) + δit. The potential quantile QY (d)(τ) is the minimum value of

Yit(d) such that, at minimum, the share τ of the earnings distribution lies below this

value. QTEs are defined as

δQTE(τ) = QY (1)(τ)−QY (0)(τ),

the difference between the potential quantiles.

Bitler, Gelbach, and Hoynes (2017) propose the simulated potential outcome

distributions,

F S
Y (1)(y) = Pr(Yit(0) + δ̄(Xit) ≤ y), and

F S
Y (0)(y) = Pr(Yit(1)− δ̄(Xit) ≤ y).

(4)

When

F S
Y (1)(y) = FY (1)(y), and (5)

F S
Y (0)(y) = FY (0)(y), (6)

then CATEs and QTEs carry the same information and differ only in how they

report the effects.10 I exploit conditions (5) and (6) to determine whether CATEs

and QTEs are nested. Moreover, (5) and (6) are necessary (but not sufficient)

conditions for δit = δ̄(Xit), as can be observed when comparing (3) and (4).

5 Results

5.1 Local constant model

To create a benchmark, I first document some results for the local constant model.

Following one of the main specifications in Bitler, Gelbach, and Hoynes (2017),

I stratify the data by previous earnings and quarters elapsed since RA. I classify

previous earnings seven quarters before RA into zero earnings (earn0), earnings

below the median among those with positive earnings (earn1), and earnings above

the median (earn2). Furthermore, I create dummies for each elapsed quarter since

RA (q1, ..., q7). Then, I fully interact these dummy variables and the treatment

10When CATEs and QTEs are nested, it is always possible to calculate the QTEs from the CATEs
using the simulated potential outcome distributions. However, it is not necessarily possible to
calculate CATEs from QTEs.
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dummy (D), such that the model

Y =
2∑

k=0

7∑
t=1

γkt · earnk · qt +
2∑

k=0

7∑
t=1

δkt ·D · earnk · qt,

is fully stratified. The CATEs are δkt.

Table 3 reports the percentage of positive and negative CATEs. The first column

reports the results for the full sample. 82% of the CATEs are positive, and 18% are

negative. The second column reports the share of positive and negative CATEs in

the sample of AFDC participants. The shares do not change compared to the full

sample, which provides reassurance that the predicted CATEs are balanced.

Table 3 around here

Column three of Table 3 reports the CATE results for unemployed individuals

under AFDC. The theoretical labor supply model predicts that I find some positive

and no negative CATEs (H1). Indeed, the share of negative CATEs (10%) is rela-

tively low, and the null hypothesis H+
0 for non-negative CATEs cannot be rejected.

Thus, there is empirical support for the theoretical hypothesis H1.

Column four of Table 3 reports the CATE results for the AFDC participants

with positive earnings below the FPL. For this subsample, the theoretical labor

supply model predicts a mix of positive and negative CATEs (H2). However, the

null hypothesis H+
0 for non-negative CATEs cannot be rejected. I find empirical

evidence only for positive CATEs (H−0 rejected), which is insufficient to provide

evidence for theoretical hypothesis H2.

Columns five and six of Table 3 report the CATE results for the AFDC partici-

pants with earnings above the FPL. Column five uses the exact number of children

to measure the FPL and column six uses the inflated FPL measure considering one

“extra child”. No matter which FPL measure is used, the null hypothesis H−0 is re-

jected, suggesting that some individuals with earnings above the FPL have positive

CATEs, contradicting theoretical hypothesis H3.

To summarize, the local constant model provides evidence for theoretical hy-

pothesis H1 but rejects H2 and H3.

5.2 CML results

5.2.1 Estimation of the nuisance parameters

To estimate the nuisance parameters, I always use the random forest estimator with

the kitchen sink covariates. In this way, the results of the different CATE estimators

do not depend on the specification of the nuisance parameters.
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Figure B.1 in the Online Appendix B documents the histogram of the estimated

Jobs First assignment probability. Under RA, I would expect no variation in the

assignment probability. The assignment probability varies between 41% and 61%,

with an average assignment probability of 50%. Even though the range of the es-

timated treatment probability is narrow, it is far from homogeneous. However, the

modified outcome approach accounts for the differences in the treatment probabili-

ties. Furthermore, I do not have to worry about common support problems because

the propensity score is far from zero and one (see discussion in, e.g., Lechner and

Strittmatter, 2017).

Figure B.2 in the Online Appendix B reports the densities of the estimated

earnings under the AFDC and Jobs First programs. The estimated earnings are

always higher than zero, i.e., they do not capture the mass points at zero earnings

(see Figure B.3 in the Online Appendix B).

5.2.2 Results of the modified outcome approach

Table 4 reports the results of the modified outcome approach. A comparison of

columns (1) and (2) suggests that restricting the sample to AFDC participants does

not alter the results strongly, no matter which estimator is used.

Table 4 around here

The results for trees and forests with baseline controls are qualitatively similar

to the findings from the local constant model, suggesting that using a data-driven

approach to select subgroups, without incrementing the covariates, does not improve

the match between the empirical and theoretical results. I can provide evidence for

H1 but must reject H2 and H3.

Using the decent selection of covariates and the tree estimator enables me to

detect evidence for the theoretical hypothesis H2 (Table 4, column (4)). I find

evidence of positive and negative CATEs for the group with positive earnings below

the FPL under AFDC. However, I still reject H3. Furthermore, I find evidence

for negative CATEs for the group of unemployed AFDC participants. This is not

possible because of the limited support for earnings. Using the kitchen sink controls

and the tree estimator allows me to provide evidence for H2 and H3, but I still

have to reject H1 because of negative CATEs for the unemployed, suggesting that

increasing the number of covariates while maintaining the within-group constant

effect modeling restriction does not allow me to provide empirical evidence for all

theoretical hypotheses.

In Figures E.1, E.2, and E.3 in the Online Appendix E, I document the relative

MSE of the cross-validation samples. For the tree with the baseline controls, the
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relative MSE is almost flat. Regardless of how the tree estimator stratifies the

sample, it never significantly outperforms the benchmark of homogeneous effects.

The selected tree minimizes the MSE with 26 final leaves or 25 splits (as opposed

to 21 groups in the local constant model). Figure E.4 in the Online Appendix E

shows the structure of the tree with baseline controls. Of the 25 splits, 24 are based

on previous earnings, and only one is based on the quarters elapsed. The relative

MSE of the trees with the decent and kitchen sink covariates is never saturated (see

Figures E.2 and E.3 in the Online Appendix E). Eventually, the tree estimators do

not generate additional leaves because I impose the restriction that each leaf must

have 50 observations, which further indicates that the modeling restriction of the

within-group constant effects is not appropriate in the Jobs First case. Figures E.5

and E.6 in the Online Appendix E show the complex structure of the trees with

the decent and kitchen sink covariates. Earnings and welfare history, as well as

information about children, are important split variables.

The forest and tree results are qualitatively similar when using the decent con-

trols. However, using the forest estimator and the kitchen sink controls enables

me to find empirical evidence supporting the theoretical hypotheses H1, H2, and

H3. Accordingly, this is the only CML specification that provides evidence for the

theoretical labor supply model. For the unemployed under AFDC, the estimated

CATEs of the forests with kitchen sink covariates are sometimes positive and other-

wise non-negative (Table 4, column (3)). This result is empirical evidence supporting

the theoretical hypothesis H1. For the group with positive earnings below the FPL

under AFDC, the estimated CATEs are sometimes positive and sometimes negative

(Table 4, column (4)). This result represents empirical evidence for the theoretical

hypothesis H2. For the groups with earnings above the FPL under AFDC, the esti-

mated CATEs are sometimes negative and otherwise non-positive (Table 4, columns

(5) and (6)). This result is empirical evidence for the theoretical hypothesis H3.

Kline and Tartari (2016) report that between 20% and 100% of women who do

not receive welfare under AFDC reduce their labor supply under Jobs First. The

results of the forest estimator with kitchen sink controls suggest 85-90% negative

CATEs for individuals with earnings above the FPL under AFDC. Furthermore,

29% of the individuals with positive earnings below the FPL have negative CATEs

(in this group, not all AFDC recipients are off welfare). This result suggests that the

point estimates are roughly in the range of Kline and Tartari (2016), even without

having confidence intervals for labor supply response probabilities.

Figure 2 shows the aggregated CATEs of the forest estimator with kitchen sink

controls on the ordinate and the difference between earnings and FPL under AFDC

on the abscissa. Figure 2 documents positive effects far below the FPL, negative

effects slightly below and above the FPL, and insignificant effects far above the
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FPL. This finding nicely summarizes the theoretical predictions. Accordingly, CML

methods can provide empirical evidence supporting the theoretical predictions of

the Jobs First experiment, but I must incorporate many covariates and allow for

continuously distributed treatment effects. This finding is consistent with the results

of Doriey et al. (2018), who show with their data challenge that as more flexible

algorithms model the response surface, their performance is more promising.

Figure 2 around here

5.2.3 Additional results

Table 5 reports the results obtained from the causal forest estimator (e.g., Athey,

Tibshirani, and Wager, 2018) with the kitchen sink covariates. The results do not

differ strongly from the estimates of the modified outcome approach with the random

forest and kitchen sink covariates. Both CML methods provide empirical evidence

supporting the theoretical labor supply predictions.

Table 5 around here

The early CML literature suggests that the modified outcome method without

confounder adjustments

Y ∗∗it =
Di − Pr(Di = 1)

Pr(Di = 1)Pr(Di = 0)
Yit

is sufficient to estimate the CATEs, δ(Xit) = E[Y ∗∗i |Xit], in randomized experiments.

Table 6 documents that the modified outcome method without covariate adjustments

fails to provide evidence for the theoretical labor supply predictions, even for the

random forest estimator and kitchen sink controls. This finding is consistent with

previous studies documenting the poor properties of the modified outcome method

without covariate adjustments (e.g., Athey and Imbens, 2016). The shares of positive

and negative CATES differ greatly between the first and second columns of Table 6,

suggesting that the estimated CATEs are not balanced between the Jobs First and

AFDC participants. The adjustment for confounders appears crucial (especially

when many covariates are incorporated) because even small covariate imbalances

could be picked up and misused by the machine learning algorithms.

Table 6 around here

5.3 Relation between CATEs and QTEs

Bitler, Gelbach, and Hoynes (2006) use a QTE approach to evaluate the Jobs First
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program. Figure 3 replicates their main results. QTE can also provide empirical evi-

dence supporting the theoretical labor supply predictions, which raises the following

question: do CATEs and QTEs contain the same information?

Figure 3 around here

Figure 4 reports the simulated earnings distributions using the random forest

estimator with the kitchen sink covariates. The simulated earnings distributions are

sometimes above and sometimes below the potential earnings distributions. How-

ever, the simulated distributions cannot detect the mass point at zero. Heckman,

Smith, and Clements (1997) point out, that distributions with differing mass points

cannot be equal. Thus, the hypothesis that the potential and simulated earnings

distributions are equal can be formally rejected, which suggests that the QTEs and

CATEs contain different information. Furthermore, this finding is evidence that the

CATEs are not equal to the individual causal effects.

Figure 4 around here

In addition, I report Kolmogorov-Smirnov tests for equality of the positive part

of the potential and simulated earnings distributions in Online Appendix F. For all

estimation approaches, the tests reject that the QTEs and CATEs are nested.

Whether it is more appropriate to use CATEs or QTEs depends on the concrete

research questions. For example, CATEs are more appropriate for developing as-

signment rules for programs (see, e.g., Athey and Wager, 2018, for a discussion).

QTEs are more appropriate for investigating earnings inequalities when we are not

concerned about the exact locations of specific individuals in the earnings distribu-

tions.

6 Conclusions

I study the value added by using CML methods in a case study of Connecticut’s’ Jobs

First randomized welfare experiment. In this application, conventional CATE esti-

mators fail to find supporting evidence for the theoretical labor supply predictions.

I provide evidence that CML methods can overcome this disadvantage. Accordingly,

CML methods can add value to a Jobs First evaluation in the sense that they can

provide evidence supporting the theoretical labor supply predictions. However, this

strategy works only when the CML methods incorporate many important hetero-

geneity variables and allow for continuously distributed treatment effects.

CML methods cannot uncover the entire effect heterogeneity of the Jobs First

program. The estimates of the CATEs and QTEs do not contain the same infor-
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mation. Furthermore, CML methods cannot detect mass points in the earnings

distributions. Because of the case study style of this research, it is difficult to make

statements about the external validity of the results.
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Figures

Figure 1: Earnings and welfare transfers under AFDC and Jobs First.

Note: Unemployed persons receive the maximum welfare amount W under AFDC and Jobs First. Under AFDC,
all earnings below B are disregarded. Any earnings above B reduce the welfare amount proportionally. Welfare is
completely terminated at earnings E. Under Jobs First, all earnings below the FPL are disregarded. Any earnings
above the FPL terminate welfare payments.
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Figure 2: CATEs by difference between earnings and FPL (per quarter).

Note: I estimate the aggregated CATEs by the difference between the quarterly earnings and FPL (“extra child”)
using a local-constant regression. I use Silverman’s rule to specify the bandwidth. FPL (“extra child”) means that
I inflate the number of children per mother by one when calculating the assistance unit size. Figure B.4 in Online
Appendix B shows the same figure using the FPL without inflating the number of children by one. The gray area
reports the 95% confidence intervals that are estimated using an individual-level clustered bootstrap approach (with
1,999 replications). I control for the kitchen sink covariates. The figure is truncated at 8,000 US dollars.

Figure 3: Quantile treatment effects.

Note: Replication of Bitler, Gelbach, and Hoynes (2006). The gray area shows the 95% confidence interval.
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Figure 4: Potential and simulated earnings distributions obtained from the random
forest estimator with kitchen sink controls.

(a) Under AFDC

(b) Under Jobs First
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Tables

Table 1: List of covariates.

Baseline: quarters elapsed since RA, earnings seven quarters prior to RA
Decent: age, education, number of children, age of the youngest child,

amount of AFDC assistance received seven quarters prior to RA,
amount of food stamps received seven quarters prior to RA,
dummy variable indicating a positive amount of earnings in at
least one of the seven quarters prior to RA, dummy variable indi-
cating a positive amount of AFDC assistance received in at least
one of the seven quarters prior to RA, dummy variable indicat-
ing a positive amount of food stamps in at least one of the seven
quarters prior to RA

Kitchen sink: ethnicity, marital status, city of residence, information on resi-
dence in a publicly subsidized home, information on relocations,
participation in different types of education and labor market pro-
grams in the 12 months prior to RA (e.g., English as a Secondary
Language (ESL), Adult Basic Education (ABE), General Educa-
tion Development (GED), job readiness skills, work experience,
vocational education, post-secondary education, and high school),
earnings for each of the seven quarters prior to the RA, the amount
of AFDC assistance received for each of the seven quarters prior
to the RA, the amount of food stamps received for each of the
seven quarters prior to RA, the number of quarters on AFDC,
a dummy variable indicating whether the family received AFDC
during childhood, a dummy variable indicating whether work was
never recorded, a dummy variable indicating whether work was
recorded at RA

Note: The decent covariates also include the baseline covariates. The kitchen sink covariates also include the decent
covariates. I include dummies for missing values whenever necessary (see Table B.2 in the Online Appendix B for
details).
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Table 2: Descriptive statistics of the main variables.

Jobs First AFDC SD
Mean St. Dev. Mean St. Dev.

(1) (2) (3) (4) (5)
Earnings per quarter (in $) 1173 1789 1125 1868 2.6
Share of participants with

no earnings 0.49 0.50 0.55 0.50 13.3
earn. below FPL 0.39 0.49 0.31 0.46 17.0
earn. above FPL 0.13 0.33 0.14 0.35 4.1
earn. above FPL (“extra child”) 0.09 0.28 0.10 0.30 4.4

Baseline covariates
Quarters since RA 4.0 2.0 4.0 2.0 0.0
Earnings in pre-Q7 (in $) 682 1552 774 1781 5.5

Decent covariates
Age categories

< 20 years 0.09 0.28 0.09 0.28 1.2
20-24 years 0.20 0.40 0.21 0.41 2.7
25-34 years 0.41 0.49 0.42 0.49 1.5
35-45 years 0.25 0.43 0.23 0.42 4.1
> 44 years 0.05 0.22 0.06 0.23 1.2

Education categories
No degree 0.33 0.47 0.31 0.46 3.8
High school 0.55 0.50 0.57 0.50 3.2
More than high school 0.06 0.24 0.06 0.23 1.9

Age of youngest child (in years) 4.6 4.7 4.5 4.8 2.2
Number of children 1.6 1.0 1.5 1.0 6.0
AFDC pre-Q7 (in $) 920 925 865 896 6.0
Food stamps pre-Q7 (in $) 306 319 293 301 4.4
Any earnings pre-Q1/7 0.33 0.37 0.36 0.38 7.9
Any AFDC pre-Q1/7 0.57 0.45 0.54 0.45 6.5
Any food stamps pre-Q1/7 0.61 0.44 0.60 0.43 2.1
Participants 2,396 2,406
Observations 16,772 16,842

Note: The last column reports the standardized difference (SD). Earnings in pre-Q7 refers to earnings in the seven
quarters before RA. Any earnings pre-Q1/7 is a dummy variable indicating that earnings were positive in at least
one of the seven quarters prior to RA. FPL (“extra child”) means that I inflate the number of children per mother
by one when calculating the assistance unit size.
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Table 3: Results of the local constant model.

Under AFDC
Full Pos. earn. Earn. Earn. above

Sample All Unempl. below above FPL (“extra
FPL FPL child”)

(1) (2) (3) (4) (5) (6)
Local constant model with baseline covariates

Positive CATEs 82% 82% 90% 79% 56% 53%
Negative CATEs 18% 18% 10% 21% 44% 47%
p-value H+

0 0.29 0.29 0.56 0.12 0.00 0.00
p-value H−0 0.00 0.00 0.00 0.00 0.00 0.00
Observations 33,621 16,842 8,988 4,967 2,313 1,713

Note: H+
0 is the null hypothesis that all CATEs are non-negative. H−

0 is the null hypothesis that all CATEs are
non-positive. FPL (“extra child”) means that I inflate the number of children per mother by one when calculating
the assistance unit size. P-values are calculated with an individual-level clustered bootstrap procedure (with 1,999
replications). The details of the distributional tests are provided in the Online Appendix D.
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Table 4: Results of the modified covariate approach.

Under AFDC
Full Pos. earn. Earn. Earn. above

Sample All Unempl. below above FPL (“extra
FPL FPL child”)

(1) (2) (3) (4) (5) (6)
Tree with baseline covariates

Positive CATEs 88% 87% 93% 85% 68% 66%
Negative CATEs 12% 13% 7% 15% 32% 34%
p-value H+

0 0.32 0.29 0.45 0.27 0.06 0.04
p-value H−0 0.00 0.00 0.00 0.00 0.01 0.01

Tree with decent covariates
Positive CATEs 53% 53% 60% 50% 35% 33%
Negative CATEs 47% 47% 40% 50% 65% 67%
p-value H+

0 0.00 0.00 0.00 0.00 0.00 0.00
p-value H−0 0.00 0.00 0.00 0.00 0.01 0.07

Tree with kitchen sink covariates
Positive CATEs 55% 56% 67% 51% 29% 30%
Negative CATEs 45% 44% 33% 49% 71% 70%
p-value H+

0 0.00 0.00 0.00 0.00 0.00 0.00
p-value H−0 0.00 0.00 0.00 0.00 1.00 1.00

Forest with baseline covariates
Positive CATEs 84% 83% 91% 79% 58% 55%
Negative CATEs 16% 17% 9% 21% 42% 45%
p-value H+

0 0.52 0.47 0.77 0.32 0.00 0.00
p-value H−0 0.00 0.00 0.00 0.00 0.00 0.00

Forest with decent covariates
Positive CATEs 69% 70% 86% 63% 20% 15%
Negative CATEs 31% 30% 14% 37% 80% 85%
p-value H+

0 0.00 0.00 0.00 0.00 0.00 0.00
p-value H−0 0.00 0.00 0.00 0.00 1.00 1.00

Forest with kitchen sink covariates
Positive CATEs 75% 75% 94% 71% 15% 10%
Negative CATEs 25% 25% 6% 29% 85% 90%
p-value H+

0 0.00 0.00 0.12 0.00 0.00 0.00
p-value H−0 0.00 0.00 0.00 0.00 1.00 1.00
Observations 33,621 16,842 8,988 4,967 2,313 1,713

Note: H+
0 is the null hypothesis that all CATEs are non-negative. H−

0 is the null hypothesis that all CATEs are
non-positive. FPL (“extra child”) means that I inflate the number of children per mother by one when calculating
the assistance unit size. P-values are calculated with an individual-level clustered bootstrap procedure (with 1,999
replications). The details of the distributional tests are provided in the Online Appendix D.
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Table 5: Results of the causal forest approach.

Under AFDC
Full Pos. earn. Earn. Earn. above

Sample All Unempl. below above FPL (“extra
FPL FPL child”)

(1) (2) (3) (4) (5) (6)
Causal forest with kitchen sink covariates

Positive CATEs 78% 77% 93% 74% 25% 20%
Negative CATEs 22% 23% 7% 26% 75% 80%
p-value H+

0 0.00 0.00 0.34 0.00 0.00 0.00
p-value H−0 0.00 0.00 0.00 0.00 1.00 1.00
Observations 33,621 16,842 8,988 4,967 2,313 1,713

Note: H+
0 is the null hypothesis that all CATEs are non-negative. H−

0 is the null hypothesis that all CATEs are
non-positive. FPL (“extra child”) means that I inflate the number of children per mother by one when calculating
the assistance unit size. P-values are calculated with an individual-level clustered bootstrap procedure (with 1,999
replications). The details of the distributional tests are provided in the Online Appendix D.

Table 6: Results of the modified outcome approach without confounder adjustment.

Under AFDC
Full Pos. earn. Earn. Earn. above

Sample All Unempl. below above FPL (“extra
FPL FPL child”)

(1) (2) (3) (4) (5) (6)
Forest with kitchen sink covariates

Positive CATEs 68% 50% 74% 29% 3% 2%
Negative CATEs 32% 50% 26% 71% 97% 98%
p-value H+

0 0.00 0.00 0.00 0.00 0.00 0.00
p-value H−0 0.00 0.00 0.00 0.00 1.00 1.00
Observations 33,621 16,842 8,988 4,967 2,313 1,713

Note: H+
0 is the null hypothesis that all CATEs are non-negative. H−

0 is the null hypothesis that all CATEs are
non-positive. FPL (“extra child”) means that I inflate the number of children per mother by one when calculating
the assistance unit size. P-values are calculated with an individual-level clustered bootstrap procedure (with 1,999
replications). The details of the distributional tests are provided in the Online Appendix D.
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