
Keller, Wolfgang

Working Paper

The geography and channels of diffusion at the world's
technology frontier

HWWA Discussion Paper, No. 123

Provided in Cooperation with:
Hamburgisches Welt-Wirtschafts-Archiv (HWWA)

Suggested Citation: Keller, Wolfgang (2001) : The geography and channels of diffusion at the
world's technology frontier, HWWA Discussion Paper, No. 123, Hamburg Institute of International
Economics (HWWA), Hamburg

This Version is available at:
https://hdl.handle.net/10419/19428

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/19428
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


The Geography
and Channels of Diffusion
at the World’s
Technology Frontier

Wolfgang Keller

HWWA DISCUSSION PAPER

123
Hamburgisches Welt-Wirtschafts-Archiv (HWWA)

Hamburg Institute of International Economics
2001

ISSN 1616-4814



The HWWA is a member of:

• Wissenschaftsgemeinschaft Gottfried Wilhelm Leibniz (WGL)
•••• Arbeitsgemeinschaft deutscher wirtschaftswissenschaftlicher Forschungsinstitute

(ARGE)
•••• Association d’Instituts Européens de Conjoncture Economique (AIECE)



The Geography
and Channels of Diffusion
at the World’s
Technology Frontier

Wolfgang Keller

This Discussion Paper is part of the HWWA’s programme “International Trade and

Competition Regimes“.

It   has   been   supported  by  the  U.S. National   Science   Foundation  under  grant

number SES-9818902.



HWWA DISCUSSION PAPER

Edited by the Department
World Economy
Head: Prof. Dr. Hans-Eckart Scharrer

Hamburgisches Welt-Wirtschafts-Archiv (HWWA)
Hamburg Institute of International Economics
Öffentlichkeitsarbeit
Neuer Jungfernstieg 21  -  20347 Hamburg
Telefon: 040/428 34 355
Telefax: 040/428 34 451
e-mail: hwwa@hwwa.de
Internet: http://www.hwwa.de/

Wolfgang Keller
Department of Economics
University of Texas
Austin
TX 78712
email: keller@eco.utexas.edu

mailto:hwwa@hwwa.de
http://www.hwwa.de/
mailto:keller@eco.utexas.edu


5

Contents

Abstract                          7

Zusammenfassung                          7

Introduction                                                                                                                       9

1. EMPIRICAL SETTING                                                                                    12

1.1 Major Country and Industry Characteristics in Terms of GDP                    12
and R&D

   1.2 Geographic Features of the Sample 13

1.3 Bilateral Trade and Foreign Direct Investment Patterns and 16
Data on Language Skills

1.4 Multi-Lateral Total Factor Productivity Indices                                        17

1.4.1  Industry-Level Productivity and Average Productivity over Time    18

2. ESTIMATION EQUATION AND ECONOMETRIC ISSUES 20

3. ESTIMATION RESULTS 23
 

3.1 Geographic Distance in International Technology Diffusion 23

3.2 Sensitivity Analysis 26

3.3 Technology Diffusion over Time 29

3.4 Beyond Distance: Trade, Foreign Direct Investment, and 32
Communication as Channels of International Technology Diffusion

4. SUMMARY AND DISCUSSION 40

Appendix 43

References 47



6

List of Tables

Table   1: Summary Statistics 14

Table   2.1: Bilateral Distance between Capital Cities (Kilometers) 15

Table   2.2: Bilateral Trade Shares 15

Table   2.3: Bilateral Foreign Direct Investment Shares 15

Table   2.4: Patterns of Bilateral Language Knowledge 15

Table   3: Geography and Technology Diffusion 24

Table   4: Sensitivity Analysis 28

Table   5: The Localization of Technology Diffusion over Time 30

Table   6: Trade, FDI, and Language Skills as Channels of Technology 33
Diffusion

List of Figures

Figure  1: Comparing Relative Productivity with and without Correcting 19
for  Differences in Input  Usage

Figure  2: Productivity Convergence or Divergence: 19
Analysis within and between Countries

Figure  3: Bilateral Technology Diffusion Conditional on Geographic 27
Distance

Figure  4: Changes in the Geographic Scope of International Technology 31
Diffusion over Time

Figure  5: Total Inward Technology Diffusion and Relative Importance of 36
Different Channels

Figure  6: Relative Importance of G-7 Countries in International 37
Technology Diffusion � All Channels

Figure  7: Comparison of a Distance-Based Measure of the Relative 39
Importance of  Foreign Sources of Technolgy with another
Based on Trade, FDI, and Language



7

Abstract

Convergence in per capita income turns on whether technological knowledge spillovers
are global or local. Global spillovers favor convergence, while a geographically limited
scope of knowledge diffusion can lead to regional clusters of countries with persistently
different levels of income per capita. This paper estimates the importance of geographic
distance for technology diffusion, how this changed over time, and whether
international trade, foreign direct investment, and communication flows serve as
important channels of diffusion. The analysis is based on examining the productivity
effects of R&D expenditures in the world�s seven major industrialized countries
between 1970 and 1995. First, I find that the scope of technology diffusion is severely
limited by distance: the geographic half-life of technology, the distance at which half of
the technology has disappeared, is estimated to be only 1,200 kilometers. Second,
technological knowledge has become a lot more global from the early 1970s to the
1990s. Third, I estimate that trade patterns account for the majority of all differences in
bilateral technology diffusion, whereas foreign direct investment and language skills
differences contribute circa 15% each. Lastly, these three channels together account for
almost the entire localization effect that would otherwise be attributed to geographic
distance.

Zusammenfassung

Konvergenz beim Pro-Kopf-Einkommen hängt davon ab, ob technologische
Wissensspillover global oder lokal sind. Während globale Spillover Konvergenz
begünstigen, kann eine geographisch begrenzte Wissensdiffusion zu regionalen
Länderverbünden mit anhaltenden Unterschieden in der Höhe des Pro-Kopf-
Einkommens führen. In der vorliegenden Arbeit wird geschätzt, welche Bedeutung
geographische Entfernung für Technologiediffusion hat, wie sich diese in der Zeit
verändert hat und ob internationaler Handel, ausländische Direktinvestitionen und
Kommunikation wichtige Diffusionswege bilden. Die Analyse basiert auf einer
Untersuchung der Produktivitätseffekte von FuE-Ausgaben in den sieben größten
Industrieländern der Welt zwischen 1970 und 1995. Es ergibt sich, erstens, ein starker
Einfluß der Entfernung auf die Technologiediffusion: Der geographische Halbwert,
gemessen an der Entfernung, bei der die Technologie sich zur Hälfte verflüchtigt, wird
auf nur 1200 Kilometer geschätzt. Zweitens ist technologisches Wissen seit den frühen
70er Jahren deutlich globaler geworden. Drittens werden Unterschiede in der bilateralen
Technologiediffusion überwiegend dem Handel zugerechnet, wohingegen ausländische
Direktinvestitionen und unterschiedliche Sprachfertigkeiten jeweils ca. 15% beisteuern.
Diese drei Übertragungswege machen zusammen fast den gesamten
Lokalisierungseffekt aus, der sonst der geographischen Entfernung zugeschrieben
würde.
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INTRODUCTION

Convergence in per capita income depends on the degree of international technology
diffusion. Strong diffusion of technological knowledge favors convergence, while the
absence of it can lead to divergence if the domestic rate of technological change varies
across countries. A case in point is the faster implementation of recent advances in
information technology in the United States (U.S.) compared to other countries. This
has been cited as major reason of why the U.S.�s lead in per capita income over Japan
has increased from 10% in 1990 to 20% by 1999 (e.g., McKinsey 2000, Economist
2000). The scope of technology diffusion also matters for income convergence among
the world�s advanced (�North�) and less developed countries (�South�). For instance,
the issue is widely discussed in the context of the �digital divide� scenario - the
widespread fear that the internet might not lead to convergence, but instead to a further
polarization of per capita income in the world.

This paper studies international technology diffusion among the world�s seven major
industrialized countries on a geographic basis. It is well-known, for instance, that
foreign direct investment (FDI) patterns are affected by spatial factors, and it is a
stylized fact that the volume of bilateral trade declines with distance (e.g., Caves 1996,
Leamer and Levinsohn 1995, respectively). Because trade and FDI patterns might
determine a country�s access to embodied foreign technology in form of advanced
intermediate goods, these mechanisms are both plausible channels of technological
diffusion.1 Disembodied technology diffusion in form of direct communication could be
another major way of how technological knowledge moves between countries, and
while distance affects the likelihood of face-to-face interactions, it matters much less for
communication via telephone or email.2 Rather, language and other cultural-historic
factors play a relatively larger role for communication flows than for trade or FDI. At
this time however, relatively little is known on how geographic and other factors impact
technology diffusion among countries.

My empirical analysis will first address the question whether geographic distance
affects the degree of diffusion. In particular, do remotely located countries have a
smaller stock of technological knowledge at their disposal than more centrally located
countries? Second, I will study whether this relationship has changed over time. The

                                               
1 There are other ways through which FDI and trade might affect technology diffusion; see e.g. the
discussion of FDI in Blomstrom and Kokko (1996).
2 For an analysis of the continuing importance of face-to-face interactions, though, see Gaspar and
Glaeser (1996).
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analysis has major implications for economic policies towards growth and innovation,
because if technological knowledge diffuses fully as well as quickly, such policies
cannot raise a country�s relative welfare. Third, I will examine whether trade, FDI, and
communication matter as specific channels of technology diffusion. Going beyond the
analysis of distance is important, because economic policy might be powerful in
affecting trade, FDI, or communication patterns, whereas it cannot, at least literally,
affect a country�s geographic location relative to other countries.

This paper builds on a substantial amount of work showing that the link between the
research and development (R&D) spending in one industry and productivity in another
is best viewed as a process of technology diffusion (Scherer 1984, Griliches 1995). It is
based on data for two- and three-digit manufacturing industries in Canada, France,
Germany, Italy, Japan, the United Kingdom (U.K.), and the U.S. - the so-called G-7
countries - during the years of 1970 to 1995. The G-7 countries account for more than
90% of the world�s R&D spending, and also by most other measures, these countries are
among the technologically most-advanced in the world. I refer thus to the G-7 countries
collectively as the world�s technology frontier.

Recent contributions showing that strong technology diffusion favors convergence
while divergence is likely if technological knowledge remains local include Feenstra
(1996) and Grossman and Helpman (1991). In the empirical literature, Eaton and
Kortum (1999, 1996) estimate models of technology diffusion and productivity growth.
The Eaton and Kortum (1996) estimates from an equation of patenting activity suggest
that technology diffusion declines with geographic distance, a finding that is primarily
identified from variation of within- versus across-country patenting. Jaffe, Trajtenberg,
and Henderson (1993) also emphasize that technology diffusion is affected by country
borders by showing that U.S. patents are more likely to be cited by other U.S. patents
than by foreign patents.3 In contrast, Sjöholm (1996) finds that geographic distance does
not significantly influence the number of patent citations to the research output of a
sample of Swedish firms.

Other work has studied international technology spillovers by relating R&D to
productivity in a production function framework (e.g., Coe and Helpman 1995). This
literature often focuses on trade as the primary mechanism of technology diffusion.
However, if there are strong regional effects that are unrelated to trade, or a number of

                                               
3 See also Branstetter (2001) who shows that intranational spillovers in the U.S. and Japan are larger than
spillovers between these countries, as well as Jaffe and Trajtenberg (2000) who examine knowledge flows
using international patent citation data.
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channels of technology diffusion are at work simultaneously, this could be problematic.4

Moreover, the earlier literature distinguishes only between domestic and foreign sources
of R&D, whereas here I exploit cross-sectional variation in the relative distance of
countries to their partner countries. In contrast to this paper, Keller (2000b) focuses on
technology diffusion from the technological frontier to other countries.

This paper also relates to recent work in international trade which has established that
technology differences across countries are important in explaining the comparative
advantage and trade of countries (e.g., Trefler 1995). Thus, a better understanding of
technology diffusion will help to explain the pattern and volume of international trade,
and eventually, both how trade acts as a channel of technology diffusion and how in
turn the resulting differences in production technologies shape international trade.
Moreover, the analysis of embodied and disembodied forms of international technology
diffusion in this paper is relevant for the recent debate in macroeconomics that tries to
determine the degree to which technical change is disembodied rather than embodied in
capital goods.5

By seeking to explain patterns of agglomeration and de-agglomeration through spatial
trade externalities, work in regional and urban economics such as Fujita, Krugman, and
Venables (1999) has had a similar focus recently as the trade and growth literature. In
particular, Baldwin and Forslid�s (2000) model incorporates both technology spillovers
and trade externalities, showing that while more technology spillovers favors income
convergence, a lower level of transport costs for trade might lead to divergence.
Empirical work in this area includes Hanson (1998) as well as Redding and Venables
(2000). And even though this paper focuses on the world�s technology frontier, the role
of geography in economic development has recently also been emphasized for poorer
nations (see, e.g., Gallup, Sachs, and Mellinger 1998).

I note as a caveat that while the following empirical analysis of the geography and
channels of technology diffusion gives some important insights, it cannot provide a
complete picture of how these factors matter. Geographic factors by themselves are not
a good economic explanation, and the impact of geography on trade, FDI, or direct
communication, as well as the resulting levels of technology diffusion will eventually
have to be modelled explicitly. It is hoped that this analysis of geography and specific

                                               
4 For instance, Eaton and Kortum (1996) find a role for both geographic distance and trade in technology
diffusion; see also the analysis in Keller (1998, 2000a).
5 See, e.g., Hulten (1992), Greenwood, Hercowitz, and Krusell (1997), and the open-economy analysis by
Eaton and Kortum (2000).
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channels of diffusion will be an important input for future modelling and estimation by
shedding additional light on which mechanisms are particularly important.

The remainder of the paper is as follows. The next section provides an overview of the
data. Important econometric issues raised by the estimations are addressed in part two.
All estimation results and the discussion of their economic significance can be found in
section three. Section four concludes with a general assessment of the results and notes
a number of issues that will have to be addressed in the future.

1. EMPIRICAL SETTING

This section examines the data in some detail, providing a context that shows how R&D
expenditures, productivity, geography, as well as trade, FDI, and communication links
in the sample vary.

1.1 Major Country and Industry Characteristics in Terms of GDP and R&D

I use data on manufacturing industries in Canada, France, Germany, Italy, Japan, the
United Kingdom (U.K.), and the United States (U.S.) for the years 1970-1995. All
countries are members of the Organization for Economic Co-operation and
Development (OECD), and the OECD STAN database is the primary source for the data
on inputs, outputs, and prices (OECD 1999a). Manufacturing industries in these seven
countries account for about 16% of world GDP and approximately two thirds of world
GDP in manufacturing in 1980. Moreover, these countries account for the majority of
R&D expenditures in the world: ninety-four percent of all business enterprise R&D that
is recorded in OECD statistics is conducted in the G-7 countries (source: OECD 1998).6

The analysis encompasses almost all of manufacturing, subdivided into twelve
industries at the two- to three-digit International Standard Industrial Classification
(ISIC) level.7 These are food, beverages and tobacco (ISIC 31), textiles, apparel, and
leather (ISIC 32), wood products and furniture (ISIC 33), paper and printing (ISIC 34),

                                               
6 The remainder of 6% is R&D in the Netherlands, Sweden, South Korea, and other countries. After the
R&D expenditures in non-OECD countries are taken into account, it is plausible to assume that the G-7
countries conduct at least 90% of all business enterprise R&D in the world.
7 Two industries have been dropped from the sample: ISIC 353+354, Petroleum and Refineries, because
of less reliable data, and ISIC 39, Other Manufacturing, because it includes rather different products
across countries.
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chemicals and drugs (ISIC 351+352), rubber and plastics (ISIC 355+356), non-metallic
mineral products (ISIC 36), basic metals (ISIC 37), metal products (ISIC 381), non-
electrical machinery and instruments (ISIC 382+385), electrical machinery (ISIC 383),
and transportation equipment (ISIC 384). Table 1 provides summary statistics on the
relative size of the countries and industries. The size of the countries varies substantially
in terms of GDP. Canada�s share of G-7 manufacturing is 3.15%, while the U.S.
contributes 33.62%. By industry, food manufacturing is largest in the G-7 countries, but
also transportation equipment as well as non-electrical machinery and instruments are
industries that have a share of more than 10% of manufacturing. In terms of R&D,
country size varies even more, see the middle columns in Table 1. The U.S. conducts
circa forty times as much R&D as Canada, and about four times as much as Germany.
Japan spends about half as much on R&D as does the United States. Also in the industry
dimension, R&D expenditures are more concentrated than GDP is. Most of the R&D is
done in chemicals, machinery, electronics, and transportation, accounting for a total of
almost 90% of all R&D in manufacturing.

The R&D expenditure flows are transformed into stocks with the perpetual inventory
method (see Appendix A for details). Table 1, on the right, shows that the average
annual growth rates of R&D stocks vary substantially by country, from a high of
11.82% for Germany to a low of 5.72% for the United Kingdom. Average R&D stock
growth for the U.S. has been 7.36% per year.

1.2 Geographic Features of the Sample

The geographic distance between countries is measured as the smallest arc tan distance
between the capital cities of the countries, as the crow flies (source: Haveman 1998).
Table 2.1 allows to distinguish several groups of countries: the European G-7 countries,
which are about 6,000 kilometers from the U.S. and Canada and 9,500 kilometers from
Japan, while the latter is about 10,500 kilometers from Canada and the United States. In
consequence, the countries� average distance to their six partner countries varies
substantially: for the four European countries, it is around 4,000 kilometers, for the U.S.
and Canada, it is about 6,000 kilometer, and for the relatively isolated Japan, it is close
to 10,000 kilometers.
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Table 1:Summary Statistics

Country Symbol Relative size in terms of
GDP in sample*

(%)

Relative size in terms of
R&D in sample**

(%)

R&D Stock
Growth***

(%)

Canada CAN   3.15   1.44   9.15
France FRA 12.89   7.03   8.01
Germany GER 15.15 11.78 11.82
Italy ITA 11.67   3.31 11.30
Japan JP 14.36 23.53   9.83
United Kingdom UK   9.16   5.71   5.72
United States US 33.62 47.19   7.36

               100.00              100.00

Industry ISIC Relative size in terms of
output in sample****

(%)

Relative size in terms of
R&D in sample*****

(%)

R&D Stock
Growth*

All countries
(%)

Food 31 14.66   1.90   9.17
Textiles 32   8.62   0.56   7.59
Wood 33   4.73   0.36 13.77
Paper 34   9.79   1.03   7.29
Chemicals 351/2   8.21 19.75   9.00
Rubber 355/6   3.39   1.70   7.69
Non-met.Miner. 36   4.75   1.04   8.02
Basic Metals 37   7.13   2.63   7.83
Metal Products 381   8.19   1.52 10.41
Machinery, Instr. 382/5 12.79 17.22   9.78
El. Machinery 383   7.00 24.63   9.33
Transportation 384 10.73 27.67   8.41

               100.00                100.00

* Shares computed from value of total manufacturing production in 1980
** Shares computed from total manufacturing R&D in 1990
*** Average annual growth of R&D stocks; R&D depriciation rate = 0.1
**** Shares computed from value added in 1980; simple average across countries
***** Computed from R&D expenditures in 1990; simple average across countries
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Table 2.1: Bilateral Distance between Capital Cities (Kilometers)

CAN FRA GER ITA JP UK US
CAN 5652 5857 6735 10327 5367   734
FRA   400 1108   9723   341 6169
GER 1066   9357   511 6406
ITA   9867 1434 7222
JP 9570     10910
UK 5904
US

Table 2.2: Bilateral Trade Shares*

Exporter

CAN FRA GER ITA JP UK US
Importer CAN 0.0191 0.0253 0.0116 0.0685 0.0298 0.6945

FRA 0.0068 0.2182 0.1100 0.0348 0.0864 0.0864
GER 0.0068 0.1109 0.0979 0.0590 0.0749 0.0675
ITA 0.0062 0.1462 0.2237 0.0238 0.0652 0.0569
JP 0.0313 0.0214 0.0470 0.0182 0.0200 0.2286
UK 0.0153 0.0975 0.1602 0.0563 0.0556 0.1187
US 0.2005 0.0276 0.0513 0.0240 0.1892 0.0398

Table 2.3: Bilateral Foreign Direct Investment Shares**

Outward FDI Country

CAN FRA GER ITA JP UK US
FDI Host CAN 0.0186 0.0249 0.0049 0.0193 0.0594 0.1627
Country FRA 0.0000 0.0240 0.0000 0.0020 0.0163 0.0472

GER 0.0009 0.0045 0.0017 0.0021 0.0031 0.0309
ITA 0.0012 0.0220 0.0120 0.0023 0.0073 0.0290
JP 0.0000 0.0001 0.0007 0.0000 0.0005 0.0068
UK 0.0105 0.0109 0.0072 0.0000 0.0110 0.0726
US 0.0163 0.0109 0.0135 0.0013 0.0169 0.0294

Table 2.4: Patterns of Bilateral Language Knowledge***

Technology Sender

CAN FRA GER ITA JP UK US
Technology CAN 0.3100 0.0200 0.0200 0.0020 0.8400 0.8400
Recipient FRA 0.3200 0.0900 0.0600 0.0007 0.3200 0.3200

GER 0.4100 0.1100 0.0200 0.0006 0.4100 0.4100
ITA 0.2700 0.1900 0.0300 0.0003 0.2700 0.2700
JP 0.0011 0.0001 0.0001 0.0000 0.0011 0.0011
UK 1.0000 0.1400 0.0500 0.0100 0.0020 1.0000
US 1.0000 0.0111 0.0210 0.0103 0.0022 1.000

* Share of total manufacturing imports; Year 1991; source: Feenstra et al. (1997).
** Share of foreign-owned subsidiary employment in total employment; Year 1991;

source OECD (1999c) and own estimates
*** Share of population in recipient country that speaks the official language of the sender country;

Year 1996/98; source: EU (1999), StatCan (2000), estimates based on JG (2000), and own estimates
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1.3 Bilateral Trade and Foreign Direct Investment Patterns and Data on
Language Skills

The data on bilateral language skills, FDI, and trade is shown in Tables 2.2 to 2.4. The
source for the bilateral import shares in Table 2.2 is the NBER�s Bilateral World Trade
Database, see Feenstra, Lipsey, and Bowen (1997). The FDI data come primarily from
the OECD�s Activities of Foreign Affiliates, OECD (1999c). Table 2.3 shows the share
of employment of the outward FDI country in the total manufacturing employment of
the host country. For instance, line 2 in Table 2.3 indicates that German-owned
multinationals account for 2.40% of manufacturing employment in France, while the
share of U.S.-owned multinationals in France is, with 4.72%, about twice as large.

A number of considerations suggest to use caution in interpreting the results based on
these numbers. First, mainly due to availability reasons, the data I use is at the
aggregate, not at the industry level.8 While this implies losing the industry detail, it also
means that these variables are employed on par with distance, which does not have an
industry dimension either. Second, each set of bilateral relations is only for one year that
is relatively late in or after the sample period.9 This could mean that simultaneity afflicts
the estimation results, because, e.g., changes in productivity influence the patterns of
trade just as trade leads to embodied technology diffusion. However, the bilateral
patterns are slow-changing over time, and the fact that the values are for total
manufacturing (in the case of trade and FDI) or the country as a whole (in the case of
language skills, see below) suggests that simultaneity is unlikely to be a major
problem.10

The data on language skills in Table 2.4 shows the share of the population in the
technology recipient country that speaks the official language of the sender country. For
instance, line 3 in Table 2.4 states that 41% of the population in Germany speaks
English, while only 11% speaks French.11 Both due to estimation of some of the data
and for conceptual reasons, the inferences that can be made based on the language skills

                                               
8 Trade shares could be obtained at the industry level, though; see e.g. the analysis in Keller (2000a).
9 For FDI and import patterns, this is the year 1991, while for language skill data, it is 1996/1998.
10 I have confirmed this by using trade data for years other than 1991, which leads to similar results.
11 In the case of Canada, I simplify by taking English as the sole official language. The data for the
European countries comes from EU (1999) and the data for Canada comes from StatCan (2000). The EU
(1999) survey asked the following question: �Which languages can you speak well enough to take part in
a conversation, apart from your mother tongue?�. To arrive at the estimates for language knowledge in
the U.S. and Japan, I have used information on foreign nationals in these countries, in particular for Japan
from JG (2000). I have confirmed that the results are not sensitive to employing other plausible values for
these data series.
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results below are those associated with the highest level of uncertainty. Conceptually,
language knowledge in the population might be a poor indicator for the strength of
communication links fostering technology diffusion among firms in two- to three-digit
manufacturing industries. Moreover, bilateral language knowledge, for instance, the
share of people in Italy that is able to speak German, might be of limited relevance for
understanding disembodied bilateral diffusion from Germany to Italy if communication
is typically conducted in a third-country language, such as English. However, the
analysis in West, Edge, and Stokes (2000) suggests that language knowledge in the
population is correlated with business-relevant language skills. In addition, the evidence
on changes in language skills over time in EU (1999) and other evidence indicates that
the degree of coordination on one or a small number of languages is still limited.
Overall, this suggests that this data on language skills will be useful in studying the
importance of communication flows for bilateral technology diffusion.

1.4 Multi-Lateral Total Factor Productivity Indices

I will compare industry-level total factor productivity (TFP) for the seven countries in
the sample.12 TFP calculations require real, internationally comparable data on outputs,
inputs, and intermediate goods. The OECD STAN database contains estimates of value
added, labor, and capital inputs, which I have used to construct TFP indices. The
intermediate inputs data on which the value added series are based is not fully
internationally comparable, which is one important reason of why the TFP indices in
this paper should be viewed as approximations to the true TFP measures.13 I use the
multi-lateral TFP index proposed by Caves, Christensen, and Diewert (1982a), which is
defined as

       ( ) ( ) ( )( ) ,,,,lnln1lnlnlnlnln ticKKLLZZF itcitcititcitcititcitcit ∀−−−−−−= σσ      (1)

where c = 1,..., C ;  i = 1,..., I ;  t = 1,...,T ;  c indexes country, i indexes industry, and t is
the subscript for time. The variable Z is value-added, L is labor inputs, and K denotes
capital inputs. Further, itZln is given by  citcCit ZZ lnln 1 Σ= ; correspondingly,

citcCit LL lnln 1 Σ=  and  citcCit KK lnln 1 Σ= . The variable citσ  is an average of labor cost

                                               
12 More details on the TFP index construction can be found in Appendix B. Other recent work that has
examined TFP indices for other purposes includes Harrigan (1997) and Griffith, Redding, and van
Reenen (2000).
13 As a robustness check I also report results based on TFP indices that are constructed with data on gross
output (i.e., where intermediate inputs have not been netted out).
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shares, ( )itcitcit αασ += 2
1 , where ,,,, ticcit ∀α  is the cost share of labor, and itα  is its

country average, citcCit αα Σ= 1 . This TFP index is superlative in the sense that it is exact

for the flexible translog functional form. It is also transitive, so that the choice of the
base country does not matter. In equation (1), the reference point is the geometric
average of the seven countries.

The TFP index in equation (1) assumes that production is characterized by constant
returns to scale. Building on the work by Caves, Christensen, and Diewert (1982b) and
Hall (1990), I have also used cost-based instead of revenue-based factor shares to
construct alternative TFP indices that are appropriate in the presence of scale
economies. This allows me to see whether the estimation results are robust to deviations
from the assumption of constant returns. Two other important characteristics of the TFP
data are: First, industry-specific purchasing power parity- (PPP) exchange rate estimates
are used to convert the industry outputs into a common currency, because there is
evidence that PPP exchange rates vary substantially by industry (source: Pilat 1996).14

Second, I have adjusted the OECD STAN data on labor inputs to take account for
differences in annual hours worked across countries, from OECD (1999b). This is
important because annual hours worked in U.S. manufacturing, for example, were
almost 40% higher than in certain European countries in some years over the sample
period. I have also corrected the physical capital inputs series to account for cyclical
determinants of factor demand. Figure 1 shows the adjusted and non-adjusted average
productivity levels for the U.S. (on top), Germany (middle), and Japan (bottom),
relative to the G-7 mean for each year.15 Without adjusting for differences in input
usage, U.S. productivity would be increasingly over- and German productivity
increasingly under-estimated, while productivity in Japan would be overestimated
throughout. Clearly, these differences would not be appropriately controlled for by
using time-invariant country fixed-effects.

1.4.1 Industry-Level Productivity and Average Productivity over Time

There is a substantial amount of within-country heterogeneity across industries. For
instance, a country is frequently among the top performers in one industry while ranking
near the bottom in another industry. This suggests that studying productivity at the
industry level might have important advantages compared to an analysis at a more
aggregate level. There are also differences of how variation in with-in country

                                               
14 All-manufacturing PPP exchange rates from OECD (1999a) are also employed as a robustness check.
15 These are unweighted averages across industries. Size-weighted averages behave similar.
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productivity levels has changed over time. For instance, in the U.S., the dispersion of
productivity levels has fallen, whereas in Canada, the opposite has occurred. For the G-
7 countries as a whole, a picture of slightly converging within-country productivity
levels emerges, as indicated by the dashed line in Figure 2.

Figure 1: Comparing Relative Productivity with and without Correcting
for Differences in Input Usage

Figure 2: Productivity Convergence or Divergence: Analysis within and
between  Countries
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On average across industries, the U.S. has been the productivity leader throughout most
of the sample period according to these estimates, even though the U.S.�s productivity
advantage has generally been shrinking over time.16 The solid line in Figure 2, which is
more substantially downward-sloping, shows the standard deviation of the seven
country averages of productivity over time. Clearly, the period of 1970-95 has been one
of productivity convergence among the G-7 countries, albeit with a noticeable reversal
towards divergence since the year 1990. These findings are consistent with a relatively
high degree of technology diffusion among the countries at the world�s technology
frontier. However, if the trend towards productivity divergence after 1990 will be
sustained, this could mean that the number of countries at the world�s technology
frontier will be smaller in the future than it is today.17

To investigate this further I will now turn to the formal econometric analysis.

2. ESTIMATION EQUATION AND ECONOMETRIC ISSUES

Geographic factors might affect the degree of technology diffusion for various reasons.
For instance, according to many trade-and-growth models, technology moves across
country borders when intermediate goods embodying new technological knowledge are
traded (see, e.g., Grossman and Helpman 1991). It is plausible to assume that it is easier
to ship technology-carrying intermediate goods to near-by locations than to more
remote locations, so that the scope of technology diffusion is related to geographic
distance.18 The equilibrium in these models typically relates productivity in an
importing country both to domestic R&D and to foreign R&D, conditional on bilateral
distance. A specification that captures this is

                                               
16 Canada started out in second place in 1970, but has lost ground since, especially to Italy and France.
Relative productivity in Germany was rising until about 1980 but fell subsequently, and by 1995 German
productivity is approximately equal to the mean in the sample. In Japan and the U.K., productivity was
below the sample average throughout the sample period according to my estimates.
17 One reason for this trend towards divergence is that the U.S. is increasing its productivity lead over the
other countries. It might be in part due to measurement issues, in particular the differential treatment of
information technology (IT) price indices (IT includes computers). IT equipment prices have fallen much
more rapidly in the U.S. than in other countries according to official numbers. This is largely due to the
usage of hedonic price indices in the U.S., whereas other sample countries continue to use non-hedonic
price deflators; see Scarpetta, Bassanini, Pilat, and Schreyer (2000). The extent to which this affects the
estimation results below is limited, however, which is likely due to the fixed effects that are included in
the specification; see section 2 below.
18 The relationship can be formalized by assuming that commodity trade entails transport costs that are
increasing with geographic distance (as in Samuelson 1954).
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where c = 1,..., C indexes country, i = 1,..., I is an index for industry, and t = 1,..., T is
the subscript for time. The variable Fcit is the TFP level, Scit is country c�s R&D stock,
and Dcg is the geographic distance between countries c and g. The αci, αt, β , γ, and δ are
parameters to be estimated, and εcit  is an error term with properties that I discuss below.
The α�s are fixed effects that control for unobserved heterogeneity, the parameter β
measures the effect of R&D on productivity, while γ captures the relative effect from
foreign R&D.19

The role of geographic distance is captured by the parameter δ, which I will refer to as
the distance parameter. It is identified from variation of the productivity effects of R&D
in other countries conditional on bilateral distance, and thus reveals whether there is a
geographic dimension to international technology diffusion. Denote the term Sg e - δ Dcg

as country c�s effective R&D from country g; positive estimates of δ mean that variation
in productivity levels can be better explained by assuming that effective R&D from
countries located relatively far away is smaller than that of other countries located more
closely. For positive values of γ (foreign R&D raises productivity), estimating δ > 0
suggests that the benefits from foreign technology creation are decreasing with
geographic distance. In contrast, δ < 0 would mean that distant countries benefit more
from a given country�s R&D than near-by countries.

I will also present results based on a distance class specification that does not
incorporate the exponential functional form. It is given by

( ) ticSISF cit
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�
++++= �

≠
εηγβαα                    (3)

where Icg = 0 if countries c and g are between 2,000 and 7,500 kilometers apart; Icg = 1
for distances below 2,000 kilometers, and Icg = - 1 for distances above 7,500 kilometers.
The distance parameter η identifies the higher (lower) effect of R&D among bilateral
relationships of less than 2,000 (more than 7,500) kilometers, compared to the relative
effect of foreign R&D of γ when Icg is equal to 0. Positive estimates of η are consistent

                                               
19 The parameter β captures both �true� knowledge spillovers as well as measurement spillovers. The
latter do not constitute an externality, as they might be due only to price indices that do not perfectly
adjust for product quality, for example (see Griliches 1995 for a discussion). The estimates should
therefore be treated as an upper bound for the magnitude of true external effects.
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with less technology diffusion as bilateral distance increases.20 I will also augment the
specifications (2) and (3) in simple ways to examine whether the distance parameters δ
and η have changed over time. This would suggest a more or less localized pool of
technology among the G-7 countries. Moreover, to analyze the specific channels of
trade, FDI, and communication, I will modify equation (2) to include bilateral trade and
FDI patterns as well as language skills data in ways that are analogous to the distance
variable.

Major estimation issues that need to be addressed are as follows. First, the relatively
narrow focus on the countries at the world�s technology frontier implies that the number
of bilateral relations is small, with only C(C - 1) = 42 , and half as many values for
bilateral distance. Moreover, four countries are located in Europe and two in North
America, so that the qualitatively distinct ranges that Dcg falls into is even more limited.
This is part of what motivates the distance class analysis. In contrast to distance, there is
no symmetry in the import, FDI, and language skill patterns, but generally, the
relatively small number of bilateral relations will likely affect the precision with which
the parameters can be estimated.

Another concern is that the error term εcit is not orthogonal to the regressors, because
this would lead to inconsistent estimates. The disturbances capture idiosyncratic factors
that affect measured productivity. Some could be industry-specific, such as receiving
strong inter-industry spillovers, and others might be common to all industries in a given
country, such as shocks affecting the national business cycle. Generally, this calls for
instrumental-variable estimation; however, good instruments for the R&D variables are
unavailable.21 Instead, I will rely on specification choices in order to minimize the
effects of simultaneity. First, a considerable amount of structure has been imposed in
constructing the TFP indices (see Appendix B). Second, problems arising from the
usage of common deflators should not be a major problem, because the R&D figures are
based on economy-wide deflators while the TFP indices use industry-specific price data.
Third, the estimation equations include time fixed effects which control for shocks that
affect the entire sample in a given year. I will also provide separate estimates for the
sample of low-R&D industries. Unlike transportation, chemicals, and machinery - the
industries that account for most of the R&D (see Table 1) - , the R&D expenditures of

                                               
20 This higher and lower effect relative to distance class Icg = 0 need not be symmetric, as is assumed here;
in the estimations below, however, the gain in empirical fit through allowing for an asymmetric effect is
very small.
21 See also Griliches and Mairesse (1998) who give an overview of a number of approaches whose main
common goal it is to identify production function parameters by avoiding simultaneity problems.
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the eight low-R&D industries are too small to significantly affect the economy-wide
innovative activity. Therefore, simultaneity problems - if present in the full sample -
will be much-reduced in this case, and the extent to which these estimates are similar to
those obtained with the full sample will shed light on whether simultaneity is likely to
be a problem.

Lastly, country-by-industry fixed effects control for time-invariant factors that generate
a spurious correlation between the regressors and the error term. These fixed effects
capture differences in productivity levels which are due to factors other than R&D
conditional on geographic, trade, FDI, or language patterns. As an example, the
composition of products within the two- to three-digit industries of the sample might
vary by country, and this could be correlated with distance. Then an alternative to the
geographically-limited-scope-of-technology-diffusion hypothesis is a technology
matching explanation: if the degree to which one country�s technology is suited to the
needs of other countries is inversely related to geographic distance, productivity in
Japan, e.g., - which is on average further away from its G-7 partners than the other
countries - could be relatively low just because Japan�s G-7 partners generate
technology that is relatively unproductive in Japan. Clearly, such differences in
productivity would not exist because of a geographically limited scope of technology
diffusion. Analogous arguments can be made with respect to trade, FDI, and
communication links. Thus, the country-by-industry fixed effects are important to avoid
obtaining inconsistent estimates and spurious results in the analysis that follows.22

3. ESTIMATION RESULTS

3.1 Geographic Distance in International Technology Diffusion

The first set of results addresses the question whether international technology diffusion
is geographically localized or not (see Table 3). The dependent variable is the relative
productivity level as defined in equation (1). The regressors are fixed effects for each
year and for each country-by-industry combination, the domestic R&D stock, and the

                                               
22 Another concern is that the TFP variable might be stationary while the R&D stocks could be trending
over time. The theory of panel unit root and cointegration analysis that then would apply in the non-linear
setting of this paper is not fully developed to date. In that case, I would therefore rely primarily (and
imperfectly) on the time fixed effects αt to address this issue. For an investigation of these time-series
issues in the estimation of spillovers in linear regression models, see Edmond (2000).
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R&D stocks of the partner countries interacted with bilateral distance as described
above. The estimation method is non-linear least squares.23

Table 3: Geography and Technology Diffusion*

Exponential

distance

eq. (2)

             (3.1)

Exponential

distance

w / γ1, γ2
(3.2)

Exponential

distance

           γ   = 1

(3.3)

Distance

classes

eq. (3)

(3.4)

β 0.039 0.046 0.055  0.048§

            (0.010)            (0.010)            (0.014)            (0.016)

γ 1.111  0.368

            (0.186)            (0.095)

γ1 0.992

           (0.068)

γ2 1.197

           (0.067)

δ 0.147 0.199  0.123§

          (0.045) (0.028) (0.030)

1.010

η (0.139)

n 2184 2184 2184 2184

R² (%) 85.07 85.08 85.06 85.03

AIC -4.645 -4.648 -4.649 -4.644

*Dependent variable: multilateral TFP index, as defined in the text. Standard errors are in parentheses; β

measures the effect of domestic R&D, γ the relative effect from foreign R&D (γ1 for CAN, FRA, ITA,

and for the UK,  and  γ2 for US, JP, and GER), and  δ as well as η determine the distance effect  (δ > 0 and

η > 0 are consistent with distance-limited technology diffusion); n = number of observations, AIC =

Akaike�s Information Criterion, as defined in the text; § coefficient is only significantly different from

zero at a 5% level.

                                               
23 I have normalized the distance measure Dcg so that Dcg = 1 is equal to 341 kilometers, the shortest
bilateral distance in the sample (between Paris and London). This affects the size of the parameters, but
not the size of the other statistics discussed below.
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In the first result column, I estimate the exponential specification of (2) shown earlier.
The productivity effect from R&D, β, is estimated with β = 0.039.24 This number is in
the range of values suggested by comparable studies.25 The parameter γ, which
measures the relative potency of distance-adjusted foreign R&D, is estimated to be γ =
1.111, and the parameter δ, which determines the extent to which foreign R&D is
effective in determining productivity, is estimated at 0.147. This estimate suggests that
effective R&D (the term γ Sgit e - δ Dcg) is falling with distance. In specification (3.2), I
allow for different R&D sender effects for the U.S., Japan, and Germany (the G-3-, or,
the three major R&D countries, with parameter γ2) on the one, and Canada, France,
Italy, and the U.K. (with parameter γ1) on the other hand. The G-3 technology sending
effect appears to be somewhat larger than that of the non-G-3 countries, but to constrain
all γ�s to equal one, as in specification (3.3), is actually marginally preferred according
to Akaike�s Information Criterion.26

The distance parameter δ is estimated to be positive throughout. This finding is
consistent with the idea that technological knowledge is localized, because it implies
that the R&D of countries that are far away from a given country contributes less to its
productivity than the R&D from near-by countries. In specification (3.4), I estimate the
distance class specification (3) to see whether this result is robust. The parameter η  is
estimated to be positive, which confirms that the productivity effects from foreign R&D
are localized for the G-7 countries. Recall that the distance class breakpoints are 2,000
and 7,500 kilometers. This means that η is identified from the difference in R&D effects
of the European G-7 countries in Europe and the U.S.-Canada effect (less than 2,000
kilometers), versus technology diffusion between North America and Europe (between
2,000 and 7,500 kilometers), versus technology diffusion to and from Japan. Together
with the estimate of γ, the estimate of η =1.01 suggests that the value of a foreign G-7
dollar of R&D per domestic dollar is on average seventy-four percent (i.e., γ (1 + η  ) =
0.74) below 2,000 kilometers, it is roughly 37%  (i.e., γ = 0.368) across the Atlantic,

                                               
24 I rely mainly on bootstrapped standard errors for inference. They seem to be preferred, and in any case,
they are often much larger than conventional asymptotic standard errors. The bootstrapped errors are
heteroskedasticity-consistent (through block-wise resampling for each country-by-industry combination)
and relatively robust to serial correlation (by resampling two consecutive errors at a time); see Andrews
(1999) for references and further results. To be conservative, I report asymptotic standard errors when
they are clearly larger, which is sometimes the case especially for the parameter γ. I have also examined
whether spatial correlation remains in the residuals, without finding much evidence for it.
25 For studies at this level of aggregation, Griliches (1995) reports typically estimates that are somewhat
higher; however, many of the earlier studies do not consider productivity relative to the sample mean, as I
do here.
26 Akaike�s Information Criterion (AIC) is defined as ( ) nkn

ee /2ln +′  where ee′  is the residual sum of
squares, n is the number of observations, and k is the number of estimated parameters. The table also
reports the R².
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while to and from Japan, the average value of a dollar of foreign R&D is essentially
zero (i.e., γ (1- η ) ≈ 0).

For the exponential functional form in columns (3.1) to (3.3), an interesting statistic to
compute is the half-life distance of R&D, that is, the distance at which half of the R&D
sent out from a technology-producing country has disappeared. This value D* is
calculated from 2

1 S = S e-δD* , leading with δ = 0.147 from (3.1) to D* = 4.72, or ca.

1,600 kilometers. Another measure of the strength of international technology diffusion
in a given bilateral relation is the value of one foreign dollar of R&D per one dollar of
domestic R&D, equal to γ exp(- δ Dcg). This is shown for all bilateral relations in Figure
3. For instance, according to the estimates in (3.2), the average value of a dollar of U.S.
R&D in Canada is 78% of the value of a domestic dollar of Canadian R&D, and a dollar
of German R&D in Italy has 64% of the domestic-R&D effect. Clearly, the distance
effects implied by these estimates are quite strong, suggesting in particular little
technology diffusion to and from Japan. To compare the results of the exponential and
the distance class specifications, I have computed the average relative foreign R&D
value within North America and Europe, respectively, and the average relative foreign
R&D value for bilateral relationships involving Japan. For the former, one obtains 67%
in the exponential specification, compared to 74% in the distance class specification,
while the average for relationships involving Japan is estimated to equal zero in both the
exponential and distance class specifications. Thus, the two specifications give broadly
similar results. I now turn to analyzing the robustness of these findings.

3.2 Sensitivity Analysis

The results of this analysis are reported in Table 4. I use the exponential functional form
for the results presented in columns one to three, while the distance class specification is
employed for the remaining columns four and five. In the first specification only the
eight low-R&D industries are included. I estimate β at 0.025 - significantly larger than
zero at a 12% level - , down from 0.040 in the full sample, and the distance parameter δ
is now also slightly lower.27 The second column presents estimates when TFP indices
are based on gross output instead of value added, which is an alternative approximation

                                               
27 Because the industry R&D elasticity εi  is related to the return to R&D, ρi by i

iF
iS

ii ∀= ,ρε , if arbitrage

equalizes the return to R&D across industries (ρi = ρ, i∀ ), then εi  varies with Si. This could explain the
drop of the coefficient β (which is positively related to εi) when the sample contains the relatively low-
R&D industries only.
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to true productivity. The distance parameter is estimated somewhat higher and the
relative foreign R&D parameter is lower than before.

   Figure 3: Bilateral Technology Diffusion Conditional on Geographic Distance
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Table 4: Sensitivity Analysis*

Low R&D
Industries

(4.1)

Outputbased
TFP
(4.2)

All-manufact.
PPP exch. Rates

(4.3)

TFP based on
IRS
(4.4)

Unadjusted
TFP
(4.5)

β 0.025◘ 0.045 0.045 0.044§ 0.067§

(0.016) (0.011) (0.011) (0.017) (0.018)
γ 0.737 0.618 0.437

(0.067) (0.155) (0.066)
δ 0.138 0.300 0.273

(0.079) (0.100) (0.021)
η 1.077 0.716

(0.086) (0.067)
n 1456 2184 2184 2184 2184

R² (%) 85.37 83.43 83.09 85.48 80.97
    AIC -4.676 -4.565 -4.668 -4.608 -4.431

*Dependent variable: multilateral TFP index, as defined in the text. Standard errors are in parentheses; β

measures the effect of domestic R&D, γ the relative effect from foreign R&D, and δ as well as η

determine the distance effects (δ > 0 and η > 0 means greater geographic distance is associated with less

diffusion);  n =  number  of  observations,  AIC  =  Akaike�s  Information  Criterion, as defined in the

text; ◘ coefficient is significantly larger than zero at a 12% level; § coefficient is significantly different

from zero only at a 5% level.

Using all-manufacturing PPP exchange rates instead of industry-specific exchange rates
leads also to a stronger distance effect (δ = 0.273 in specification 4.3). The distance
effect estimated with TFP indices based on the assumption of increasing returns with a
scale elasticity of 1.05 in (4.4) are similar to the distance effect in the benchmark result
of (3.4). Finally, when factor input data is not adjusted for differences in input
utilization, the R&D effect β is considerably higher than in the corresponding
specification with adjusted TFP data (compare (4.5) with (3.4)). This suggests that one
picks up a substantial amount of spurious correlation when cyclical effects that affect
both input utilization and R&D are not controlled for. Also here, though, one estimates
a relatively large difference in the strength of technology diffusion across distance (η  =
0.716).
In unreported analysis, I have used other combinations of data samples and
specifications from Table 3, as well as a number of other specifications, such as lagged
R&D. There is evidence that some of the variation in productivity levels is explained
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only by the variables jointly.28 Overall though, I estimate a robust and significant
geographic localization effect in international technology diffusion. In the exponential
specification, the parameter β is about 0.04 to 0.07, varying in a reasonable way across
different samples and data constructions. The relative foreign R&D effects of the G-3
countries might be somewhat larger than for the other four countries, but this adds
relatively little in terms of regression fit. In the distance class specification, the
parameter β is of similar magnitude, if somewhat less precisely estimated, and the
estimates of η lead to the same qualitative finding regarding the localization of
international technology diffusion. Quantitatively, the magnitude of the distance effect
varies across specifications. For the exponential functional form, the estimates of δ
range from 0.123 to 0.300, which corresponds to a half-life distance of about 800 to
1,900 kilometers. In the distance class specification, η varies from about 0.7 to 1.0,
which corresponds to a 70% to 100% premium (discount, respectively) for technology
diffusion among countries that are below 2,000 (above 7,500, respectively) kilometers
apart, relative to technology diffusion between North America and Europe.

3.3 Technology Diffusion over Time

In this section I turn to changes in degree of international technology diffusion over
time. The exponential specification is extended to
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Here, It is an indicator variable that is equal to one for the years 1983 to 1995 and zero
otherwise, and there are two additional parameters, γti and δti. The former picks up any
change in the overall effect from foreign R&D, whereas the latter indicates whether the
degree of localization of technology diffusion has changed. Values of δti < 0 are
consistent with technological knowledge becoming more global over time. See Table 5
for the results.

In specification (5.1), the parameter γti is constrained to zero. Relative to specification
(3.1), the estimate of β is now somewhat higher. More importantly, the distance
estimate increases from 0.147 to 0.490, while δti is estimated to equal δti = -1.188. These

                                               
28 In the exponential specification, the bootstrap analysis reveals that the parameters β and δ are positively
correlated, for instance.
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estimates suggest a distance parameter of 0.490 for the subperiod 1970-82, and of 0.490
x (1+ ( -1.188) )= -0.092 for the subperiod of 1983-95. With a standard error for δti of
0.222, the distance effect in the second subperiod could be equal to zero, suggesting that
geographic distance plays no role anymore by the end of the sample period. The next
column in Table 5 indicates that the finding of less localization is independent of the
change in the value of foreign R&D: γti is estimated to equal 0.072, not significantly
different from zero, and the estimate of δti remains by and large unchanged.

Table 5: The Localization of Technology Diffusion over time*

Exponential

w / ∆ in

distance effect

(5.1)

Exponential

w / ∆ in distance and

foreign effects

(5.2)

Distance class

w / ∆ in

distance effect

(5.3)

Exponential w / ∆ in

distance effect

Low R&D Industries

(5.4)

β 0.052 0.057 0.067 0.066

(0.010) (0.010) (0.012) (0.013)

γ 1.127 1.104 0.498

(0.044) (0.123) (0.040)

δ 0.490 0.466 0.472

(0.091) (0.073) (0.069)

η 1.012

(0.124)

γti 0.072◘

(0.071)

δti -1.188 -1.193 -1.174

(0.222) (0.305) (0.304)

ηti -0.778

(0.079)

n 2184 2184 2184 1456

R² (%) 86.65 86.70 85.35 86.75

AIC -4.752 -4.755 -4.666 -4.773

*Dependent variable: multilateral TFP index, as defined in the text. Standard errors are in parentheses; β

measures the effect of domestic R&D, γ the relative effect from foreign R&D, and δ as well as η

determine the distance effects (δ > 0 and η > 0 says that greater distance is associated with a lower

productivity effect). The parameters γti, δti, and ηti estimate changes in the overall foreign (γti) and distance

effects;   n  =   number  of  observations,   AIC  =  Akaike�s   Information  Criterion, as defined in the

text; ◘ not significantly different from  zero at standard levels.
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In  the  distance  class  specification,  I  estimate  the parameter  ηti  in  the  expression
η x (1 + ηti It),  analogously  to δti.  The  point  estimate of  ηti  in  specification  (5.3)  is
equal to  -0.778, which suggests that the strength of technology diffusion during the
1990s varied substantially less across classes than it had during the early 1970s. In
specification (5.4), the results for the exponential specification for the sample of the
eight   relatively   low  R&D-intensive  industries  is  shown.   Relative  to  the  value  of
δ = 0.138 for the entire sample period (see 4.1), also δ here is higher for the years 1970-
82, and lower for the years 1983-95. In fact, one cannot reject the hypothesis that there
is no distance effect during the later subperiod, which confirms the patterns obtained for
the entire sample.

Overall, these results suggest that international technology diffusion has become much
less localized over the sample period. In Figure 4, I show the total value of foreign G-7
country R&D received by Japan, France, and Canada over time (based on 5.3). The
figure highlights the fact that the total value of foreign R&D received by these countries
has been converging sharply over time according to these estimates: while Japan
received essentially zero in the early 1970s and France a total of about four dollars per
dollar of domestic R&D, by the 1990s the value of the technology received by France
was only about 30% higher than the corresponding value that benefited Japan.

Figure 4: Changes in the Geographic Scope of International Technology
Diffusion over Time
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Can this finding explain the dynamics of the productivity distribution across G-7
countries that emerges from Figure 2? As noted earlier, ceteris paribus one expects
productivity convergence as technology becomes more global in the world. The overall
downward trend in the variation of average productivity between 1970-95 is broadly
consistent with that. The period of productivity divergence between 1990-95 is probably
not being picked up by these over-time estimates yet as the subperiod mid-points are the
years 1976 and 1989. In general, however, one must use caution here, because the link
between the less-localization finding and convergence of productivity in Figure 2 is not
a tight one. The estimated decrease of localization is only an average effect after a
substantial amount of unobserved heterogeneity is controlled for, and as long as
technology diffusion is not complete, immediate, as well as universal, less localization
need not go hand in hand with convergence of productivity.

The next section analyzes a number of specific technology diffusion mechanisms.

3.4 Beyond Distance: Trade, Foreign Direct Investment, and Communication as
Channels of International Technology Diffusion

Table 6 shows the results of examining these three mechanisms of technology diffusion.
I restrict myself to the exponential specification and the TFP variable defined in (1) to
keep the number of regression results relatively low. The bilateral imports variable Mcg,
as well as the FDI variable Vcg and the language variable Bcg are introduced analogously
to distance. For instance,

,,,,lnln ticeSSF cit
cgM

cg
gitcitcicit ∀+

�
�

�

�

�
�

�

�
++= �

≠

εβα τ             (5)

is the imports specification, where τ is the parameter corresponding to the import share
variable. A positive value of τ is consistent with bilateral imports raising the level of
technology diffusion.
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Table 6: Trade, FDI, and Language Skills as Channels of Technology Diffusion*

(6.1) (6.2) (6.3) (6.4) (6.5) (6.6) (6.7) (6.8) (6.9)

β 0.055 0.057 0.053 0.103 0.081 0.125 0.087 0.082 0.068

(0.014) (0.011) (0.018) (0.018) (0.010) (0.012) (0.014) (0.011) (0.028)

δ 0.123 0.191 0.232 -0.180◘ -0.124◘

(0.030) (0.111) (0.082) (0.073) (0.159)

τ 0.403 0.130 0.578 0.765

(0.031) (0.006) (0.064) (0.230)

ψ 0.377 0.370 0.081 0.073

(0.027) (0.046) (0.017) (0.014)

0.390 0.662 0.574● 0.975●

λ (0.029) (0.100) (0.183) (0.555)

AIC -4.649 -4.668 -4.661 -4.664 -4.678 -4.689 -4.685 -4.694 -4.697

*Dependent variable: multilateral TFP index, as defined in the text. Standard errors are in parentheses; β

measures the effect of domestic R&D, δ the distance effect (δ > 0  is consistent with localized spillovers),

τ is the parameter on the import shares, ψ is the parameter on the FDI shares, and λ is the language

parameter. If trade, FDI, or language facilitate technology diffusion, then τ,  ψ, or  λ, respectively, are

expected to be greater than zero: 2184 observations, AIC = Akaike�s Information Criterion, as defined in

the text; ● coefficient is only significant at the 10% level, ◘ coefficient is not significantly different from

zero at standard levels.

Specification (6.1) shows the basic geographic-distance result for comparison (see (3.3)
in Table 3), while the second specification in Table 6 is equation (5).29 The estimate of
β changes relatively little, while the value of τ is positive, equal to τ = 0.403.30 In
specification (6.3), I use the FDI variable analogously and estimate the corresponding
parameter at ψ = 0.377. Also the language skills variable enters with a positive

                                               
29 To facilitate the non-linear estimation, I have scaled the trade, FDI, and language shares as follows: Mcg
is multiplied by 102, Vcg by 103 and Bcg by 10.
30 An estimate of τ larger than zero means that the relative effect from foreign R&D exceeds that from
domestic R&D in all bilateral relationships as long as γ is constrained to equal one. This is not very
plausible, so that I have also experimented with estimating γ and τ  jointly. As expected, γ then tends to be
lower than one. However, freeing up the parameter γ makes the specification less robust. Because the
emphasis here is on estimating the parameter τ  (as well as ψ and λ below, plus comparing them), I give a
high priority to robustness and have therefore kept the parameter γ constrained to one. If one sets a lower
value for γ or estimates the parameter, this does not lead to qualitatively different findings in the
comparison of τ , ψ, and λ; instead, it primarily affects the fixed effects estimates.
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coefficient (specification 6.4). There is a major effect here on the size of the R&D
coefficient as well: β is estimated at 0.103, versus β = 0.055 in the distance
specification. These results suggest that each candidate channel might indeed have a
positive effect on international technology diffusion. Notice that to the extent that the
differences in empirical fit between the first four regressions in Table 6 are significant,
that of the distance specification is lowest, followed by the FDI and the language skills
specification, while the bilateral imports specification has the best fit.

It is important to consider more than one channel of diffusion at a time to learn about
their relative strength, even though this makes the results less robust due to collinearity
among the spillover channels. The following results are obtained: When distance is
introduced  together  with  the  import  shares  in  the  exponential expression - as in exp
( - δ Dcg + τMcg) - , this reduces the estimate of τ by about two thirds, from 0.403 in (6.2)
to τ = 0.130 in (6.5). Thus, differences in import patterns account no better for a
substantial amount of variation in bilateral technology diffusion than do differences in
distance. In equation (6.6), I have included the FDI variable together with distance. This
results in a much larger estimate of β and a higher value of δ, while the FDI parameter ψ
stays about the same relative to the FDI-only specification (6.3).

Specification (6.7) introduces distance together with the language skills variable. The
coefficient on the language variable remains positive, while the estimate of the distance
parameter turns negative, albeit not significantly different from zero.31 Equation (6.8)
introduces import and FDI patterns together with the language skills variable. All three
variables enter with a positive coefficient. Finally, when I add the distance variable to
this, the point estimate of δ is negative, while the other three point estimates remain
positive. The fit of the regression is marginally improved through the inclusion of
distance, but in contrast to the trade, FDI, and language parameters, δ is not
significantly different from zero.32

                                               
31 One explanation for this is that the language variable picks up a relatively strong effect from U.S. R&D
in Canada, plus an effect from U.S. R&D in Europe that is stronger than one would think on the basis of
distance. Also, the language variable appears to identify stronger technology inflows in Japan from
English-language countries than from central European countries, all of which are roughly the same
distance away from Japan.
32 There might be important interactions between these channels of technology diffusion, for instance, the
effect from language skills could be higher, the greater is the bilateral geographic distance. In principle,
one could test for this by including an interaction variable, Dcg x Bcg, and estimate an additional
coefficient in the exponential term. In practice though, a comprehensive analysis of interaction terms
appears to stretch the possibilities of the data to some extent, so I do not include it here. Note, however,
that the non-linear specification picks up some interaction effects already as it is.
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I now turn to the absolute magnitude of inward technology diffusion, as well as the
breakdown of the total effect by spillover channel (based on the estimates of
specification 6.8). Let Γc be the sum of the three effects for a given technology recipient
country, Γc ≡ Σg (τ Mcg + ψ Vcg + λ Bcg) , c∀ .33 Also, denote by sc the share of the total
effect by recipient country, sc ≡ Γc/Γ, where Γ ≡ Σc Γc . First, the estimation results
suggest that Canada benefits by far the most from foreign G-7 technology, with a share
of sCAN = 0.256. This is primarily the result of Canada�s links to the U.S., from which
Canada imports a relatively high share, whose subsidiaries have a strong presence in
Canada, and the fact that in both countries, the English language is used. Canada is
followed by the U.K., and the U.S., with sUK = 0.154 and sUS = 0.151, respectively.
France, Italy, and Germany are next (sFRA = 0.137, sITA = 0.128, and sGER = 0.108),
whereas Japan benefits least from foreign G-7 technology according to these estimates
(sJP = 0.066).

For the analysis of the relative strength of the diffusion mechanisms, let τ
cs  be the share

of the total effect for country c due to the contribution of imports, ( ) ccggc Ms ΓΣ≡ /ττ , and

let ψ
cs and λ

cs  be the shares due to FDI and language skills, defined analogously. Also,

let sτ , sψ , and sλ be the average shares for a given channel of technology diffusion
across countries (for instance, sτ ≡ ( )τ

ccsΣ /C. I estimate that the effect due to imports is

highest  on  average,  with  sτ = 0.691,  while the FDI and  language  effects  are equal to
sψ  = 0.148 and sλ = 0.161, respectively. This points to a relatively strong effect due to
embodied technology diffusion in form of imports. At the same time, the other two
channels are far from being negligible. Figure 5 shows, for instance, that the absolute
effect from inward FDI in Canada exceeds that from imports in Japan. Moreover, the
larger inward share of foreign-owned subsidiaries in Canada versus the U.K. explains
41.9% of the difference in total inward technology diffusion between these two
countries. Another indication of the importance of FDI for inward technology diffusion
comes from comparing the European countries: here, the U.K. attracts the largest share
of FDI, and 36.2% of the U.K. advantage over Germany in terms of total inward
technology diffusion is due to the U.K.�s higher level effect through FDI.

                                               
33 This   analysis  of  inward    technology   diffusion   focuses   on   the  term  in  the  exponential  part  of
Σg Sge τ Mcg+ ψVcg+λ Bcg.  I do this for ease of interpretation, but it should be kept in mind that differences in
effective R&D from abroad are also due to differences in Sg as well as the interaction of Sg with the
exponential term.
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Figure 5: Total Inward  Technology  Diffusion  and  Relative  Importance  of
Different Channels

Language skills have the highest contribution to inward technology diffusion in the
U.K. and the lowest in Japan: 43.4% of the higher level of inward technology diffusion
in the U.K. versus Japan can be attributed to the higher share of the population in the
U.K. that speaks the languages of the G-7 technology source countries. Among the
European countries, 76.8% of the higher level of technology inflows in the U.K. relative
to Italy are due to differences in language skills. And if language skills in Germany
would be the same as the (generally lower) language skills in Italy, Germany would
benefit about 6% less from G-7 technology diffusion than it actually does.
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Figure 6: Relative Importance of G-7 Partner Countries in International
Technology Diffusion
All Channels

Figure 6, which is also based on the results in (6.8), allows to compare the strength of
bilateral technology diffusion across different country pairs by showing the share of a
sender country in a given technology recipient�s country total technology inflows (the
sum of trade, FDI, and language channels; this is denoted as the TFL-based measure).
For instance, 69.1% of technology diffusion to Canada originates from U.S. R&D,
while the share of the U.K. in Canada is much lower, equal to 13.5%. The estimates also
suggest that the U.S. is the major source of all technology inflows to Japan, with 63.0%.
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Germany accounts for more than a third of the technology inflows into Italy and France,
according to these estimates, but less than 20% of the inflows to the United Kingdom.
Figure 7 indicates how these estimates differ from estimates simply based upon bilateral
distance.34 On the horizontal axis are listed forty-two bilateral relations, with the
technology recipient mentioned first, followed by the technology sender. For instance,
the left-most bilateral relation gives the importance of French R&D in the United
Kingdom. It says that on the basis of these estimates, the distance-based shares
overestimate the importance of France as a source of technology for the U.K. by circa
thirty-four percentage points relative to the TFL-based measure, or put differently,
France appears to be much less important for the U.K. than one would assume based on
the close relative location.

It is not the case, however, that the importance of near-by countries is always estimated
higher with the distance-based measure. In particular, as a source of technology for
Canada, the U.S. is even more important according to the TFL-based measure than one
would assume based on its relatively close location to Canada (CAN/US is 11th from
the right). The TFL-based measure also gives a more plausible picture of the importance
of Canada as a source of U.S. technology inflows than the distance-based measure: the
relation US/CAN is second from the left, and the associated value suggests that the
relative importance of Canada on the basis of distance is about twenty-eight percentage
points higher than according to the TFL-based measure. On the other end of the
spectrum, the four right-most bilateral pairs all include the U.S. as a technology sender.
This result confirms the notion that the U.S.�s importance for technology diffusion to G-
7 countries other than Canada would be underestimated if a simple distance-based
criterion is used to predict bilateral technology diffusion.

                                               
34 I have computed the distance-based shares underlying Figure 7 from the inverse of the bilateral
distances reported in Table 2.1 - giving a measure of closeness - , before forming the share of a bilateral
relation in the closeness total for a given country.
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4. SUMMARY AND DISCUSSION

This analysis of technology diffusion among the seven major industrialized countries
has produced a number of interesting results. First, geographic distance appears to have
a strongly limiting effect on technology diffusion among these technology frontier-
countries. While the estimates vary somewhat depending on specification, typically they
imply a technology half-life in terms of distance of 800 to 1,900 kilometers. Second, the
degree of localization of technology diffusion has substantially declined over the sample
period. Again, estimates vary somewhat, but it appears that the extent of localization has
fallen by at least two thirds from the 1970s to the 1990s. Third, I have presented a
number of findings on the importance of trade, FDI, and language skills for
international technology diffusion, to which I turn below.

The effect that distance has on the scope of international technology diffusion according
to some of my estimates is probably too high. One reason for this could be the fact that
my analysis abstracts from the value of technological knowledge being heterogeneous.
It is well-known from analyses of the value of patents that their distribution is very
skewed. Because the technology that diffuses first is likely more valuable than the
technology that diffuses later, my analysis underestimates the value of small stocks of
diffused technology relative to larger stocks. In particular, taking account of
heterogeneity might therefore raise technology diffusion to and from Japan. Caution is
also needed to interpret the results on changes in technology diffusion over time. While
there are several mechanisms which seem to be plausible  a priori, the dramatic
magnitude that I estimate, often eliminating the localization effect completely over only
twenty-five years, suggests that it might be overstated.

As data on a larger set of countries, especially outside Europe, becomes available, it will
be possible to re-examine the questions I have addressed. Moreover, it might be
possible in the future to compute productivity indices that consistently account for
differences in human capital across countries and industries. In terms of specification, I
have focused on international  within-industry effects, while technology diffusion
between industries - that is, across technology space - is likely to be important as well.
Further, the temporal dimension of technology diffusion has been collapsed into one
point in time in my analysis that focuses on contemporaneous effects.

For the time being, then, what explains the level and the change in the localization
effect that are estimated? I have considered the channels of trade, FDI, and direct
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communication, proxied by data on language skills, as alternatives to distance above.
Recall that the interpretation of these findings requires caution for the reasons discussed
in section 1.3. From this analysis, it appears that a substantial portion of the distance
effect in technology diffusion, and may be all of it, can be accounted for by differences
in trade, FDI, and communication links across countries. To the extent that this finding
is confirmed by future research, this provides important information for areas where
economic policy might be effective in fostering international technology diffusion. Out
of the three channels, I estimate that trade is most important, with about two-thirds of
the total diffusion effect, while differences in FDI and language skills account for about
one-sixth each.35 These findings are to some extent specific to this sample of major
OECD countries, and it will be interesting to see by how much the estimates change
once the analysis is extended to a broader set of countries.

While it is possible to account for a substantial part of the distance effect in terms of
trade, FDI, and communication links, much less can be said at this point on what has
caused the decline in the degree of localization of technology over the sample period.
Have transport costs for goods declined dramatically over the period of 1970-95? Direct
evidence on this is scarce. Research in international trade using so-called gravity
equations has frequently shown that the volume of trade falls sharply with geographic
distance, but whether this effect has become substantially weaker during the sample
period is not settled yet.36 Thus, it cannot be ruled out that less localization of
technology diffusion is related to the higher level of economic integration through trade
that has been observed in recent years. As for foreign direct investment, the rate of
growth in multinational activity over the last two decades has been even higher than the
rate of growth of world trade, which means that FDI might also be in part what is
behind the decrease in localization of technology. And of course the recent development
of new communication technologies and the internet are strong  prima facie reasons of
why technology might have become less localized. A definitive answer in this regard,
however, must await the greater availability of relevant data, because to date, relatively
little is available on the extent to which FDI activity, communication flows, and other
indicators of channels of technology diffusion have changed over time. This will allow
to go further than this paper can towards addressing the important question of what are

                                               
35 Given the strong negative correlation of trade with distance, trade is more likely to pick up any
remaining spurious regional effect that the econometric specification does not control for than the other
two mechanisms. This suggests that the share of two-thirds is likely to be an upper bound for the relative
importance of trade in technology diffusion.
36 The estimate of the elasticity of trade with respect to distance is often not substantially smaller for more
recent periods, but this appears to be due primarily to changes in the composition of goods trade that go
unnoticed at the relatively high levels of aggregation that are frequently analyzed.
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the main causes, and implications, of the recent decline in the localization of
technological knowledge.
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Appendix

A Data on R&D Expenditures

The R&D expenditure data comes from OECD (1998). The data is in part estimated,
because not all countries conduct an annual R&D survey. I rely on the OECD estimates
of missing R&D expenditure data, which have been prepared using cubic spline
interpolation techniques. The OECD (1998) publication covers the years 1973-97;
estimates for 1970-72 are based on data in hardcopy versions of the OECD�s Basic
Science and Technology Statistics. Expenditures qualify as R&D according to the
OECD�s Frascati Manual definition.

R&D stocks are derived from expenditure data on total business enterprise intramural
R&D (denoted Ecit),37 which is available in constant 1990 $ U.S. using the OECD
purchasing power parity rates for conversion. I use the perpetual inventory method to
construct stocks, assuming that

St  =  (1 � δR) St-1  + Et-1, for t  =  1971, ..., 1995

and             (6)

S1970 =
�
�
��

�
� + RRDg

E

δ
1970   ,

where the industry and country subscripts have been suppressed. The rate of
depreciation of the R&D stock, δR, is set at 0.1, and gRD is the average annual growth
rate of S over the period of 1970-1995. I have experimented with estimating the same
specifications based on R&D data constructed with other plausible values for δR. These
results are similar to what is reported above.

                                               
37 The exception is Italy, where also extramural R&D expenditure is covered. The OECD code for this
series is BERD.



44

B Data on Labor Inputs, Physical Capital, Value Added and Gross Production

The OECD (1999a) STAN database and Pilat (1996) are the sources for these variables.
The former provides internationally comparable data on economic activity at the
industry level for OECD countries. The TFP index construction uses data on labor,
physical capital, labor compensation and industry deflators, together with value added
and gross output data as output measures. The number of workers variable is taken from
the STAN database. This includes employees as well as the self-employed, owner
proprietors and unpaid family workers. These figures are adjusted by the average annual
hours per manufacturing worker in country  c and time t to arrive at the labor input
measure, denoted L. The data on annual hours worked is from OECD (1999b); a
relatively small number of missing values has been interpolated.

The STAN database contains values on gross fixed capital formation in current prices,
which I use to construct industry-level capital stocks. First, the investment flows are
converted into constant 1990 prices using country- and industry-specific deflators that
are derived from series of value added in constant and current prices (in the STAN
database). Second, the perpetual inventory method is used to estimate the capital stocks,
with

   ctK~   = (1 � δk) 11
~

−− + ctct invK    ,  for  t = 1971, ..., 1995,  c = 1, ..., 7.

and             (7)

1970
~

cK   =
�
�
��

�
� + kgi

iinv

δ
1  ,  c = 1, ..., 7,

where industry subscripts have been suppressed. The variable inv is gross fixed capital
formation in constant prices (land, buildings, machinery and equipment), g is the
average annual growth rate of inv over the period 1970-1995, and δk is the rate of
depreciation for capital, which I have estimated to be 10%. The capital measures are
adjusted for cyclical effects in capacity utilization by estimating a smoothed gross
output series citZ~ln  (from the regression cittcicitZ ϕζ ++∂=~ln ) and then forming38

( )( )citcitcitcit ZZKK ~ln~ln1*~ −+=  , .,, tic∀

                                               
38 I impose a maximum absolute value on the adjustment term ( )citcitcit ZZ ~ln~ln −=Θ , mainly to avoid

negative capital stock estimates: when ( )citcit ZZ ~ln~ln −  > 0.8,  I set citΘ  = 0.8,  and when

( )citcit ZZ ~ln~ln −   < -0.8, I set  citΘ  = -0.8.
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With the labor and capital input variables in hand, let the parameter α be the share of the
labor in total production costs. Following the approach suggested by Hall (1990), the
α�s are not calculated as the ratio of total labor compensation to value added (the
revenue-based factor shares), but as cost-based factor shares which are robust in the
presence of imperfect competition. For this the framework of the integrated capital
taxation model of King and Fullerton (see Jorgenson 1993, Fullerton and Karayannis
1993) and data provided in Jorgenson and Landau (1993b) has been used.39

Having obtained the series on the user cost of capital and capital stock data, α is given by

KpwL
wL

′+
=α                            (8)

where wL are the constant price labor costs. Labor and capital inputs together with the
factor shares allow to construct an index of relative total inputs citcit II lnln − ,

[ ]itcitcitcit II αα +=− *lnln 2
1 [ ]itcit LL lnln −  ( ) ( )[ ]itcit αα −+−+ 11*2

1  [ ]itcit KK lnln −  ,  (9)

for all c, i, and t, where ,lnln,lnln 11
citcCitcitcCit KKLL Σ=Σ=  and citcCit αα Σ= 1 . The relative

TFP index is obtained by subtracting relative total input from relative output, see
equation (1) in the text.

I use two alternative sets of exchange rates to convert the countries� output series
(generally, this is value added, but gross output is used for specification 4.2) into the
same currency: industry-specific PPP exchange rates based on Pilat (1996) and all-
manufacturing PPP exchange rates from the STAN database, OECD (1999a). Because
Italy is not covered in Pilat�s paper, I have estimated the Italian industry-specific PPP

                                               
39 The effective marginal corporate tax rate ω is given by the wedge between before-tax (p) and after-tax
rate of return ( ρ ), relative to the former: p

p ρω −=  . The variable p is the user cost of capital. It is a

function of the statutory marginal tax rate on corporate income, available investment tax credits, the rates
of depreciation, and other determinants. In the case of equity financing, the after-tax rate of return will be

πρ += r , where r is the real interest rate and π is the rate of inflation. Jorgenson (1993) tabulates the
values for the marginal effective corporate tax rate in Table 1-1. According to the �fixed-r� strategy, one
gives as an input a real interest rate r and deduces the tax rate. In this case, I use a value of r = 0.1, which,
together with the actual values of π allows, using the relationship p

p ρω −= , to infer the user cost of

capital, p. From Jorgenson�s Table 1-1 on ω, I use the values on �manufacturing� (the 1980 values given
are used for 1970-1982 in the sample, the 1985 values for 1983-1986, and Jorgenson�s 1990 values are
used for 1987-1991).
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rates as an average of those of France, the U.K., and Germany (the other three European
countries in the sample).

A more general TFP index which allows for increasing returns to scale is employed to
investigate the robustness of the results. It is based on work by Caves, Christensen, and
Diewert (1982b):

( ) ( ) ( )εσε −+−−+= 1lnln1lnln itcitcitcitcit LLFF
�

 ( )citσ−1  ( )itcit KK lnln −  , tic ,,∀      (10)

where ln Fcit is the relative TFP index defined in equation (1) and ε is an indicator of the
returns to scale. With ε = 1, production is characterized by constant returns to scale,
while increasing returns to scale are present whenever ε  > 1 : for given levels of outputs
and inputs, productivity is lower if there are scale economies than with constant returns.
To examine the robustness of the analysis, the results of assuming a relatively small
degree of increasing returns (ε  = 1.05) are presented in Table 4.



47

References

Andrews, D. (1999)
Higher-order Improvements of a Computationally Attractive k-step Bootstrap for
Extremum Estimators, Cowles Foundation Discussion Paper No. 1230, Yale
University, August

Baldwin, R.; Forslid, R. (2000)
The Core-Periphery Model and Endogenous Growth: Stabilising and De-Stabilising
Integration, Economica 67, pp. 307-324

Blomstrom, M.; Kokko, A. (1996)
Multinational Corporations and Spillovers, CEPR Working Paper 1365, CEPR,
London

Branstetter, L. (2001)
Are Knowledge Spillovers International or Intranational in Scope?
Microeconometric Evidence from the U.S. and Japan, Journal of International
Economics 53, pp. 53-79

Caves, D. W.; Christensen, L.; Diewert, E. (1982a)
Multilateral Comparisons of Output, Input, and Productivity Using Superlative
Index Numbers, Economic Journal 92, pp. 73-86

Caves, D. W.; Christensen, L.; Diewert, E. (1982b)
The Economic Theory of Index Numbers and the Measurement of Input, Output,
and Productivity, Econometrica 50, pp. 1393-1414

Caves, R. E. (1996)
Multinational Enterprise and Economic Analysis, 2nd edition, Cambridge
University Press

Coe, D.T.; Helpman, E. (1995)
International R&D Spillovers, European Economic Review 39, pp. 859-887

Eaton, J.; Kortum, S. (1996)
Trade in Ideas: Patenting and Productivity in the OECD, Journal of International
Economics 40, pp. 251-278

Eaton, J.; Kortum, S. (1999)
International Technology Diffusion: Theory and Measurement, International
Economic Review 40, pp. 537-570

Eaton, J.; Kortum, S. (2000)
Trade in Capital Goods, mimeo, Boston University



48

Economist (2000)
Untangling E-conomics. A Survey of the New Economy, The Economist,
September 23

Edmond, C; (2000)
Some Panel Cointegration Models of International R&D Spillovers, mimeo,
Department  of Economics, UCLA, forthcoming in Journal of Macroeconomics

EU (1999)
Eurobarometer. Public Opinion in the European Union, Report No. 50, March
1999, http://europa.eu.int/en/comm/dg10/infcom/epo/eb.html

Feenstra, R. (1996)
Trade and uneven growth, Journal of Development Economics 49, pp. 229-256

Fujita, M.; Krugman, P.; Venables, A. (1999)
The Spatial Economy: Cities, Regions and International Trade, Cambridge, MA,
MIT Press

Fullerton, D.; Karayannis, M. (1993)
United States, Chapter 10 in Jorgenson and Landau (1993a), pp. 333-367

Gallup, J.L.; Sachs, J.D.; Mellinger, A.M. (1998)
Geography and economic development, NBER Working Paper  6849, Cambridge,
MA

Gaspar, J.; Glaeser, E. (1996)
Information Technology and the Future of Cities, NBER Working Paper 5562,
Cambridge, MA

Greenwood, J.; Hercowitz, Z.; Krusell, P. (1997)
Long-run Implications of Investment-Specific Technological Change, American
Economic Review 87, pp. 342-362

Griffith, R.; Redding, S.; Van Reenen, J. (2000)
Mapping two faces of R&D: Productivity growth in a panel of OECD industries,
Institute for Fiscal Studies Working Paper  2000-2, London

Griliches, Z. (1995)
R&D and Productivity: Econometric Results and Measurement Issues, in: P.
Stoneman (ed.), Handbook of the Economics of Innovation and Technological
Change, Blackwell, Oxford, pp. 52-89

Griliches, Z.; Mairesse, J. (1998)
Production Functions: The Search for Identification, in: S. Strom (ed.),
Econometrics and Economic Theory in the 20th Century. The Ragnar Risch
Centennial Symposium, Cambridge University Press, Chapter 6, pp. 169-203

http://europa.eu.int/en/comm/dg10/infcom/epo/eb.html


49

Grossman, G.; Helpman, E. (1991)
Innovation and Growth in the World Economy, Cambridge, MA, MIT Press

Hall, R.E. (1990)
Invariance Properties of Solow�s Productivity Residual, in: P. Diamond (ed.),
Growth/Productivity/Employment, MIT Press, Cambridge, MA, pp. 71-112

Hanson, G. (1998)
Market Potential, Increasing Returns, and Geographic Concentration, NBER
Working Paper  6429, February

Harrigan, J. (1997)
Technology, Factor Supplies, and International Specialization: Estimating the
Neoclassical Model, American Economic Review 87, pp.  475-494

Haveman, J. (1998)
Geographic  Distance  Data,   http://intrepid.mgmt.purdue.edu/Jon/Data/TradeData.
html #Gravity

Hulten, C. (1992)
Growth Accounting when Technical Change is Embodied in Capital, American
Economic Review 82, pp. 964-980

Jaffe, A.; Trajtenberg, M. (2000)
International Knowledge Flows: Evidence from Patent Citations, Economics of
Innovation and New Technology, forthcoming

Jaffe, A.; Trajtenberg, M.; Henderson, R. (1993)
Geographic Localization of Knowledge Spillovers as Evidenced by Patent
Citations, Quarterly Journal of Economics 108, pp. 577-598

JG (2000)
Registered Foreigners by Nationality, Table 2-15, and: Japanese Living Abroad by
Country, Table 2-16, Japan Statistical Yearbook, Statistics Bureau & Statistics
Center of Japan, http://www.stat.go.jp/english/1431-02.htm

Jorgenson, D.W. (1993)
Introduction and Summary, Chapter 1 in Jorgenson and Landau (1993a), pp. 1-56

Jorgenson, D.W.; Landau, R. (1993a)
Tax Reform and the Cost of Capital, (eds.), The Brookings Institution, Washington,
D.C.

Jorgenson, D.W; Landau, R. (1993b)
Appendix, in Jorgenson and Landau (1993a), pp. 369-406

Keller, W. (1998)
Are International R&D Spillovers Trade-related? Analyzing Spillovers Among
Randomly Matched Trade Partners, European Economic Review 42, pp. 1469-1481



50

Keller, W. (2000a)
Do Trade Patterns and Technology Flows Affect Productivity Growth?, World
Bank Economic Review 14, pp. 17-47

Keller, W. (2000b)
Geographic Localization of International Technology Diffusion, NBER Working
Paper  7509, Cambridge, MA

Leamer, E.; Levinsohn, J. (1995)
International Trade Theory: The Evidence, in G.M. Grossman, K. Rogoff (eds.),
Handbook of International Economics, Vol. 3, Elsevier, Amsterdam

McKinsey (2000)
Why the Japanese Economy is not Growing: Micro Barriers to Productivity
Growth, McKinsey Global Institute, Washington, D.C., July 2000

OECD (1998)
ANBERD. Basic Science and Technology Statistics, various years, OECD, Paris

OECD (1999a)
STAN Database for Industrial Analysis, OECD, Paris, various years

OECD (1999b)
OECD Employment Outlook, OECD, Paris, various years

OECD (1999c)
Activities of Foreign Affiliates, OECD, Paris, 1999

Pilat, D. (1996)
Competition, Productivity, and Efficiency, OECD Economic Studies 27, pp. 107-
146

Redding, S.; Venables, A. (2000)
Economic geography and international inequality, working paper, London School
of Economics, September

Samuelson, P. (1954)
The Transfer Problem and Transport Costs, II: Analysis of Effects of Trade
Impediments, Economic Journal 64, pp.  264-289

Scarpetta, S.; Bassanini, A.; Pilat, D.; Schreyer, P. (2000)
Economic Growth in the OECD Area: Recent Trends at the Aggregate and Sectoral
Level, OECD Economics Department Working Paper 248

Scherer, F. (1984)
Using Linked Patent and R&D Data to Measure Interindustry Technology Flows, in
Z. Griliches (ed.), R&D, Patents, and Productivity, The University of Chicago Press
for NBER, pp. 417-461



51

Sjöholm, F. (1996)
International transfer of knowledge: The role of international trade and geographic
proximity, Weltwirtschaftliches Archiv 132, pp. 97-115

StatCan (2000)
Population Able to Speak Various Languages, Table 6_7.IVT, 1996 Population
Census, unpublished material

Trefler, D. (1995)
The Case of the Missing Trade and other Mysteries, American Economic Review
85, pp. 1029-1046

West, A.; Edge, A.; Stokes, E.; (2000)
Examination and assessment of data on foreign language learning, final report,
Centre for Educational Research, London School of Economics and Political
Science, May 2000


	HWWA Discussion Paper 123
	The Geography and Channels of Diffusion at the World’s Technology Frontier
	Impressum
	Contents
	Abstract
	Zusammenfassung
	Acknowledgement
	Introduction
	1. EMPIRICAL SETTING
	1.1	Major Country and Industry Characteristics in Terms of GDP and R&D
	1.2	Geographic Features of the Sample
	1.3	Bilateral Trade and Foreign Direct Investment Patterns and Data on Language Skills
	1.4	Multi-Lateral Total Factor Productivity Indices
	1.4.1	Industry-Level Productivity and Average Productivity over Time


	2.	ESTIMATION EQUATION AND ECONOMETRIC ISSUES
	3.	ESTIMATION RESULTS
	3.1	Geographic Distance in International Technology Diffusion
	3.2	Sensitivity Analysis
	3.3	Technology Diffusion over Time
	3.4	Beyond Distance: Trade, Foreign Direct Investment, and Communication as Channels of International Technology Diffusion

	4.	SUMMARY AND DISCUSSION
	List of Tables
	Table 2.1:	Bilateral Distance between Capital Cities (Kilometers)
	Table 2.2:	Bilateral Trade Shares
	Table 2.3:	Bilateral Foreign Direct Investment Shares
	Table 2.4:	Patterns of Bilateral Language Knowledge
	Table 3:	Geography and Technology Diffusion
	Table 4:	Sensitivity Analysis
	Table 5:	The Localization of Technology Diffusion over time
	Table 6:	Trade, FDI, and Language Skills as Channels of Technology Diffusion

	List of Figures
	Figure 1: Comparing Relative Productivity with and without Correcting for Differences in Input Usage
	Figure 2: Productivity Convergence or Divergence: Analysis within and between  Countries
	Figure 3:  Bilateral Technology Diffusion Conditional on Geographic Distance
	Figure 4: Changes in the Geographic Scope of International Technology Diffusion over Time  
	Figure 5:	Total Inward  Technology  Diffusion  and  Relative  Importance  of
	Figure 6: Relative Importance of G-7 Partner Countries in International Technology Diffusion - All Channels  
	Figure 7:	Comparison of a Distance-Based Measure of the Relative Importance of Foreign Sources of Technology with Another

	Appendix
	A.  Data on R&D Expenditures
	B.  Data on Labor Inputs, Physical Capital, Value Added and Gross Production

	References

