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Abstract

This paper develops a sample selection model for fractional response variables, i.e., variables

taking values in the [0, 1]-interval. It provides an extension of the Papke and Wooldridge (1996)

fractional probit model to the case of non-random sample selectivity. The model differs from

the Heckman sample selection model by specifying a main equation which is consistent with the

bounded nature of the fractional outcome variable. The proposed model is parametric and does

usually not require an exclusion restriction to hold, which makes is useful for empirical practice.

A simulation study indicates that the gains of imposing a (valid) exclusion restriction are quite

small, particularly with respect to the estimation of marginal effects, while imposing a wrong

exclusion restriction leads to severely biased estimates. Finally, an empirical application to the

impact of education on women’s perceived probability of job loss is provided, which illustrates

that the choice of an appropriate model is important in practice. In particular, the Heckman

selection model and the fractional probit model are found to underestimate (in absolute terms)

the impact of education on the perceived probability of job loss.

Keywords: Fractional probit model, Fractional response variable, Sample selection bias, Sam-

ple selection model

JEL codes: C24, C25
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1 Introduction

This paper deals with fractional response variables, i.e., variables which take values in the

[0, 1]-interval. Typical fractional response variables are share variables, e.g., the share of

exports in total sales (Wagner, 2001). However, also other variables which are naturally

bounded between zero and one fall into this class, such as the probability that a certain

event (like job loss) occurs. Fractional response variables appear quite often in empirical

economic research. Papke and Wooldridge (1996) consider employee participation rates in

401 (k) pension plans. Wagner (2001) analyzes the share of exports in total sales. Papke

and Wooldridge (2008) examine test pass rates. Ramalho et al. (2011) investigate the

capital structure decisions of Portuguese small and medium enterprises. Gallani et al.

(2015) study fractional response variables in accounting research. Of course, this list is

not exhaustive.

Since fractional response variables are bounded, assuming a linear model (which can

be estimated by ordinary least squares) relating a fractional response variable to a set of

explanatory variables might not be appropriate, as predictions might fall outside of the

[0, 1]-interval. Also, marginal effects might not be estimated accurately if the bounded

nature of the fractional response variable is not taken into account. To overcome these

problems, Papke and Wooldridge (1996) introduced a class of fractional response models,

from whom the fractional logit and the fractional probit models are the most popular

ones. The idea of Papke and Wooldridge (1996) is to specify not the full conditional

distribution of the fractional response variable but only its conditional mean. Let y denote

the fractional response variable and x the set of explanatory variables with conformable

parameter vector β. Then, the conditional mean is specified as

E[y|x] = G(x′β), (1)

where G(·) denotes a function bounded between zero and one, typically a cumulative

distribution function like the logistic (fractional logit model) or the normal (fractional

probit model). This link function ensures that the model’s prediction lie between zero
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and one, making them consistent with the nature of the fractional response variable.

Based on the seminal model developed by Papke and Wooldridge (1996), several ex-

tensions and modifications of the fractional logit and probit models have been proposed.

Papke and Wooldridge (2008) further develop their original model to the case of panel

data. Wooldridge (2010) describes how to estimate a fractional response model in the

presence of endogenous explanatory variables. A survey on fractional response models

is provided by Ramalho et al. (2011). Ramalho et al. (2011) also consider a two-part

model for cases when there is a large portion of observations located at the bounds of the

fractional response variable. Schwiebert and Wagner (2015) extend this two-part model

to allow for correlation in unobservables.

I contribute to this literature by developing a sample selection model for fractional

response variables. To my best knowledge, this has not been done so far. Since Heckman’s

(1979) seminal paper, the sample selection bias problem is well known to economists and

numerous researchers have applied the Heckman sample selection model to overcome

the selection bias. Following Heckman’s (1979) seminal contribution, several authors

have proposed modifications and extensions of the sample selection model. One strand

of research seeks to relax the bivariate normality assumption of the classical Heckman

selection model by using semi-nonparametric estimation approaches. Examples include

Gallant and Nychka (1987), Ahn and Powell (1993), Kyriazidou (1997), Das et al. (2003),

Newey (2009), Klein et al. (2011) and Schwiebert (2015a). Another strand of research

seeks to extend the Heckman selection model to the case of endogenous covariates, e.g.,

Semykina and Wooldridge (2010), Schwiebert (2015a) and Schwiebert (2015b). A third

strand of research considers an extension of the Heckman selection model to non-linear

models such as the probit model, e.g., van de Ven and van Praag (1981) and Klein et al.

(2011). The paper at hand belongs to the third strand.

The sample selection model developed here relies on parametric assumptions regard-

ing the distribution of error terms, as in the classical Heckman sample selection model.

The advantage of this parametric model is that it usually does not require an exclusion

restriction to hold, which makes it beneficial in empirical applications since exclusion re-
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strictions are often unavailable. It might be argued that in the absence of an exclusion

restriction the identification of parameters is only provided by the specified underlying

distribution, making the estimates less robust in case of distributional misspecification.

Moreover, even when the distributional assumptions are fulfilled, the exclusion restriction

might lead to better estimates in terms of less bias and a higher precision. However, a

Monte Carlo simulation study given in this paper suggests that the benefits of imposing a

valid exclusion restriction are fairly small. On the other hand, it is shown that imposing

a wrong exclusion restriction leads to severely biased estimates, while the bias is consid-

erably lower when no exclusion restriction is used. This indicates that it might be better

to impose no exclusion restriction at all rather than using a wrong exclusion restriction.

This paper also contains an empirical application to study the impact of education on

women’s perceived probability of job loss. As indicated above, the perceived probability

that a certain event – like job loss – occurs, can also be interpreted as a fractional re-

sponse variable, although the term “fractional” might be misleading. Since the perceived

probability of job loss is only observed for women who are working, the observed sample

can be considered a non-random sample from the overall population of women. Thus,

a sample selection model for fractional response variables appears to be an appropriate

modeling device.

The paper is organized as follows. Section 2 develops the econometric model and

discusses issues of specification, estimation and inference. Section 3 provides the results

from the Monte Carlo simulation study. Section 4 contains the empirical application.

Finally, Section 5 concludes the paper.

2 Econometric Model

2.1 Econometric Model, Estimation and Inference

I consider the following econometric model:

y∗i = Φ(x′
iβ + ui) (2)
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zi = 1(w′
iγ + εi > 0) (3)

yi = ziy
∗
i , (4)

where i = 1, . . . , n indexes the individuals, y∗i is a latent dependent variable whose data

generation process is characterized by a fractional probit model (Φ(·) denotes the standard

normal cdf), zi is an observed binary variable indicating whether an individual has a

“missing” outcome (zi = 0) or not (zi = 1), and yi is the observed dependent variable. The

vectors xi and wi contain observed explanatory variables, while β and γ are corresponding

vectors of parameters. Finally, ui and εi denote error terms, which capture the aggregated

effects of unobserved variables. These error terms are assumed to follow a (conditional)

bivariate normal distribution, i.e.,







ui

εi






|xi, wi ∼ N













0

0






,







1 ρ

ρ 1












, i = 1, . . . , n (5)

where ρ ∈ (−1, 1) denotes the correlation parameter. The variances of one have been

chosen due to normalization, since the parameters are only identified up to scale. Note that

the fact that εi has a (conditional) normal distribution implies that the data generation

process of zi is characterized by a probit model, i.e., E[zi|wi] = Φ(w′
iγ).

In the terminology of the Heckman sample selection model, Eq. (2) is called the main

equation of interest and Eq. (3) the selection equation. The selection equation determines

whether the latent dependent variable y∗i is observed – in which case it is equal to the

observed dependent variable yi – or not (“missing”). Sample selectivity is a problem if the

selection into the fully observed sample occurs in a non-random fashion; this is the case

when the correlation parameter ρ is different from zero. In that case, estimating the main

equation of interest using only individuals with observed dependent variable introduces

a bias into the estimates if the sample selectivity is not taken into account. Due to the

similarity of the model above to the Heckman sample selection model, I call this model

the “Heckfrac”-model.

The model is a direct extension of the fractional probit model proposed by Papke and
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Wooldridge (1996), with the difference, however, that not only the conditional mean is

specified but the full underlying distribution. This is needed to link the main equation to

the selection equation in the style of the classical Heckman selection model. If the sample

selectivity is fully random, i.e., when ρ = 0, then an application of the fractional probit

model to the fully observed sample using the conditional mean specification E[yi|xi] =

Φ(x′
iβ/

√
2) will give consistent estimates of β; however, when ρ 6= 0, the estimates might

be contaminated by sample selection bias.

The Heckfrac model differs from the Heckman (1979) sample selection model in the

specification of the main equation. The Heckman selection model assumes a linear rela-

tionship between y∗i and the explanatory variables xi:

y∗i = x′
iβ + ui (6)

zi = 1(w′
iγ + εi > 0) (7)

yi = ziy
∗
i (8)







ui

εi






|xi, wi ∼ N













0

0






,







σ2
u ρ

ρ 1












. (9)

By contrast, the Heckfrac model assumes a nonlinear relationship between y∗i and xi

through the standard normal cdf Φ(·). This link function ensures that the predicted values

generated by the model are in the [0, 1]-interval and are thus consistent with the nature

of the fractional response dependent variable. By contrast, the Heckman (1979) sample

selection model might not be the optimal modeling device for fractional response variables

since the predictions might fall outside of [0, 1] due to the linearity assumption. The latter

property is, however, important in empirical practice since the Heckman selection model

is often used for the imputation (i.e., prediction) of missing values (e.g., Krug, 2010). A

second drawback of applying the Heckman selection model to fractional response variables

is that the marginal effects of a change in xi on the latent outcome variable y∗i might not

be estimated accurately if an underlying linear relationship is assumed. This issue will be

investigated in the Monte Carlo simulation study below.
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One might raise the question why the Heckfrac model cannot be simply transformed

into a Heckman selection model by applying the inverse of the standard normal cdf to

both sides of Eq. (2). The reason is that y∗i may also take the bounding values of zero and

one, in which case the inverse of the standard normal cdf would yield a value of minus or

plus infinity, respectively, making the associated observations unusable for econometric

analysis. Especially when the fraction of observations with bounding values is quite large,

omitting these observations might introduce a bias into the estimates.

The Heckfrac model has many similarities with a sample selection model for a binary

dependent variable, sometimes called the Heckprob model. This model has been proposed

by van de Ven and van Praag (1981) and has often been applied in empirical research;

see, e.g., Greene (2012), pp. 920-921, and the references cited therein. Indeed, if Eq. (2)

is replaced with y∗i = 1(x′
iβ + ui > 0), the model is identical to the Heckprob model. I

exploit the similarity between the Heckfrac and the Heckprob model to set up a quasi

log-likelihood function from which the model parameters can be consistently estimated.

Structurally, the Heckprob model has the following log-likelihood function:

logL =

n
∑

i=1

li ≡
n
∑

i=1

{(1− zi) log(1−E[zi|wi]) + zi logE[zi|wi]

+zi[(1− yi) log(1−E[yi|xi, wi, zi = 1]) + yi logE[yi|xi, wi, zi = 1]]} . (10)

In the Heckprob model, this log-likelihood function can be derived directly from the

underlying distributional assumptions. Although this log-likelihood function cannot be

derived from the Heckfrac model, the same likelihood function can be used to obtain

consistent estimates of the model parameters. The idea behind this quasi maximum

likelihood (QML) approach is that a correct specification of the conditional means E[zi|wi]

and E[yi|xi, wi, zi = 1] is sufficient to consistently estimate the parameters of interest

(e.g., Gourieroux, Monfort and Trognon, 1984). From the distributional assumptions

made above, the following expressions of these conditional means can be derived:

E[zi|wi] = Φ(w′
iγ) (11)
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E[yi|xi, wi, zi = 1] = E[y∗i |xi, wi, zi = 1] =
Φ2

(

x′

iβ√
2
, w′

iγ,
ρ√
2

)

Φ(w′
iγ)

, (12)

where the first equation simply follows from the fact that εi has a (conditional) univariate

normal distribution. In the second equation, Φ2(·, ·, ρ̃) denotes the bivariate standard

normal cumulative distribution function with correlation ρ̃. The derivation of the second

equation is quite tedious and is given in Appendix 1. Putting the conditional means into

Eq. (10), one obtains the following log-likelihood function:

logL(θ) =

n
∑

i=1

li(θ) ≡
n
∑

i=1

{(1− zi) log(1− Φ(w′
iγ)) + zi log Φ(w

′
iγ)

+zi

[

(1− yi) log

(

1− Φ2(x
′
iβ/

√
2, w′

iγ, ρ/
√
2)

Φ(w′
iγ)

)

+yi log
Φ2(x

′
iβ/

√
2, w′

iγ, ρ/
√
2)

Φ(w′
iγ)

]}

, (13)

where θ = (β ′, γ′, ρ)′ denotes the parameter vector to be estimated.

If the variance of the main equation’s error term ui, σ
2
u, was allowed to be unrestricted,

we would have

E[yi|xi, wi, zi = 1] =

Φ2

(

x′

iβ√
1+σ2

u

, w′
iγ,

ρσu√
1+σ2

u

)

Φ(w′
iγ)

.

However, since the QML approach only identifies β∗ ≡ β/
√

1 + σ2
u and ρ∗ ≡ ρσu/

√

1 + σ2
u,

a normalization is needed. As mentioned above, I chose the normalization σ2
u = 1.

The log-likelihood function can be maximized in the usual manner to obtain estimates

of the model parameters. Let θ̂ denote the (quasi) maximum likelihood estimator of θ0,

where θ0 denotes the true value of θ. I impose the following assumptions:

Assumption 1 We observe an i.i.d. sample {(yi, zi, xi, wi)}ni=1 from a distribution sup-

ported on Ω and sampled according to Eqs. (2)-(5).

Assumption 2 The true value of the parameter vector θ, θ0, lies in the interior of Θ, a

compact subset of Rdim(θ).
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Let

λi(θ) ≡
1√

1−ρ2/2
φ

(

w′

iγ−(ρ/2)x′

iβ√
1−ρ2/2

)

Φ

(

w′

iγ−(ρ/2)x′

iβ√
1−ρ2/2

)

denote the inverse Mills ratio term.

Assumption 3 The matrices E[wiw
′
i] and E[qi(θ)qi(θ)

′] are positive definite for all θ ∈

Θ, where qi(θ)
′ ≡ (x′

i, λi(θ)).

Assumption 1 is a standard assumption on the sampling process, while Assumption 2

is a standard assumption on the parameter space. Assumption 3 contains identification

conditions. Assumption 3 rules out “multicollinearity” among the variables in wi and xi,

respectively, but also rules out perfect collinearity between xi and the inverse Mills ratio

term λi(θ). This latter identification condition is well-known from the “classical” Heckman

sample selection model and also applies here, albeit in a slightly different fashion.1 As

shown in the proof of Theorem 1, the absence of perfect collinearity between xi and λi(θ)

ensures that the impact of β can be disentangled from the impact of ρ.

One can now establish the consistency of θ̂:

Theorem 1 Under Assumptions 1-3, θ̂
p→ θ0.

The proofs of this and the following theorems are given in Appendix 2.

Next I provide an asymptotic normality result for the estimator. To do this, some

additional assumptions are needed:

Assumption 4 The random variables contained in xi and wi have finite third absolute

moment.

Assumption 5 The matrix A0 ≡ E
[

∂2li(θ0)
∂θ∂θ′

]

is negative definite.

Assumption 4 imposes moment conditions which are needed for several convergence results

to hold; see the proofs in Appendix 2. Assumption 5 requires that the expected value of

1In the “classical” Heckman sample selection model, the inverse Mills ratio term is
φ(w′

i
γ)

Φ(w′

i
γ) .
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the matrix of second derivatives of the log-likelihood function is negative definite, which

is needed for a well-defined asymptotic distribution.

The asymptotic normality of θ̂ is given in the following theorem:

Theorem 2 Under Assumptions 1-5,
√
n(θ̂ − θ0)

d→ N (0, V0), where V0 ≡ A−1
0 B0A

−1
0

and B0 ≡ E
[

∂li(θ0)
∂θ

∂li(θ0)
∂θ′

]

.

Note that the asymptotic variance matrix of θ̂, V0/n, is of the “sandwich”-type, which

is due to the fact that the log-likelihood function is not based on the true distribution

of zi and y∗i and, therefore, the information equality does not apply. In practice, the

asymptotic variance of θ̂ has to be estimated in order to calculate standard errors and

perform hypotheses tests. Define

V̂ ≡ (Â)−1B̂(Â)−1 (14)

Â ≡ 1

n

n
∑

i=1

∂2li(θ̂)

∂θ∂θ′
(15)

B̂ ≡ 1

n

n
∑

i=1

(

∂li(θ̂)

∂θ

∂li(θ̂)

∂θ′

)

(16)

and consider a Wald test of the hypotheses H0 : R(θ) = 0, where R(θ) is an (r×1)-vector

whose elements are continuously differentiable w.r.t. θ. The matrix of partial derivatives

∂R(θ)/∂θ′ is required to have full row rank at θ0. The Wald test statistic is

W = R(θ̂)′

(

∂R(θ̂)

∂θ′
(n−1V̂ )

∂R(θ̂)

∂θ

)−1

R(θ̂). (17)

The following theorem establishes that V̂ is a consistent estimator of V0, that the

Wald statistic has the usual χ2-distribution with degrees of freedom equal to the number

of hypotheses, and that the Wald test is consistent, i.e., the Wald test statistic approaches

infinity when the alternative Ha is true:

Theorem 3 Under Assumptions 1-5, (a) V̂
p→ V0, (b) W

d→ χ2
r under H0 and W

p→ +∞

under Ha.
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If there is no non-random sample selectivity, an application of the fractional probit

model to the main equation using only individuals with observed dependent variable

yields consistent estimates of the parameters of interest. The Wald test can be used to

test for the absence of non-random sample selectivity, which amounts to a test of the null

hypothesis ρ = 0. If the null hypothesis is rejected, this indicates that an application of

the fractional probit model to the main equation of interest using only individuals with

observed dependent variable might lead to inconsistent estimates.

2.2 Exclusion Restriction

Imposing an exclusion restriction means that the explanatory variables in the selection

equation (wi) should include at least one variable which is not included among the ex-

planatory variables in the main equation (xi). As raised in the introduction, this condition

is usually not needed for parameter identification in the Heckfrac model. Strictly math-

ematically, however, there may occur one situation in which it is needed. In the absence

of an exclusion restriction, we have that wi = xi. Then, the inverse Mills ratio term

introduced above becomes

λi(θ) =

1√
1−ρ2/2

φ

(

x′

iγ−(ρ/2)x′

iβ√
1−ρ2/2

)

Φ

(

x′

iγ−(ρ/2)x′

iβ√
1−ρ2/2

) =

1√
1−ρ2/2

φ

(

x′

i(γ−(ρ/2)β)√
1−ρ2/2

)

Φ

(

x′

i(γ−(ρ/2)β)√
1−ρ2/2

) .

With regard to Assumption 3, a lack of identification occurs if

γ − (ρ/2)β = 0,

as in this case the constant term of the main equation would not be distinguishable from

the (constant) inverse Mills ratio. However, this situation should not occur, for example,

if there is at least one parameter in β having a different sign than its counterpart in γ.

Nevertheless, imposing an exclusion restriction might be beneficial for two reasons.

First, an exclusion restriction might lead to more precise and less biased estimates, since

identification relies not only on distributional assumptions. In particular, an exclusion
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restriction might reduce the collinearity between the inverse Mills ratio term and the

explanatory variables in xi. Second, an exclusion restriction might lead to less biased

estimates in case of distributional misspecification, as the exclusion restriction provides

another source of identification. These two points will be investigated in the Monte Carlo

simulation study below.

In semi-/nonparametric sample selection models, an exclusion restriction is usually

required – see, e.g., Das at al. (2003), Newey (2009) or Klein et al. (2011). However,

in empirical practice it is often difficult or even impossible to establish a valid exclusion

restriction. If a wrong exclusion restriction is imposed, this might lead to severely biased

estimates. This raises the question whether it is better to use no exclusion restriction at

all rather than imposing a wrong exclusion restriction. This issue, which is highly relevant

from a practical point of view, will also be investigated in the Monte Carlo simulation

study below.

2.3 Marginal Effects

So far, the discussion focused on the identification and estimation of the parameters of

the Heckfrac model. However, researchers are typically more interested in the effects of

the explanatory variables on the dependent variable, i.e., in marginal effects. In a sample

selection model, researchers are typically interested in the marginal effect of an increase

in xi on the latent dependent variable y∗i . This marginal effect, m(xi, θ), is the change

in E[y∗i |xi] due to a marginal change in xi. For simplicity, I assume that all explanatory

variables are continuous. An extension of the following results to the case of discrete

explanatory variables is straightforward. We have that

E[y∗i |xi] = Φ

(

x′
iβ√
2

)

(18)

and

m(xi, θ) = φ(x′
iβ/

√
2)β/

√
2, (19)
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where φ(·) denotes the standard normal probability density function. The average marginal

effect is then

AME ≡ E[m(xi, θ)], (20)

which can be estimated by

ÂME =
1

n

n
∑

i=1

m(xi, θ̂). (21)

Note that m(xi, θ), ÂME and AME are vectors, where each element contains the (aver-

age) marginal effect associated with a particular variable included in xi.

Next, I provide theorems on the consistency of ÂME for AME0, where AME0 ≡

E[m(xi, θ0)] denotes the true value of AME, and on the asymptotic normality of ÂME.

Assumption 6 The matrix M0 ≡ E[m̃(xi, θ0)m̃(xi, θ0)
′], where m̃(xi, θ0) ≡ m(xi, θ0) −

AME0 − E
[

∂m(xi,θ0)
∂θ′

]

A−1
0

∂li(θ0)
∂θ

, is positive definite.

Theorem 4 Under Assumptions 1-3, ÂME
p→ AME0.

Theorem 5 Under Assumptions 1-6,
√
n(ÂME − AME0)

d→ N (0,M0).

Define

M̂ ≡ 1

n

n
∑

i=1

(

ˆ̃m(xi, θ̂) ˆ̃m(xi, θ̂)
′
)

, (22)

where

ˆ̃m(xi, θ̂) ≡ m(xi, θ̂)− ÂME −
(

1

n

n
∑

i=1

∂m(xi, θ̂)

∂θ′

)

Â−1∂li(θ̂)

∂θ
, (23)

and consider a Wald test of the hypotheses H0 : R(AME) = 0, where R(AME) is a

(r× 1)-vector whose elements are continuously differentiable w.r.t. AME. The matrix of
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partial derivatives ∂R(AME)/∂AME ′ is required to have full row rank at AME0. The

Wald test statistic is

W = R(ÂME)′

(

∂R(ÂME)

∂AME ′
(n−1M̂)

∂R(ÂME)

∂AME

)−1

R(ÂME). (24)

Theorem 6 Under Assumptions 1-6, (a) M̂
p→ M0, (b) W

d→ χ2
r under H0 and W

p→

+∞ under Ha.

It thus follows that the estimated asymptotic variance of ÂME is M̂/n. The standard

errors of the estimated marginal effects can then be derived in the usual manner, i.e., as

the square roots of the diagonal elements of M̂/n. In empirical practice, using Stata

might be a convenient option, since the margins command of Stata, in conjunction with

the vce(unconditional) option, calculates estimated marginal effects and standard errors

in the same manner as implied by the formulas given above (see StataCorp 2015, pp.

1359-1414). I used Stata’s margins command for the calculation of estimated marginal

effects and standard errors in the simulation study and the empirical application presented

below.

3 Simulation Study

The purpose of the Monte Carlo simulation study is twofold. First, I seek to analyze

the finite sample properties of the proposed QML estimator of the Heckfrac model and

compare these results to those generated from competing models – the Heckman sample

selection model and the fractional probit model. Second, I want to investigate how the

QML estimator behaves under distributional and functional form misspecification. An

important focus of this simulation study lies on the pros and cons of imposing an exclusion

restriction, with the central question of interest being whether imposing an exclusion

restriction can be more harmful than useful in empirical practice.

The simulated data are generated as follows:

y∗i = Φ(β0 + β1xi1 + β2xi2 + ui) (25)
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zi = 1(γ0 + γ1xi1 + γ2xi2 + εi > 0) (26)

yi = ziy
∗
i . (27)

The explanatory variables xi1 and xi2 are generated as

xi1 = ξi + νi1 (28)

xi2 = ξi + νi2, (29)

where the ξi’s, νi1’s and νi2’s are i.i.d. draws from a standard normal distribution. Hence,

the covariates are assumed to exhibit some correlation, which is quite realistic in applica-

tions. The true values of β0, β1, γ0, γ1 and γ2 are β0 = −1, β1 = 0.5, γ0 = 0, γ1 = γ2 = 1.

To study the finite sample properties of the QML estimator, I assume that the distri-

butional assumptions are correct, i.e.,

(

ui, εi

)

∼ N













0

0






,







1 ρ

ρ 1












. (30)

Moreover, I assume that the exclusion restriction holds, i.e., β2 = 0. The questions to be

answered are:

1. How well does the QML estimator estimate the parameters?

2. Does imposing a (correct) exclusion restriction improve the performance of the es-

timator in terms of the root mean squared error (RMSE)?

3. How large is the bias generated from using seemingly inadequate models (Heckman

selection model and fractional probit model)?

While the Heckman selection model is expected to yield biased estimates because the

underlying linearity assumption on the main equation might be inadequate, the fractional

probit model is only expected to yield biased estimates when ρ 6= 0, as in that case non-

random sample selectivity occurs and, thus, an application of the fractional probit model

to the fully observed sample does not properly account for the sample selection.
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Sample sizes of 500, 1,000 and 2,000 are considered. Three values of ρ (0.0, 0.5 and 0.9)

are used to analyze how the estimator performance depends on the degree of dependence.

Each simulation comprises 1,000 repetitions. Over these repetitions, the mean of the

parameter estimates and the associated root mean squared error (RMSE) are calculated.

Since parameter estimates are not really comparable across the different models under

consideration, I also estimated for each model the marginal effect of variable xi1 on the

latent dependent variable y∗i . Since marginal effects are mostly relevant for practitioners,

biases in marginal effects indicate that model choice is important in empirical practice.

The estimates for the Heckman selection model are generated using the two-step es-

timation approach. That is, in a first step the selection equation is estimated by probit

and these estimates are used to calculate the inverse Mills ratio term. In a second step,

the main equation is augmented by the inverse Mills ratio term and estimated by OLS.

Alternatively, the full model could have been estimated in one step by applying the max-

imum likelihood method. However, the two-step estimator requires fewer assumptions

than the maximum likelihood estimator. In particular, the error terms ui and εi need

not be bivariate normally distributed, but it suffices that E[ui|εi] = δεi for some fixed

parameter δ and εi ∼ N (0, 1) (see Wooldridge, 2010, p. 803). Due to these less restrictive

assumptions, the two-step approach seems to be more appropriate when the dependent

variable is a fractional response variable rather than a continuous variable.

The simulation results are given in Tables 1-3. Table 1 contains the results for ρ = 0,

Table 2 for ρ = 0.5 and Table 3 for ρ = 0.9. In case of the Heckfrac and Heckman

selection models, the tables include results for models with and without (correct) exclusion

restriction.

Turning to the results, it can be seen from Tables 1-3 that the QML estimator of

the Heckfrac model estimates the parameters well for all sample sizes, irrespective of the

degree of dependence. Moreover, as expected, the RMSE’s decline with increasing sample

size. Also, the average marginal effects are estimated well and are close to their true

values for all sample sizes under consideration.

Now I investigate what happens if the Heckman selection model or the fractional probit
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model, respectively, are used for estimation. Tables 1-3 show that the selection equation

parameters are estimated well when the Heckman selection model is used. This is no

coincidence, since in the Heckman selection model the selection equation is assumed to be

of the probit type, which is indeed true. The parameter estimates of the main equation are

biased, but they are not really comparable with those from the Heckfrac model. However,

the marginal effects are comparable. Tables 1-3 show that the estimated marginal effects

from the Heckman model substantially differ from the estimated marginal effects derived

from the true model, the Heckfrac model. Moreover, the difference becomes larger as

ρ increases. The simulation results thus indicate that the estimates from the Heckman

selection model are biased when the main equation of interest is not a linear relationship.

Considering the results from the fractional probit model, Table 1 shows that the pa-

rameter estimates and estimated marginal effects are very close to those from the Heckfrac

model. Note that no estimates are given for the selection equation parameters, since in

case of the fractional probit model it is assumed that there is no non-random sample

selectivity. As expected, the fractional probit model yields almost the same estimates

as the Heckfrac model when ρ = 0, since in that case there is no non-random sample

selectivity. However, as ρ increases (Tables 2 and 3), the parameter estimates become

different and also the marginal effects begin to differ. This indicates that the estimates

from the fractional probit model are biased when non-random sample selectivity is an

issue.

It can also be seen from Tables 1-3 that imposing an exclusion restriction leads to

substantial RMSE gains only for the estimates of β0 and ρ. As raised in Sec. 2.2, this

might come from the higher collinearity between the constant term of the main equation

and the inverse Mills ratio term when an exclusion restriction is absent. With regard to

the estimation of β1, there are some gains in terms of RMSE when an exclusion restriction

is imposed, but the gains seem to be quite small. Also for the estimated marginal effects,

which might be the most important quantity for researchers, the RMSE gains are very

small.

Next, I investigate the performance of the QML estimator of the Heckfrac model un-
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der distributional misspecification. Now I assume that the joint distribution of (ui, εi)

is characterized by a distribution function F , where F is composed of a copula and spe-

cific marginal distributions. The joint normal distribution of the Heckfrac model can

be interpreted as a Gaussian copula with normal marginal distributions. Loosely speak-

ing, a copula is a function which couples pre-specified marginal distributions into a joint

distribution; see, e.g., Nelsen (2006) for an introduction to copula theory. The copula

interpretation is appealing, since it allows to separately investigate the effects of a mis-

specification of features of the joint distribution versus the effects of a misspecification of

the marginal distributions. This shows what kind of violation of distributional assump-

tions is more critical in practice.

In the first step, I hold the copula and, thus, features of the joint distribution constant

and alter the marginal distributions. In the second step, I hold the marginal distributions

constant and change the copula. Since the sample selection model assumes a joint normal

distribution of error terms, in the first step the copula is fixed at the Gaussian copula and

in the second step the marginal distributions are fixed at univariate normal distributions. I

investigate the following distributional violations. In the first step, I specify three different

marginal distributions for both ui and εi: the logistic distribution, the t distribution with

three degrees of freedom and the Gumbel distribution with zero mean. These marginal

distributions seem to be interesting because they represent different degrees of violation

of normality: while the logistic distribution is quite close to the normal distribution, the t

distribution has thicker tails and the Gumbel distribution is skewed. In the second step,

I specify four different copulas: the t copula with three degrees of freedom, the Clayton

copula, the Gumbel copula and the Frank copula. These copulas have been chosen because

they represent dependence patterns and/or tail behavior which are quite different from

those of the Gaussian copula. For instance, the t copula has thicker tails, while the Clayton

copula represent lower tail dependence while the Gumbel copula represents upper tail

dependence (see Schmidt, 2007). To make the copulas more comparable, the dependence

parameters of these copulas have been chosen in a way that the same degree of dependence

as measured by Kendall’s τ is implied, as in Schwiebert (2016); here, I set τ = 0.5. The
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error terms ui and εi are then simulated from the joint distributions implied by the copulas

and the associated marginal distributions. Simulation of random variates from copulas is

described in Schmidt (2007), for instance.

In the following, estimates from the Heckfrac model without exclusion restriction are

compared to those from the Heckfrac model with exclusion restriction. Only marginal

effects are considered because these are the most important quantities from a practical

point of view. The sample size is set to n = 2, 000 and the number of repetitions is again

1,000.

The misspecification analysis addresses three issues:

1. How well does the QML estimator perform under distributional misspecification?

Does the bias depend on whether the copula or the marginal distributions have been

misspecified?

2. A correct exclusion restriction might improve the performance of the QML estimator

under distributional misspecification (in terms of bias and RMSE), as identification

does not solely rely on distributional assumptions. To what extent is this conjecture

true?

3. What happens to the estimator performance (in terms of bias) if a wrong exclusion

restriction is imposed?

Table 4 contains the case where the exclusion restriction holds (β2 = 0). Table 4 shows

that the QML estimator of the Heckfrac model also performs well under distributional

misspecification, with estimated marginal effects close to the true values. This result does

not depend on whether the copula or the marginal distributions have been misspecified.

Moreover, there are virtually no RMSE gains of imposing a valid exclusion restriction.

Table 5 considers the case of a violation of the exclusion restriction, as β2 now takes

positive values. Table 5 reports the bias of the estimates relative to the true values, hence

the numbers in the table are percentage deviations from the true values. The numbers in

parentheses are the numbers of times the QML estimator failed to converge. These num-

bers show that the QML estimator becomes more unstable (in terms of non-convergence)
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under some distributions when no exclusion restriction is imposed and β2 is relatively

large, while there are almost no cases of non-convergence when an exclusion restriction is

imposed. This indicates to some extent that imposing an exclusion restriction strengthens

the parameter identification under distributional misspecification. This notwithstanding,

Table 5 also clearly shows that imposing a wrong exclusion restriction leads to much

larger biases than not imposing an exclusion restriction at all. Only in case of a small

violation of the exclusion restriction (β2 = 0.1) is the bias of the model with exclusion

restriction rather small. However, the stronger the violation of the exclusion restriction,

the larger becomes the bias of the model with exclusion restriction, while the bias of the

model without exclusion restriction is considerably smaller.

Finally, I study the performance of the QML estimator under misspecification of the

link function in the main equation, i.e., when the link function is not of the probit type

as in Eq. (2). In particular, I investigate what happens when the true link function is

not the normal cdf but the logistic cdf, the t cdf with three degrees of freedom and the

Gumbel cdf with zero mean. The error terms are again assumed to have a bivariate normal

distribution, which is in line with the assumptions of the Heckfrac model. Moreover, I

assume that the exclusion restriction holds, i.e., β2 = 0. The reason for these assumptions

is that I seek to analyze the isolated impact of functional form misspecification. Again,

I consider marginal effects only and set the sample size to 2,000 and the number of

repetitions to 1,000. Table 6 reports the means and RMSE’s of the marginal effects

for the same values of ρ as considered in Tables 1-3. Table 6 shows that a violation of

the probit assumption yields fairly small biases, indicating that the QML estimator of

the Heckfrac model provides reliable estimates even under a misspecification of the link

function. In addition, the gains of imposing a valid exclusion restriction are very small in

terms of bias and RMSE.

In summary, the simulation results indicate that the QML estimator of the Heckfrac

model performs well in finite samples, even under distributional and functional form mis-

specification. The Heckman sample selection model and the fractional probit model yield

generally biased estimates, which indicates that model choice is important in empirical
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practice. The results also show that imposing a valid exclusion restriction leads only to

small gains in terms of estimator performance, especially with respect to marginal effects.

By contrast, imposing a false exclusion restriction leads to strong biases, whereas the

biases obtained under the Heckfrac model without exclusion restriction are considerably

lower. The practical implication of this result is that researchers should prefer a Heck-

frac model without exclusion restriction over a Heckfrac model with a dubious exclusion

restriction.

4 Empirical Application

This section contains an empirical application of the proposed Heckfac model to real data.

Specifically, I consider the impact of education on the perceived (subjective) probability

of job loss. As described by Manski and Straub (2000), job loss is “commonly assumed to

be unanticipated by the worker and unaffected by worker behavior on the job; the result of

plant closings, elimination of positions, and the like” (Manski and Straub, 2000, p. 467),

and can therefore be interpreted as exogenous job destruction (Manski and Straub, 2000,

p. 467). I use data from the 2007 wave of the German Socioeconomic Panel (SOEP).

Respondents were asked how likely it was that they lost their job within the next two

years. Answers could be made in decimal steps, i.e., 0%, 10%, 20%,..., 100%. Since the

answers are bounded between 0% (=0) and 100% (=1), the perceived probability of job

loss is a fractional response variable.

Job loss leads to substantial pecuniary and non-pecuniary costs; see, e.g., Winkelmann

and Winkelmann (1998) and the references cited therein. Winkelmann and Winkelmann

(1998) also use SOEP data and find a large negative effect of unemployment on individual

well-being. It can be expected that also a high perceived probability of job loss has a

similar (negative) effect on individual well-being.

Education typically raises the individual amount of human capital and thus increases

the employee’s value to the employer. Therefore, I expect that education reduces not only

the actual but also the perceived probability of job loss, since employees know their value

to some extent. If education decreases the perceived probability of job loss, education
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may be interpreted as some kind of insurance against the non-pecuniary costs associated

with job insecurity. Since the non-pecuniary costs of unemployment are quite substantial

(Winkelmann and Winkelmann, 1998), it is highly interesting from an economic point of

view to investigate if education leads to a lower perceived probability of job loss and thus

reduces these costs.

In this application I analyze the impact of education on the perceived probability of job

loss for women only. In my sample about 73% of women are working. Since the perceived

probability of job loss is reported only by women who are working, a regression of the

perceived probability of job loss on education (and further covariates) for those women

may lead to a sample selection bias. Hence, a sample selection model should be used. Due

to the fractional nature of the dependent variable, the Heckfrac model seems to be an

appropriate modeling device. I compare the estimates from this model with the estimates

from the Heckman selection model and the fractional probit model to investigate to what

extent the models lead to different estimates.

The main equation of interest has the perceived probability of job loss as the dependent

variable. Explanatory variables are (years of) education, age, age squared, dummies

for the state of residence, a dummy for foreign nationality, dummies for marital status

and the number of children. Age and age squared capture age-specific differences in job

loss probabilities, while the state dummies reflect state-specific labor market conditions.

People with foreign nationality may have different perceptions of job security than German

people and/or may face different labor market opportunities than German people. Marital

status and the number of children may affect the employer’s decision to lay people off in

light of socially minded reasons, and the employee might know this.

Since non-random sample selectivity might be an issue, the next step is to set up a

selection equation which governs the probability that a woman is working. Explanatory

variables assumed to affect the selection process are the same covariates that appear in

the main equation. I do not impose an exclusion restriction since a credible exclusion

restriction is difficult to identify given the available data. As indicated by the Monte

Carlo simulation study, it might thus be better to use no exclusion restriction at all
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rather than imposing a wrong exclusion restriction.

My sample includes women in their prime working age, i.e., between 25 and 54 years

of age, who are not self-employed. Self-employed workers were excluded because it is

difficult to distinguish between voluntary quits and job losses in case of self-employed

workers (see Manski and Straub, 2000, p. 467). Summary statistics of the variables are

given in Table 7.

As mentioned above, estimates from three different models will be analyzed: the

Heckfrac model, the Heckman selection model (two-step estimation) and the fractional

probit model. While the Heckman selection model does not account for the fractional

nature of the dependent variable, the fractional probit model ignores the potential non-

random sample selectivity. Since the model parameters are not comparable and the focus

of this application is on the impact of education, I also computed the (estimated) average

marginal effect of education on the perceived probability of job loss for all three models.

The estimation results are given in Table 8. Table 8 includes the estimated parameters

of each model as well as the estimate of the correlation parameter ρ in case of the selection

models. Moreover, the average marginal effect of education is reported. As described,

this marginal effect is comparable across models. No estimates for the state dummies are

reported due to brevity. Note that the number of observations is lower for the fractional

probit model, which is due to the fact that the fractional probit model uses only those

observations with observed dependent variable.

The standard error of estimated ρ from the Heckman selection model has been obtained

by bootstrapping. The reason is that not ρ itself is estimated but the coefficient βλ of the

inverse Mills ratio term. After estimation it is possible to derive an estimate of σ, which

can be used to calculate estimated ρ because βλ = ρσ. Since estimated σ is obtained

after estimation, the standard error of estimated ρ cannot be obtained simply from an

application of the delta method. Therefore, I chose bootstrapping to obtain the standard

error. The value reported in Table 8 is based on 1,000 bootstrap iterations.

Table 8 shows estimates for the parameters of the main and selection equation. In case

of the fractional probit model, there is no selection equation, hence no results are reported.
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Since the selection equation for both the Heckfrac model and the Heckman selection model

is of the probit type, it is no coincidence that the estimates of the selection equation

parameters are very close. Both the Heckfrac and the Heckman model yield a quite large

negative estimate of the correlation coefficient ρ, which indicates that non-random sample

selectivity is indeed an issue.

The estimated average marginal effect of education varies over the models, but is

generally negative, as expected. The largest value (in absolute terms) is obtained from

the Heckfrac model, and the lowest value from the fractional probit model. The marginal

effect from the Heckman selection model is in between. The differences illustrate that the

choice of an appropriate model is important in practice. In particular, the results suggest

that models which do not account for the fractional nature of the dependent variable (the

Heckman model) or do not account for the non-random sample selectivity (the fractional

probit model) underestimate (in absolute terms) the impact of education on the perceived

probability of job loss, at least in this data example.

5 Conclusions

This paper developed a sample selection model for fractional response variables. The

most important benefit of this model over the Heckman sample selection model is that its

specification of the main equation of interest is consistent with the bounded nature of the

fractional response variable. A Monte Carlo simulation study indicated that the Heck-

man model yields biased estimates when the bounded nature of the fractional response

variable is not taken into account. Moreover, also the fractional probit model applied to

the main equation using only the individuals with observed dependent variable leads to

biased estimates, as the non-random sample selection is not properly taken into account.

An empirical application to the impact of education on women’s perceived probability

of job loss illustrated that it is important in practice to choose an appropriate model.

In particular, the Heckman selection model and the fractional probit model seemed to

underestimate (in absolute terms) the average marginal effect of an increase in education

on women’s perceived probability of job loss.
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One important finding of the simulation study was that the gains of imposing a

(valid) exclusion restriction are quite small, in particular with respect to the estimation

of marginal effects. On the other hand, it was found that imposing a wrong exclusion re-

striction leads to large biases. This suggests that the proposed parametric model, which

does not (necessarily) require an exclusion restriction to hold, might be preferred over

semi-/nonparametric estimation approaches. However, further research is needed to see

whether this conclusion also holds under assumptions on the data generation process

which are different from those used in the Monte Carlo study above.
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Appendix 1

As stated in the text, we have that E[yi|xi, wi, zi = 1] =
Φ2(x′

iβ/
√
2,w′

iγ,ρ/
√
2)

Φ(w′

i
γ)

. This can be

established as follows:

E[yi|xi, wi, zi = 1] = E[y∗i |xi, wi, zi = 1]

= E[Φ(x′
iβ + ui)|xi, wi, εi > −w′

iγ]

=

∫ ∞

−∞

∫ ∞

−w′

iγ

Φ(x′
iβ + ui)

φ2(ui, εi, ρ)

Φ(w′
iγ)

dεidui

=

∫ ∞

−∞

∫ ∞

−∞
Φ(x′

iβ + ui)1(εi > −w′
iγ)φ2(ui, εi, ρ)dεidui/Φ(w

′
iγ)

= E[Φ(x′
iβ + ui)1(εi > −w′

iγ)|xi, wi]/Φ(w
′
iγ)

= E[E[1(x′
iβ + ui + vi > 0)|xi, wi, ui]1(εi > −w′

iγ)|xi, wi]/Φ(w
′
iγ),

where vi|xi, wi ∼ N (0, 1) is independent of ui, εi|xi, wi, and φ2(·, ·, ρ) denotes the bivariate

standard normal probability density function with correlation ρ. By the law of iterated

expectations,

E[E[1(x′
iβ + ui + vi > 0)|xi, wi, ui]1(εi > −w′

iγ)|xi, wi]/Φ(w
′
iγ)

= E[1(x′
iβ + ui + vi > 0)1(εi > −w′

iγ)|xi, wi]/Φ(w
′
iγ)

= E[1(x′
iβ/

√
2 + ui/

√
2 + vi/

√
2 > 0)1(εi > −w′

iγ)|xi, wi]/Φ(w
′
iγ)

= Pr(−ui/
√
2− vi/

√
2 < x′

iβ/
√
2 ∧ −εi < w′

iγ|xi, wi)/Φ(w
′
iγ)

= Pr(ξ1i < x′
iβ/

√
2 ∧ ξ2i < w′

iγ|xi, wi)/Φ(w
′
iγ),

where ξ1i ≡ −ui/
√
2− vi/

√
2 and ξ2i ≡ −εi. We have that













ui

εi

vi













|xi, wi ∼ N

























0

0

0













,













1 ρ 0

ρ 1 0

0 0 1
























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and







ξ1i

ξ2i






|xi, wi =







−1/
√
2 0 −1/

√
2

0 −1 0



















ui

εi

vi













|xi, wi ∼ N













0

0






,







1 ρ/
√
2

ρ/
√
2 1












.

Hence,

Pr(ξ1i < x′
iβ/

√
2 ∧ ξ2i < w′

iγ|xi, wi)/Φ(w
′
iγ) =

Φ2(x
′
iβ/

√
2, w′

iγ, ρ/
√
2)

Φ(w′
iγ)

.

Appendix 2

Preliminaries:

The log-likelihood function is given by

logL(θ) =
n
∑

i=1

li(θ) ≡
n
∑

i=1

((1− zi) log(1− Φ(w′
iγ)) + zi(1− yi) log(Φ(w

′
iγ)

− Φ2(x
′
iβ/

√
2, w′

iγ, ρ/
√
2)) + ziyi log(Φ2(x

′
iβ/

√
2, w′

iγ, ρ/
√
2))).

Define

Φ ≡ Φ(w′
iγ)

φ ≡ φ(w′
iγ)

Φ2 ≡ Φ2(x
′
iβ/

√
2, w′

iγ, ρ/
√
2)

Φ′
21 ≡

∂Φ2

∂(x′
iβ/

√
2)

= φ(x′
iβ/

√
2)Φ

(

w′
iγ − (ρ/2)x′

iβ
√

1− ρ2/2

)

Φ′
22 ≡

∂Φ2

∂(w′
iγ)

= φ(w′
iγ)Φ

(

x′
iβ/

√
2− (ρ/

√
2)w′

iγ
√

1− ρ2/2

)

Φ′
23 ≡

∂Φ2

∂(ρ/
√
2)

= φ2(x
′
iβ/

√
2, w′

iγ, ρ/
√
2),
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where φ2(·, ·, ρ̃) denotes the bivariate standard normal probability density function with

correlation ρ̃. Note that the log-likelihood function can be written as

logL(θ) =

n
∑

i=1

li(θ) ≡
n
∑

i=1

((1− zi) log(1− Φ) + zi(1− yi) log(Φ− Φ2) + ziyi log(Φ2)).

Taking the derivative of li(θ) with respect to β, γ and ρ yields

∂li(θ)

∂β
=

(

zi(1− yi)
−Φ′

21

Φ− Φ2
+ ziyi

Φ′
21

Φ2

)

1√
2
xi

∂li(θ)

∂γ
=

(

(1− zi)
−φ

1− Φ
+ zi(1− yi)

φ− Φ′
22

Φ− Φ2
+ ziyi

Φ′
22

Φ2

)

wi

∂li(θ)

∂ρ
=

(

zi(1− yi)
−Φ23

Φ− Φ2

+ ziyi
Φ′

23

Φ2

)

1√
2
.

Proof of Theorem 1:

(i) Identification:

The parameter vector θ is identified if

E

[

∂li(θ)

∂θ
|xi, wi

]

= 0 ⇒ θ = θ0,

where the expectation is taken with respect to the true distribution of (y∗i , zi) given (xi, wi)

(i.e., based on θ0). Taking conditional expectations of the derivatives of the log-likelihood

function yields

E

[

∂li(θ)

∂β
|xi, wi

]

=

(

Φ0 − Φ20

Φ− Φ2

− Φ20

Φ2

)

(−Φ′
21)

1√
2
xi = 0 (A1)

E

[

∂li(θ)

∂γ
|xi, wi

]

=

(

−1 − Φ0

1− Φ
φ+

Φ0 − Φ20

Φ− Φ2
(φ− Φ′

22) +
Φ20

Φ2
Φ′

22

)

wi = 0 (A2)

E

[

∂li(θ)

∂ρ
|xi, wi

]

=

(

Φ0 − Φ20

Φ− Φ2
− Φ20

Φ2

)

(−Φ′
23)

1√
2
= 0, (A3)
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where a “0” in the index denotes the respective function evaluated at θ0. From (A1), it

follows that

Φ0 − Φ20

Φ− Φ2
=

Φ20

Φ2
, (A4)

which implies that

Φ20 =
Φ0Φ2

Φ
. (A5)

Using (A4), (A2) can be rewritten as

(

−1 − Φ0

1− Φ
+

Φ0 − Φ20

Φ− Φ2

)

φwi = 0.

Using (A5), this simplifies further to

(

−1− Φ0

1− Φ
+

Φ0

Φ

)

φwi = 0.

From this equation it follows that Φ = Φ0, which in turn implies that w′
iγ = w′

iγ0. The

identification of γ can now be established as follows. Since w′
iγ = w′

iγ0, we have that

w′
i(γ − γ0) = 0

⇔ E[(w′
i(γ − γ0))

2] = 0

⇔ E[(γ − γ0)
′wiw

′
i(γ − γ0)] = 0

⇔ (γ − γ0)
′E[wiw

′
i](γ − γ0) = 0.

But since E[wiw
′
i] is positive definite by Assumption 3, the last equation implies that

γ − γ0 = 0, or γ = γ0; hence, γ is uniquely identified.

Moreover, since Φ = Φ0, (A5) implies that Φ2 = Φ20, and, since γ = γ0,

Φ2(x
′
iβ/

√
2, w′

iγ0, ρ/
√
2) = Φ2(x

′
iβ0/

√
2, w′

iγ0, ρ0/
√
2). (A6)
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Rearranging yields

Φ2(x
′
iβ/

√
2, w′

iγ0, ρ/
√
2)− Φ2(x

′
iβ0/

√
2, w′

iγ0, ρ0/
√
2) = 0,

and applying the mean value theorem gives

φ(x′
iβ

∗/
√
2)Φ

(

w′
iγ0 − (ρ∗/2)x′

iβ
∗

√

1− (ρ∗)2/2

)

1√
2
x′
i(β − β0)

+ φ2(x
′
iβ

∗/
√
2, w′

iγ0, ρ
∗/
√
2)

1√
2
(ρ− ρ0) = 0, (A7)

where ((β∗)′, ρ∗)′ lies on the line segment joining (β ′
0, ρ0)

′ and (β ′, ρ)′. Since

φ2(x
′
iβ

∗/
√
2, w′

iγ0, ρ
∗/
√
2) =

1
√

1− (ρ∗)2/2
φ

(

w′
iγ0 − (ρ∗/2)x′

iβ
∗

√

1− (ρ∗)2/2

)

φ(x′
iβ

∗/
√
2),

it follows from (A7) that

Φ

(

w′
iγ0 − (ρ∗/2)x′

iβ
∗

√

1− (ρ∗)2/2

)

x′
i(β − β0) +

1
√

1− (ρ∗)2/2
φ

(

w′
iγ0 − (ρ∗/2)x′

iβ
∗

√

1− (ρ∗)2/2

)

(ρ− ρ0) = 0

or

x′
i(β − β0) + λi(β

∗, γ0, ρ
∗)(ρ− ρ0) = 0,

where λi(·, ·, ·) is the inverse Mills ratio term defined in Sec. 2.1. For convenience, let

ϑ ≡ (β ′, ρ)′, and write the preceding equation as

(q∗i )
′(ϑ− ϑ0) = 0,

where q∗i ≡ qi(β
∗, γ0, ρ

∗). We have that

(q∗i )
′(ϑ− ϑ0) = 0

⇔ E[((q∗i )
′(ϑ− ϑ0))

2] = 0

⇔ E[(ϑ− ϑ0)
′(q∗i )(q

∗
i )

′(ϑ− ϑ0)] = 0
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⇔ (ϑ− ϑ0)
′E[(q∗i )(q

∗
i )

′](ϑ− ϑ0) = 0

But since E[(q∗i )(q
∗
i )

′] is positive definite by Assumption 3, the last equation implies that

ϑ− ϑ0 = 0, or β = β0 and ρ = ρ0. Therefore, β and ρ are uniquely identified as well.

(ii) Consistency

Having proved identification, we can verify consistency by checking whether the assump-

tions (a)-(d) of Wooldridge’s (2010) Theorem 12.1 (Wooldridge, 2010, p. 403) are satisfied;

together with the identification of θ these conditions are requirements in Wooldridge’s

(2010) consistency Theorem 12.2 (Wooldridge, 2010, p. 404). Assumption (a) requires

that Θ is compact, which is satisfied by my Assumption 2. Assumptions (b) and (c) say

that li(θ) must be Borel measurable on Ω and be continuous for each (yi, zi, xi, wi) ∈ Ω

on Θ, which is also true. Assumption (d) requires that |li(θ)| ≤ b(yi, zi, xi, wi), where b(·)

is a non-negative function on Ω such that E[b(yi, zi, xi, wi)] < ∞. This is fulfilled since

|li(θ)| = |(1− zi) log(1− Φ) + zi(1− yi) log(Φ− Φ2) + ziyi log(Φ2)| < C < ∞,

where C denotes a finite positive constant. Thus, Theorem 12.2 of Wooldridge (2010)

applies and we have that θ̂
p→ θ0.

�

Proof of Theorem 2:

I prove the theorem by showing that the Assumptions (a)-(f) of Wooldridge’s (2010)

Theorem 12.3 (Wooldridge, 2010, p. 407) are fulfilled. Assumption (a) requires that θ0

is in the interior of Θ, which is satisfied by my Assumption 2. Assumption (b) says that

∂li(θ)
∂θ

is continuously differentiable on the interior of Θ for all (yi, zi, xi, wi) ∈ Ω, which is

also true. Assumption (c) requires that each element of the matrix
[

∂2li(θ)
∂θ∂θ′

]

must satisfy

a dominance condition, i.e., each element of the matrix
[

∂2li(θ)
∂θ∂θ′

]

must be bounded in ab-
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solute value by a function b(yi, zi, xi, wi) with E[b(yi, zi, xi, wi)] < ∞. I show this for the

submatrix
[

∂2li(θ)
∂β∂β′

]

:

∂2li(θ)

∂β∂β ′
=
(

zi(1− yi)(Φ− Φ2)
−2(((x′

iβ/
√
2)φ̄Φ̃− φ̄φ̃(−ρ/

√
2)(1− ρ2/2)−1/2) · (Φ− Φ2)

−(φ̄Φ̃)2) + ziyiΦ
−2
2 (((−x′

iβ/
√
2)φ̄Φ̃ + φ̄φ̃(−ρ/

√
2)(1− ρ2/2)−1/2)Φ2 − (φ̄Φ̃)2)

) xix
′
i

2
,

where

φ̄ ≡ φ(x′
iβ/

√
2)

φ̃ ≡ φ

(

w′
iγ − (ρ/2)x′

iβ
√

1− ρ2/2

)

Φ̃ ≡ Φ

(

w′
iγ − (ρ/2)x′

iβ
√

1− ρ2/2

)

.

Consider
[

∂2li(θ)
∂β∂β′

]

kl
, the kl-th element of the matrix

[

∂2li(θ)
∂β∂β′

]

. We have that

∣

∣

∣

∣

[

∂2li(θ)

∂β∂β ′

]

kl

∣

∣

∣

∣

< C1|xikxil|+ C2|x′
iβ · xikxil|,

where C1 and C2 denote finite positive constants. Since

E[C1|xikxil|+ C2|x′
iβ · xikxil|] < ∞

for all k and l by Assumption 4 and the (generalized) Hölder inequality (see, e.g., Finner,

1992),
[

∂2li(θ)
∂β∂β′

]

kl
fulfills the dominance condition of Wooldridge’s Assumption (c). In a

similar manner, it can be shown that also the remaining elements of the matrix
[

∂2li(θ)
∂θ∂θ′

]

fulfill the dominance condition. Assumption (d) implies that −A0 must be positive defi-

nite, which is fulfilled by my Assumption 5. Assumption (e) requires that E
[

∂li(θ0)
∂θ

]

= 0,

which is fulfilled as shown in the proof of Theorem 1. Finally, Assumption (f) says that

each element of
[

∂li(θ0)
∂θ

]

has finite second moment. To show that this condition is also
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satisfied, consider the second moment of the k-th element of
[

∂li(θ0)
∂β

]

:

E

[

([

∂li(θ0)

∂β

]

k

)2
]

= E

[

(

zi(1− yi)
−Φ210

Φ0 − Φ20

+ ziyi
Φ′

210

Φ20

)2
1

2
x2
ik

]

< CE[x2
ik] < ∞,

where C is a finite positive constant, and the last inequality follows from Assumption 4

and the (generalized) Hölder inequality. The same can be established for the remaining

elements of
[

∂li(θ0)
∂θ

]

.

�

Proof of Theorem 3:

(a) Let
[

∂li(θ)
∂β

∂li(θ)
∂β′

]

kl
denote the kl-th element of the matrix

[

∂li(θ)
∂β

∂li(θ)
∂β′

]

. We have that

∣

∣

∣

∣

[

∂li(θ)

∂β

∂li(θ)

∂β ′

]

kl

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

(

zi(1− yi)
−Φ21

Φ− Φ2

+ ziyi
Φ′

21

Φ2

)2
1

2
xikxil

∣

∣

∣

∣

∣

< C · |xikxil|,

where C denotes a finite positive constant. From Assumption 4 and the (generalized)

Hölder inequality it follows that E [C · |xikxil|] < ∞. This holds for all k, l, (yi, zi, xi, wi) ∈

Ω, θ ∈ Θ and can also be established for the remaining elements of the matrix
[

∂li(θ)
∂θ

∂li(θ)
∂θ′

]

.

Furthermore,
[

∂li(θ)
∂θ

∂li(θ)
∂θ′

]

is continuous in (yi, zi, xi, wi) and θ. Since θ̂
p→ θ0, it follows

from Lemma 3.1 of White (1981) that

B(θ̂) =
1

n

n
∑

i=1

(

∂li(θ̂)

∂θ

∂li(θ̂)

∂θ′

)

p→ E

[

∂li(θ0)

∂θ

∂li(θ0)

∂θ′

]

= B(θ0).

The statement Â
p→ A0 is implied by the proof of asymptotic normality from Theorem 2.

Hence, we have by the Slutsky theorem (see, e.g., Wooldridge, 2010, p. 39) that

V̂ = Â−1B̂Â−1 p→ A−1
0 B0A

−1
0 = V0.

(b), (c)
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Given consistency of V̂ , the asymptotic distribution of the Wald statistic and the consis-

tency of the corresponding test can be proved as in Mittelhammer (1999), pp. 622-623.

�

Proof of Theorem 4:

Let mk(xi, θ) denote the k-th element of m(xi, θ). We have that |mk(xi, θ)| < C for

all xi and θ, where C is a finite positive constant. Furthermore, m(xi, θ) is contin-

uous in xi and θ. Since θ̂
p→ θ0, it follows from Lemma 3.1 of White (1981) that

ÂME = n−1
∑n

i=1m(xi, θ̂)
p→ E[m(xi, θ0)] = AME0.

Proof of Theorem 5:

By the mean value theorem, we can write ÂME as

ÂME =
1

n

n
∑

i=1

m(xi, θ0) +
1

n

n
∑

i=1

∂m(xi, θ̄)

∂θ′
(θ̂ − θ0)

=
1

n

n
∑

i=1

m(xi, θ0) + E

[

∂m(xi, θ0)

∂θ′

]

(θ̂ − θ0)

+

(

1

n

n
∑

i=1

∂m(xi, θ̄)

∂θ′
− E

[

∂m(xi, θ0)

∂θ′

]

)

(θ̂ − θ0)

where θ̄ lies on the line segment joining θ̂ and θ0 and

∂m(xi, θ)

∂θ′
= ((−x′

iβ/
√
2)φ(x′

iβ/
√
2)(β/2)⊗ x′

i + φ(x′
iβ/

√
2)IK/

√
2, 0, 0),

with IK denoting the dimension of β. Thus,

√
n(ÂME − AME0) =

1√
n

n
∑

i=1

(m(xi, θ0)−AME0) + E

[

∂m(xi, θ0)

∂θ′

]√
n(θ̂ − θ0)

+

(

1

n

n
∑

i=1

∂m(xi, θ̄)

∂θ′
− E

[

∂m(xi, θ0)

∂θ′

]

)

√
n(θ̂ − θ0).
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Let
[

∂m(xi,θ)
∂θ′

)
]

kl
denote the kl-th element of the matrix

[

∂m(xi,θ)
∂θ′

]

. We have that

∣

∣

∣

∣

[

∂m(xi, θ)

∂θ′
)

]

kl

∣

∣

∣

∣

< C1 + C2|x′
iβ · xil|,

where C1 and C2 denote finite positive constants. It follows from Assumption 4 and the

(generalized) Hölder inequality that

E[C1 + C2|x′
iβ · xil|] < ∞.

This holds for all k, l, xi, θ. Furthermore,
[

∂m(xi,θ)
∂θ′

]

is continuous in xi and θ. Since θ̂
p→ θ0

and, therefore, θ̄
p→ θ0, it follows from Lemma 3.1 of White (1981) that

1

n

n
∑

i=1

∂m(xi, θ̄)

∂θ′
− E

[

∂m(xi, θ0)

∂θ′

]

= op(1).

Since
√
n(θ̂ − θ0) = Op(1) by Theorem 2, it follows that

√
n(ÂME −AME0) =

1√
n

n
∑

i=1

(m(xi, θ0)− AME0) + E

[

∂m(xi, θ0)

∂θ′

]√
n(θ̂ − θ0) + op(1).

Under the assumptions of Theorem 2, it holds that

√
n(θ̂ − θ0) = −A−1

0

1√
n

n
∑

i=1

∂li(θ0)

∂θ
+ op(1),

hence

√
n(ÂME −AME0) =

1√
n

n
∑

i=1

(m(xi, θ0)− AME0)

− E

[

∂m(xi, θ0)

∂θ′

]

A−1
0

1√
n

n
∑

i=1

∂li(θ0)

∂θ
+ op(1)

=
1√
n

n
∑

i=1

(

m(xi, θ0)− AME0 −E

[

∂m(xi, θ0)

∂θ′

]

A−1
0

∂li(θ0)

∂θ

)

+ op(1)

=
1√
n

n
∑

i=1

m̃(xi, θ0) + op(1)
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Since E[m̃(xi, θ0)] = 0 and M0 = E[m̃(xi, θ0)m̃(xi, θ0)
′] is positive definite by Assumption

6, it follows from the multivariate Lindberg-Levy central limit theorem (e.g., Mittelham-

mer, 1999, p. 283) that

√
n(ÂME − AME0)

d→ N (0,M0).

�

Proof of Theorem 6:

(a) Define

D0 ≡ E

[

∂m(xi, θ0)

∂θ′

]

D̂ ≡ 1

n

n
∑

i=1

∂m(xi, θ̂)

∂θ′

and note that

M0 = E [m(xi, θ0)m(xi, θ0)
′]− E[m(xi, θ0)] ·AME ′

0 − E

[

m(xi, θ0)
∂li(θ0)

∂θ′

]

· A−1
0 D′

0

− AME0 · E[m(xi, θ0)
′] + AME0 · AME ′

0 + AME0 · E
[

∂li(θ0)

∂θ′

]

· A−1
0 D′

0

−D0A
−1
0 ·E

[

∂li(θ0)

∂θ
m(xi, θ0)

′

]

+D0A
−1
0 · E

[

∂li(θ0)

∂θ

]

·AME ′
0

+D0A
−1
0 · E

[

∂li(θ0)

∂θ

∂li(θ0)

∂θ′

]

· A−1
0 D′

0

= E [m(xi, θ0)m(xi, θ0)
′]− AME0 · AME ′

0 − E

[

m(xi, θ0)
∂li(θ0)

∂θ′

]

· A−1
0 D′

0

−D0A
−1
0 ·E

[

∂li(θ0)

∂θ
m(xi, θ0)

′

]

+D0V0D
′
0

and

M̂ =
1

n

n
∑

i=1

(

m(xi, θ̂)m(xi, θ̂)
′
)

− ÂME · ÂME
′
− 1

n

n
∑

i=1

(

m(xi, θ̂)
∂li(θ̂)

∂θ′

)

· Â−1D̂′

− D̂Â−1 · 1
n

n
∑

i=1

(

∂li(θ̂)

∂θ
m(xi, θ̂)

′

)

+ D̂V̂ D̂′. (A8)
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I will show that each element of the RHS of (A8) converges in probability to its pop-

ulation counterpart, which, by the Slutsky theorem, implies that M̂
p→ M0. First, let

[m(xi, θ)m(xi, θ)
′]kl denote the kl-th element of the matrix [m(xi, θ)m(xi, θ)

′]. We have

that

| [m(xi, θ)m(xi, θ)
′]kl | < C < ∞

for all k, l, xi, θ, where C denotes a finite positive constant. Furthermore, [m(xi, θ)m(xi, θ)
′]

is continuous in xi and θ. Since θ̂
p→ θ0, it follows from Lemma 3.1 of White (1981) that

1

n

n
∑

i=1

(

m(xi, θ̂)m(xi, θ̂)
′
)

p→ E [m(xi, θ0)m(xi, θ0)
′] .

Let
[

m(xi, θ)
∂li(θ)
∂θ′

)
]

kl
denote the kl-th element of the matrix

[

m(xi, θ)
∂li(θ)
∂θ′

]

. We have

that

∣

∣

∣

∣

[

m(xi, θ)
∂li(θ)

∂θ′
)

]

kl

∣

∣

∣

∣

< C1 + C2|xil|,

where C1 and C2 denote finite positive constants. It follows from Assumption 4 and the

(generalized) Hölder inequality that E[C1 + C2|xil|] < ∞. This holds for all k, l, xi, θ.

Furthermore,
[

m(xi, θ)
∂li(θ)
∂θ′

]

is continuous in xi and θ. Since θ̂
p→ θ0, it follows from

Lemma 3.1 of White (1981) that

1

n

n
∑

i=1

(

m(xi, θ̂)
∂li(θ̂)

∂θ′
)

)

p→ E

[

m(xi, θ0)
∂li(θ0)

∂θ′
)

]

.

As shown in the proof of Theorem 5, we have that

D̂ =
1

n

n
∑

i=1

∂m(xi, θ̂)

∂θ′
p→ E

[

∂m(xi, θ0)

∂θ′

]

= D0

(in the proof of Theorem 5, θ̄ appeared in the formula instead of θ̂, but the same argument

applies). Due to Theorem 4, ÂME
p→ AME0, while the proof of Theorem 2 implies that

Â
p→ A0. Moreover, due to Theorem 3, V̂

p→ V0. Applying these results and the Slutsky
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theorem to (A8), it follows that M̂
p→ M0.

(b), (c)

Given consistency of M̂ , the asymptotic distribution of the Wald statistic and the consis-

tency of the corresponding test can be proved as in Mittelhammer (1999), pp. 622-623.

�

Tables

Table 1: Simulation results for ρ = 0

True value Heckfrac Heckman Frac. Probit
No Exclusion Exclusion No Exclusion Exclusion

n=500
Parameters
β0 -1.000 -1.008 -1.008 0.221 0.236 -1.002

(0.249) (0.165) (1.223) (1.237) (0.095)
β1 0.500 0.503 0.505 0.131 0.127 0.503

(0.134) (0.124) (0.371) (0.375) (0.094)
β2 0.000 0.001 0.000 0.009 0.000 -0.003

(0.124) - (0.033) - (0.087)
γ0 0.000 0.000 0.000 0.000 0.000

(0.078) (0.078) (0.078) (0.078)
γ1 1.000 1.009 1.008 1.008 1.008

(0.112) (0.112) (0.112) (0.112)
γ2 1.000 1.012 1.012 1.012 1.012

(0.115) (0.115) (0.115) (0.115)
ρ 0.000 0.024 0.016 0.108 0.045

(0.310) (0.221) (0.295) (0.193)
Marginal effect of x1 0.106 0.104 0.105 0.131 0.127 0.106

(0.020) (0.019) (0.042) (0.036) (0.017)

n=1,000
Parameters
β0 -1.000 -0.988 -0.996 0.227 0.239 -0.997

(0.176) (0.110) (1.228) (1.239) (0.068)
β1 0.500 0.495 0.498 0.129 0.125 0.500

(0.088) (0.081) (0.372) (0.375) (0.063)
β2 0.000 -0.004 0.000 0.007 0.000 -0.002

(0.089) - (0.024) - (0.060)
γ0 0.000 -0.001 -0.001 -0.001 -0.001

(0.056) (0.056) (0.056) (0.056)
γ1 1.000 1.008 1.008 1.008 1.008

(0.079) (0.079) (0.079) (0.079)
γ2 1.000 1.003 1.003 1.003 1.003

(0.078) (0.078) (0.078) (0.078)
ρ 0.000 -0.005 0.001 0.084 0.034

(0.217) (0.148) (0.211) (0.131)
Marginal effect of x1 0.106 0.105 0.105 0.129 0.125 0.106

(0.013) (0.012) (0.031) (0.027) (0.012)

n=2,000
Parameters
β0 -1.000 -1.002 -1.004 0.224 0.237 -1.001

(0.126) (0.078) (1.225) (1.237) (0.046)
β1 0.500 0.501 0.502 0.130 0.126 0.501

(0.063) (0.057) (0.371) (0.374) (0.043)
β2 0.000 -0.001 0.000 0.008 0.000 -0.002

(0.063) - (0.018) - (0.043)
γ0 0.000 0.001 0.001 0.001 0.001

(0.038) (0.038) (0.038) (0.038)
γ1 1.000 1.005 1.005 1.005 1.005

(0.058) (0.058) (0.058) (0.058)
γ2 1.000 1.005 1.005 1.005 1.005

(0.059) (0.059) (0.059) (0.059)
ρ 0.000 0.006 0.006 0.095 0.038

(0.159) (0.108) (0.169) (0.099)
Marginal effect of x1 0.106 0.106 0.106 0.130 0.126 0.106

(0.009) (0.009) (0.028) (0.024) (0.008)

Note: Root mean squared error (RMSE) in parentheses.

41



Table 2: Simulation results for ρ = 0.5

True value Heckfrac Heckman Frac. Probit
No Exclusion Exclusion No Exclusion Exclusion No Exclusion

n=500
Parameters
β0 -1.000 -0.978 -0.995 0.226 0.230 -0.646

(0.211) (0.136) (1.228) (1.230) (0.365)
β1 0.500 0.491 0.497 0.134 0.133 0.363

(0.115) (0.107) (0.368) (0.368) (0.162)
β2 0.000 -0.009 0.000 0.002 0.000 -0.150

(0.117) - (0.033) - (0.172)
γ0 0.000 -0.001 -0.001 0.000 0.000

(0.078) (0.078) (0.078) (0.078)
γ1 1.000 1.009 1.008 1.009 1.009

(0.114) (0.113) (0.114) (0.114)
γ2 1.000 1.014 1.014 1.014 1.014

(0.116) (0.116) (0.117) (0.117)
ρ 0.500 0.475 0.492 0.463 0.462

(0.282) (0.201) (0.264) (0.184)
Marginal effect of x1 0.106 0.103 0.105 0.134 0.133 0.090

(0.018) (0.017) (0.044) (0.040) (0.026)

n=1,000
Parameters
β0 -1.000 -0.988 -0.998 0.226 0.229 -0.645

(0.156) (0.095) (1.227) (1.229) (0.361)
β1 0.500 0.494 0.497 0.134 0.133 0.361

(0.081) (0.074) (0.367) (0.368) (0.152)
β2 0.000 -0.005 0.000 0.002 0.000 -0.149

(0.086) - (0.024) - (0.161)
γ0 0.000 -0.002 -0.002 -0.002 -0.002

(0.053) (0.053) (0.053) (0.053)
γ1 1.000 1.010 1.009 1.010 1.010

(0.082) (0.082) (0.082) (0.082)
γ2 1.000 1.010 1.010 1.010 1.010

(0.080) (0.080) (0.080) (0.080)
ρ 0.500 0.487 0.496 0.475 0.467

(0.204) (0.140) (0.192) (0.131)
Marginal effect of x1 0.106 0.105 0.105 0.134 0.133 0.090

(0.012) (0.012) (0.036) (0.034) (0.021)

n=2,000
Parameters
β0 -1.000 -0.989 -0.996 0.227 0.230 -0.641

(0.109) (0.070) (1.227) (1.230) (0.362)
β1 0.500 0.495 0.497 0.134 0.133 0.360

(0.055) (0.051) (0.367) (0.367) (0.146)
β2 0.000 -0.005 0.000 0.002 0.000 -0.150

(0.060) - (0.017) - (0.156)
γ0 0.000 -0.002 -0.002 -0.002 -0.002

(0.040) (0.040) (0.040) (0.040)
γ1 1.000 1.001 1.001 1.001 1.001

(0.053) (0.053) (0.054) (0.054)
γ2 1.000 1.007 1.007 1.007 1.007

(0.055) (0.055) (0.055) (0.055)
ρ 0.500 0.488 0.497 0.476 0.468

(0.147) (0.101) (0.139) (0.097)
Marginal effect of x1 0.106 0.105 0.106 0.134 0.133 0.090

(0.008) (0.008) (0.032) (0.030) (0.019)

Note: Root mean squared error (RMSE) in parentheses.
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Table 3: Simulation results for ρ = 0.9

True value Heckfrac Heckman Frac. Probit
No Exclusion Exclusion No Exclusion Exclusion No Exclusion

n=500
Parameters
β0 -1.000 -0.964 -0.988 0.197 0.206 -0.362

(0.150) (0.102) (1.199) (1.207) (0.643)
β1 0.500 0.488 0.493 0.149 0.146 0.255

(0.095) (0.090) (0.353) (0.355) (0.258)
β2 0.000 -0.021 0.000 0.005 0.000 -0.287

(0.097) - (0.033) - (0.298)
γ0 0.000 -0.002 -0.003 -0.001 -0.001

(0.080) (0.080) (0.080) (0.080)
γ1 1.000 1.015 1.012 1.013 1.013

(0.117) (0.115) (0.118) (0.118)
γ2 1.000 1.020 1.020 1.018 1.018

(0.118) (0.117) (0.120) (0.120)
ρ 0.900 0.842 0.870 0.858 0.865

(0.176) (0.124) (0.166) (0.124)
Marginal effect of x1 0.106 0.105 0.105 0.149 0.146 0.068

(0.016) (0.015) (0.055) (0.050) (0.043)

n=1,000
Parameters
β0 -1.000 -0.977 -0.992 0.198 0.207 -0.358

(0.107) (0.073) (1.199) (1.207) (0.644)
β1 0.500 0.490 0.494 0.148 0.146 0.250

(0.066) (0.064) (0.353) (0.355) (0.256)
β2 0.000 -0.012 0.000 0.005 0.000 -0.284

(0.072) - (0.024) - (0.290)
γ0 0.000 -0.003 -0.003 -0.003 -0.003

(0.056) (0.056) (0.056) (0.056)
γ1 1.000 1.007 1.006 1.007 1.007

(0.076) (0.074) (0.077) (0.077)
γ2 1.000 1.010 1.010 1.009 1.009

(0.079) (0.079) (0.080) (0.080)
ρ 0.900 0.867 0.884 0.880 0.873

(0.126) (0.093) (0.123) (0.095)
Marginal effect of x1 0.106 0.105 0.105 0.148 0.146 0.067

(0.011) (0.011) (0.048) (0.045) (0.042)

n=2,000
Parameters
β0 -1.000 -0.985 -0.995 0.198 0.207 -0.356

(0.075) (0.054) (1.199) (1.207) (0.645)
β1 0.500 0.494 0.496 0.148 0.146 0.250

(0.046) (0.044) (0.352) (0.355) (0.253)
β2 0.000 -0.008 0.000 0.005 0.000 -0.285

(0.050) - (0.017) - (0.287)
γ0 0.000 -0.002 -0.002 -0.002 -0.002

(0.039) (0.039) (0.039) (0.039)
γ1 1.000 1.005 1.004 1.004 1.004

(0.053) (0.053) (0.054) (0.054)
γ2 1.000 1.005 1.005 1.005 1.005

(0.056) (0.056) (0.056) (0.056)
ρ 0.900 0.882 0.893 0.894 0.878

(0.090) (0.068) (0.087) (0.070)
Marginal effect of x1 0.106 0.106 0.106 0.148 0.146 0.067

(0.008) (0.007) (0.045) (0.042) (0.040)

Note: Root mean squared error (RMSE) in parentheses.
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Table 4: Performance of the QML estimator under distributional misspecification and
validity of exclusion restriction (β2 = 0)

True copula True marg. dist. True marg. eff. No Exclusion Exclusion

Gaussian Normal 0.106 0.106 0.106
(0.008) (0.008)

Gaussian Logistic 0.087 0.086 0.087
(0.012) (0.012)

Gaussian t with 3 df 0.097 0.099 0.099
(0.009) (0.010)

Gaussian Gumbel (zero mean) 0.090 0.087 0.088
(0.010) (0.010)

t with 3 df Normal 0.106 0.107 0.107
(0.007) (0.008)

Clayton Normal 0.106 0.105 0.106
(0.009) (0.008)

Gumbel Normal 0.106 0.106 0.106
(0.007) (0.008)

Frank Normal 0.106 0.105 0.105
(0.008) (0.008)

Note: The table reports results on marginal effects. For comparison purposes, the table also includes the case of correct
specification (Gaussian copula and normal marginal distributions). Root mean squared error (RMSE) in parentheses.

Table 5: Performance of the QML estimator under dist. misspecification and violation of
exclusion restriction; rel. bias in %

True copula True marg. dist. β2 = 0.1 β2 = 0.2 β2 = 0.3 β2 = 0.4 β2 = 0.5 β2 = 0.6
N E N E N E N E N E N E

Gaussian Normal -0.433 -0.510 -0.433 -3.168 -0.444 -8.715 -0.460 -17.122 -0.497 -27.843 -0.535 -39.993
(0) (0) (0) (0) (2) (0) (1) (0) (2) (0) (3) (0)

Gaussian Logistic -0.342 -3.707 -0.257 -12.020 -0.139 -24.499 0.034 -40.451 0.149 -58.312 0.049 -76.107
(60) (4) (62) (0) (66) (0) (72) (0) (66) (0) (81) (0)

Gaussian t with 3 df 2.199 1.021 2.683 -3.215 3.246 -11.082 3.919 -22.450 4.383 -36.393 4.552 -52.211
(30) (0) (44) (0) (47) (0) (52) (1) (78) (0) (79) (0)

Gaussian Gumbel (zero mean) -1.831 -2.545 -0.945 -5.109 -0.010 -10.557 0.807 -19.179 1.747 -30.746 2.392 -44.708
(10) (0) (13) (0) (18) (0) (25) (0) (27) (0) (44) (0)

t with 3 df Normal 0.573 0.937 0.690 -1.405 0.812 -6.654 0.955 -14.826 1.118 -25.417 1.236 -37.558
(1) (0) (2) (0) (6) (0) (4) (0) (3) (0) (10) (0)

Clayton Normal -1.850 -2.175 -2.412 -6.528 -3.092 -13.739 -3.893 -23.458 -4.817 -34.909 -5.868 -47.149
(0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0)

Gumbel Normal -0.119 0.745 0.204 -1.080 0.505 -5.784 0.885 -13.489 1.223 -23.783 1.370 -35.301
(9) (0) (11) (0) (9) (0) (14) (0) (13) (0) (22) (0)

Frank Normal -1.490 -1.804 -1.705 -5.050 -1.968 -11.210 -2.277 -20.146 -2.636 -31.226 -3.023 -43.528
(0) (0) (0) (0) (0) (0) (0) (0) (1) (0) (0) (0)

Note: The table reports the percentage difference of the estimated marginal effects from the true values. For comparison purposes, the table also includes the
case of correct specification (Gaussian copula and normal marginal distributions). “N” denotes “no exclusion restriction”, while “E” denotes “with exclusion
restriction”. The numbers in parentheses are the numbers of times the QML estimator failed to converge.

Table 6: Performance of the QML estimator under a misspecification of the link function

True link function True marg. eff. ρ = 0 ρ = 0.5 ρ = 0.9
No Exclusion Exclusion No Exclusion Exclusion No Exclusion Exclusion

Normal 0.106 0.106 0.106 0.105 0.106 0.106 0.106
(0.009) (0.009) (0.008) (0.008) (0.008) (0.007)

Logistic 0.087 0.087 0.088 0.087 0.087 0.088 0.088
(0.008) (0.008) (0.008) (0.007) (0.007) (0.007)

t with 3 df 0.097 0.099 0.099 0.099 0.099 0.100 0.100
(0.009) (0.009) (0.008) (0.008) (0.008) (0.008)

Gumbel with zero mean 0.112 0.109 0.109 0.108 0.108 0.107 0.107
(0.010) (0.009) (0.009) (0.009) (0.009) (0.009)

Note: The table reports results on marginal effects. For comparison purposes, the table also includes the case of correct specification
(normal link function). Root mean squared error (RMSE) in parentheses.
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Table 7: Summary statistics

Variable Description Obs Mean Std. Dev.

pjobloss Perceived prob. of job loss 3,812 0.226 0.254
educ Years of education 5,209 12.557 2.636
age Age 5,209 40.717 8.310
foreign Foreign nationality (0/1) 5,209 0.076 0.265
no. children Number of children 5,209 0.835 1.002
marital status Marital status
..married (liv. tog.) Married and living together (0/1; base) 5,209 0.642 0.480
..married (sep.) Married and separated (0/1) 5,209 0.028 0.165
..single Single (0/1) 5,209 0.212 0.409
..divorced Divorced (0/1) 5,209 0.104 0.305
..widowed Widowed (0/1) 5,209 0.014 0.119
state State of residence
..Schleswig-Holstein Schleswig-Holstein (0/1; base) 5,209 0.027 0.163
..Hamburg Hamburg (0/1) 5,209 0.015 0.120
..Lower Saxony Lower Saxony (0/1) 5,209 0.091 0.287
..Bremen Bremen (0/1) 5,209 0.008 0.089
..North-Rhine-Westfalia North-Rhine-Westfalia (0/1) 5,209 0.206 0.405
..Hessen Hessen (0/1) 5,209 0.073 0.260
..Rheinland-Pfalz Rheinland-Pfalz (0/1) 5,209 0.047 0.211
..Baden-Wuerttemberg Baden-Wuerttemberg (0/1) 5,209 0.122 0.327
..Bavaria Bavaria (0/1) 5,209 0.148 0.355
..Saarland Saarland (0/1) 5,209 0.013 0.113
..Berlin Berlin (0/1) 5,209 0.036 0.186
..Brandenburg Brandenburg (0/1) 5,209 0.040 0.196
..Mecklenburg-Vorpommern Mecklenburg-Vorpommern (0/1) 5,209 0.024 0.153
..Saxony Saxony (0/1) 5,209 0.069 0.253
..Saxony-Anhalt Saxony-Anhalt (0/1) 5,209 0.040 0.196
..Thuringia Thuringia (0/1) 5,209 0.042 0.200

Note: The data have been taken from the 2007 wave of the German Socioeconomic Panel (SOEP).
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Table 8: Estimation results

Variable Heckfrac Heckman Frac. Probit
(Dep.var.: pjobloss) Coef. (Std. Err.) Coef. (Std. Err.) Coef. (Std. Err.)

Main equation
educ -0.060 (0.015) -0.014 (0.004) -0.027 (0.006)
age -0.096 (0.082) -0.023 (0.020) 0.017 (0.019)
age squared 0.001 (0.001) 0.000 (0.000) 0.000 (0.000)
foreign 0.075 (0.119) 0.018 (0.026) -0.028 (0.065)
no. children 0.103 (0.106) 0.025 (0.025) -0.038 (0.018)
marital status
..married (sep.) 0.056 (0.124) 0.012 (0.027) 0.045 (0.089)
..single 0.015 (0.061) 0.004 (0.014) 0.028 (0.040)
..divorced 0.098 (0.067) 0.023 (0.015) 0.070 (0.047)
..widowed 0.030 (0.210) 0.008 (0.045) -0.085 (0.135)
constant 2.177 (1.970) 0.984 (0.489) -0.565 (0.379)

Selection equation
educ 0.068 (0.008) 0.068 (0.008)
age 0.305 (0.026) 0.305 (0.026)
age squared -0.004 (0.000) -0.004 (0.000)
foreign -0.248 (0.072) -0.244 (0.072)
no. children -0.372 (0.023) -0.372 (0.023)
marital status
..married (sep.) 0.000 (0.115) 0.000 (0.120)
..single 0.069 (0.062) 0.070 (0.062)
..divorced -0.015 (0.067) -0.011 (0.066)
..widowed -0.353 (0.148) -0.354 (0.159)
constant -6.012 (0.519) -6.009 (0.522)

ρ -0.768 (0.431) -0.726 (0.355)
ME educ -0.0150 (0.0048) -0.0137 (0.0044) -0.0079 (0.0017)
%∆ ME (base) -8.942 -47.137
State dummies incl. Yes Yes Yes
No. obs. 5,209 5,209 3,812

Note: In case of the Heckman selection model, the standard error of estimated ρ has been obtained by bootstrapping.
The coefficients associated with the state dummies are not displayed due to brevity. The marginal effect (ME) of
educ refers to the average marginal effect of education on the perceived probability of job loss in the main equation of
interest. %∆ ME is the percentage difference between the marginal effect of the respective model and the marginal
effect from the Heckfrac model.
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