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Abstract

We consider a two-party bargaining model in which the two parties are organizations rather than
individuals. Members of an organization have similar utilities for the agreements reached, but
different utilities for conflict. We treat this as an n-person game in which the players are the
members of the two organizations.

We look for the core of this game, and find that the core is always non-empty. In some cases,
however (namely, when members of the two organizations are very hawk-like, or when the
decision-making mechanisms are very rigorous), we find that the only core outcome ot the game
is continued conflict.

Some discussion is included as to how the group leaders may be able to facilitate an agreement,
and, conversely, as to how the most hawkish members of the organizations may be able to
cooperate so as to bring about the unraveling of an agreement.
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Organizational Bargaining

Guillermo Owen

1. The 2-Person Bargaining Model

     A mathematical model for 2-person bargaining was first given  by John Nash (1950) who

considers the problem of two individuals, Adam and Barbara, who wish to divide a pie.

     Nash posits a set K of possible agreements (the feasible set) as a compact, convex subset of the

Euclidean plane. The coordinates of points represent utilities for the two players: essentially, a point

(u, v) ∈  K if there is a feasible agreement (division of the pie) between the two players, giving them

utilities u and v respectively. Any point of K is available to them, if they can agree on it. The

compactness property assures us that we can talk about maximal utilities (in particular, there will

not be arbitrarily high utilities in the feasible set). Convexity is essentially guaranteed by the fact

that the utilities in question are von Neumann-Morgenstern (1947) utilities: the utility of a lottery is

equal to the expected utility of the lottery’s outcome. Thus if (u, v) and (u’, v’) are two feasible

points, any point on the line segment between them can be obtained as a lottery with these two

points as outcomes.

     Apart from this, Nash posits a conflict point (u0 , v0): if Adam and Barbara fail to reach an

agreement, they will (with certainty) receive utilities u0 and v0 respectively. Nash assumes that (u0 ,

v0)∈  K, as the two can always “agree to disagree.”

     Now, Nash defines a bargaining game as a triple, [K, (u0 , v0)] satisfying the above conditions.

Letting Ω be the space of all such triples, the bargaining problem consists in finding a function,

defined on the space Ω, assigning to a given game [K, (u0 , v0)] a point (u*, v*) which represents, in

some sense, a fair outcome of the bargaining process (division of the pie).

    Nash’s approach is axiomatic: he gives a system of six axioms representing desirable (or

necessary) properties of such a  bargaining outcome.
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     The first axiom is feasibility: (u*, v*) must be a point of K. The second is individual rationality:

u* ≥ u0 and v* ≥ v0.

     Nash’s third axiom is Pareto-optimality, defined as follow. We say that a point (u, v)∈  K is

Pareto-optimal if there does not exist another  (u’, v’) ∈  K such that u’ ≥ u and v’ ≥ v. Thus Pareto-

optimal points are efficient points: neither player can increase his utility without decreasing that of

the other. (Geometrically, the Pareto-optimal points of K form the “north-east” boundary of the set.)

The third axiom simply says, then, that (u*, v*) must be a Pareto-optimal point of K. (See Figure 1)

Figure 1:   A typical bargaining game

     These first three axioms seem eminently reasonable, and in general there is no quarrel with any

of them. Nash’s next three axioms are less obvious, and considerable discussion has arisen as to

their reasonability; alternatives have been suggested by other researchers. We will not discuss them

here, however, as they are not germane to the subject of this article.

(U ,V0 0)

The Pareto-optimal curve is shown by

K
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2. Bargaining between Organizations

     We consider, now, a situation in which the bargaining is no longer between the two individuals

Adam and Barbara. Rather, we think of Adam and Barbara as agents for two organizations, A and B

respectively. Thus, the situation becomes an n-person game, in which the players are the members

of the two organizations. The main point to be made is that the several members of an organization

have interests which are similar up to a point, but not coincident: the organizations are

heterogeneous.

     Once again, we assume that the feasible agreements can be represented by a compact convex set

K in the Euclidean plane. We will however normalize this set by assuming that the Pareto-optimal

frontier is a curve (possibly a straight line) passing through the points (0, 1) and (1, 0).

     In the simplest of cases, the set K is given by the three inequalities, u ≥ 0, v ≥ 0 and u + v ≤ 1.

More generally, however, K will be given by the inequalities u ≥ 0, v ≥ 0, and v ≤ ϕ(u), where ϕ is a

monotone decreasing, continuous, concave function, satisfying ϕ(0) = 1 and ϕ(1) = 0.

     To model the similarities among members of an organization, we assume that their preferences

among agreements are similar. Specifically, we assume that, if agreement (u, v) gives a bigger share

of the pie to A than does (u´, v´), then all members of A prefer (u, v). This is not supposed to mean

that all members of A receive the same utility from an agreement, but only that their shares will

(more or less) increase in some proportional way. (Note that in this paper we essentially deal with

ordinal rather than cardinal utility; i.e., we talk about preferences but not about degrees of

preference.)

     The heterogeneity of the organizations will be represented by assuming that different members

have different levels of tolerance (even desire) for conflict. One justification for this is that, in fact,

it is not clear what exactly might happen if no agreement is reached. Thus, individual members of

an organization might have different ideas as to how to value such an outcome. One member may

feel that his organization is so strong that a continued conflict will eventually bring the other to its

knees and thus lead to a very good outcome. Another justification is that the several members of an

organization may have very different feelings about the rival organization. Thus an individual might

hate the members of the opposite organization so much that he will only accept an agreement that
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gives a large amount to his own. In both of these cases, such individuals would generally be

considered hawks.

     On the other hand, there may be individuals who, either because they fear their organization is

weak, or because they have a general distaste for fighting (or perhaps because they actually like

members of the rival group), would accept almost any agreement. Such individuals would be

considered doves.

     To model this, we assume that each member, a, of A, can be assigned a number, x(a), in the

interval 0 ≤ x ≤ 1. We say that individual a is located at position x(a). Those individuals located

near 0 will be called doves; those near 1 are hawks. Similarly, each individual member b of B is

assigned a number y(b), also in the interval 0 ≤ y ≤ 1.

     To model the actual degree of heterogeneity within organization A, a distribution function, FA, is

posited, satisfying

FA(0) = 0,

FA(1) = 1,

FA(s) ≤ FA(s’) whenever s ≤ s’

Here, we interpret FA(s) to be the fraction of organization A located at, or to the left, of s, i.e., those

individuals a for whom x(a) ≤ s. (Note that, when we speak of left – or right – in this context, we

refer only to an individual´s location on the dove-hawk scale, and not to the usual political or

economic distinction between right and left.)

     A similar function FB is assumed for organization B. See Figures 2 and 3 for possible examples

of these functions. Note that the curves drawn do not actually represent the functions FA or FB;

rather, they are the densities fA and fB; FA is the integral of the given curve (the area under the curve

fB), and similarly for FB.
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Figure 2:  A “dovish” density

Figure 3:  A “hawkish” density

0 1

fA

fB

0 1



12

The n-Person Game

     We will now develop this model so as to obtain an n-person cooperative game. Note that a game

is defined by specifying (a) who the players are; (b) what possible outcomes might occur; (c) the

preferences (utilities) which players have for these outcomes, and (d) the outcomes which the

several coalitions (sets of players) can enforce.

     In general, we will have here a game which can have two sorts of outcome: agreements, and

continued conflict. As before, an agreement can be any point (u, v) in the set K. There is, however,

only one continued conflict, which we will denote by C.

      Now, the similarity among members of an organization lies in that they appreciate agreements

similarly. Their dissimilarity lies in their taste for conflict. Thus, an individual member a of A,

located at position x(a), will have utility

Ua(u, v)  =  u

for an agreement, and

 Ua(C)  =  x(a)

for continued conflict. Similarly, an individual member b of B will have utility

Ub(u, v)  =  v

for an agreement, and

Ub(C)  =  y(b)

for continued conflict.

       We must next define the decision mechanism within each organization. In the simplest case, we

shall assume the existence of a real number α, larger than ½ but smaller than 1, such that decisions

in A must be approved by a fraction at least equal to α of its membership. Similarly, for B, we
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assume a number β, larger than ½ but smaller than 1, such that decisions in organization B must be

approved by at least a fraction β of its members.1

      The set N = A∪ B is the set of all players. In other words, the players of this game are all the

members of the two organizations. A coalition is any non-empty subset S ⊂  N. We distinguish three

types of coalition. We say that a coalition S is effective for a given outcome if it can enforce that

outcome, even against the concerted opposition of the complementary coalition N-S.

     A winning coalition is any S containing at least a fraction α of A and at least a fraction β of B.

Winning coalitions are effective for any outcome of the game.

     A blocking coalition is any coalition which is not winning, but contains either more than a

fraction 1-α of A, or more than a fraction 1-β of B. Blocking coalitions are effective for the

outcome C (continued conflict) but not for agreements. (An alternative definition is to say that a

blocking coalition is any coalition S which is not winning, but whose complement N-S is not

winning.)

    A losing coalition is any coalition that contains not more than 1-α of A, and not more than 1-β of

B. Losing coalitions are not effective for any outcome. (An alternative definition is that a losing

coalition is the complement of a winning coalition.)2

                                                
1 Of course, the idea that decisions in either organization are made in such a democratic manner is probably too much of
a simplification. More generally, we might assume decisions made in a more complicated manner. One possibility is
that certain members of the organization might be considered more important than others. In such a case different
weights might be assigned to them (a weight, e.g., of 100 for a head of government, 30 for the defense minister, 20 for
other cabinet ministers or military leaders, 10 for parliamentarians, etc.), and then decisions would be made not by a
fraction α of the total population, but rather by a fraction α of the total weights assigned. A more complicated rule
would be to require, e.g., at least the president, at least 30% of the cabinet ministers, at least 50% of the army
commanders, and at least 20% of the population. Clearly the possibilities are endless. This would not seriously change
our method of approach. We would call such coalitions (subsets of A), controlling coalitions for A. In a similar way,
controlling coalitions for B would be defined.

2 Continuing with the ideas of footnote 1 above, a winning coalition would then be the union of two controlling
coalitions, one for A and one for B. A losing coalition would be the complement of a winning coalition. A blocking
coalition would be one which is neither winning nor losing. Again, winning coalitions are effective for any outcome,
while blocking coalitions are effective only for the outcome C.
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3. Characterization of the Core

     The above determines an n-person game. We now analyze it by using the standard game-

theoretic concept of the core. Originally defined in (Gillies, 1953), the core is one of the two or

three most commonly used concepts for cooperative games.

     In an n-person game, an outcome X is said to dominate another outcome, Y, if there exists a

coalition S, all of whose members prefer X to Y (i.e., they all derive greater utility from X) and such

that S is effective for X. The core is the set of all undominated outcomes.

Essentially, the core of a game represents its most stable outcomes. In many games, the question

is whether there are any such outcomes; i.e., whether the core is non-empty. In fact, we shall see

that, for the games here discussed, the core is always non-empty. However, this may not be as

satisfactory a result as it seems at first view.

Figure 4

    The core of the game will depend on the two numbers, s* and t*, defined below. The first is

s*  =  FA
-1(α)

fA

S*

α
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and is best defined as the smallest value of s such that FA(s) ≥ α. Similarly,

t*  =  FB
-1(β)

and is the smallest value of t such that FB(t) ≥ β. (See Figures 4 and 5 for this.)3

Figure 5

     With these two defined, we are now able to describe the core of the game. It turns out that this

depends on the position of the point (s*, t*) vis-à-vis the set K. Then, specifically,

                                                
3 With the ideas of footnotes 1 and 2 in mind, we would define s* as the smallest value of s, such that some controlling
coalition (for A) is located at, or to the left of, s. The number t* is defined similarly for organization B. With these
definitions in mind, Theorem 1 continues to be true.

fB

t*

β
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Theorem.

1. If  (s*, t*) lies in the interior of the set K, then the core of the game consists of all Pareto-

optimal points (u, v) such that u ≥ s* and v ≥ t*. (Figure 6)

2. If (s*, t*) lies outside the set K, then the core of the game consists of the outcome C

(continued conflict) only. (Figure 7)

3. If (s*, t*) is a Pareto-optimal point of K, then the core of the game consists of the agreement

(s*, t*) and the outcome C. (Figure 8)

     The proof of the theorem is given in the Appendix.

Figure 6: Case 1

     As may be seen, the non-emptiness of the core is not always very satisfying: in case 2 above, the

core is (as always for these games) non-empty, yet we seem to be destined to continued conflict.

(s*, t*)

0 1

1

The core is denoted by
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Figure 7: Case 2

Figure 8: Case 3

(s*, t*)

0 1

1

The core consists of the single outcome C.

(s , t* *)

0 1

1

The core consists of the agreement 
( ) and the conflict outcome .s*, t* C
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4. Discussion

To see exactly what the results of the theorem mean, note that (for a given K) case 1 will hold if

s* and t* are small, while case 2 holds if these numbers are large (close to 1). Now, a large value for

s* means either that the population of organization A is very hawkish, or that a large super-majority

is needed to obtain approval of an agreement. (Similar statements obviously hold for t* and

organization B.)  Thus, if group leader Adam is having difficulty getting his people to agree, he will

do best if he can move people leftward – i.e., cause them to appreciate peace more --  or else try to

decrease α (the critical block size necessary for agreement).

     In general, changing α is probably going to be very difficult, as it would mean changing the

internal structure of the group. On the other hand, it may  be possible to move people leftward into

the peace camp. This can be done, possibly, by some sort of media propaganda campaign. In this,

group leaders might explain the benefits to be expected from peace and warn of the dangers of

continued conflict. Alternatively, it may be possible to depict members of the rival group as

“reasonable” people. In this sense, a good media campaign might help to bring about an agreement,

as the number s* (or t*) decreases.

     An alternative possibility for bringing about an agreement would be for an interested third party

to subsidize the agreement by “sweetening the pot,” i. e., by making some sort of side payment to

the members of the organization. Effectively, this can be represented as an increase in the set K.

(See Figure 9)

Figure 9

(s*, t*)

0 1

1

A side payment causes an increase in the set  (case 2) 
to the set  (case 1) with core

K
K’

K’

K
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Conversely, consider the situation faced by someone who is unhappy with an agreement. For

example, player a, an A member, will be unsatisfied with agreement (u, v) if x(a) > u; i.e., if he

prefers continued conflict to the agreement. If so, he might try to undo the agreement by decreasing

its utility, either to his own side A, or to side B. If he can get more than 1-α of side A, or more than

1-β of side B, to find the agreement unsatisfactory, he can then form a blocking coalition with these

individuals.

     Now, with members of his own organization, a can try to bring them to his point of view by

political activity. With members of B, instead, he can try to decrease their utility (for an agreement)

by taking action against them.

     As an example, in the case of an armed conflict, suppose that – after an agreement has been

reached – individual a – or, more likely, a group of like-minded individuals, all of them very

hawkish members of A – decides to attack members of organization B by a car bomb, a suicide

bomber, etc. In the case of labor strife, it may be that the more hawkish labor union activists decide

to manhandle some of the replacement workers (strike-breakers) hired by management. In other

conflicts, it may be nuisance lawsuits.

     The effect of this action by (the hawks in) A will be to make members of B rethink the value of

the agreement to them. In fact, the whole point of the agreement was that the organization would

accept less than the best possible outcome so as to avoid further strife. If, however, it turns out that

the agreement has not stopped the strife, then it is worth less than had been thought, and so a few of

the marginal members of B may change their minds about acceptance. (Effectively, we can think of

this as an increase in t*.) Thus the number of members of B who support the agreement will

decrease.

     Nor is this all. After some violence by the recalcitrant members of A, some members of B may

decide to follow suit, targeting A´s members and installations or otherwise creating problems for A.

This will drive more members of A into the band of those opposed to the agreement. (Now it is s*

that increases.) Note that in this type of activity, the more hawkish members of the two

organizations, though in theory bitter enemies, are in fact objective allies.
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Figure 10

      In practice, this type of activity can continue, with each side targeting the other, until the entire

agreement unravels. (See Figure 10 for a graphic depiction of this.) To avoid this, some action must

be taken. In general, Adam and Barbara must try to use their police powers (or whatever authority

they have over their organizations) to rein in the wilder members. If they in fact do this quickly and

efficiently, they can reassert their authority and save the agreement. If they do not take action

quickly, Adam and Barbara will probably find themselves unable to maintain the treaty, and in fact

may themselves be turned out of power (losing a vote of confidence, or perhaps worse if they

represent violent organizations) if they insist on the agreement after it has fallen out of favor.

(s5 5*, t *)

0 1

1

The agreement unravels (in four steps).

(s2 2*, t *)

(s1 1*, t *)
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Appendix. Proof of theorem.

     In proving this theorem, it is necessary to prove, on the one hand, that the given outcomes are

undominated; on the other hand, that all other outcomes are dominated.

     We prove first that all non-Pareto-optimal agreements are dominated by other agreements. In

fact, suppose the agreement (u, v) is not Pareto-optimal. Then there exists some other agreement,

(u’, v’) ≥ (u, v). Now, if in fact u’ > u and v’ > v, then all players prefer (u’, v’), and since N is

always a winning coalition, (u’, v’) dominates (u, v).

     There remains the possibility that either u’ > u and v’ = v, or else u’ = u and v’ > v. In either of

these two cases, then by the fact that the function ϕ is continuous and strictly monotone decreasing,

it will follow that there exists another agreement, (u”, v”) such that u” > u and v” > v. Once again,

we see that (u”, v”) dominates (u, v). We see thus that non-Pareto-optimal agreements cannot

belong to the core.

     Now, if (u, v) is Pareto-optimal, then for any other agreement (u’, v’), it may be that u’ > u, or it

may be that v’ > v, but not both. In the first case, (u’, v’) is preferred by all members of A but no

members of B. Since A is not an effective coalition for an agreement, (u’, v’) does not dominate (u,

v). In the second case, (u’, v’) is preferred by all of B but by none of A, and once again, since B is

not effective for an agreement, (u’, v’) does not dominate (u, v).

    Thus, a Pareto-optimal agreement cannot be dominated by any other agreement. Not all such

outcomes, however, are in the core. The point is that they may still be dominated by the outcome C.

    In fact, suppose (u, v) is an agreement, with u < s*. We see (by definition of s*) that FA(u) < α.

In other words, more than 1-α of organization A is located to the right of u, i.e., with x(a) > u. If we

let S be this subset of group A, we see that all members of S prefer C to (u, v). Since S is a blocking

coalition, this means C dominates (u, v). In a similar way, if v < t*, C dominates (u, v) through

some blocking S ⊂  B.

     Suppose, however, that u ≥ s* and v ≥ t*. Then FA(u) ≥ α and FB(v) ≥ β, and it follows that at

most 1-α of group A, and at most 1-β of group B, prefer C. Since this is not enough for a blocking

coalition (and certainly not for a winning coalition), we see that C does not dominate (u, v). Thus,
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any Pareto-optimal (u, v) with (u, v) ≥ (s*, t*) is in the core of the game. Note that there are such

agreements if, and only if, (s*, t*) ∈  K.

     It remains to determine whether C is in the core. Suppose first that (s*, t*) is an interior point of

K. In that case, there will be at least one agreement (u, v) with u > s* and v > t*. Now the

agreement will be preferred to C by all a∈  A with x(a) ≤ s* and by all b∈  B with y(b) ≤ t*. Thus the

agreement is preferred by at least α of A and at least β of B. Since this is a winning coalition, the

agreement dominates C.

     Suppose, however, that (s*, t*) is a Pareto-optimal point of K. Then there is no feasible

agreement with both u > s* and v > t*. It will follow that an agreement can be preferred to C by a

fraction α of group A or by a fraction β of group B, but not both. Thus, no winning coalition can be

found to dominate C.

     The same is true, a fortiori, when (s*, t*) lies outside the set K. C is then also undominated.4

                                                
4 The proof of the theorem is slightly modified if we apply the ideas of footnotes 1, 2, and 3. The notation is slightly
different, but the spirit of the proof is unchanged. We leave it to the more adventurous reader to modify the proof
accordingly.
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