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Abstract

This paper develops a bivariate fractional probit model for fractional response variables, i.e.,

variables bounded between zero and one. The model can be applied when there are two seem-

ingly unrelated fractional response variables. Since the model relies on a quite strong bivariate

normality assumption, specification tests are discussed and the consequences of misspecification

are investigated. It is shown that the model performs well when normal marginal distributions

can be established (this can be tested), and does not perform worse when the joint distribution

is not characterized by bivariate normality. Simulation evidence shows that the bivariate model

generates more efficient estimates than two univariate models applied to each fractional response

variable separately. An empirical application illustrates the usefulness of the proposed model in

empirical practice.
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1 Introduction

Fractional response variables are variables taking values in the [0, 1]-interval. Such vari-

ables are often encountered in empirical research. An example is the share of exports

in total sales (Wagner, 2001). However, the results of this paper do not only apply to

true fractions in the literal sense but also to other variables which are naturally bounded

between zero and one, such as the perceived probability that a certain event (like job

loss) occurs. For convenience, these variables are also referred to as fractional response

variables. To relate such variables to a set of explanatory variables, fractional response

models are used.

The previous literature has largely focused on univariate fractional response models,

where the fractional response variable y is a scalar. For example, Papke and Wooldridge

(1996; 2008) propose fractional logit and fractional probit models in a univariate cross

section and panel data context. Further models which can be used to analyze univariate

fractional response variables are surveyed in Ramalho et al. (2011).

Recent research has developed multivariate extensions of univariate fractional response

models. These models focus on a full vector (y1, y2, . . . , yM),M ≥ 2, of fractional response

variables. In some specifications (e.g., Mulllahy and Robert, 2010, Mullahy, 2015, and

Murteira and Ramalho, 2016), the vector of fractional response variables represents in-

timately related share data in the sense that the variables have to add up to one and

be mutually exclusive. To give an example, consider a consumer who spends her entire

disposable income on certain commodity categories. The part of income she spends on

one type of commodity cannot be spent on another type of commodity at the same time

(mutual exclusivity). Furthermore, the shares of spending on the commodity categories

must sum up to one, since disposable income is fully divided between these categories.

Other specifications (e.g., Cepeda-Cuervo et al., 2014) consider multivariate approaches

for the joint modeling of fractional response variables which are not related in the above

sense. For instance, one variable might be the share of income spent on cinema tickets

and the other variable the share of daily time devoted to leisure activities. Clearly, both

variables are neither mutually exclusive nor do they have to add up to one.

2



This paper also considers multivariate modeling of fractional response variables which

are neither restricted to sum up to one nor to be mutually exclusive. In contrast to the

previous literature, I consider a fairly flexible modeling approach which is robust against

distributional misspecification. For example, Cepeda-Cuervo et al. (2014) consider para-

metric bivariate beta regression models based on the beta distribution and copulas, which

is conceptually well-suited for the multivariate analysis of fractional response variables

but might lead to inconsistent parameter estimates if the distributional assumptions are

not fulfilled; see, e.g., Papke and Wooldridge (1996, p. 620) or Ramalho et al. (2011, p.

24) for a similar argument in the context of univariate fractional response models.

The modeling approach considered here combines the conditional mean-type frame-

work of Papke and Wooldridge (1996) with parametric assumptions on the unobservables

(error terms). In particular, it is assumed that the unobservables have a bivariate nor-

mal distribution. At first sight this seems to be an equally restrictive assumption as in

other distibutional models like Cepeda-Cuervo et al. (2014), but it turns out that the

proposed approach is robust and flexible enough to overcome the issues associated with

distributional misspecification. In particular, a Monte Carlo simulation study indicates

that the joint normality assumption on the unobservables is not critical, i.e., does not lead

to biased parameter estimates, given that the marginal distributions of unobservables are

univariate normal distributions. Whether the marginal distributions are univariate nor-

mal can be tested, and in case of rejection it is possible to apply nonlinear transformations

until the univariate normality hypothesis is not rejected any more.

For simplicity, I consider a bivariate modeling and estimation approach in this paper.

However, this approach can be extended to multivariate settings with more than two

fractional response variables.

In general, it is also possible to analyze multiple fractional response variables sepa-

rately instead of modeling them jointly. However, the joint modeling approach has two

advantages. First, efficiency gains might be realized since the dependence structure of the

fractional response variables (conditional on explanatory variables) is taken into account.

Second, the researcher might be interested in the dependence structure of unobservables,
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which might provide additional insights how the unobservables are related and which kind

of variables might be represented by the unobservables. The Monte Carlo study in this

paper will put a deeper focus on the efficiency issue, while an empirical application will

illustrate both issues in the context of a relevant economic research question.

The remainder of the paper is organized as follows. Section 2 introduces the econo-

metric model, presents the estimation approach and discusses specification issues. Section

3 provides a simulation analysis to investigate the finite sample properties of the proposed

estimator and also includes a misspecification analysis. Section 4 contains the empirical

application of the proposed model. Finally, Section 5 concludes the paper.

2 Econometric Framework

2.1 Econometric Model, Estimation and Inference

I consider the following econometric model:

yi1 = Φ(x′i1β1 + ui1) (1)

yi2 = Φ(x′i2β2 + ui2), (2)

where i = 1, . . . , n indexes individuals, yi1 and yi2 denote the fractional response variables,

xi1 and xi2 are vectors of explanatory variables with corresponding parameter vectors β1

and β2, and ui1 and ui2 denote error terms capturing the aggregated effects of unobserved

variables. For the error terms, I assume that







ui1

ui2






∼ N













0

0






,







1 ρ

ρ 1












, (3)

where the variances of one have been chosen due to normalization and ρ denotes the

correlation coefficient.

Note that the model can be interpreted as a bivariate fractional probit model, since
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the “link function” in Eqs. (1) and (2) is the standard normal cumulative distribution

function (cdf). The purpose of the link function is to bound the right hand side between

zero and one, thus making the model consistent with the bounded nature of the fractional

response variables on the left hand side.

In this regard, the model is an extension of the univariate fractional probit model due

to Papke and Wooldridge (1996) to bivariate data. However, an important difference to

Papke and Wooldridge’s (1996) model is that Papke and Wooldridge (1996) only spec-

ify the conditional mean of the fractional response variable, while my specification also

encompasses distributional assumptions (on the error terms). The distributional assump-

tions are important to allow for correlation between the unobservables in Eqs. (1) and

(2).

Allowing for correlation in unobservables is the central point of this paper. When

the error terms ui1 and ui2 are independent, i.e., when ρ = 0, then one could estimate

both equations separately without sacrificing efficiency gains. However, when the error

terms exhibit correlation, a joint estimation approach might lead to efficiency gains, as

a joint estimation approach utilizes all available information including the correlation

structure of unobservables. This is essentially the same argument that has been used

for putting forward joint estimation approaches in the context of linear and nonlinear

econometric models. In analogy to the seemingly unrelated regressions approach for

linear regression models, the approach considered here could be interpreted as a seemingly

unrelated regressions framework for bivariate fractional response data.

Given the econometric model, the next step is to set up an estimator which utilizes

all available information in order to realize efficiency gains. Since the correlation between

ui1 and ui2 is essential in a joint estimation framework, the estimator should account for

this correlation. A guideline how to proceed is given by Papke and Wooldridge (1996),

who employ a quasi maximum likelihood (QML) estimation framework. The general

QML approach is described in detail in Gourieroux et al. (1984). The idea of the QML

approach is that not the full conditional distribution of the fractional response variables

has to be specified correctly, but only conditional means. In the univariate framework,
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Papke and Wooldridge (1996) show that the Bernoulli log-likelihood function can be

used for estimation of the fractional probit (or logit) model, with the difference that

the binary dependent variable in the likelihood function is replaced by the fractional

response variable. Under the assumption that the conditional mean of the fractional

response variable has been specified correctly, they show that this estimation strategy

yields consistent estimates of the model parameters.

I proceed in a similar way. In contrast to the univariate framework, however, I have

to set up a likelihood function which utilizes the correlation between ui1 and ui2. To do

this, I employ the log-likelihood function of two binary but not necessarily independent

variables, which is given by

logL =
n
∑

i=1

li(θ) ≡
n
∑

i=1

{yi1yi2 log(E[yi1yi2|xi1, xi2]) + yi1(1− yi2) log(E[yi1(1− yi2)|xi1, xi2])

+(1− yi1)yi2 log(E[(1− yi1)yi2|xi1, xi2]) + (1− yi1)(1− yi2) log(E[(1− yi1)(1− yi2)|xi1, xi2])} .

Given the model above, i.e., Eqs. (1)-(3), the conditional means are as follows:

E[yi1yi2|xi1, xi2] = Φ2

(

x′i1β1√
2
,
x′i2β2√

2
,
ρ

2

)

,

E[yi1(1− yi2)|xi1, xi2] = Φ2

(

x′i1β1√
2
,−x

′

i2β2√
2

;−ρ
2

)

,

E[(1− yi1)yi2|xi1, xi2] = Φ2

(

−x
′

i1β1√
2
,
x′i2β2√

2
;−ρ

2

)

,

E[(1− yi1)(1− yi2)|xi1, xi2] = Φ2

(

−x
′

i1β1√
2
,−x

′

i2β2√
2
;
ρ

2

)

.

The detailed derivation of the first conditional mean is shown in Appendix 1 of this

paper; the remaining conditional means can be derived in a similar manner. Inserting

these conditional means into the log-likelihood function yields

logL(θ) =
n
∑

i=1

li(θ) ≡
n
∑

i=1

{

(yi1yi2) log

(

Φ2

(

x′i1β1√
2
,
x′i2β2√

2
;
ρ

2

))

+

(yi1(1− yi2)) log

(

Φ2

(

x′i1β1√
2
,−x

′

i2β2√
2
;−ρ

2

))

+
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((1− yi1)yi2) log

(

Φ2

(

−x
′

i1β1√
2
,
x′i2β2√

2
;−ρ

2

))

+

((1− yi1)(1− yi2)) log

(

Φ2

(

−x
′

i1β1√
2
,−x

′

i2β2√
2

;
ρ

2

))}

,

where θ ≡ (β ′

1, β
′

2, ρ)
′ is the parameter vector to be estimated. Let θ̂ denote this QML

estimator and denote the true value by θ0. To derive the asymptotic properties of θ̂, I

impose the following assumptions:

Assumption 1 We observe an i.i.d. sample {(yi1, yi2, xi1, xi2)}ni=1 from a distribution

supported on Ω and sampled according to Eqs. (1)-(3).

Assumption 2 The true value of the parameter vector θ, θ0, lies in the interior of Θ, a

compact subset of Rdim(θ).

Assumption 3 The matrices E[xi1x
′

i1] and E[xi2x
′

i2] are positive definite.

Assumption 4 The random variables contained in xi1 and xi2 have finite third absolute

moment.

Assumption 5 The matrix A0 ≡ E
[

∂2li(θ0)
∂θ∂θ′

]

is negative definite.

Assumption 1 is a standard assumption on the sampling process, while Assumption 2 is

a standard assumption on the parameter space. Assumption 3 rules out cases of multi-

collinearity among the variables in xi1 and xi2, respectively, while Assumption 4 states

moment conditions which are needed for several convergence results to hold. Finally, As-

sumption 5 imposes that the Hessian matrix be negative definite, which is needed for a

well-defined asymptotic distribution.

Given these assumptions, the following theorems establish the consistency and asymp-

totic normality of the QML estimator θ̂ of θ0:

Theorem 1 Under Assumptions 1-3, θ̂
p→ θ0.

Theorem 2 Under Assumptions 1-5,
√
n(θ̂ − θ0)

d→ N (0, V0), where V0 ≡ A−1
0 B0A

−1
0

and B0 ≡ E
[

∂li(θ0)
∂θ

∂li(θ0)
∂θ′

]

.

7



All proofs are given in Appendix 2 of this paper.

Note that the asymptotic variance matrix of θ̂, V0/n, is of the “sandwich”-type, which

is due to the fact that the log-likelihood function is not based on the true conditional

distribution of yi1 and yi2 and, therefore, the information equality does not apply. In

practice, the asymptotic variance of θ̂ has to be estimated in order to calculate standard

errors and perform hypotheses tests. Define

V̂ ≡ (Â)−1B̂(Â)−1 (4)

Â ≡ 1

n

n
∑

i=1

∂2li(θ̂)

∂θ∂θ′
(5)

B̂ ≡ 1

n

n
∑

i=1

(

∂li(θ̂)

∂θ

∂li(θ̂)

∂θ′

)

(6)

and consider a Wald test of the hypotheses H0 : R(θ) = 0, where R(θ) is an (r×1)-vector

whose elements are continuously differentiable w.r.t. θ. The matrix of partial derivatives

∂R(θ)/∂θ′ is required to have full row rank at θ0. The Wald test statistic is

W = R(θ̂)′

(

∂R(θ̂)

∂θ′
(n−1V̂ )

∂R(θ̂)

∂θ

)

−1

R(θ̂). (7)

The following theorem establishes that V̂ is a consistent estimator of V0, that the

Wald statistic has the usual χ2-distribution with degrees of freedom equal to the number

of hypotheses, and that the Wald test is consistent, i.e., the Wald test statistic approaches

infinity when the alternative Ha is true:

Theorem 3 Under Assumptions 1-5, (a) V̂
p→ V0, (b) W

d→ χ2
r under H0 and W

p→ +∞

under Ha.

The Wald test can be used to indicate whether there is indeed correlation between

the error terms ui1 and ui2. The null hypothesis is ρ = 0. Rejecting the null hypothesis

suggests that the joint estimation approach proposed here leads to more efficient estimates

than separate estimations of two univariate fractional response models. Note that separate

estimations of Eq. (1) and (2) amounts to the estimation of two fractional probit models,

8



since E[yi1|xi1] = Φ(x′i1β1/
√
2) and E[yi2|xi2] = Φ(x′i2β2/

√
2). Estimation could then

be carried out as in Papke and Wooldridge (1996). However, when ρ 6= 0, separate

estimations might not be efficient. The efficiency gains from a joint estimation approach

relative to separate estimations will be investigated in the Monte Carlo simulation study

below.

2.2 Marginal Effects

Empirical economists are usually interested in marginal effects rather than parameters,

as the marginal effects measure the average change in the dependent variable due to a

one-unit change in the explanatory variables. In the model above, the marginal effects of

a one-unit change in xi1 on yi1 and xi2 on yi2 are of interest. For simplicity, I assume that

all explanatory variables are continuous. An extension of the following results to the case

of discrete explanatory variables is straightforward.

The marginal effect for a given individual i is defined as the change in

E[yij|xij ] = Φ(x′ijβj/
√
2), j = 1, 2

due to a marginal change in xij . Since continuous explanatory variables are assumed, this

marginal effect is given by

mj(xij , θ) ≡ φ(x′ijβj/
√
2)βj/

√
2,

where φ(·) denotes the standard normal probability density function (pdf). The average

marginal effect is defined as the average of the individual marginal effects, where the

averaging takes place over the distribution of xij :

AMEj ≡ E[mj(xij , θ)].
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The average marginal effect can be estimated by

ÂMEj =
1

n

n
∑

i=1

mj(xij , θ̂).

Note that mj(xij , θ), ÂMEj and AMEj are vectors, where each element contains the

(average) marginal effect associated with a particular variable included in xij .

As in the last subsection for the parameters, I provide theorems on the consistency

and asymptotic normality of the average marginal effects ÂMEj. I omit the index j for

convenience, since the following results do not depend on the specific equation (indexed

by j) under consideration. In this context, consistency means that ÂME is a consistent

estimator of AME0 ≡ E[m(xi, θ0)], the true value of AME.

Assumption 6 The matrix M0 ≡ E[m̃(xi, θ0)m̃(xi, θ0)
′], where m̃(xi, θ0) ≡ m(xi, θ0) −

AME0 − E
[

∂m(xi,θ0)
∂θ′

]

A−1
0

∂li(θ0)
∂θ

, is positive definite.

Theorem 4 Under Assumptions 1-3, ÂME
p→ AME0.

Theorem 5 Under Assumptions 1-6,
√
n(ÂME − AME0)

d→ N (0,M0).

Define

M̂ ≡ 1

n

n
∑

i=1

(

ˆ̃m(xi, θ̂) ˆ̃m(xi, θ̂)
′

)

, (8)

where

ˆ̃m(xi, θ̂) ≡ m(xi, θ̂)− ÂME −
(

1

n

n
∑

i=1

∂m(xi, θ̂)

∂θ′

)

Â−1∂li(θ̂)

∂θ
, (9)

and consider a Wald test of the hypotheses H0 : R(AME) = 0, where R(AME) is a

(r× 1)-vector whose elements are continuously differentiable w.r.t. AME. The matrix of

partial derivatives ∂R(AME)/∂AME ′ is required to have full row rank at AME0. The
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Wald test statistic is

W = R(ÂME)′

(

∂R(ÂME)

∂AME ′
(n−1M̂)

∂R(ÂME)

∂AME

)

−1

R(ÂME). (10)

Theorem 6 Under Assumptions 1-6, (a) M̂
p→ M0, (b) W

d→ χ2
r under H0 and W

p→

+∞ under Ha.

The estimated asymptotic variance of ÂME is thus M̂/n. The standard errors of the

estimated marginal effects can then be derived in the usual manner, i.e., as the square roots

of the diagonal elements of M̂/n. In empirical practice, using Stata might be a convenient

option, since the margins command of Stata, in conjunction with the vce(unconditional)

option, calculates estimated marginal effects and standard errors in the same manner as

implied by the formulas given above (see StataCorp 2015, pp. 1359-1414). I used Stata’s

margins command for the calculation of estimated marginal effects and standard errors

in the simulation study and the empirical application given below.

2.3 Specification Issues

A critical assumption of the proposed model is the bivariate normality assumption on

the error terms ui1 and ui2. If this assumption does not hold in empirical practice, then

parameter estimates and estimated average marginal effects are likely to be inconsistent.

So the question arises what can be done in empirical practice to verify the bivariate

normality assumption.

The following theorem provides some guidance:

Theorem 7 Suppose that E[yij |xij] = Φ(x′ijβj/
√
2), j = 1, 2, and Eqs. (1) and (2) hold.

Then, uij ∼ N(0, 1), j = 1, 2.

The theorem says that if data are generated according to Eqs. (1) and (2) and, moreover,

the conditional means of yi1 and yi2 are characterized by fractional probit models, then it

follows that ui1 and ui2 each are univariate normally distributed. Hence, if a researcher can

verify that the conditional means of yi1 and yi2 each follow a fractional probit model, this
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indicates that the marginal distributions of ui1 and ui2 are standard normal distributions.

Whether the conditional means of yi1 and yi2 follow fractional probit models can be tested.

Papke and Wooldridge (1996) propose a RESET test, while, in a more recent paper,

Ramalho et al. (2014) propose a generalized goodness of functional form (GGOFF) test.

If these tests do not reject the fractional probit specifications of the conditional means,

this indicates that the univariate normality assumption on ui1 and ui2 is reasonable.

The fractional probit specification of the conditional means is far less restrictive than

it might seem. Suppose that the conditional mean of yij is given by E[yij|xij ] = H(x′ijβj),

where H(·) is not the standard normal cdf, so that the conditional mean does not follow

a fractional probit model. However, Ramalho et al. (2014, p. 491) argue that standard

approximation results for polynomials allow E[yij |xij] to be approximated by

E[yij|xij ] = Φ

(

x′ijβj +
L
∑

l=1

ψl(x
′

ijβj)
l

)

for L large enough, where ψl, l = 1, . . . , L, denote parameters. Hence, any conditional

mean specification can be transformed into a fractional probit specification by using a

suitable nonlinear transformation of the index x′ijβj . Thus, in empirical practice the

researcher might augment her model with additional nonlinear terms of the explanatory

variables to make her model consistent with the fractional probit specification of the

conditional means, thereby ensuring that the univariate normality assumption on ui1 and

ui2 holds.

However, even when ui1 and ui2 have marginal normal distributions, this does not

imply that the joint distribution of (ui1, ui2) is a bivariate normal distribution. To see

this, define a bivariate copula C : [0, 1]2 → [0, 1], which couples two marginal distributions

into a joint distribution. Given that ui1 and ui2 have marginal normal distributions and

their dependence is characterized by a copula C, the joint distribution of (ui1, ui2) is given

by

F (ui1, ui2) = C(Φ(ui1),Φ(ui2);λ), (11)
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where λ denotes the copula dependence parameter describing the dependence structure.

Indeed, there exists a quite large number of copulas; see, e.g., Nelsen (2006) for an

overview. Hence, no matter which copula is actually represented by C, the implied joint

distribution F will always be consistent with the fact that ui1 and ui2 have marginal nor-

mal distributions. Only if C is the Gaussian copula, the joint distribution F is a bivariate

normal distribution. This raises the question to what extent a copula misspecification,

i.e., when the copula C is not the Gaussian copula as assumed in the bivariate fractional

probit model, affects the properties of the quasi maximum likelihood estimator θ̂ and

the estimator of the marginal effects ÂME. I will not address this question analytically,

but by means of a simulation study where I analyze what happens in case of copula

misspecification, i.e., non-bivariate-normality. The results are given in the next section.

3 Simulation Study

3.1 Finite Sample Properties of the QML Estimator

First, the finite sample properties of the QML estimator of the bivariate fractional probit

model shall be investigated. I also compare this estimator with the QML estimators from

separate estimations of two univariate fractional probit models, in order to analyze the

efficiency gains that can be realized from a joint estimation approach.

The data are generated as follows:

yi1 = Φ(β11 + β12xi1 + ui1) (12)

yi2 = Φ(β21 + β22xi2 + ui2), (13)

xi1 and xi2 are independent random draws from a standard normal distribution and ui1

and ui2 are random draws from a bivariate standard normal distribution with correlation

ρ. The correlation coefficient ρ is altered during the simulations, to see how results change

when there is a larger amount of dependence; in particular, ρ takes the values 0, 0.25, 0.5

and 0.75. The true values of the remaining parameters are β11 = 1, β12 = 1, β21 = 1 and
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β22 = −1.

This simulation study considers sample sizes of n = 500, n = 1, 000 and n = 2, 000.

Each simulation comprises 1,000 repetitions. Reported measures of estimator performance

are the mean of the parameter estimates over the 1,000 repetitions, the corresponding root

mean squared errors (RMSE) and the mean of the standard errors associated with the

parameter estimates. The mean of the standard errors is reported because it indicates

whether an estimator is more efficient than another estimator.

Since in empirical practice (estimated) marginal effects are more important than pa-

rameter estimates, the simulation results also include corresponding measures for the

estimated marginal effects. The estimated marginal effects and their standard errors are

calculated as described in Section 2. Let ME11 denote the marginal effect of xi1 on yi1

and ME22 the marginal effect of xi2 on yi2. Given the true parameter values from above

and the distributional specifications on xi1 and xi2, the true values of the marginal effects

can be calculated as ME11 = 0.1950 and ME22 = −0.1950.

The simulation results are given in Tables 1-3 for the different sample sizes under

consideration. The results show that the parameters and marginal effects are estimated

well by both separate fractional probit models and the bivariate fractional probit model.

When ui1 and ui2 are independent, i.e., when ρ = 0, the separate fractional probit models

and the bivariate probit model perform equally well also in terms of RMSE’s and standard

errors. However, when the degree of dependence, i.e., ρ, increases, the bivariate probit

model generates estimates with lower RMSE’s and lower standard errors, for all sample

sizes under consideration. This illustrates that, as expected, the joint estimation approach

leads to more efficient estimates when ui1 and ui2 are correlated.

3.2 Misspecification Analysis

As shown in Sec. 2, the marginal distributions of ui1 and ui2 are normal distributions pro-

vided that the conditional means E[yi1|xi1] and E[yi2|xi2] follow fractional probit models.

Since the latter can be tested statistically, a more critical assumption in practice seems to

be that the joint distribution of ui1 and ui2 is characterized by a bivariate normal distri-
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bution. Or put differently, given that ui1 and ui2 have normal marginal distributions, that

the copula characterizing the joint distribution of (ui1, ui2) is a Gaussian copula. In this

subsection, I provide a misspecification analysis to show how the properties of the QML

estimator of the bivariate fractional probit model are affected when the true underlying

copula is not the Gaussian copula. Specifically, I consider six copulas1:

• the t-copula with Kendall’s τ = 0.5;

• the t-copula with Kendall’s τ = −0.5;

• the Clayton copula with Kendall’s τ = 0.5;

• the Gumbel copula with Kendall’s τ = 0.5;

• the Frank copula with Kendall’s τ = 0.5;

• the Frank copula with Kendall’s τ = −0.5.

The t-copula has been chosen because – compared with the Gaussian copula – it im-

plies quite different behavior at the tails of the distribution, i.e., extreme cases are more

pronounced. The remaining copulas belong to the class of Archimedean copulas and rep-

resent quite different dependence patterns. The Clayton and Gumbel copulas are only

able to represent positive dependence, where the Clayton copula accommodates lower tail

dependence and the Gumbel copula upper tail dependence. Upper tail dependence means

that large values of one variable are associated with large values of another variable. The

Frank copula is able to represent both positive and negative dependence. The Frank

copula with Kendall’s τ = 0.5 implies positive dependence, while the Frank copula with

Kendall’s τ = −0.5 implies negative dependence. I chose the copula-specific dependence

parameters in a way that the same value of Kendall’s τ is implied, as in Schwiebert (2016).

I did so because Kendall’s τ is a measure of dependence which is comparable across cop-

ulas. Hence, to make the copulas comparable, I selected a value of τ = 0.5 for all copulas

except for the t- and Frank copulas with negative dependence, where I selected a value of

1For a detailed description of the properties of these copulas, see, e.g., Schmidt (2007).
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τ = −0.5. The negative values of τ are considered in order to investigate if results change

when dependence is negative rather than positive.

As in the last subsection, the performance of the QML estimator of the bivariate

fractional probit model is compared with the performance of QML estimators from sep-

arate estimations of two univariate fractional probit models. The sample size is set to

n = 2, 000 and the data generation is as in the last subsection, with the only difference

that the copula characterizing the dependence between ui1 and ui2 is not the Gaussian

copula but each of the copulas listed above.2 Note that the marginal distributions of

ui1 and ui2 are still normal, hence it can be expected that separate univariate fractional

probit models should yield consistent estimates, whereas the bivariate fractional probit

model might yield inconsistent results due to the copula misspecification.

The results of this misspecification study are given in Table 4. Reported are again the

mean of parameter estimates and marginal effects, along with their associated RMSE’s

and mean standard errors. For comparison purposes, also results for the correctly specified

Gaussian copula with τ = 0.5 and τ = −0.5 are included. Note that a value of τ = (−)0.5

implies that ρ ≈ (−)0.7071 in case of the Gaussian copula/bivariate normal distribution.

The overall picture from Table 4 is quite clear. The bivariate fractional probit model

performs well despite of the misspecification of the copula. The biases are very low and

comparable to those from the univariate fractional probit models. Remember that the

univariate fractional probit models are correctly specified, since the marginal distributions

of ui1 and ui2 are normal distributions. Nonetheless, the RMSE’s and means of standard

errors from the bivariate fractional probit model are still lower than those of the univariate

fractional probit models, for all copulas under consideration.

Taken together, the simulation results from this and the last subsection show that

the bivariate fractional probit model performs well in finite samples also under copula

misspecification. In particular, the bivariate probit model is found to be more efficient

than two univariate fractional probit models when the unobserved factors ui1 and ui2 are

indeed dependent. This suggests that the bivariate fractional probit model provides a

2How to simulate random variates from these copulas is described, e.g., in Schmidt (2007).
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valuable modeling approach in empirical practice.

4 Empirical Application

In this section I consider an economic application of the bivariate fractional probit model.

More specifically, I seek to analyze how education affects (i) the perceived probability of

losing one’s job within the next two years and (ii) the perceived probability of looking for

a new job on one’s own initiative within the next two years. Both outcomes are fractional

response variables, since probabilities are bounded between zero and one.

In a study on the determinants of happiness, Winkelmann and Winkelmann (1998)

find a substantial negative effect of unemployment on individual well-being. It is plausible

that also a high perceived probability of losing one’s job as well as a low perceived prob-

ability of looking for a new job have the same effects, at least when the latter reflects the

labor market opportunities of an individual. Hence, the question arises how the negative

effects of threatening unemployment and unfavorable labor market opportunities can be

mitigated.

Economists often focus on education as a driving force of individual and societal well-

being. Education is commonly found to improve labor market opportunities in the sense

that it increases the probability of having a job and raises the employee’s wage (e.g., Card,

1999). Therefore, education might have a positive effect on individual well-being through

its effects on labor market opportunities. I expect that education has similar effects on the

fractional outcome variables under consideration. In particular, I expect that education

lowers the perceived probability of losing one’s job and increases the perceived probability

of looking for a new job.

These expectations are motivated as follows. Concerning the perceived probability

of job loss, education increases the amount of human capital and thus the value of an

employee to her employer. For this reason, more education should lead to a lower perceived

probability of job loss, since employees know their value to some extent. Concerning the

perceived probability of looking for a new job, I hypothesize a positive association between

education and the perceived probability of looking for a new job for three reasons. First,
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education might not only increase the employee’s value to her own employer, but also to

other potential employers, which provides an incentive to the employee to look for a new

job. Second, individuals with higher education might possess better information about

potential employers, which also increases the likelihood of looking for new job. Third,

better-educated individuals might have more self-confidence and thus be more likely to

look for a new job.

The fractional probit model is suited for an analysis of these two dependent variables

since it is likely that the variables are interrelated, even after controlling for explanatory

variables. For example, if an employee works for a firm facing difficult economic conditions,

the employee might fear job loss and, therefore, look for a new job at the same time. Since

such information like the economic conditions of a specific firm is typically not available

to the researcher, this kind of information is absorbed by the unobserved factors ui1 and

ui2 described above. And since it is plausible that ui1 and ui2 are correlated for the two

dependent variables under consideration, the bivariate fractional probit model seems to

be an appropriate modeling device.

I use data from the 2009 wave of the German Socioeconomic Panel (SOEP). The

two dependent variables are measured in percentage points in decimal steps, e.g., 0%,

10%, 20%, ... I divide these variables by 100 to get true fractional response variables,

i.e., variables in the [0, 1]-interval. I selected the following explanatory variables for both

dependent variables: education, age, age squared, dummies for the state of residence, a

dummy for foreign nationality, dummies for marital status and the number of children.

The sample consists of men only, as in case of women sample selectivity effects might

play a role. Analyzing sample selection issues within the bivariate fractional probit model

is beyond the scope of this paper, hence women were excluded from the analysis.3 The

sample includes men in their prime working age, i.e., between 25 and 54 years of age.

I excluded self-employed persons because for these persons it is difficult to distinguish

between voluntary quits and job losses (see Manski and Straub, 2000, p. 467). Includ-

ing self-employed persons into the analysis would make the interpretation of the first

3In Schwiebert (2017), I develop a sample selection model for a univariate fractional response variable.
Extending these results to the bivariate case is left to future research.
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dependent variable, i.e., the perceived probability of job loss, difficult, since job loss is

“commonly assumed to be unanticipated by the worker and unaffected by worker behavior

on the job; the result of plant closings, elimination of positions, and the like” (Manski

and Straub, 2000, p. 467). Summary statistics of all variables are given in Table 5.

As in Sec. 3, I consider the estimation of a bivariate fractional probit model and sep-

arate estimations of two univariate fractional probit models for each dependent variable.

As shown in Sec. 3, one would expect the estimates from the bivariate fractional probit

model to be more efficient than those from the univariate fractional probit models. All

estimations have been done in Stata 15.

As discussed in Sec. 2, the bivariate normality assumption on the unobserved factors

ui1 and ui2 might be critical. However, in Sec. 3 it was shown that a misspecification

of the copula characterizing the joint distribution of (ui1, ui2) is not problematic, given

that the marginal distributions of ui1 and ui2 are normal distributions. Hence, it remains

to validate that the marginal distributions of ui1 and ui2 are indeed univariate normal

distribution. As argued in Sec. 2, this can be done by testing whether the conditional

means E[yi1|xi1] and E[yi2|xi2] follow fractional probit models, where yi1 represents the

perceived probability of job loss while yi2 represents the perceived probability of looking

for a new job. In their seminal paper on fractional response models, Papke andWooldridge

(1996) recommend to use the RESET test to validate the model specification. In a more

recent paper, Ramalho et al. (2014) propose a generalized goodness of functional form

(GGOFF) test for the same purpose. Please see these papers for a detailed description of

these tests. I applied both tests to validate the fractional probit specification of the con-

ditional means E[yi1|xi1] and E[yi2|xi2]. Both tests did not reject the null hypothesis that

the fractional probit model is a correct specification, at least at conventional significance

levels. In particular, the RESET test (with quadratic and cubic terms) yielded a p-value

of 0.15 in case of E[yi1|xi1] and a p-value of 0.50 in case of E[yi2|xi2], while the GGOFF

test yielded a p-value of 0.15 in case of E[yi1|xi1] and a p-value of 0.45 in case of E[yi2|xi2].

Hence, the univariate normality assumptions on ui1 and ui2 seem to be justified, so that

the estimation results should not be contaminated by misspecification error.
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The estimation results are given in Table 6. Table 6 includes the estimated parameters

along with their estimated standard errors in parentheses. In case of the bivariate frac-

tional probit model, the correlation parameter ρ is reported as a measure of dependence.

Moreover, the marginal effects of education on the dependent variables are given, as these

effects are of central interest in this empirical application. The estimates for the state

dummies have been omitted from the table due to brevity.

As expected, the parameter estimates from the bivariate fractional probit model and

the univariate fractional probit models are very similar. However, the correlation pa-

rameter ρ takes a fairly high value of 0.59 and is significantly different from zero, which

indicates that the unobserved factors ui1 and ui2 are indeed correlated. We also see that

the estimated marginal effects of education on the two dependent variables take the ex-

pected signs and are quite similar in magnitude across models. However, the estimated

marginal effects from the bivariate fractional probit model have slightly lower standard

errors than those from the univariate fractional probit models. The differences are not

large, but indicate that also in empirical practice the bivariate fractional probit model

leads to efficiency gains.

In summary, the estimation results show that education lowers the perceived proba-

bility of job loss and increases the perceived probability of looking for a new job. Hence,

education might be interpreted as some kind of insurance against the negative costs as-

sociated with unemployment. Moreover, the positive value of the correlation coefficient

indicates that the perceived probability of job loss and the perceived probability of look-

ing for a new job are positively correlated even after controlling for explanatory variables.

This might indicate that both variables are prone to the same kind of shocks, like unfa-

vorable economic conditions. Finally, the estimation results show that (small) efficiency

gains can be realized by estimating a bivariate fractional probit model rather than esti-

mating two univariate fractional probit models separately. This result is in line with the

simulation evidence from Sec. 3.
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5 Conclusions

In this paper I proposed a bivariate fractional probit model which can be used for the

econometric analysis of two seemingly unrelated fractional response variables. The model

is simple and provides an extension of the fractional probit model developed for univari-

ate fractional response variables by Papke and Wooldridge (1996). The main benefit of

the model is that it allows to realize efficiency gains, as the correlation of unobserved

factors is taken into account. The simulation study and the empirical application above

demonstrated that the bivariate model indeed leads to more efficient estimates than two

univariate models applied to each fractional response variable separately, although the

efficiency gains in the empirical application were quite small.

An advantage of the proposed model is that it performs well under misspecification of

the copula characterizing the joint distribution of error terms, provided that the marginal

distributions are univariate normal distributions. The latter can be validated by testing

whether the conditional means of the fractional response variables follow fractional probit

models. However, even in case of rejection of the latter hypotheses a nonlinear transfor-

mation is applicable, which ensures that the conditional means do follow fractional probit

models. Hence, even though the bivariate fractional probit model relies on a seemingly

strong bivariate normality assumption, the consequences of a distributional misspecifica-

tion are very small, provided that univariate normal distributions have been established.

On the other hand, the model is easily estimable, which might be considered an advantage

over semiparametric approaches.
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Appendix 1

As stated in the text, we have that E[yi1yi2|xi1, xi2] = Φ2(x
′

i1β1/
√
2, x′i2β2/

√
2, ρ/2). This

can be established as follows:

E[yi1yi2|xi1, xi2] = E[Φ(x′i1β1 + ui1)Φ(x
′

i2β2 + ui2)|xi1, xi2]

=

∫

∞

−∞

∫

∞

−∞

Φ(x′i1β1 + ui1)Φ(x
′

i2β2 + ui2)φ2(ui1, ui2, ρ)dui1dui2

=

∫

∞

−∞

∫

∞

−∞

∫ x′

i1β1+ui1

−∞

φ(εi1)dεi1

∫ x′

i2β2+ui2

−∞

φ(εi2)dεi2φ2(ui1, ui2, ρ)dui1dui2

=

∫

∞

−∞

∫

∞

−∞

∫ x′

i1β1+ui1

−∞

∫ x′

i2β2+ui2

−∞

1

(2π)2
√

1− ρ2
exp

(

−1

2
(ε2i1 + ε2i2)

− 1

2(1− ρ2)
(u2i1 − 2ρui1ui2 + u2i2)

)

dεi1dεi2dui1dui2,

where φ2(·, ·, ρ) denotes the bivariate standard normal probability density function with

correlation ρ. The substitution vi1 ≡ εi1 − ui1 and vi2 ≡ εi2 − ui2 yields

E[yi1yi2|xi1, xi2] = . . .

=

∫

∞

−∞

∫

∞

−∞

∫ x′

i1β1

−∞

∫ x′

i2β2

−∞

1

(2π)2
√

1− ρ2
exp

(

−1

2

(

v2i1 + 2vi1ui1 + u2i1 + v2i2 + 2vi2ui2 + u2i2

+
1

(1− ρ2)
u2i1 −

2ρ

(1− ρ2)
ui1ui2 +

1

(1− ρ2)
u2i2

))

dvi1dvi2dui1dui2

=

∫

∞

−∞

∫

∞

−∞

∫ x′

i1β1

−∞

∫ x′

i2β2

−∞

1

(2π)2
√

1− ρ2
exp

(

−1

2

(

v2i1 + 2vi1ui1 + v2i2 + 2vi2ui2

− 2ρ

(1− ρ2)
ui1ui2 +

(

1 +
1

(1− ρ2)

)

u2i1 +

(

1 +
1

(1− ρ2)

)

u2i2)

))

dvi1dvi2dui1dui2

The integrand is the density of a four-variate normal distribution with mean zero and

covariance matrix
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Σ =


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





.

Let Φ4(·, ·, ·, ·,Σ) denote the four-variate normal cdf with covariance matrix Σ and Φ2(·, ·, Σ̃)

the bivariate normal cdf with covariance matrix Σ̃. Then,

E[yi1yi2|xi1, xi2] = . . .

= Φ4(x
′

i1β1, x
′

i2β2,∞,∞,Σ)

= Φ2






x′i1β1, x

′

i2β2,


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2 ρ

ρ 2


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







= Φ2







x′i1β1√
2
,
x′i2β2√

2
,







1 ρ/2

ρ/2 1













≡ Φ2

(

x′i1β1√
2
,
x′i2β2√

2
,
ρ

2

)

.

Appendix 2

Preliminaries:

The log-likelihood function is given by

logL(θ) =

n
∑

i=1

li(θ) ≡
n
∑

i=1

yi1yi2 log Φ21,i + yi1(1− yi2) log Φ22,i + (1− yi1)yi2 log Φ23,i

+ (1− yi1)(1− yi2) log Φ24,i,
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where

Φ21,i ≡ Φ2

(

x′i1β1√
2
,
x′i2β2√

2
,
ρ

2

)

Φ22,i ≡ Φ2
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2
,−x

′

i2β2√
2
,−ρ

2

)
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2
,−ρ

2

)

Φ24,i ≡ Φ2
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2
,−x

′

i2β2√
2
,
ρ

2

)

.

Define

g1i ≡ φ(x′i1β1/
√
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)

g2i ≡ φ(x′i1β1/
√
2)Φ

(

−x′i2β2/
√
2 + (ρ/2)x′i1β1/

√
2

√

1− ρ2/4

)

g3i ≡ φ(−x′i1β1/
√
2)Φ

(

x′i2β2/
√
2− (ρ/2)x′i1β1/

√
2

√

1− ρ2/4

)

g4i ≡ φ(−x′i1β1/
√
2)Φ

(

−x′i2β2/
√
2 + (ρ/2)x′i1β1/

√
2

√

1− ρ2/4

)

h1i ≡ φ(x′i2β2/
√
2)Φ

(

x′i1β1/
√
2− (ρ/2)x′i2β2/

√
2

√

1− ρ2/4

)

h2i ≡ φ(x′i2β2/
√
2)Φ

(

x′i1β1/
√
2− (ρ/2)x′i2β2/

√
2

√

1− ρ2/4

)

h3i ≡ φ(−x′i2β2/
√
2)Φ

(

−x′i1β1/
√
2 + (ρ/2)x′i2β2/

√
2

√

1− ρ2/4

)

h4i ≡ φ(−x′i2β2/
√
2)Φ

(

−x′i1β1/
√
2 + (ρ/2)x′i2β2/

√
2

√

1− ρ2/4

)

.

Taking the derivative of li(θ) with respect to β1, β2 and ρ yields

∂li(θ)

∂β1
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yi1yi2
g1i
Φ21,i
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where φ2j,i denotes the bivariate standard normal pdf defined analogously to Φ2j,i above.

Proof of Theorem 1:

(i) Identification:

The parameter vector θ is identified if

E

[

∂li(θ)

∂θ
|xi1, xi2

]

= 0 ⇒ θ = θ0,

where the expectation is taken with respect to the true distribution of (yi1, yi2) given

(xi1, xi2) (i.e., based on θ0). Define

Φ̃i ≡ Φ

(

x′i2β2/
√
2− (ρ/2)x′i1β1/

√
2

√

1− ρ2/4

)

˜̃Φi ≡ Φ

(

x′i1β1/
√
2− (ρ/2)x′i2β2/

√
2

√

1− ρ2/4

)

φ2,i ≡ φ2

(

x′i1β1√
2
,
x′i2β2√

2
,
ρ

2

)

.

Taking conditional expectations of the derivatives of the log-likelihood function yields

E

[

∂li(θ)

∂β1
|xi1, xi2

]

=

(

Φ210

Φ21
Φ̃ +

Φ220

Φ22
(1− Φ̃)− Φ230

Φ23
Φ̃− Φ240

Φ24
(1− Φ̃)

)

φ(x′1β1/
√
2)√

2
x1 = 0

(A1)

E

[

∂li(θ)

∂β2
|xi1, xi2

]

=

(

Φ210

Φ21

˜̃Φ− Φ220

Φ22

˜̃Φ +
Φ230

Φ23
(1− ˜̃Φ)− Φ240

Φ24
(1− ˜̃Φ)

)

φ(x′2β2/
√
2)√

2
x2 = 0

(A2)

E

[

∂li(θ)

∂ρ
|xi1, xi,2

]

=

(

Φ210

Φ21
− Φ220

Φ22
− Φ230

Φ23
+

Φ240

Φ24

)

φ2√
2
= 0, (A3)

where a “0” in the index denotes the respective function evaluated at θ0. Note that the

index i has been omitted for convenience. Combining (A1) and (A3) as well as (A2) and
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(A3) implies

Φ220

Φ22

=
Φ240

Φ24

⇔ Φ220Φ24 = Φ240Φ22 (A4)

Φ230

Φ23

=
Φ240

Φ24

⇔ Φ230Φ24 = Φ240Φ23, (A5)

which, inserted in (A3), implies

Φ210

Φ21

=
Φ230

Φ23

⇔ Φ210Φ23 = Φ230Φ21 (A6)

Φ210

Φ21

=
Φ220

Φ22

⇔ Φ210Φ22 = Φ220Φ21. (A7)

Combining (A4) and (A5) yields

Φ220

Φ22
=

Φ230

Φ23
⇔ Φ220Φ23 = Φ230Φ22. (A8)

Using the facts that

Φ24 = 1− Φ21 − Φ22 − Φ23

and

Φ240 = 1− Φ210 − Φ220 − Φ230,

(A4) can be rewritten as

Φ220 − Φ220Φ21 − Φ220Φ22 − Φ220Φ23 = Φ22 − Φ210Φ22 − Φ220Φ22 − Φ230Φ22.

By (A7) and (A8), it follows that Φ220 = Φ22, so that (A4)-(A8) also imply Φ210 = Φ21,

Φ230 = Φ23 and Φ240 = Φ24. For instance, Φ210 = Φ21 and Φ220 = Φ22 mean that

Φ2

(

x′1β10√
2
,
x′2β20√

2
,
ρ0
2

)

= Φ2

(

x′1β1√
2
,
x′2β2√

2
,
ρ

2

)

(A9)
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Φ2

(

x′1β10√
2
,−x

′

2β20√
2
,−ρ0

2

)

= Φ2

(

x′1β1√
2
,−x

′

2β2√
2
,−ρ

2

)

(A10)

It remains to show that (A9) and (A10) imply β1 = β10, β2 = β20 and ρ = ρ0. Taking the

derivatives of (A9) and (A10) with respect to x1 gives

φ(x′1β10/
√
2)Φ̃0β10/

√
2 = φ(x′1β1/

√
2)Φ̃β1/

√
2

and

φ(x′1β10/
√
2)(1− Φ̃0)β10/

√
2 = φ(x′1β1/

√
2)(1− Φ̃)β1/

√
2,

which implies that

φ(x′1β10/
√
2)β10/

√
2 = φ(x′1β1/

√
2)β1/

√
2.

Taking the antiderivative of both sides with respect to x1 yields

Φ(x′1β10/
√
2) = Φ(x′1β1/

√
2)

or

x′1β10 = x′1β1.

Since x′iβ1 = x′iβ10, we have that

x′1(β1 − β10) = 0

⇔ E[(x′1(β1 − β10))
2] = 0

⇔ E[(β1 − β10)
′x1x

′

1(β1 − β10)] = 0

⇔ (β1 − β10)
′E[x1x

′

1](β1 − β10) = 0.

30



But since E[x1x
′

1] is positive definite by Assumption 3, the last equation implies that

β1 − β10 = 0, or β1 = β10; hence, β1 is uniquely identified. The same can be established

in a similar manner for β2. Given β1 = β10 and β2 = β20, (A9) implies

Φ2

(

x′1β1√
2
,
x′2β2√

2
,
ρ0
2

)

= Φ2

(

x′1β1√
2
,
x′2β2√

2
,
ρ

2

)

.

Since the relationship between ρ̃ and Φ2(·, ·, ρ̃) is strictly monotone (e.g., Freedman and

Sekhon, 2010, p. 149), it follows that ρ = ρ0.

(ii) Consistency

Having proved identification, we can verify consistency by checking whether the assump-

tions (a)-(d) of Wooldridge’s (2010) Theorem 12.1 (Wooldridge, 2010, p. 403) are satisfied;

together with the identification of θ these conditions are requirements in Wooldridge’s

(2010) consistency Theorem 12.2 (Wooldridge, 2010, p. 404). Assumption (a) requires

that Θ is compact, which is satisfied by my Assumption 2. Assumptions (b) and (c) say

that li(θ) must be Borel measurable on Ω and be continuous for each (yi1, yi2, xi1, xi2) ∈ Ω

on Θ, which is also true. Assumption (d) requires that |li(θ)| ≤ b(yi1, yi2, xi1, xi2), where

b(·) is a non-negative function on Ω such that E[b(yi1, yi2, xi1, xi2)] < ∞. This is fulfilled

since

|li(θ)| = |yi1yi2 log Φ21,i + yi1(1− yi2) log Φ22,i + (1− yi1)yi2 log Φ23,i

+ (1− yi1)(1− yi2) log Φ24,i| < C <∞,

where C denotes a finite positive constant. Thus, Theorem 12.2 of Wooldridge (2010)

applies and we have that θ̂
p→ θ0.

�

Proof of Theorem 2:

I prove the theorem by showing that the Assumptions (a)-(f) of Wooldridge’s (2010)
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Theorem 12.3 (Wooldridge, 2010, p. 407) are fulfilled. Assumption (a) requires that θ0

is in the interior of Θ, which is satisfied by my Assumption 2. Assumption (b) says that

∂li(θ)
∂θ

is continuously differentiable on the interior of Θ for all (yi1, yi2, xi1, xi2) ∈ Ω, which

is also true. Assumption (c) requires that each element of the matrix
[

∂2li(θ)
∂θ∂θ′

]

must sat-

isfy a dominance condition, i.e., each element of the matrix
[

∂2li(θ)
∂θ∂θ′

]

must be bounded in

absolute value by a function b(yi1, yi2, xi1, xi2) with E[b(yi1, yi2, xi1, xi2)] <∞. I show this

for the submatrix
[

∂2li(θ)
∂β1∂β

′

1

]

:

∂2li(θ)

∂β1∂β ′

1

=

(

yi1yi2

(

−x′i1β1/
√
2 · g1i

Φ21,i
− ρ/2 · φ21,i

Φ21,i
− g21i

Φ2
21,i

)

+ yi1(1− yi2)

(

−x′i1β1/
√
2 · g2i

Φ22,i
+
ρ/2 · φ22,i

Φ22,i
− g22i

Φ2
22,i

)

+ (1− yi1)yi2

(

x′i1β1/
√
2 · g3i

Φ23,i
+
ρ/2 · φ23,i

Φ23,i
− g23i

Φ2
23,i

)

+ (1− yi1)(1− yi2)

(

−x′i1β1/
√
2 · g4i

Φ24,i
− ρ/2 · φ24,i

Φ24,i
− g24i

Φ2
24,i

))

xi1x
′

i1

2
.

Consider
[

∂2li(θ)
∂β1∂β

′

1

]

kl
, the kl-th element of the matrix

[

∂2li(θ)
∂β1∂β

′

1

]

. We have that

∣

∣

∣

∣

[

∂2li(θ)

∂β1∂β ′

1

]

kl

∣

∣

∣

∣

< C1|xi1kxil|+ C2|x′i1β1 · xi1kxi1l|,

where C1 and C2 denote finite positive constants. Since

E[C1|xi1kxi1l|+ C2|x′i1β1 · xi1kxi1l|] <∞

for all k and l by Assumption 4 and the (generalized) Hölder inequality (see, e.g., Finner,

1992),
[

∂2li(θ)
∂β1∂β

′

1

]

kl
fulfills the dominance condition of Wooldridge’s Assumption (c). In a

similar manner, it can be shown that also the remaining elements of the matrix
[

∂2li(θ)
∂θ∂θ′

]

fulfill the dominance condition. Assumption (d) implies that −A0 must be positive defi-

nite, which is fulfilled by my Assumption 5. Assumption (e) requires that E
[

∂li(θ0)
∂θ

]

= 0,

which is fulfilled as shown in the proof of Theorem 1. Finally, Assumption (f) says that

each element of
[

∂li(θ0)
∂θ

]

has finite second moment. To show that this condition is also

32



satisfied, consider the second moment of the k-th element of
[

∂li(θ0)
∂β1

]

:

E

[

([

∂li(θ0)

∂β1

]

k

)2
]

= E

[(

yi1yi2
g1i
Φ21,i

+ yi1(1− yi2) log
g2i
Φ22,i

− (1− yi1)yi2
g3i
Φ23,i

−(1− yi1)(1− yi2)
g4i
Φ24,i

)2
1

2
x2i1k

]

< CE[x2i1k] <∞,

where C is a finite positive constant, and the last inequality follows from Assumption 4

and the (generalized) Hölder inequality. The same can be established for the remaining

elements of
[

∂li(θ0)
∂θ

]

.

�

Proof of Theorem 3:

(a) Let
[

∂li(θ)
∂β1

∂li(θ)
∂β′

1

]

kl
denote the kl-th element of the matrix

[

∂li(θ)
∂β1

∂li(θ)
∂β′

1

]

. We have that

∣

∣

∣

∣

[

∂li(θ)

∂β1

∂li(θ)

∂β ′

1

]

kl

∣

∣

∣

∣

=

∣

∣

∣

∣

(

yi1yi2
g1i
Φ21,i

+ yi1(1− yi2) log
g2i
Φ22,i

− (1− yi1)yi2
g3i
Φ23,i

−(1− yi1)(1− yi2)
g4i
Φ24,i

)2
1

2
xi1kxi1l

∣

∣

∣

∣

∣

< C · |xi1kxi1l|

where C denotes a finite positive constant. From Assumption 4 and the (generalized)

Hölder inequality it follows thatE [C · |xikxil|] <∞. This holds for all k, l, (yi1, yi2, xi1, xi2) ∈

Ω, θ ∈ Θ and can also be established for the remaining elements of the matrix
[

∂li(θ)
∂θ

∂li(θ)
∂θ′

]

.

Furthermore,
[

∂li(θ)
∂θ

∂li(θ)
∂θ′

]

is continuous in (yi1, yi2, xi1, xi2) and θ. Since θ̂
p→ θ0, it follows

from Lemma 3.1 of White (1981) that

B(θ̂) =
1

n

n
∑

i=1

(

∂li(θ̂)

∂θ

∂li(θ̂)

∂θ′

)

p→ E

[

∂li(θ0)

∂θ

∂li(θ0)

∂θ′

]

= B(θ0).

The statement Â
p→ A0 is implied by the proof of asymptotic normality from Theorem 2.

Hence, we have by the Slutsky theorem (see, e.g., Wooldridge, 2010, p. 39) that

V̂ = Â−1B̂Â−1 p→ A−1
0 B0A

−1
0 = V0.
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(b), (c)

Given consistency of V̂ , the asymptotic distribution of the Wald statistic and the consis-

tency of the corresponding test can be proved as in Mittelhammer (1999), pp. 622-623.

�

Proof of Theorem 4:

Let mk(xi, θ) denote the k-th element of m(xi, θ). We have that |mk(xi, θ)| < C for

all xi and θ, where C is a finite positive constant. Furthermore, m(xi, θ) is contin-

uous in xi and θ. Since θ̂
p→ θ0, it follows from Lemma 3.1 of White (1981) that

ÂME = n−1
∑n

i=1m(xi, θ̂)
p→ E[m(xi, θ0)] = AME0.

Proof of Theorem 5:

By the mean value theorem, we can write ÂME as

ÂME =
1

n

n
∑

i=1

m(xi, θ0) +
1

n

n
∑

i=1

∂m(xi, θ̄)

∂θ′
(θ̂ − θ0)

=
1

n

n
∑

i=1

m(xi, θ0) + E

[

∂m(xi, θ0)

∂θ′

]

(θ̂ − θ0)

+

(

1

n

n
∑

i=1

∂m(xi, θ̄)

∂θ′
− E

[

∂m(xi, θ0)

∂θ′

]

)

(θ̂ − θ0)

where θ̄ lies on the line segment joining θ̂ and θ0 and

∂m(xi, θ)

∂θ′
= ((−x′iβ/

√
2)φ(x′iβ/

√
2)(β/2)⊗ x′i + φ(x′iβ/

√
2)IK/

√
2, 0, 0),

with IK denoting the dimension of β. Thus,

√
n(ÂME − AME0) =

1√
n

n
∑

i=1

(m(xi, θ0)−AME0) + E

[

∂m(xi, θ0)

∂θ′

]√
n(θ̂ − θ0)
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+

(

1

n

n
∑

i=1

∂m(xi, θ̄)

∂θ′
− E

[

∂m(xi, θ0)

∂θ′

]

)

√
n(θ̂ − θ0).

Let
[

∂m(xi,θ)
∂θ′

)
]

kl
denote the kl-th element of the matrix

[

∂m(xi,θ)
∂θ′

]

. We have that

∣

∣

∣

∣

[

∂m(xi, θ)

∂θ′
)

]

kl

∣

∣

∣

∣

< C1 + C2|x′iβ · xil|,

where C1 and C2 denote finite positive constants. It follows from Assumption 4 and the

(generalized) Hölder inequality that

E[C1 + C2|x′iβ · xil|] <∞.

This holds for all k, l, xi, θ. Furthermore,
[

∂m(xi,θ)
∂θ′

]

is continuous in xi and θ. Since θ̂
p→ θ0

and, therefore, θ̄
p→ θ0, it follows from Lemma 3.1 of White (1981) that

1

n

n
∑

i=1

∂m(xi, θ̄)

∂θ′
− E

[

∂m(xi, θ0)

∂θ′

]

= op(1).

Since
√
n(θ̂ − θ0) = Op(1) by Theorem 2, it follows that

√
n(ÂME −AME0) =

1√
n

n
∑

i=1

(m(xi, θ0)− AME0) + E

[

∂m(xi, θ0)

∂θ′

]√
n(θ̂ − θ0) + op(1).

Under the assumptions of Theorem 2, it holds that

√
n(θ̂ − θ0) = −A−1

0

1√
n

n
∑

i=1

∂li(θ0)

∂θ
+ op(1),

hence

√
n(ÂME −AME0) =

1√
n

n
∑

i=1

(m(xi, θ0)− AME0)

− E

[

∂m(xi, θ0)

∂θ′

]

A−1
0

1√
n

n
∑

i=1

∂li(θ0)

∂θ
+ op(1)

=
1√
n

n
∑

i=1

(

m(xi, θ0)− AME0 −E

[

∂m(xi, θ0)

∂θ′

]

A−1
0

∂li(θ0)

∂θ

)

+ op(1)
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=
1√
n

n
∑

i=1

m̃(xi, θ0) + op(1)

Since E[m̃(xi, θ0)] = 0 and M0 = E[m̃(xi, θ0)m̃(xi, θ0)
′] is positive definite by Assumption

6, it follows from the multivariate Lindberg-Levy central limit theorem (e.g., Mittelham-

mer, 1999, p. 283) that

√
n(ÂME − AME0)

d→ N (0,M0).

�

Proof of Theorem 6:

(a) Define

D0 ≡ E

[

∂m(xi, θ0)

∂θ′

]

D̂ ≡ 1

n

n
∑

i=1

∂m(xi, θ̂)

∂θ′

and note that

M0 = E [m(xi, θ0)m(xi, θ0)
′]− E[m(xi, θ0)] ·AME ′

0 − E

[

m(xi, θ0)
∂li(θ0)

∂θ′

]

· A−1
0 D′

0

− AME0 · E[m(xi, θ0)
′] + AME0 · AME ′

0 + AME0 · E
[

∂li(θ0)

∂θ′

]

· A−1
0 D′

0

−D0A
−1
0 ·E

[

∂li(θ0)

∂θ
m(xi, θ0)

′

]

+D0A
−1
0 · E

[

∂li(θ0)

∂θ

]

·AME ′

0

+D0A
−1
0 · E

[

∂li(θ0)

∂θ

∂li(θ0)

∂θ′

]

· A−1
0 D′

0

= E [m(xi, θ0)m(xi, θ0)
′]− AME0 · AME ′

0 − E

[

m(xi, θ0)
∂li(θ0)

∂θ′

]

· A−1
0 D′

0

−D0A
−1
0 ·E

[

∂li(θ0)

∂θ
m(xi, θ0)

′

]

+D0V0D
′

0
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and

M̂ =
1

n

n
∑

i=1

(

m(xi, θ̂)m(xi, θ̂)
′

)

− ÂME · ÂME
′

− 1

n

n
∑

i=1

(

m(xi, θ̂)
∂li(θ̂)

∂θ′

)

· Â−1D̂′

− D̂Â−1 · 1
n

n
∑

i=1

(

∂li(θ̂)

∂θ
m(xi, θ̂)

′

)

+ D̂V̂ D̂′. (A11)

I will show that each element of the RHS of (A11) converges in probability to its pop-

ulation counterpart, which, by the Slutsky theorem, implies that M̂
p→ M0. First, let

[m(xi1, θ)m(xi, θ)
′]kl denote the kl-th element of the matrix [m(xi, θ)m(xi, θ)

′]. We have

that

| [m(xi, θ)m(xi, θ)
′]kl | < C <∞

for all k, l, xi, θ, where C denotes a finite positive constant. Furthermore, [m(xi, θ)m(xi, θ)
′]

is continuous in xi and θ. Since θ̂
p→ θ0, it follows from Lemma 3.1 of White (1981) that

1

n

n
∑

i=1

(

m(xi, θ̂)m(xi, θ̂)
′

)

p→ E [m(xi, θ0)m(xi, θ0)
′] .

Let
[

m(xi, θ)
∂li(θ)
∂θ′

)
]

kl
denote the kl-th element of the matrix

[

m(xi, θ)
∂li(θ)
∂θ′

]

. We have

that

∣

∣

∣

∣

[

m(xi, θ)
∂li(θ)

∂θ′
)

]

kl

∣

∣

∣

∣

< C1 + C2|xil|,

where C1 and C2 denote finite positive constants. It follows from Assumption 4 and the

(generalized) Hölder inequality that E[C1 + C2|xil|] < ∞. This holds for all k, l, xi, θ.

Furthermore,
[

m(xi, θ)
∂li(θ)
∂θ′

]

is continuous in xi and θ. Since θ̂
p→ θ0, it follows from

Lemma 3.1 of White (1981) that

1

n

n
∑

i=1

(

m(xi, θ̂)
∂li(θ̂)

∂θ′
)

)

p→ E

[

m(xi, θ0)
∂li(θ0)

∂θ′
)

]

.
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As shown in the proof of Theorem 5, we have that

D̂ =
1

n

n
∑

i=1

∂m(xi, θ̂)

∂θ′
p→ E

[

∂m(xi, θ0)

∂θ′

]

= D0

(in the proof of Theorem 5, θ̄ appeared in the formula instead of θ̂, but the same argument

applies). Due to Theorem 4, ÂME
p→ AME0, while the proof of Theorem 2 implies that

Â
p→ A0. Moreover, due to Theorem 3, V̂

p→ V0. Applying these results and the Slutsky

theorem to (A11), it follows that M̂
p→M0.

(b), (c)

Given consistency of M̂ , the asymptotic distribution of the Wald statistic and the consis-

tency of the corresponding test can be proved as in Mittelhammer (1999), pp. 622-623.

�

Proof of Theorem 7:

Note: For the ease of the notation, the index j is omitted in the following derivations.

Since

yi = Φ(x′iβ + ui),

we have that

E[yi|xi] = E[Φ(x′iβ + ui)|xi]

=

∫

∞

−∞

Φ(x′iβ + ui)f(ui)dui
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But since E[yi|xi] = Φ(x′iβ/
√
2) as assumed in the theorem, we can equate these expres-

sions to get

Φ(x′iβ/
√
2) =

∫

∞

−∞

Φ(x′iβ + ui)f(ui)dui.

Taking the derivative of both sides with respect to x′iβ yields

1√
2
φ

(

x′iβ√
2

)

=

∫

∞

−∞

φ(x′iβ + ui)f(ui)dui. (A12)

Since

Φ

(

x′iβ√
2

)

=

∫

∞

−∞

Φ(x′iβ + ui)φ(ui)dui

holds in general, we can take the derivative with respect to x′iβ to obtain

1√
2
φ

(

x′iβ√
2

)

=

∫

∞

−∞

φ(x′iβ + ui)φ(ui)dui.

Replacing the LHS of (A12) with this expression gives

∫

∞

−∞

φ(x′iβ + ui)φ(ui)dui =

∫

∞

−∞

φ(x′iβ + ui)f(ui)dui

or

∫

∞

−∞

1√
2π

exp

(

−1

2
(x′iβ + ui)

2

)

(φ(ui)− f(ui))dui = 0

⇔
∫

∞

−∞

1√
2π

exp

(

−1

2
((x′iβ)

2 + 2x′iβ · ui + u2i )

)

(φ(ui)− f(ui))dui = 0

⇔ 1√
2π

exp

(

−1

2
(x′iβ)

2

)
∫

∞

−∞

exp (−x′iβ · ui) exp
(

−u
2
i

2

)

(φ(ui)− f(ui))dui = 0

⇒
∫

∞

−∞

exp (−x′iβ · ui)
(

exp

(

−u
2
i

2

)

φ(ui)− exp

(

−u
2
i

2

)

f(ui)

)

dui = 0. (A13)
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Defining

p1(ui) ≡ exp

(

−u
2
i

2

)

φ(ui)

p2(ui) ≡ exp

(

−u
2
i

2

)

f(ui),

we have the two-sided Laplace transforms

T1(x
′

iβ) =

∫

∞

−∞

exp (−x′iβ · ui) p1(ui)dui

T2(x
′

iβ) =

∫

∞

−∞

exp (−x′iβ · ui) p2(ui)dui,

which are equal by (A13). Since T1(x
′

iβ) = T2(x
′

iβ) for all x′iβ ∈ (−∞,∞), it follows

by the uniqueness property of Laplace transforms (e.g., Widder, 2010, pp. 243-244) that

p1(ui) = p2(ui) almost everywhere, which implies that φ(ui) = f(ui) almost everywhere.

�

Tables
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Table 1: Simulation results, n = 500

Parameter/ True value Separate fractional probit models Bivariate fractional probit model
Marg. Effect Mean RMSE Mean SE Mean RMSE Mean SE

ρ = 0
β11 1 0.9965 0.0499 0.0513 0.9965 0.0499 0.0513
β12 1 1.0027 0.0560 0.0564 1.0027 0.0560 0.0564
β21 1 1.0004 0.0518 0.0513 1.0004 0.0518 0.0513
β22 -1 -1.0029 0.0551 0.0563 -1.0028 0.0551 0.0562
ρ 0 -0.0023 0.0569 0.0556
ME11 0.1950 0.1953 0.0095 0.0092 0.1953 0.0095 0.0092
ME22 -0.1950 -0.1952 0.0091 0.0092 -0.1952 0.0091 0.0092

ρ = 0.25
β11 1 1.0033 0.0529 0.0513 1.0032 0.0528 0.0512
β12 1 1.0046 0.0552 0.0564 1.0047 0.0545 0.0558
β21 1 0.9996 0.0530 0.0513 0.9996 0.0529 0.0513
β22 -1 -1.0052 0.0564 0.0563 -1.0052 0.0559 0.0556
ρ 0.25 0.2466 0.0599 0.0553
ME11 0.1950 0.1953 0.0088 0.0092 0.1953 0.0087 0.0091
ME22 -0.1950 -0.1955 0.0091 0.0092 -0.1955 0.0090 0.0091

ρ = 0.5
β11 1 1.0032 0.0532 0.0513 1.0031 0.0530 0.0510
β12 1 1.0043 0.0557 0.0563 1.0046 0.0531 0.0538
β21 1 1.0000 0.0528 0.0513 1.0000 0.0526 0.0511
β22 -1 -1.0049 0.0555 0.0562 -1.0048 0.0532 0.0538
ρ 0.5 0.4951 0.0556 0.0532
ME11 0.1950 0.1953 0.0089 0.0092 0.1953 0.0086 0.0089
ME22 -0.1950 -0.1955 0.0089 0.0091 -0.1955 0.0086 0.0088

ρ = 0.75
β11 1 1.0027 0.0532 0.0512 1.0026 0.0526 0.0507
β12 1 1.0039 0.0568 0.0562 1.0042 0.0507 0.0504
β21 1 1.0003 0.0523 0.0513 1.0002 0.0518 0.0507
β22 -1 -1.0042 0.0546 0.0561 -1.0041 0.0490 0.0504
ρ 0.75 0.7442 0.0493 0.0479
ME11 0.1950 0.1952 0.0092 0.0092 0.1953 0.0084 0.0084
ME22 -0.1950 -0.1953 0.0088 0.0091 -0.1954 0.0081 0.0084

Note: MEjj denotes the marginal effect of xij on yij .
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Table 2: Simulation results, n = 1, 000

Parameter/ True value Separate fractional probit models Bivariate fractional probit model
Marg. Effect Mean RMSE Mean SE Mean RMSE Mean SE

ρ = 0
β11 1 1.0022 0.0384 0.0363 1.0022 0.0384 0.0363
β12 1 1.0030 0.0394 0.0399 1.0030 0.0394 0.0398
β21 1 0.9986 0.0364 0.0363 0.9986 0.0364 0.0363
β22 -1 -1.0022 0.0406 0.0399 -1.0021 0.0406 0.0398
ρ 0 0.0025 0.0398 0.0409
ME11 0.1950 0.1952 0.0063 0.0065 0.1952 0.0063 0.0065
ME22 -0.1950 -0.1952 0.0067 0.0065 -0.1952 0.0067 0.0065

ρ = 0.25
β11 1 1.0006 0.0381 0.0363 1.0006 0.0380 0.0362
β12 1 1.0017 0.0419 0.0398 1.0018 0.0415 0.0394
β21 1 1.0016 0.0365 0.0362 1.0016 0.0364 0.0362
β22 -1 -1.0022 0.0396 0.0398 -1.0022 0.0394 0.0393
ρ 0.25 0.2498 0.0388 0.0470
ME11 0.1950 0.1951 0.0068 0.0065 0.1951 0.0067 0.0064
ME22 -0.1950 -0.1950 0.0064 0.0065 -0.1950 0.0064 0.0064

ρ = 0.5
β11 1 1.0001 0.0384 0.0363 1.0001 0.0383 0.0361
β12 1 1.0016 0.0421 0.0398 1.0018 0.0406 0.0381
β21 1 1.0011 0.0367 0.0362 1.0010 0.0365 0.0361
β22 -1 -1.0021 0.0391 0.0398 -1.0021 0.0377 0.0380
ρ 0.5 0.4994 0.0372 0.0449
ME11 0.1950 0.1951 0.0068 0.0065 0.1952 0.0066 0.0063
ME22 -0.1950 -0.1950 0.0063 0.0065 -0.1950 0.0062 0.0063

ρ = 0.75
β11 1 0.9996 0.0384 0.0363 0.9996 0.0380 0.0359
β12 1 1.0015 0.0416 0.0398 1.0016 0.0377 0.0357
β21 1 1.0004 0.0369 0.0362 1.0003 0.0365 0.0358
β22 -1 -1.0018 0.0385 0.0398 -1.0016 0.0348 0.0356
ρ 0.75 0.7489 0.0342 0.0397
ME11 0.1950 0.1952 0.0067 0.0065 0.1952 0.0062 0.0060
ME22 -0.1950 -0.1950 0.0063 0.0065 -0.1950 0.0058 0.0060

Note: MEjj denotes the marginal effect of xij on yij .
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Table 3: Simulation results, n = 2, 000

Parameter/ True value Separate fractional probit models Bivariate fractional probit model
Marg. Effect Mean RMSE Mean SE Mean RMSE Mean SE

ρ = 0
β11 1 1.0004 0.0258 0.0256 1.0004 0.0258 0.0256
β12 1 1.0006 0.0278 0.0281 1.0006 0.0278 0.0281
β21 1 1.0013 0.0271 0.0257 1.0013 0.0271 0.0256
β22 -1 -1.0025 0.0285 0.0282 -1.0025 0.0285 0.0282
ρ 0 0.0004 0.0279 0.0271
ME11 0.1950 0.1951 0.0045 0.0046 0.1951 0.0045 0.0046
ME22 -0.1950 -0.1953 0.0046 0.0046 -0.1953 0.0046 0.0046

ρ = 0.25
β11 1 0.9993 0.0262 0.0257 0.9993 0.0262 0.0256
β12 1 0.9990 0.0276 0.0282 0.9990 0.0274 0.0279
β21 1 1.0019 0.0256 0.0256 1.0019 0.0256 0.0256
β22 -1 -1.0000 0.0287 0.0282 -1.0000 0.0284 0.0279
ρ 0.25 0.2494 0.0277 0.0287
ME11 0.1950 0.1949 0.0047 0.0046 0.1949 0.0046 0.0046
ME22 -0.1950 -0.1948 0.0047 0.0046 -0.1948 0.0047 0.0046

ρ = 0.5
β11 1 0.9994 0.0260 0.0257 0.9994 0.0259 0.0255
β12 1 0.9992 0.0276 0.0282 0.9993 0.0264 0.0270
β21 1 1.0016 0.0258 0.0256 1.0015 0.0257 0.0255
β22 -1 -1.0006 0.0289 0.0282 -1.0006 0.0277 0.0270
ρ 0.5 0.4991 0.0263 0.0269
ME11 0.1950 0.1949 0.0047 0.0046 0.1949 0.0045 0.0044
ME22 -0.1950 -0.1949 0.0048 0.0046 -0.1949 0.0046 0.0044

ρ = 0.75
β11 1 0.9994 0.0259 0.0257 0.9994 0.0256 0.0254
β12 1 0.9995 0.0277 0.0282 0.9996 0.0249 0.0253
β21 1 1.0011 0.0259 0.0257 1.0010 0.0256 0.0254
β22 -1 -1.0010 0.0290 0.0282 -1.0010 0.0261 0.0253
ρ 0.75 0.7488 0.0241 0.0246
ME11 0.1950 0.1949 0.0047 0.0046 0.1950 0.0043 0.0042
ME22 -0.1950 -0.1950 0.0048 0.0046 -0.1950 0.0044 0.0042

Note: MEjj denotes the marginal effect of xij on yij .
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Table 4: Simulation results under misspecification, n = 2, 000

Parameter/ True value Separate fractional probit models Bivariate fractional probit model
Marg. Effect Mean RMSE Mean SE Mean RMSE Mean SE

Gaussian copula with τ = 0.5
β11 1.0000 1.0014 0.0258 0.0257 1.0015 0.0256 0.0254
β12 1.0000 1.0002 0.0290 0.0282 1.0004 0.0264 0.0256
β21 1.0000 1.0006 0.0265 0.0257 1.0006 0.0262 0.0254
β22 -1.0000 -1.0007 0.0287 0.0282 -1.0009 0.0260 0.0256
τ 0.5000 0.4995 0.0221 0.0223
ME11 0.1950 0.1949 0.0046 0.0046 0.1949 0.0043 0.0043
ME22 -0.1950 -0.1950 0.0046 0.0046 -0.1951 0.0043 0.0043

Gaussian copula with τ = −0.5
β11 1.0000 1.0014 0.0258 0.0257 1.0014 0.0256 0.0255
β12 1.0000 1.0002 0.0290 0.0282 1.0002 0.0265 0.0257
β21 1.0000 0.9990 0.0251 0.0257 0.9990 0.0249 0.0255
β22 -1.0000 -1.0022 0.0279 0.0282 -1.0020 0.0255 0.0258
τ -0.5000 -0.4998 0.0225 0.0220
ME11 0.1950 0.1949 0.0046 0.0046 0.1949 0.0043 0.0043
ME22 -0.1950 -0.1954 0.0047 0.0046 -0.1954 0.0044 0.0043

t-copula with τ = 0.5
β11 1.0000 1.0006 0.0263 0.0257 1.0008 0.0261 0.0254
β12 1.0000 1.0015 0.0290 0.0282 1.0016 0.0265 0.0257
β21 1.0000 0.9994 0.0271 0.0257 0.9997 0.0268 0.0254
β22 -1.0000 -1.0008 0.0282 0.0282 -1.0010 0.0256 0.0257
τ 0.5000 0.4908 0.0253 0.0243
ME11 0.1950 0.1951 0.0047 0.0046 0.1951 0.0044 0.0043
ME22 -0.1950 -0.1950 0.0045 0.0046 -0.1950 0.0042 0.0043

t-copula with τ = −0.5
β11 1.0000 1.0006 0.0263 0.0257 1.0003 0.0261 0.0255
β12 1.0000 1.0015 0.0290 0.0282 1.0009 0.0268 0.0260
β21 1.0000 0.9990 0.0249 0.0257 0.9988 0.0247 0.0255
β22 -1.0000 -1.0014 0.0282 0.0282 -1.0009 0.0261 0.0260
τ -0.5000 -0.4729 0.0362 0.0242
ME11 0.1950 0.1951 0.0047 0.0046 0.1950 0.0044 0.0043
ME22 -0.1950 -0.1951 0.0046 0.0046 -0.1950 0.0043 0.0043

Clayton copula with τ = 0.5
β11 1.0000 1.0006 0.0258 0.0257 1.0016 0.0255 0.0253
β12 1.0000 1.0005 0.0284 0.0282 1.0009 0.0253 0.0250
β21 1.0000 1.0013 0.0258 0.0257 1.0022 0.0256 0.0253
β22 -1.0000 -1.0005 0.0276 0.0282 -1.0009 0.0246 0.0250
τ 0.5000 0.5751 0.0793 0.0260
ME11 0.1950 0.1950 0.0045 0.0046 0.1950 0.0041 0.0042
ME22 -0.1950 -0.1950 0.0044 0.0046 -0.1950 0.0041 0.0042

Gumbel copula with τ = 0.5
β11 1.0000 1.0002 0.0255 0.0257 0.9998 0.0253 0.0255
β12 1.0000 1.0006 0.0289 0.0282 1.0002 0.0267 0.0260
β21 1.0000 0.9999 0.0246 0.0257 0.9994 0.0244 0.0255
β22 -1.0000 -1.0015 0.0278 0.0282 -1.0008 0.0257 0.0260
τ 0.5000 0.4536 0.0511 0.0210
ME11 0.1950 0.1950 0.0045 0.0046 0.1950 0.0042 0.0043
ME22 -0.1950 -0.1950 0.0046 0.0046 -0.1950 0.0043 0.0043

Frank copula with τ = 0.5
β11 1.0000 0.9999 0.0265 0.0257 0.9995 0.0262 0.0255
β12 1.0000 0.9995 0.0289 0.0282 0.9991 0.0266 0.0259
β21 1.0000 1.0014 0.0261 0.0257 1.0008 0.0259 0.0255
β22 -1.0000 -1.0018 0.0283 0.0282 -1.0010 0.0260 0.0259
τ 0.5000 0.4695 0.0365 0.0198
ME11 0.1950 0.1948 0.0048 0.0046 0.1948 0.0045 0.0043
ME22 -0.1950 -0.1951 0.0047 0.0046 -0.1950 0.0044 0.0043

Frank copula with τ = −0.5
β11 1.0000 0.9999 0.0265 0.0257 0.9998 0.0263 0.0255
β12 1.0000 0.9995 0.0289 0.0282 0.9992 0.0265 0.0260
β21 1.0000 1.0007 0.0254 0.0256 1.0006 0.0253 0.0255
β22 -1.0000 -0.9987 0.0275 0.0282 -0.9986 0.0255 0.0260
τ -0.5000 -0.4844 0.0258 0.0206
ME11 0.1950 0.1948 0.0048 0.0046 0.1948 0.0045 0.0043
ME22 -0.1950 -0.1946 0.0046 0.0046 -0.1946 0.0043 0.0043

Note: MEjj denotes the marginal effect of xij on yij . Kendall’s τ is depicted here instead of ρ because

τ is comparable across copulas.
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Table 5: Summary statistics

Variable Description Obs Mean Std. Dev.

pjobloss Perceived prob. of job loss 3,654 0.242 0.244
pnewjob Perceived prob. of looking for a new job 3,654 0.267 0.319
educ Years of education 3,654 12.704 2.729
age Age 3,654 41.299 8.036
state State of residence
..Schleswig-Holstein Schleswig-Holstein (0/1) 3,654 0.024 0.154
..Hamburg Hamburg (0/1) 3,654 0.014 0.116
..Lower Saxony Lower Saxony (0/1) 3,654 0.090 0.287
..Bremen Bremen (0/1) 3,654 0.006 0.079
..North-Rhine-Westfalia North-Rhine-Westfalia (0/1) 3,654 0.205 0.404
..Hessen Hessen (0/1) 3,654 0.077 0.267
..Rheinland-Pfalz Rheinland-Pfalz (0/1) 3,654 0.044 0.204
..Baden-Wuerttemberg Baden-Wuerttemberg (0/1) 3,654 0.134 0.341
..Bavaria Bavaria (0/1) 3,654 0.157 0.363
..Saarland Saarland (0/1) 3,654 0.012 0.109
..Berlin Berlin (0/1) 3,654 0.031 0.174
..Brandenburg Brandenburg (0/1) 3,654 0.037 0.190
..Mecklenburg-Vorpommern Mecklenburg-Vorpommern (0/1) 3,654 0.021 0.144
..Saxony Saxony (0/1) 3,654 0.071 0.257
..Saxony-Anhalt Saxony-Anhalt (0/1) 3,654 0.038 0.191
..Thuringia Thuringia (0/1; base) 3,654 0.039 0.193
foreign Foreign nationality (0/1) 3,654 0.062 0.242
marital status Marital status
..married (liv. tog.) Married and living together (0/1) 3,654 0.632 0.482
..married (sep.) Married and separated (0/1) 3,654 0.024 0.152
..single Single (0/1) 3,654 0.272 0.445
..divorced Divorced (0/1) 3,654 0.070 0.255
..widowed Widowed (0/1; base) 3,654 0.002 0.047
no. children Number of children 3,654 0.760 0.988

Note: The data have been taken from the 2009 wave of the German Socioeconomic Panel (SOEP).
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Table 6: Estimation results

Variable Sep. frac. probit models Bivariate frac. probit model
Coef. (Std.err.) Coef. (Std.err.)

Dep. var.: pjobloss
educ -0.0474 (0.0070) -0.0467 (0.0070)
age 0.0148 (0.0260) 0.0164 (0.0258)
age squared -0.0003 (0.0003) -0.0003 (0.0003)
foreign 0.1317 (0.0771) 0.1305 (0.0768)
marital status
..married (liv. tog.) 0.1448 (0.3778) 0.1327 (0.3776)
..married (sep.) 0.0992 (0.3946) 0.0940 (0.3942)
..single 0.1144 (0.3803) 0.1019 (0.3801)
..divorced 0.0678 (0.3840) 0.0541 (0.3837)
no. children -0.0494 (0.0220) -0.0497 (0.0221)
constant -0.2957 (0.6374) -0.3184 (0.6340)

Dep. var.: pnewjob
educ 0.0506 (0.0083) 0.0509 (0.0083)
age 0.0281 (0.0317) 0.0293 (0.0316)
age squared -0.0009 (0.0004) -0.0009 (0.0004)
foreign 0.1712 (0.1007) 0.1717 (0.1007)
marital status
..married -0.2016 (0.6933) -0.1968 (0.6997)
..married (sep.) -0.2480 (0.7084) -0.2372 (0.7146)
..single -0.0836 (0.6958) -0.0787 (0.7022)
..divorced -0.1353 (0.6990) -0.1322 (0.7055)
no. children -0.0457 (0.0271) -0.0456 (0.0270)
constant -0.8469 (0.9380) -0.8753 (0.9422)

ρ 0.5926 (0.0255)

ME educ→pjobloss -0.010334 (0.001530) -0.010189 (0.001519)
ME educ→pnewjob 0.011231 (0.001818) 0.011296 (0.001816)
State dummies incl. Yes Yes
No. obs. 3,654 3,654

Note: ME educ→pjobloss denotes the marginal effect of education on the perceived probability of job loss,
while ME educ→pnewjob denotes the marginal effect of education on the perceived probability of looking
for a new job.
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