
Fitiwi, Desta Z.; Lnych, Muireann; Bertsch, Valentin

Working Paper

Optimal development of electricity generation mix
considering fossil fuel phase-out and strategic multi-area
interconnection

ESRI Working Paper, No. 616

Provided in Cooperation with:
The Economic and Social Research Institute (ESRI), Dublin

Suggested Citation: Fitiwi, Desta Z.; Lnych, Muireann; Bertsch, Valentin (2019) : Optimal
development of electricity generation mix considering fossil fuel phase-out and strategic multi-area
interconnection, ESRI Working Paper, No. 616, The Economic and Social Research Institute (ESRI),
Dublin

This Version is available at:
https://hdl.handle.net/10419/193952

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/193952
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Optimal development of electricity generation mix considering 
fossil fuel phase-out and strategic multi-area interconnection

Desta Z. Fitiwiab*, Muireann Lynchab, Valentin Bertschc

Abstract: Increased renewable generation worldwide is posing new challenges for power system planners. The location, as well 
as the level and operation, of each generation resource is increasingly important. This work presents a constrained Generation 
Expansion Planning (GEP) optimization model. One of the salient features of the model is its reasonably accurate 
representation of the physical characteristics of power systems. It considers both active and reactive power flows in a linear 
manner. Natural voltage magnitude deviations from nominal values across the transmission system are also captured in the 
resulting model. Therefore, the network model employed here closely resembles the AC optimal power flow one.

We apply the model to a realistic test system of the island of Ireland and determine the optimal generation expansion and 
operation out to 2030 under a range of demand and policy scenarios. Our results show that costs and emissions are driven 
primarily by the decommissioning of old inefficient generation units. High renewable targets, on the other hand, render 
increased carbon prices relatively ineffective in reducing system emissions.
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1. Introduction 

1.1. Background 
Concerns over climate change have led to new and sustained efforts to decarbonise energy 
systems [1], [2], which in the case of the electricity sector require an expansion in renewable 
generation technologies. This expansion has implications for generation expansion planning 
(GEP) exercises, which determine the optimal development of power production mixes over 
medium- to long-term time horizons. In particular, GEP methodologies simultaneously 
determine the optimal sizes, locations and generation schedules of power production 
technologies in a least-cost manner. The variability in the supply of various sources of 
renewable generation, such as wind and solar power, and the spatial distribution of same, pose 
new challenges for GEP.  

The literature on GEP is wide and extensive, spanning over several decades. References [3], 
[4], [5] and [6] present extensive reviews of the existing literature on GEP and related aspects. 
Authors in [7] highlight the importance of a flexible power system, and investigate ways of 
improving operational flexibility within a GEP framework with the aim of meeting renewable 
and emission reduction targets. The GEP problem can be considered independently [8] or in 
tandem with other objectives such as transmission expansion planning (TEP) [9]–[15]. 
Furthermore, GEP methodologies are often employed to determine the impact of a new 
technology and/or system development. Examples include carbon capture and storage [16], 
energy storage systems [17], renewable integration [18], [19], power-to-gas [20], demand 
response [14], electric vehicles [21] and [22] and distributed generation [21].  

The GEP problem can be formulated in a static planning framework in which decisions are 
made for a target year (e.g. [12], [15], [23] and [24]) or a dynamic framework as in [25], [26]–
[28]. The work in [10] initially formulates the GEP and TEP optimization problems in a static 
and multi-level planning framework, but with the capability of performing year-by-year 
dynamic analysis. Sequential static planning or a rolling horizon approach is adopted when the 
planning horizon is long [13]. Strict differentiation between dynamic and static planning is not 
possible as they are not clearly defined in the literature. 

Power systems contain various sources of uncertainty on both the supply and demand sides 
[29], and the limited predictability of renewable generation increases this uncertainty. Authors 
in [30] incorporate uncertainty from renewable power sources by selecting representative days 
for their input data set. The work in [12] accounts for uncertainty in wind power generation 
using a Monte Carlo Simulation (MCS) approach in a composite generation and transmission 
expansion planning (GTEP) framework. Some studies have also included reliability issues in a 
GEP framework, for example [9], which considers generator and transmission line outages in 
a GTEP optimization. Authors in [13] perform an in-depth stochastic GTEP exercise with 
uncertainties in demand, fuel prices, costs of greenhouse gas emissions and supply disruptions. 

In this paper, we develop a network-constrained GEP optimization framework that considers 
short- and long-term uncertainties. Short-term uncertainty (also known as operational 
uncertainty) arises from variable power production sources (such as wind and solar), electricity 
demand and forced outages of conventional generators. We model the uncertainty by considering 
a sufficiently large number of operational situations. Sources of long-term uncertainty include 
demand composition and growth, carbon and fuel prices, and policy interventions, including  
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RES-E penetration and decarbonisation targets, system-non synchronous penetration (SNSP) limit, 
phasing out fossil fuel based power generation, and regional or cross-country interconnections.  

The optimisation model developed in this paper is based on a linearised AC optimal power 
flow (LinAC-OPF). Unlike the commonly used DC-OPF network model, LinAC-OPF linearly 
represents both active and reactive power flows and considers natural voltage magnitude 
differences across nodes. 

1.2. Contribution of this paper 
The original contributions of this paper are threefold. First, this paper represents a significant 
methodological improvement through its consideration of the transmission system. Many GEP 
models ignore the transmission system entirely and essentially model the entire network as one 
node. These models are incapable of considering the spatial aspects of GEP, which as discussed 
are of increasing importance as we nowadays witness a paradigm shift in the manner electricity 
is being sourced. There is a growing trend in the production of electricity using distributed 
energy resources (renewables, in particular), gradually making the often conventional and 
centralised way of power generation obsolete. Moreover, distributed renewables generation 
development may be more economically viable alternative given the spatially distributed nature 
of such resources.  

In particular, generation expansion decisions obtained without considering transmission 
constraints may prove infeasible from an operational standpoint, or they may require massive 
investments in grid infrastructures. In the extant literature, GEP models are mostly formulated 
without taking account of transmission network effects [7], [8], [16], [19], [20], [23]–[26], [28], 
[29], [31]–[36]. A few papers model transmission networks as pipelines [17], [21], [37]. In 
some cases, GEP models include transmission considerations using a lossless Direct Current 
Optimal Power Flow [9]–[11], [14], [15]. They thus implicitly assume a uniform voltage across 
the system, and cannot take account of reactive power flow constraints. This paper addresses 
this gap in the literature by introducing a linearised AC-OPF into a GEP framework. 

Secondly, this work utilises a test system represented by a detailed and unique dataset. Unlike 
many of the papers referenced above which consider relatively small test systems, this paper 
models the entire synchronous system of the island of Ireland. GEP in Ireland is understudied 
in the literature, with [26], which performs an optimal renewable allocation, being the only 
example. The Irish system is a particularly interesting test system: it is one synchronous island 
system comprising two weakly interconnected control areas (North and South) with limited 
(DC) interconnection to other systems which renders the balancing of electricity supply and 
demand in real time particularly challenging. Ireland has a significant wind resource, which 
has led to large-scale investment in wind generation, with a policy-driven target of 40% of total 
generation to be met by renewable electricity by 2020. These high levels of renewable 
generation have in turn led to high levels of simultaneous non-synchronous penetration (up to 
75%). Furthermore, the wind resource is located primarily on the west coast, with the largest 
load centres located on the east coast, and so the transmission system significantly impacts the 
optimal location and operation of generation facilities. The Irish system also has limited storage 
facilities; the variability of renewable generation must thus be accommodated by other 
generation units. 

The third main contribution of this work emanates from the policy scenarios considered in our 
analysis. These scenarios are demand-driven, infrastructure-driven and policy-driven, and so 
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the results are instructive for policy makers and system operators alike. The implications of 
high-level decisions can be seen at each node of the transmission system. Demand growth 
projections are provided by EirGrid, the transmission system operator (TSO) in Ireland. These 
demand projections, along with projections regarding future infrastructure and policy outcomes 
on issues such as e-heating and e-mobility, form four different scenarios. Sensitivities are also 
performed around parameters such as carbon prices and renewable expansion.  

The remainder of this paper is structured as follows. A description of the model and solution 
approach is provided in Section 2. Section 3 presents relevant information regarding data and 
assumptions made during the analysis.  Section 4 presents numerical results obtained from the 
case study. Some discussions and insights from the results are also contained in this section. 
Section 5 presents sensitivity analysis, and section 6 concludes. 

2. Problem Formulation 

2.1. Modeling Approach and Associated Terminologies 
This modelling approach considers n potential future scenarios, each with a specific 
probability, which represent a realisation of the relevant sources of long-term uncertainty such 
as demand growth, carbon prices and fuel prices. The demand growth projections are primarily 
driven by different potential growth rates of datacentres in Ireland, as projected by the System 
Operator, EirGrid [38]. The scenarios themselves are a collection of “snapshots”, or hourly 
realisations of demand and renewable energy availability. The snapshots are chosen to form a 
realistic representation of each scenario (see section 2.3). The GEP problem itself is formulated 
as a multi-stage problem, i.e. the planning horizon is divided into multiple decision periods. 
The GEP model solves for optimal values of all control variables at each decision period, 
considering all potential future scenarios and the probability of same. Thus the model generates 
one solution which is optimal for the probability-weighted combination of all scenarios. The 
multi-stage  and  multi-scenario  GEP  modelling  framework, and  the  expansion  solution  
structure,  is  illustrated  in  Figure 1. 

2.2. Algebraic Formulation 
This work develops an optimization model suitable for medium and long-term power 
generation expansion planning. The GEP problem is formulated as a constrained optimisation 
with overall cost minimisation as an objective function, and several techno-economic 
constraints that must be satisfied. 

2.2.1 Objective Function 
The objective function of system-wide costs consists of several terms, shown in (1). The entire 
problem is formulated as a multi-stage stochastic linear programming model. GEP problems 
generally involve integer decision variables due to the lumpy increments of generation capacity 
investment. However, for the case studies in this paper, these variables are relaxed to 
continuous ones in order to enhance problem tractability, leading to an LP model. The objective 
function in (1) is the sum of the Net Present Value (NPV) of five cost terms. 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑇𝑇𝑇𝑇 = 𝑇𝑇𝑇𝑇𝑀𝑀𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑀𝑀𝑇𝑇 + 𝑇𝑇𝑇𝑇𝑇𝑇 +  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 +  𝑇𝑇𝑇𝑇𝑀𝑀𝑀𝑀𝑇𝑇 (1) 

𝑇𝑇𝑇𝑇𝑀𝑀𝑇𝑇𝑇𝑇 represents the NPV of total investment costs in new generation capacity: 
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Figure 1. Illustration modelling approach and associated terminologies 
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(2) 

where  

𝑇𝑇𝑀𝑀𝑇𝑇𝑇𝑇𝑡𝑡
𝑔𝑔𝑔𝑔𝑔𝑔 = � �

𝑟𝑟(1 + 𝑟𝑟)𝐿𝐿𝐿𝐿𝑔𝑔

(1 + 𝑟𝑟)𝐿𝐿𝐿𝐿𝑔𝑔 − 1
𝑇𝑇𝑇𝑇𝑔𝑔,𝑖𝑖(𝑥𝑥𝑔𝑔,𝑖𝑖,𝑡𝑡 − 𝑥𝑥𝑔𝑔,𝑖𝑖,𝑡𝑡−1)

𝑖𝑖𝑡𝑡𝛺𝛺𝑖𝑖𝑔𝑔𝑡𝑡𝛺𝛺𝑔𝑔
 ; 𝑥𝑥𝑔𝑔,𝑖𝑖,0 = 0 (3) 

 

𝑇𝑇𝑇𝑇𝑔𝑔,𝑖𝑖 represents the investment cost of generators; 𝑥𝑥𝑔𝑔,𝑖𝑖,𝑡𝑡 is the investment variable of generator 
g. 𝐿𝐿𝑇𝑇𝑔𝑔 is the life time of generator g. All investment costs are weighted by the capital recovery 

factor, 𝑟𝑟(1+𝑟𝑟)𝐿𝐿𝑇𝑇𝑔𝑔

(1+𝑟𝑟)𝐿𝐿𝑇𝑇𝑔𝑔−1
.  The formulation in (3) ensures the cost of each component is considered 

only once in the summation. 

The second term (𝑇𝑇𝑀𝑀𝑇𝑇) in (1) denotes the NPV of total maintenance costs, which is the sum 
of the maintenance costs of new and existing generators and of network components:  
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(4) 

where 𝑀𝑀𝑀𝑀𝑀𝑀𝑇𝑇𝑡𝑡
𝑔𝑔𝑔𝑔𝑔𝑔 is the maintenance costs of new and existing generators at each time stage:  
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𝑢𝑢𝑔𝑔,𝑖𝑖,𝑡𝑡 (5) 

and 𝑀𝑀𝑀𝑀𝑀𝑀𝑇𝑇𝑡𝑡𝑔𝑔𝑡𝑡𝑛𝑛 is the maintenance cost of an existing line. This cost is included only 
when its corresponding utilisation variable is different from zero:  
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The third term 𝑇𝑇𝑇𝑇𝑇𝑇 in (1) refers to the total cost of energy in the system from both new and 
existing generators: 

where 
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 (8) 

The fourth term 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 represents the total cost of unserved power in the system: 

where  

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡 = � 𝜌𝜌𝑖𝑖 � 𝜋𝜋𝑤𝑤 �(𝜐𝜐𝑖𝑖,ℎ
𝑁𝑁 𝑃𝑃𝑖𝑖,𝑖𝑖,𝑤𝑤,𝑡𝑡

𝑁𝑁𝑁𝑁𝑃𝑃 + 𝜐𝜐𝑖𝑖,ℎ
𝑄𝑄 𝑄𝑄𝑖𝑖,𝑖𝑖,𝑤𝑤,𝑡𝑡

𝑁𝑁𝑁𝑁𝑃𝑃

𝑖𝑖𝑡𝑡𝛺𝛺𝑖𝑖𝑤𝑤𝑡𝑡𝛺𝛺𝑤𝑤𝑖𝑖𝑡𝑡𝛺𝛺𝑠𝑠
) (10) 
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𝑁𝑁  and 𝜐𝜐𝑖𝑖,ℎ

𝑄𝑄  are penalty parameters corresponding to active and reactive power demand 
curtailments. 

The last term 𝑇𝑇𝑇𝑇𝑀𝑀𝑀𝑀𝑇𝑇 gathers the total emission costs in the system, given by the sum of 
emission costs for the existing and new generators: 
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(9) 

𝑇𝑇𝑇𝑇𝑀𝑀𝑀𝑀𝑇𝑇 = �(1 + 𝑟𝑟)−𝑡𝑡

𝑡𝑡𝑡𝑡Ω𝑡𝑡
 (𝑇𝑇𝑀𝑀𝑀𝑀𝑇𝑇𝑡𝑡𝑁𝑁𝑁𝑁 + 𝑇𝑇𝑀𝑀𝑀𝑀𝑇𝑇𝑡𝑡𝐸𝐸𝑁𝑁)

�����������������������
𝑁𝑁𝑁𝑁𝑁𝑁 𝑔𝑔𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑜𝑜𝑔𝑔 𝑐𝑐𝑜𝑜𝑖𝑖𝑡𝑡𝑖𝑖

 
(11) 
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𝑇𝑇𝑀𝑀𝑀𝑀𝑇𝑇𝑡𝑡𝑁𝑁𝑁𝑁 = � 𝜌𝜌𝑖𝑖 � 𝜋𝜋𝑤𝑤 � �𝜆𝜆𝑖𝑖,𝑤𝑤,𝑡𝑡
𝐶𝐶𝐶𝐶2𝑔𝑔𝑇𝑇𝐸𝐸𝑔𝑔𝑁𝑁𝑃𝑃𝑔𝑔,𝑖𝑖,𝑖𝑖,𝑤𝑤,𝑡𝑡

𝑁𝑁

𝑖𝑖𝑡𝑡𝛺𝛺𝑖𝑖𝑔𝑔𝑡𝑡𝛺𝛺𝑔𝑔𝑤𝑤𝑡𝑡𝛺𝛺𝑤𝑤𝑖𝑖𝑡𝑡𝛺𝛺𝑠𝑠
 (13) 

𝑇𝑇𝑀𝑀𝑀𝑀𝑇𝑇𝑡𝑡𝐸𝐸𝑁𝑁 = � 𝜌𝜌𝑖𝑖 � 𝜋𝜋𝑤𝑤 � �𝜆𝜆𝑖𝑖,𝑤𝑤,𝑡𝑡
𝐶𝐶𝐶𝐶2𝑔𝑔𝑇𝑇𝐸𝐸𝑔𝑔𝐸𝐸𝑃𝑃𝑔𝑔,𝑖𝑖,𝑖𝑖,𝑤𝑤,𝑡𝑡

𝐸𝐸

𝑖𝑖𝑡𝑡𝛺𝛺𝑖𝑖𝑔𝑔𝑡𝑡𝛺𝛺𝑔𝑔𝑤𝑤𝑡𝑡𝛺𝛺𝑤𝑤𝑖𝑖𝑡𝑡𝛺𝛺𝑠𝑠
 (14) 

Note that, for the sake of simplicity, a linear emission cost function is assumed here. In reality, 
the emission cost function is nonlinear and nonconvex [38]. 

2.2.2 Constraints 
The objective function above is minimised subject to several technical and economic 
constraints, described below. 

a) Kirchhoff’s Current Law Constraints 
Kirchhoff’s current law states that the sum of all incoming flows to a node must equal the sum 
of all outgoing flows at any given time. This constraint applies to both active (15) and reactive 
(16) power flows.  

� 𝑃𝑃𝑔𝑔,𝑖𝑖,𝑖𝑖,𝑤𝑤,𝑡𝑡
𝑔𝑔𝑔𝑔𝑔𝑔

𝑔𝑔∈𝛺𝛺𝑔𝑔
+ 𝑃𝑃𝑖𝑖,𝑖𝑖,𝑤𝑤,𝑡𝑡

𝑁𝑁𝑁𝑁𝑃𝑃 + � 𝑃𝑃𝑛𝑛,𝑖𝑖,𝑤𝑤,𝑡𝑡
𝑖𝑖𝑔𝑔,𝑛𝑛∈𝛺𝛺𝑘𝑘

 − � 𝑃𝑃𝑛𝑛,𝑖𝑖,𝑤𝑤,𝑡𝑡 
𝑜𝑜𝑢𝑢𝑡𝑡,𝑛𝑛∈𝛺𝛺𝑘𝑘

= �
1
2
𝑃𝑃𝐿𝐿𝑙𝑙,𝑖𝑖,𝑤𝑤,𝑡𝑡

𝑖𝑖𝑔𝑔,𝑤𝑤∈Ω𝑤𝑤
+ �

1
2
𝑃𝑃𝐿𝐿𝑙𝑙,𝑖𝑖,𝑤𝑤,𝑡𝑡

𝑜𝑜𝑢𝑢𝑡𝑡,𝑛𝑛∈Ω𝑘𝑘
+ 𝑃𝑃𝑃𝑃𝑖𝑖,𝑤𝑤,𝑡𝑡

𝑖𝑖 ;  𝑘𝑘𝑘𝑘𝑀𝑀;𝑔𝑔𝑘𝑘𝑀𝑀 
(15) 

 

� 𝑄𝑄𝑔𝑔,𝑖𝑖,𝑖𝑖,𝑤𝑤,𝑡𝑡
𝑔𝑔𝑔𝑔𝑔𝑔

𝑔𝑔∈𝛺𝛺𝑔𝑔
+ 𝑄𝑄𝑖𝑖,𝑖𝑖,𝑤𝑤,𝑡𝑡

𝑟𝑟𝑖𝑖 +  𝑄𝑄𝑖𝑖,𝑖𝑖,𝑤𝑤,𝑡𝑡
𝑁𝑁𝑁𝑁𝑃𝑃 + � 𝑄𝑄𝑛𝑛,𝑖𝑖,𝑤𝑤,𝑡𝑡

𝑖𝑖𝑔𝑔,𝑛𝑛∈𝛺𝛺𝑘𝑘

− � 𝑄𝑄𝑛𝑛,𝑖𝑖,𝑤𝑤,𝑡𝑡 = 
𝑜𝑜𝑢𝑢𝑡𝑡,𝑛𝑛∈𝛺𝛺𝑘𝑘

�
1
2
𝑄𝑄𝐿𝐿𝑛𝑛,𝑖𝑖,𝑤𝑤,𝑡𝑡

𝑖𝑖𝑔𝑔,𝑤𝑤∈Ω𝑤𝑤
+ �

1
2
𝑄𝑄𝐿𝐿𝑛𝑛,𝑖𝑖,𝑤𝑤,𝑡𝑡

𝑜𝑜𝑢𝑢𝑡𝑡,𝑛𝑛∈Ω𝑘𝑘

+ 𝑄𝑄𝑃𝑃𝑖𝑖,𝑤𝑤,𝑡𝑡
𝑖𝑖 ;  𝑘𝑘𝑘𝑘𝑀𝑀;𝑔𝑔𝑘𝑘𝑀𝑀 

(16) 

Incoming flows include the (active or reactive) power injected by generators, and inward power 
flows in associated lines. Outgoing flows encompass load and outward flows in lines. 

b) Kirchhoff’s Voltage Law Constraints 
Power flows are also governed by Kirchhoff’s voltage law, which unlike the current law above 
is nonlinear. Given the complexities of nonlinear optimisation, this work linearises these power 
flow equations by making two practical assumptions which are observed elsewhere in the 
literature [39], [40]. In power systems, due to security and stability reasons, it is desirable to 
keep voltage deviations across transmission nodes as small as possible. Hence, it is reasonable 
to assume that the off-nominal bus voltage magnitude at a given transmission node i can be 
approximated as 1+∆𝑉𝑉𝑖𝑖,, where ∆𝑉𝑉𝑖𝑖 is a variable designating the voltage magnitude deviation 
from the nominal value, and is assumed to be small (assumption 1). Note that this is in per unit 
terms. Likewise, due to practical reasons, the voltage angle difference 𝜃𝜃𝑛𝑛 between two nodes 
connected by line k is also expected to be small under a normal grid operation (assumption 2). 

This leads to the trigonometric approximations  sin𝜃𝜃𝑛𝑛 ≈  𝜃𝜃𝑛𝑛 and cos 𝜃𝜃𝑛𝑛 ≈  1 − 𝜃𝜃𝑘𝑘
2

2
.  
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Given these simplifying assumptions, the AC power flow equations (which are naturally 
complex nonlinear and non-convex functions of voltage magnitude and angles) can be linearly 
represented. The above simplified representations are substituted into the conventional AC 
power flow equations, and higher order terms are neglected because they are small – a 
consequence of assumption 1. All this yields the expressions in (17) and (18) for existing lines. 
Further details and justifications of this linear modelling is partly discussed in [39], [40]. 

𝑃𝑃𝑛𝑛,𝑖𝑖,𝑤𝑤,𝑡𝑡 = 𝑇𝑇𝐵𝐵𝑢𝑢𝑛𝑛,𝑡𝑡 ��∆𝑉𝑉𝑖𝑖,𝑖𝑖,𝑤𝑤,𝑡𝑡 − ∆𝑉𝑉𝑗𝑗,𝑖𝑖,𝑤𝑤,𝑡𝑡�𝑔𝑔𝑛𝑛 −  𝑏𝑏𝑛𝑛𝜃𝜃𝑛𝑛,𝑖𝑖,𝑤𝑤,𝑡𝑡 + 0.5𝑔𝑔𝑛𝑛𝜃𝜃𝑛𝑛,𝑖𝑖,𝑤𝑤,𝑡𝑡
2 � (17) 

 𝑄𝑄𝑛𝑛,𝑖𝑖,𝑤𝑤,𝑡𝑡 = −𝑇𝑇𝐵𝐵𝑢𝑢𝑛𝑛,𝑡𝑡��1 + 2∆𝑉𝑉𝑖𝑖,𝑖𝑖,𝑤𝑤,𝑡𝑡�𝑏𝑏𝑛𝑛0 +  �∆𝑉𝑉𝑖𝑖,𝑖𝑖,𝑤𝑤,𝑡𝑡 − ∆𝑉𝑉𝑗𝑗,𝑖𝑖,𝑤𝑤,𝑡𝑡�𝑏𝑏𝑛𝑛 +  𝑔𝑔𝑛𝑛𝜃𝜃𝑛𝑛,𝑖𝑖,𝑤𝑤,𝑡𝑡
+ 0.5𝑏𝑏𝑛𝑛𝜃𝜃𝑛𝑛,𝑖𝑖,𝑤𝑤,𝑡𝑡

2 � 
(18) 

 The above equations are still nonlinear due to the quadratic 𝜃𝜃𝑛𝑛,𝑖𝑖,𝑤𝑤,𝑡𝑡
2  and bilinear terms but can 

be easily linearised in the following manner. The terms involving 𝜃𝜃𝑛𝑛,𝑖𝑖,𝑤𝑤,𝑡𝑡
2  are associated with 

power losses, and can therefore be represented by losses variables, described in section d 
below. Moreover, the bilinear products in the active and reactive power flows can be decoupled 
by introducing disjunctive parameters (the so-called big-M method), leading to the disjunctive 
inequalities in (19) and (20), respectively. It should be also noted that, in (17)—(20), the angle 
difference 𝜃𝜃𝑛𝑛,𝑖𝑖,𝑤𝑤,𝑡𝑡 is defined as  𝜃𝜃𝑛𝑛,𝑖𝑖,𝑤𝑤,𝑡𝑡 = 𝜃𝜃𝑖𝑖,𝑖𝑖,𝑤𝑤,𝑡𝑡 − 𝜃𝜃𝑗𝑗,𝑖𝑖,𝑤𝑤,𝑡𝑡 where i and j correspond to the same 
line k. 

�𝑃𝑃𝑛𝑛,𝑖𝑖,𝑤𝑤,𝑡𝑡 − 𝑇𝑇𝐵𝐵 ��∆𝑉𝑉𝑖𝑖,𝑖𝑖,𝑤𝑤,𝑡𝑡 − ∆𝑉𝑉𝑗𝑗,𝑖𝑖,𝑤𝑤,𝑡𝑡�𝑔𝑔𝑛𝑛 −  𝑏𝑏𝑛𝑛𝜃𝜃𝑛𝑛,𝑖𝑖,𝑤𝑤,𝑡𝑡� − 0.5𝑃𝑃𝐿𝐿𝑛𝑛,𝑖𝑖,𝑤𝑤,𝑡𝑡�
≤ 𝑀𝑀𝑃𝑃𝑛𝑛(1 − 𝑢𝑢𝑛𝑛,𝑡𝑡) 

(19) 

 �𝑄𝑄𝑛𝑛,𝑖𝑖,𝑤𝑤,𝑡𝑡 + 𝑇𝑇𝐵𝐵� �1 + 2∆𝑉𝑉𝑖𝑖,𝑖𝑖,𝑤𝑤,𝑡𝑡�𝑏𝑏𝑛𝑛0 +  �∆𝑉𝑉𝑖𝑖,𝑖𝑖,𝑤𝑤,𝑡𝑡 − ∆𝑉𝑉𝑗𝑗,𝑖𝑖,𝑤𝑤,𝑡𝑡�𝑏𝑏𝑛𝑛 +  𝑔𝑔𝑛𝑛𝜃𝜃𝑛𝑛,𝑖𝑖,𝑤𝑤,𝑡𝑡�

+ 0.5
𝑏𝑏𝑛𝑛
𝑔𝑔𝑛𝑛
𝑃𝑃𝐿𝐿𝑛𝑛,𝑖𝑖,𝑤𝑤,𝑡𝑡� ≤ 𝑀𝑀𝑄𝑄𝑛𝑛(1− 𝑢𝑢𝑛𝑛,𝑡𝑡) 

(20) 

where ∆𝑉𝑉𝑖𝑖𝑖𝑖𝑔𝑔 ≤ ∆𝑉𝑉𝑖𝑖,𝑖𝑖,𝑤𝑤,𝑡𝑡  ≤  ∆𝑉𝑉𝑖𝑖𝑚𝑚𝑚𝑚.  

Transformers are modelled as transmission lines with nil distances. The primary side of a 
transformer is connected to the substation node but fictitious nodes are created for the windings 
other than the primary one. The transformer between these two nodes is represented by a series 
impedance and a shunt component (if any) as well as a tap changer whose modelling often 
involves highly non-linear equations. For the sake of simplicity, the tap changer in this work is 
represented by a voltage deviation variable whose lower and upper bounds are limited by the 
minimum and maximum tap changer positions. The active and reactive power flows in a 
transformer are governed by the following equations, respectively: 

�𝑃𝑃𝑡𝑡𝑟𝑟,𝑖𝑖,𝑤𝑤,𝑡𝑡 − 𝑇𝑇𝐵𝐵 ��∆𝑉𝑉𝑖𝑖,𝑖𝑖,𝑤𝑤,𝑡𝑡 − ∆𝑉𝑉𝑖𝑖′,𝑖𝑖,𝑤𝑤,𝑡𝑡�𝑔𝑔𝑛𝑛 −  𝑏𝑏𝑛𝑛𝜃𝜃𝑛𝑛,𝑖𝑖,𝑤𝑤,𝑡𝑡� − 0.5𝑃𝑃𝐿𝐿𝑡𝑡𝑟𝑟,𝑖𝑖,𝑤𝑤,𝑡𝑡�
≤ 𝑀𝑀𝑃𝑃𝑡𝑡𝑟𝑟(1 − 𝑢𝑢𝑡𝑡𝑟𝑟,𝑡𝑡) 

(21) 

 �𝑄𝑄𝑡𝑡𝑟𝑟,𝑖𝑖,𝑤𝑤,𝑡𝑡 + 𝑇𝑇𝐵𝐵 ��∆𝑉𝑉𝑖𝑖,𝑖𝑖,𝑤𝑤,𝑡𝑡 − ∆𝑉𝑉𝑖𝑖′,𝑖𝑖,𝑤𝑤,𝑡𝑡�𝑏𝑏𝑛𝑛 + 𝑔𝑔𝑛𝑛𝜃𝜃𝑛𝑛,𝑖𝑖,𝑤𝑤,𝑡𝑡� − 0.5𝑄𝑄𝐿𝐿𝑡𝑡𝑟𝑟,𝑖𝑖,𝑤𝑤,𝑡𝑡�
≤ 𝑀𝑀𝑄𝑄𝑡𝑡𝑟𝑟(1 − 𝑢𝑢𝑡𝑡𝑟𝑟,𝑡𝑡) 

(22) 

c) Flow Limits 
Power flows in each line should not exceed the maximum transfer capacity, which is enforced 
by: 
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𝑃𝑃𝑛𝑛,𝑖𝑖,𝑤𝑤,𝑡𝑡
2  +  𝑄𝑄𝑛𝑛,𝑖𝑖,𝑤𝑤,𝑡𝑡

2  ≤ 𝑢𝑢𝑛𝑛,𝑡𝑡(𝑇𝑇𝑛𝑛𝑖𝑖𝑚𝑚𝑚𝑚)2  ;∀𝑘𝑘 ∈ Ω𝑔𝑔ℓ (23) 

Flow limits in transformers are governed by: 
𝑃𝑃𝑡𝑡𝑟𝑟,𝑖𝑖,𝑤𝑤,𝑡𝑡
2  + 𝑄𝑄𝑡𝑡𝑟𝑟,𝑖𝑖,𝑤𝑤,𝑡𝑡

2  ≤ 𝑢𝑢𝑡𝑡𝑟𝑟,𝑡𝑡(𝑇𝑇𝑡𝑡𝑟𝑟𝑖𝑖𝑚𝑚𝑚𝑚)2;∀𝑀𝑀𝑟𝑟 ∈ Ω𝑡𝑡𝑟𝑟 (24) 

The above constraints, i.e. (23) and (24), contain quadratic terms related to active and reactive 
power flows. These quadratic terms can be linearised using a first order approximation, which 
is commonly used in the literature [41]. As an example, we show here how the quadratic active 
and reactive power flow terms pertaining to lines are represented in a linear manner. The 
linearisation method requires the introduction of two non-negative auxiliary variables per each 
flow, representing the absolute power flows in the forward and the reverse directions, i.e. 
(𝑃𝑃𝑛𝑛+;𝑃𝑃𝑛𝑛−) and (𝑄𝑄𝑛𝑛+;𝑄𝑄𝑛𝑛−) such that 𝑃𝑃𝑛𝑛 = 𝑃𝑃𝑛𝑛+ − 𝑃𝑃𝑛𝑛−; 𝑄𝑄𝑛𝑛 = 𝑄𝑄𝑛𝑛+ − 𝑄𝑄𝑛𝑛−;|𝑃𝑃𝑛𝑛| = 𝑃𝑃𝑛𝑛+ + 𝑃𝑃𝑛𝑛− and 
|𝑄𝑄𝑛𝑛| = 𝑄𝑄𝑛𝑛+ + 𝑄𝑄𝑛𝑛−. For a sufficiently large number of linear partitions and under normal 
situations, the following linear relaxations of  𝑃𝑃𝑛𝑛,𝑖𝑖,𝑤𝑤,𝑡𝑡

2   and  𝑄𝑄𝑛𝑛,𝑖𝑖,𝑤𝑤,𝑡𝑡
2  are exact.  

 

𝑃𝑃𝑛𝑛,𝑖𝑖,𝑤𝑤,𝑡𝑡
2 = �

(2𝑙𝑙 − 1)𝑇𝑇𝑛𝑛𝑖𝑖𝑚𝑚𝑚𝑚∆𝑃𝑃𝑛𝑛,𝑖𝑖,𝑤𝑤,𝑡𝑡,𝑙𝑙

𝐿𝐿

𝐿𝐿

𝑙𝑙=1
 ;∀𝑘𝑘 ∈ Ω𝑔𝑔ℓ (25) 

�𝑃𝑃𝑛𝑛,𝑖𝑖,𝑤𝑤,𝑡𝑡� = 𝑃𝑃𝑛𝑛,𝑖𝑖,𝑤𝑤,𝑡𝑡
+ + 𝑃𝑃𝑛𝑛,𝑖𝑖,𝑤𝑤,𝑡𝑡

− =   � ∆𝑃𝑃𝑛𝑛,𝑖𝑖,𝑤𝑤,𝑡𝑡,𝑙𝑙

𝐿𝐿

𝑙𝑙=1
;∀𝑘𝑘 ∈ Ω𝑔𝑔ℓ (26) 

∆𝑃𝑃𝑛𝑛,𝑖𝑖,𝑤𝑤,𝑡𝑡,𝑙𝑙 ≥ ∆𝑃𝑃𝑛𝑛,𝑖𝑖,𝑤𝑤,𝑡𝑡,𝑙𝑙+1;  ∆𝑃𝑃𝑛𝑛,𝑖𝑖,𝑤𝑤,𝑡𝑡,𝑙𝑙 ≤
𝑇𝑇𝑛𝑛𝑖𝑖𝑚𝑚𝑚𝑚

𝐿𝐿
;∀𝑘𝑘 ∈ Ω𝑔𝑔ℓ (27) 

𝑄𝑄𝑛𝑛,𝑖𝑖,𝑤𝑤,𝑡𝑡
2 = �

(2𝑙𝑙 − 1)𝑇𝑇𝑛𝑛𝑖𝑖𝑚𝑚𝑚𝑚∆𝑄𝑄𝑛𝑛,𝑖𝑖,𝑤𝑤,𝑡𝑡,𝑙𝑙

𝐿𝐿

𝐿𝐿

𝑙𝑙=1
;∀𝑘𝑘 ∈ Ω𝑔𝑔ℓ (28) 

�𝑄𝑄𝑛𝑛,𝑖𝑖,𝑤𝑤,𝑡𝑡� = 𝑄𝑄𝑛𝑛,𝑖𝑖,𝑤𝑤,𝑡𝑡
+ + 𝑄𝑄𝑛𝑛,𝑖𝑖,𝑤𝑤,𝑡𝑡

− =   � ∆𝑄𝑄𝑛𝑛,𝑖𝑖,𝑤𝑤,𝑡𝑡,𝑙𝑙

𝐿𝐿

𝑙𝑙=1
;∀𝑘𝑘 ∈ Ω𝑔𝑔ℓ (29) 

∆𝑄𝑄𝑛𝑛,𝑖𝑖,𝑤𝑤,𝑡𝑡,𝑙𝑙 ≥ ∆𝑄𝑄𝑛𝑛,𝑖𝑖,𝑤𝑤,𝑡𝑡,𝑙𝑙+1;  ∆𝑄𝑄𝑛𝑛,𝑖𝑖,𝑤𝑤,𝑡𝑡,𝑙𝑙 ≤
𝑇𝑇𝑛𝑛𝑖𝑖𝑚𝑚𝑚𝑚

𝐿𝐿
;∀𝑘𝑘 ∈ Ω𝑔𝑔ℓ (30) 

Equation (24) is linearised in a similar manner. 
d) Constraints Related to Network Losses 
Power losses in a line are considered as “virtual loads” which are equally distributed between 
the nodes connected by the line in question. Equations (31) and (32) represent the constraints 
related to the active and reactive power losses in line k, respectively. 

𝑃𝑃𝐿𝐿𝑛𝑛,𝑖𝑖,𝑤𝑤,𝑡𝑡  ≈  
𝐸𝐸𝑛𝑛 �𝑃𝑃𝑛𝑛,𝑖𝑖,𝑤𝑤,𝑡𝑡

2  +  𝑄𝑄𝑛𝑛,𝑖𝑖,𝑤𝑤,𝑡𝑡
2 �

𝑇𝑇𝐵𝐵
     ;∀𝑘𝑘 ∈ Ω𝑔𝑔ℓ (31) 

𝑄𝑄𝐿𝐿𝑛𝑛,𝑖𝑖,𝑤𝑤,𝑡𝑡  ≈ −2𝑇𝑇𝐵𝐵𝑏𝑏𝑛𝑛0�1 + ∆𝑉𝑉𝑖𝑖,𝑖𝑖,𝑤𝑤,𝑡𝑡 + ∆𝑉𝑉𝑗𝑗,𝑖𝑖,𝑤𝑤,𝑡𝑡� −
𝑏𝑏𝑛𝑛 
𝑔𝑔𝑛𝑛

 𝑃𝑃𝐿𝐿𝑛𝑛  ;∀𝑘𝑘 ∈ Ω𝑔𝑔ℓ 
(32) 

Power losses at substations (which are normally due to the existence of transformers) can be 
similarly formulated, as follows: 

𝑃𝑃𝐿𝐿𝑡𝑡𝑟𝑟,𝑖𝑖,𝑤𝑤,𝑡𝑡  ≈  
𝐸𝐸𝑡𝑡𝑟𝑟 �𝑃𝑃𝑡𝑡𝑟𝑟,𝑖𝑖,𝑤𝑤,𝑡𝑡

2  +  𝑄𝑄𝑡𝑡𝑟𝑟,𝑖𝑖,𝑤𝑤,𝑡𝑡
2 �

𝑇𝑇𝐵𝐵
     ;∀𝑀𝑀𝑟𝑟 ∈ Ω𝑡𝑡𝑟𝑟 (33) 
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𝑄𝑄𝐿𝐿𝑡𝑡𝑟𝑟,𝑖𝑖,𝑤𝑤,𝑡𝑡  ≈
𝑋𝑋𝑡𝑡𝑟𝑟 �𝑃𝑃𝑡𝑡𝑟𝑟,𝑖𝑖,𝑤𝑤,𝑡𝑡

2  +  𝑄𝑄𝑡𝑡𝑟𝑟,𝑖𝑖,𝑤𝑤,𝑡𝑡
2 �

𝑇𝑇𝐵𝐵
  ;∀𝑀𝑀𝑟𝑟 ∈ Ω𝑡𝑡𝑟𝑟 

(34) 

The quadratic terms in equations (31), (33) and (34) are linearised using the same method 
described above under section d. 
e) Active Power Production Limits 
The active power limits of existing and new conventional generators are given by (35) and 
(36), respectively.  

𝑃𝑃𝑔𝑔,𝑖𝑖,𝑖𝑖,𝑤𝑤,𝑡𝑡
𝐸𝐸,𝑖𝑖𝑖𝑖𝑔𝑔 𝑢𝑢𝑔𝑔,𝑖𝑖,𝑡𝑡 ≤ 𝑃𝑃𝑔𝑔,𝑖𝑖,𝑖𝑖,𝑤𝑤,𝑡𝑡

𝐸𝐸 ≤ 𝑃𝑃𝑔𝑔,𝑖𝑖,𝑖𝑖,𝑤𝑤,𝑡𝑡
𝐸𝐸,𝑖𝑖𝑚𝑚𝑚𝑚 𝑢𝑢𝑔𝑔,𝑖𝑖,𝑡𝑡 ;∀𝑔𝑔 ∈ Ω𝐸𝐸 (35) 

𝑃𝑃𝑔𝑔,𝑖𝑖,𝑖𝑖,𝑤𝑤,𝑡𝑡
𝑁𝑁,𝑖𝑖𝑖𝑖𝑔𝑔 𝑥𝑥𝑔𝑔,𝑖𝑖,𝑡𝑡 ≤ 𝑃𝑃𝑔𝑔,𝑖𝑖,𝑖𝑖,𝑤𝑤,𝑡𝑡

𝑁𝑁 ≤ 𝑃𝑃𝑔𝑔,𝑖𝑖,𝑖𝑖,𝑤𝑤,𝑡𝑡
𝑁𝑁,𝑖𝑖𝑚𝑚𝑚𝑚 𝑥𝑥𝑔𝑔,𝑖𝑖,𝑡𝑡 ;∀𝑔𝑔 ∈ Ω𝑁𝑁 (36) 

In the case of variable generation sources (such as wind and solar PV), the upper bound 𝑃𝑃𝑔𝑔,𝑖𝑖,𝑖𝑖,𝑤𝑤,𝑡𝑡
𝑖𝑖𝑚𝑚𝑚𝑚  

is equal to the minimum of the actual power production and the rated (installed) capacity, i.e.  
𝑃𝑃𝑔𝑔,𝑖𝑖,𝑖𝑖,𝑤𝑤,𝑡𝑡
𝑖𝑖𝑚𝑚𝑚𝑚 = min (𝑃𝑃𝑔𝑔,𝑖𝑖,𝑖𝑖,𝑤𝑤,𝑡𝑡,𝑃𝑃𝑔𝑔,𝑖𝑖,𝑖𝑖,𝑤𝑤,𝑡𝑡

𝑖𝑖𝑚𝑚𝑚𝑚 ). Note that the actual production at a given hour is dependent 
on the level of the primary energy source (wind speed or solar radiation). The lower bound is 
simply set to zero. Inequalities (37) and (38) impose the reactive power limits of existing and 
new generators, respectively. 

− 𝑀𝑀𝑡𝑡𝑀𝑀 �𝑐𝑐𝑐𝑐𝑐𝑐−1�𝑝𝑝𝑝𝑝𝑔𝑔��  𝑃𝑃𝑔𝑔,𝑖𝑖,𝑖𝑖,𝑤𝑤,𝑡𝑡
𝐸𝐸  ≤  𝑄𝑄𝑔𝑔,𝑖𝑖,𝑖𝑖,𝑤𝑤,𝑡𝑡

𝐸𝐸 ≤ 𝑀𝑀𝑡𝑡𝑀𝑀 �𝑐𝑐𝑐𝑐𝑐𝑐−1�𝑝𝑝𝑝𝑝𝑔𝑔��  𝑃𝑃𝑔𝑔,𝑖𝑖,𝑖𝑖,𝑤𝑤,𝑡𝑡
𝐸𝐸 ;∀𝑔𝑔 ∈ Ω𝐸𝐸 (37) 

−𝑀𝑀𝑡𝑡𝑀𝑀 �𝑐𝑐𝑐𝑐𝑐𝑐−1�𝑝𝑝𝑝𝑝𝑔𝑔��  𝑃𝑃𝑔𝑔,𝑖𝑖,𝑖𝑖,𝑤𝑤,𝑡𝑡
𝑁𝑁  ≤  𝑄𝑄𝑔𝑔,𝑖𝑖,𝑖𝑖,𝑤𝑤,𝑡𝑡

𝑁𝑁 ≤ 𝑀𝑀𝑡𝑡𝑀𝑀 �𝑐𝑐𝑐𝑐𝑐𝑐−1�𝑝𝑝𝑝𝑝𝑔𝑔��  𝑃𝑃𝑔𝑔,𝑖𝑖,𝑖𝑖,𝑤𝑤,𝑡𝑡
𝑁𝑁 ;∀𝑔𝑔 ∈ Ω𝑁𝑁 (38) 

f) Logical constraints 
The set of logical constraints in (39) ensure that an investment decision cannot be reversed. 

𝑥𝑥𝑔𝑔,𝑖𝑖,𝑡𝑡 ≥ 𝑥𝑥𝑔𝑔,𝑖𝑖,𝑡𝑡−1;  𝑤𝑤ℎ𝑀𝑀𝑟𝑟𝑀𝑀 𝑥𝑥𝑔𝑔,𝑖𝑖,0 = 0;∀𝑔𝑔 ∈ Ω𝑁𝑁 (39) 

g) Reactive Power Source Constraints 
The amount of reactive power that can be supplied or absorbed by a reactive power source 
connected to a given node is bounded as follows: 

𝑄𝑄𝑖𝑖,0
𝑟𝑟𝑖𝑖,𝑖𝑖𝑖𝑖𝑔𝑔 ≤ 𝑄𝑄𝑖𝑖,𝑖𝑖,𝑤𝑤,𝑡𝑡

𝑟𝑟𝑖𝑖 ≤ 𝑄𝑄𝑖𝑖,0
𝑟𝑟𝑖𝑖,𝑖𝑖𝑚𝑚𝑚𝑚;∀𝑟𝑟𝑐𝑐 ∈ Ω𝑟𝑟𝑖𝑖 (40) 

where 𝑄𝑄𝑖𝑖,0
𝑟𝑟𝑖𝑖,𝑖𝑖𝑖𝑖𝑔𝑔 and 𝑄𝑄𝑖𝑖,0

𝑟𝑟𝑖𝑖,𝑖𝑖𝑚𝑚𝑚𝑚are the minimum and the maximum capacities of an already existing 
reactive power source.  
h) Renewable Energy  Constraint 
In this work, we model the impact of a policy-driven constraint governing renewable energy 
generation according to equation (41): 

  

� 𝜌𝜌𝑖𝑖 � 𝜋𝜋𝑤𝑤 � ��𝑃𝑃𝑔𝑔,𝑖𝑖,𝑖𝑖,𝑤𝑤,𝑡𝑡
𝐸𝐸 + 𝑃𝑃𝑔𝑔,𝑖𝑖,𝑖𝑖,𝑤𝑤,𝑡𝑡

𝑁𝑁 �
𝑖𝑖𝑡𝑡𝛺𝛺𝑖𝑖𝑔𝑔𝑡𝑡𝛺𝛺𝑅𝑅𝐸𝐸𝑅𝑅𝑤𝑤𝑡𝑡𝛺𝛺𝑤𝑤𝑖𝑖𝑡𝑡𝛺𝛺𝑠𝑠

≥ 𝓅𝓅𝑡𝑡 ∗ � 𝜌𝜌𝑖𝑖 � 𝜋𝜋𝑤𝑤 �𝑃𝑃𝑃𝑃𝑖𝑖,𝑤𝑤,𝑡𝑡
𝑖𝑖

𝑖𝑖𝑡𝑡𝛺𝛺𝑖𝑖𝑤𝑤𝑡𝑡𝛺𝛺𝑤𝑤𝑖𝑖𝑡𝑡𝛺𝛺𝑠𝑠
 (41) 

 

where 𝓅𝓅𝑡𝑡 corresponds to the renewable penetration target at each stage. This is similar to the 
renewable portfolio standard (RPS), widely practiced in the power sector. 
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i) Spatial Renewable Allocation Constraints 
The allocation of renewable power sources depends not only on the availability of primary 
energy sources and on technical aspects but also on public acceptance of renewable 
developments and a suitable site. We use the effective “green” area and the population density 
in each region as proxies for these constraints. The amount of onshore wind power allocated to 
a region is assumed to be directly proportional to the available space (i.e. green area) in that 
region but is inversely proportional to the population density: 

 � � 𝑥𝑥𝑔𝑔,𝑖𝑖,𝑡𝑡
𝑖𝑖𝑡𝑡𝛺𝛺𝑖𝑖;(𝑔𝑔,𝑖𝑖)𝑡𝑡𝛺𝛺𝑡𝑡𝑒𝑒𝑔𝑔𝑔𝑔𝑡𝑡𝛺𝛺𝑜𝑜𝑜𝑜𝑠𝑠ℎ

≥ 𝜉𝜉𝑟𝑟𝑔𝑔𝑔𝑔 � � 𝑥𝑥𝑔𝑔,𝑖𝑖,𝑡𝑡
𝑖𝑖𝑡𝑡𝛺𝛺𝑖𝑖;(𝑔𝑔,𝑖𝑖)𝑡𝑡𝛺𝛺𝑡𝑡𝑒𝑒𝑔𝑔_𝑥𝑥𝑔𝑔𝑡𝑡𝛺𝛺𝑜𝑜𝑜𝑜𝑠𝑠ℎ

  (42) 

where 𝛺𝛺𝑟𝑟𝑔𝑔𝑔𝑔 refers to the set of regions where the power generations are allocated; 𝛺𝛺𝑜𝑜𝑔𝑔𝑖𝑖ℎ 
represents the set of potential onshore wind farms; 𝜉𝜉𝑟𝑟𝑔𝑔𝑔𝑔 is a weighting factor for each region; 
𝛺𝛺𝑟𝑟𝑔𝑔𝑔𝑔_𝑚𝑚 includes the set of nodes in a specific region 𝑟𝑟𝑀𝑀𝑔𝑔_𝑥𝑥. 

2.3. Uncertainty Management and Solution Strategy 
Electricity systems have several sources of uncertainty and variability. Short-term or operational 
uncertainty includes variable power production sources (such as wind and solar), electricity 
demand and forced outages of conventional generators. Long-term uncertainty includes policy 
measures, demand composition and growth, and carbon and fuel prices. Any robust solution to the 
generation expansion problem must account for these sources of uncertainty. 

To address short-term uncertainty, we use historical wind speed and solar radiation data at hourly 
resolution spanning 35 years for different regions [42]. The dataset therefore has a total of 306,762 
operational time points, each of which contains wind speed and solar radiation for each region. The 
data are obtained from [43]. The regional wind speed and solar radiation data are then converted 
into power production factors using appropriate power curves of the respective technology [44]. 
Further details of the data acquisition and processing can be found in [45]. An hourly demand series 
for a length of five years starting from 2011 is downloaded from [46], and is duplicated to match 
the length of wind and solar power output series. The rationale for this approach is that 35 years of 
historical wind and solar data are representative of the wind and solar that can be expected today, 
however in the case of electricity demand, more recent data are required. 

 

Figure 2. A trade-off curve of the clustering algorithm and illustration of the Elbow method 
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Computational constraints prohibit solving the Generation Expansion problem with the entire dataset 
described above and so a reduced dataset is obtained by means of clustering. We employ the k-
means clustering algorithm [47]. The performance of the clustering process is recorded by varying 
the number of clusters, leading to a trade-off curve as shown in Figure 2. The number of clusters 
(and hence, representative snapshots) to use in the final analysis is then decided according to the 
Elbow method. In our case, this number is between 300 and 500. Beyond this range, the trade-off 
curve is more or less flat, (changes in the objective function value of the clustering algorithm are 
not significant). We thus set the number of clusters to 300. A representative snapshot is then 
selected from each cluster, with the objective of accurately representing system operation.  

To model long-term uncertainty, we consider various potential future scenarios and model each 
individually. The scenarios we have used in our analysis are largely in line with EirGrid’s 
demand growth projections, which are published in their “Tomorrow’s Energy Scenarios” 
report [48].  

Despite clustering the data, the problem cannot be directly solved without significant 
computational effort. Hence, we employ a solution strategy that is partly described in [49]. The 
strategy is based on the combination of decomposition and rolling-horizon approaches. The 
problem is decomposed into successive optimization phases in a hierarchical manner. These 
phases employ increasing levels of modelling details; the foremost having less complex 
modelling details than the latter ones. The solution from one phase is fed to the subsequent 
phase to obtain a more realistic solution. Finally, the brute-force model presented in this paper 
is applied to obtain the final solution.  

The solution strategy employed in this work uses only two phases; the first being a relaxed 
version of the model presented earlier. The method solves the problem in a series of iterations. 
By giving more emphasis in terms of modelling details to the foremost planning stages, the 
respective expansion solutions are obtained, and rolled these over to subsequent stages to 
obtain the corresponding solutions. 

The model is coded in the general algebraic modelling system (GAMS) [50], and solved using 
CPLEX™ 12.0 [51]. All simulations are carried out on a server with Intel Xeon E5-2630 dual 
processor clocking at 2.2 GHz and with a 256 GB RAM. 

3. Data and Assumptions 

The analysis is carried out on the 2017 Irish transmission grid, which already features a 
significant installation of wind power. The planning horizon is 12 years, which is split into 
three decision stages corresponding to the years 2020, 2025 and 2030. The base-case system 
consists of 676 nodes and more than 900 transmission lines (including transformers which are 
modelled as lines with zero lengths). This represents a transmission network aggregated at  
110 kV or higher for the whole island. Data and further details of the Irish transmission network 
can be found in [52]. 

Other parameter values are set as follows. The minimum or the maximum voltage deviation at 
any particular node is 0.1 per units (i.e. 10% of the nominal voltage). Penalties associated with 
unserved power are set as  𝜐𝜐𝑖𝑖,ℎ

𝑁𝑁 = 3000 €/𝑀𝑀𝑀𝑀 and 𝜐𝜐𝑖𝑖,ℎ
𝑄𝑄 = 3000 €/𝑀𝑀𝑉𝑉𝑀𝑀𝑟𝑟 according to [40]. 

These penalties can be regarded as rather conservative assumptions; lost load is in fact valued 
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much higher [53]. The interest rate 𝑟𝑟 is set to 10%. Base power 𝑇𝑇𝐵𝐵 = 100 𝑀𝑀𝑉𝑉𝑀𝑀; and  𝑀𝑀𝑃𝑃𝑛𝑛 =
𝑀𝑀𝑄𝑄𝑛𝑛 = 2000. Power generator related data are provided in Appendix A. The maintenance cost 
for a generator is assumed to be 2% of its installation cost.  

Carbon prices have been stagnant for many years, hovering around 6 €/tCO2. This has recently 
climbed to 18 €/tCO2 and is expected to reach 20, 25 and 30 €/tCO2 by 2020, 2025 and 2030 
respectively [54]. These are the base case values considered in our case study. Some scenarios 
indicate that carbon prices could reach as high as 55 €/tCO2 by 2030 [54] and so we perform 
sensitivities up to this carbon price level. 

The RES-E targets are set to 40, 45 and 50% for 2020, 2025 and 2030, respectively, unless 
otherwise specified. However, constraints related to emission reduction targets are not imposed 
in our analysis. A 75% system non-synchronous penetration (SNSP) limit is imposed, although 
sensitivities are performed on this parameter. SNSP quantifies the non-synchronous power 
generation on the system at any given time [55]. It is given by the ratio of generation from 
variable renewable power sources plus HVDC imports to demand plus HVDC exports, in real-
time. Further definition and derivation of the SNSP limit can be found in the All-Island TSO 
Facilitation of Renewables Studies [56].  

Investments in new thermal power plants are assumed to be in brown fields. Replacing existing 
older power generation plants with more efficient CCGTs or with carbon capture and storage 
is considered in the optimisation. Table 1 summarises the weighting factors that determine the 
allocations of new RES developments in each region. These factors are obtained by taking into 
consideration population density as well as the availability of “greenfield” area that is suitable 
for wind power development. The interpretation of the entries in this table is as follows. 
Suppose the optimal RES capacity allocated to the NUTS3 level “IE022” is  𝜓𝜓 megawatts. The 
optimal RES allocated to the NUTS3 level “IE012” should then be at least equal to 2.06𝜓𝜓 
megawatts, and that of “IE013” would have to be greater than or equal to 2.7𝜓𝜓 megawatts, etc. 
Note that a higher weighting factor (as in “IE013”) is indicative of a lower population density 
and a bigger “greenfield” area that is suitable for RES development.  

 

Figure 3. Proposed connection points of variable renewables 
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The maximum possible onshore wind and solar PV capacity that can be connected to a single 
transmission node (note that this includes the 110 kV level in this case) is capped at 90 MW. 
However, up to a maximum of 420 MW installed capacity is possible in the case of investments 
in conventional power plants and offshore wind farms. Regional constraints do not apply to all 
technologies other than onshore wind. A total of 93 nodes are identified as potential candidates 
for connecting new renewable power generation sources (see the illustration in Figure 3), based 
on electrical connectivity and proximity criteria. 

Table 1. Regional weighting factors for onshore wind allocation 

NUTS3 region IE022 IE012 IE013 IE023 IE024 IE025 IE011 
𝜉𝜉𝑟𝑟𝑔𝑔𝑔𝑔 1.00 2.06 2.70 1.79 1.61 1.55 2.07 

 

The Irish system currently has a total of 950 MW of HVDC interconnection to Great Britain 
and further interconnection to France may be built. There is also 292 MW of pumped storage 
on the system. We do not include either interconnection or storage in our analysis as we are 
particularly interested in examining the impacts of renewable generation in an isolated system. 
In particular, the SNSP figure for an isolated system is equivalent to the percentage of demand 
met by renewable generation. However, when considering interconnection, total generation can 
be greater (less) than total demand, with the surplus (deficit) exported (imported). 

The analysis is carried out for four different scenarios, each representing a plausible evolution 
of the all-island power system. We refer to the cases as “Grand plan”, “No IC”, “Status quo 
gen” and “Paralysis”. As shown in Table 2, the cases are distinguished by the decommissioning 
of old conventional power plants and north-south interconnection. The central assumptions in 
the first case, “Grand plan”, are that a sizable proportion of the old conventional power 
generation fleet would be decommissioned a year or so earlier than 2025, and that a new  
400 kV interconnector (henceforth the north-south interconnector) would be energised before 
2025. The north-south interconnector which has been planned for some time would 
significantly increase the level of interconnection between the two systems on the island of 
Ireland. However, there have been multiple delays in the construction of the interconnector. 
This motivates the “No IC” scenario, which sees the same fossil fuel decommissioning but the 
north-south interconnection is abandoned. “Status quo gen” assumes decommissioning is 
delayed until after 2030 but the north-south interconnection is completed. “Paralysis” assumes 
that neither the decommissioning of inefficient power plants nor the north-south 
interconnection occur. All cases share the same RES-E targets. 

Table 2. Distinguishing the considered cases 

Cases 
Variations 

Fossil fuel phase out Interconnector 
Grand plan Yes Yes 
No IC Yes No 
Status quo gen No Yes 
Paralysis No No 

 



15 
 

 

4. Numerical Results and Discussions 

4.1.  System Cost 
Table 3 displays the system-wide costs for the different scenarios and planning stages. In the 
last two planning stages, the costs associated with the “Status quo gen” and “Paralysis” cases 
are higher than those of the first two cohorts. This is driven primarily by emission costs.  

Table 3. NPV of system-wide cost (in M€) 

  Scenario case 
 Cost term Grand plan No IC Status quo gen Paralysis 

2020 
Investment 130 130 130 130 
Emission 263 263 263 263 
O&M 1355 1355 1355 1355 

2025 
Investment 206 206 153 152 
Emission 177 177 240 240 
O&M 1004 1004 1026 1026 

2030 
Investment 173 173 175 179 
Emission 137 137 189 189 
O&M 1276 1276 1294 1295 

Cumulative 4721 4721 4825 4829 
 

4.2. Optimal Installed Power Generation Mixes 
Figure 4 shows the optimal generation expansion outcomes in each case and time stage, which 
consists of only a few power production technologies: solar PV, CCGTs, onshore and offshore 
wind. In particular, the assumption of a 20% cost reduction in the installation cost of carbon 
capture and storage (CCS) technology by 2030 is not sufficient to justify investment in this 
technology. In 2030, the generation investment solution encompasses only offshore wind and 
solar PV technologies. Onshore wind investments do not take place due to the connection 
capacity constraint. Relaxing this and/or increasing the candidate nodes for onshore wind 
connections might otherwise lead to greater onshore wind expansion in 2030.  

Figure 4 shows that the north-south interconnector is found out to have little effect on RES 
installations required to achieve the required target levels. This suggests that the interconnector 
has negligible impact on variable renewable curtailments. However, our analysis does not 
rigorously model contingencies and may therefore underestimate the potential role of the 
interconnector. In contrast, decommissioning the older power generation fleet leads to 1.3 GW 
of new CCGTs by the year 2025 in “Grand Plan” and “No IC” (but not in the other two 
scenarios). 

In all cases, about 1.4 GW of onshore wind capacity is required by 2020 to meet the RES-E 
target of 40%. Solar PV investment takes place in all cases in 2030, despite the low capacity 
factors (approximately 10%). The total utility-scale solar PV capacity added in the last two 
scenarios is nearly twice that of the first two. One plausible explanation for this is the higher 
carbon price which is one of the factors that influence the economic viability of investing in 
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solar PV and offshore wind. Another reason could be the anticipated cost reductions with 
regards to the installation costs by 2030 and beyond. 

  

Figure 4. Optimal installed capacities of new electricity generation made along the planning 
horizon 

  

Figure 5. A geographical illustration of the optimal allocation of new power generation 
sources by 2020 (Legend: Onshore wind. The red line represents the proposed north-south 

interconnector, but it is unlikely to be operational by 2020) 

Figure 5 shows the optimal allocation of the new wind farms across the island for all scenarios 
by 2020. By 2030, however, the locations of new power generation sources varies across 
scenarios, especially onshore wind. This can be seen in Figure 6 and will be expanded on in 
further sections. 
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                                    (a) Grand plan                          (b) No IC 

 

                                    (c) Status quo gen               (d) Paralysis 

Figure 6. Geographical illustration of optimal allocation outcome (cumulative) of new power 
generation sources in each case by 2030 (Legend: Onshore wind; Offshore wind;  Solar 

PV; New CCGT. The red line represents the north-south interconnector) 
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Figure 7 shows the expected energy mix for the “Grand plan” case. The energy mix is largely 
the same for all scenarios considered in our analysis, due primarily to the fact that all cases face 
the same RES target. However, in the “Status que gen” and “Paralysis” cases, the 28% 
conventional energy comes from the existing power plants which have higher emissions than 
new power plants. 

4.3. Implications on Emissions from Power Production 
Figure 8 shows the trends in average emissions across the planning stages compared with those 
recorded in the year 2017. Average emissions continue to fall as the time progresses in the 
“Grand plan” and “No IC” cases. In the remaining two cases, average emissions remain either 
at their corresponding 2020 level or increase slightly due to the presence of older inefficient 
power plants. The 2030 emission reduction target set out in Ireland’s national mitigation plan 
[57] is marginally met in the “Grand plan” and “No IC” cases but not the others. 

 

Figure 8. Expected emissions from power production 
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Figure 7. Expected energy mix in each planning stage for the Grand plan case 
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4.4. Implications on Reliability 
Figure 9 compares the expected energy not served (EENS) for the different scenarios. The 
“Grand plan” case leads to the lowest level of EENS, with the highest in the “Paralysis” case. 
The scenarios that include the north-south interconnector have lower EENS. Figure 10 shows 
the spatial distribution of EENS, most of which lies in and around Dublin, the capital city and 
main load centre. Demand from datacentres is also expected to be concentrated in this region. 
Congestion is also high in this area. It should be noted here that these results are largely 
dependent on the values of VOLL chosen, for both reactive and active power. The 
corresponding EENS costs are 593, 593, 601 and 602 M€, respecitvely. 

 

Figure 9. A comparison of expected energy not supplied across the different cases 
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                              (a) Grand plan              (b) No IC 

 

                              (c) Status quo gen              (d) Paralysis 

Figure 10. Geographical locations of expected energy not supplied (Numbers indicate the 
levels) 
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4.5. Implications on Network Investment Needs 
Congestion is one of the key indicators for network expansion requirements. We consider a 
transformer or a line as congested if the power flows through it exceed 90% of its nominal 
transfer capacity. This value can be deemed high, particularly compared to other studies, for 
example in [58] where any line whose flow exceeds 80% of its nominal capacity is regarded 
as heavily loaded or congested. However, since we allow instantaneous power transfer through 
a line to go up to its rated emergency capacity (which often falls between 110 and 120% of the 
nominal capacity), the 90% setting can be considered sufficient to capture the most congested 
paths in the system. Furthermore, we have assumed that flows in each transformer or line are 
bounded from above by the respective emergency transfer capacity. Each scenario considered 
here leads to different congestion outcomes. Table 4 summarises the total number of congested 
power system components as well as the total length of overloaded lines. The last row contains 
the product of the length of a line and the number of hours in a given year in which the line is 
congested. These three metrics indicate the level on network upgrades that may be required. 

Table 4. Comparison of congestion across the cases 

Cases Grand plan No IC Status quo gen Paralysis 
Number of components congested 142 154 151 176 
Total congested length (km) 3.509 3,659 4,020 4,435 
Congested length-year (km*hour/year) 9,943 10,354 13,920 15,409 

 

Figure 11 displays the proportion of system components that are uncongested for any given 
number of hours under the “Grand Plan” and “Paralysis” cases. The reason behind selecting 
these two cases is because they lead to the lowest and highest congestion in the system, 
respectively. The planning stages 2025 and 2030 are chosen because the congestion in the first 
planning stage (2020) is not significant enough to be included in this analysis. 

    
Figure 11. Cumulative distributions showing the extent of possible network congestion in the 

Grand plan and Paralysis cases 

0.76
0.78
0.8

0.82
0.84
0.86
0.88
0.9

0.92
0.94
0.96
0.98

1

0 1000 2000 3000 4000 5000 6000 7000 8000

cd
f

Time (hours)

Grand plan 2025 Grand plan 2030 Paralysis 2030 Paralysis 2025



22 
 

The interpretation of the results in Figure 11 is as follows. The vertical axis displays the 
proportion of network components that are uncongested for each number of hours in the year. 
Thus, 76% of the power system components will not see flows exceed 90% of their respective 
nominal transfer capacities at any stage under the “Paralysis” scenario, while the corresponding 
figure for the “Grand Plan” scenario is 82% in 2025 and 79% in 2030. This means that there 
are 3% (in 2025) and 6% (in 2030) more components in the “Paralysis” case that are congested 
at least for one hour during the respective year than in the “Grand plan” one.  

A general observation is that the level of congestion in the “Paralysis” case is significantly 
higher than that of the “Grand plan” one. In every planning year and case, about 1% of the 
transformers and lines are congested for more than half of the year. Figure 12 illustrates the 
corridors that are heavily loaded in the year 2030 corresponding to each case. In reality, these 
congestion metrics are closely related with grid reinforcement requirements. 
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(a) Grand plan          (b) No IC 

  

(c) Status quo gen         (d) Paralysis 

Figure 12. A geographical illustration and comparison of possible network congestion in 
the considered cases (Note that bold lines show the corridors that are heavily congested 

for more than 1000 hours per year, and overloaded transformers are not shown) 
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4.6. Implications on Renewable Power Curtailments 
Figure 13 compares wind power curtailment across the different cases and different stages of 
the planning window. The level of curtailment is relatively constant under each scenario. 
Furthermore, each scenario sees an increasing trend in curtailments over time from about 2% 
in 2020 to over 10% in 2030. 

   

Figure 13. Expected wind power curtailment for each case and year 

 

5. Sensitivity Analysis 

5.1. Changes in SNSP Limit 
 For security reasons, the system non-synchronous penetration (SNSP) is limited to a certain 
level. Currrently, the Irish power system is operated at an SNSP limit of 65%, which is expected 
to increase to 75% in 2020. Further increases in the SNSP limit may be possible with the advent 
of advanced technologies, such as energy storage systems that have the capability to provide 
“digital” inertia. We have therefore analysed the impact of increasing the SNSP limit from 75 
to 100% under the “Grand plan” case. As noted above, this in reality need not equate to having 
no conventional generation units online, as up to 950 MW of conventional generation can be 
exported to Great Britain via the HVDC interconnectors. The results are summarised in Table 
5. 

Table 5. Impact of changes in the SNSP limit  

 
 

Grand plan 
SNSP75 

Grand plan 
SNSP85 

Grand plan 
SNSP100 

SNSP limit 75 85 100 
Change in system cost (%) 0 -2 -4 
Change in expected variable RES power 
curtailment (%) 0 -106 -596 
Change in expected emissions (%) 0 +2 +4 
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The new generation capacity required by 2030 under each SNSP limit is shown in Figure 14. 
Total capacity investments reduce by 795 MW and 1048 MW for SNSPs of 85% and 100%, 
respectively. The increase in emissions observed in Table 5 is explained by the reduction in 
investments in new offshore wind, no investments in solar PV, and higher investments in new 
CCGTs.. 

 

Figure 14. Impact on installed generation capacity and technology mix in the “Grand plan” 
case 

It should be noted here that increased deployment of energy storage and/or HVDC 
interconnection with other systems would likely have a similar effect to that of increased SNSP. 
This will be covered in future work.  

5.2. Changes in Carbon Price 
Another model parameter that is subject to a high level of uncertainty is the price of CO2 
emissions, or simply carbon price. We perform a sensitivity analysis by varying the carbon 
price in 2030 between 30 and 55 €/tCO2. Numerical results are presented in Figure 15 and 
Table 6. Figure 15 reveals no significant differences in the mix of new power generation 
investments in each scenario. The changes in wind power curtailments and average emissions 
are also not considerable in both cases. The primary impact of an increased carbon price is in 
system costs.  

Table 6. Impact of changes in carbon price (the first column is a reference in each scenario) 

 Grand plan Paralysis 
Carbon price (€/tCO2) 20 30 45 55 20 30 45 55 
Change in system cost (%) 0.0 +2.6 +6.3 +8.5 0.0 +3.5 +8.3 +11.3 
Change in expected wind 
energy curtailment (%) 0.0 -0.6 -0.7 -1.1 0.0 -0.6 -1.4 -2.0 
Changes in expected 
emissions (%) 0.0 -0.1 -0.1 -0.2 0.0 -0.25 -0.30 -0.32 
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Figure 15. Impact of carbon price variation on the installed generation capacity and 
technology mixes in the “Grand plan” and “Paralysis” cases 

 

5.3. Changes in RES-E Integration Target  
Finally, we analyse the impact of different levels of RES-E integration targets. We consider 
various scenarios, from no RES-E target (designated as “RE eco”, which stands for RES 
economic) to a 60% RES-E target, (“RE60”). The actual renewable share in the “RE eco” case 
is about 35% for the entire island. Figure 16 shows the optimal generation mix under each 
target. The additional generation capacity required by 2030 increases exponentially with an 
increasing RES-E target. Investments in new CCGTs decrease slightly, while there are 
investments in large quantities of wind and solar power plants. Renewable power curtailments 
and system costs also increase substantially (Table 7). 

 

Figure 16. Impact of RES-E target on the installed generation capacity and technology mix 
by 2030 

0
1000
2000
3000
4000
5000
6000
7000

20 30 45 55 20 30 45 55

Grand plan Paralaysis

N
ew

 g
en

er
at

io
n 

ca
pa

ci
ty

 (M
W

)

Carbon price and scenario 

Onshore Offshore Solar CCGT

1,700 1,586 1,267 748

1,460 2,364 2,440
2,440

599 1,260

1,971

5,488

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

Grand plan RE
eco

Grand plan
RE40

Grand plan
RE50

Grand plan
RE60

N
ew

 in
st

al
le

d 
ca

pa
ci

ty
 (M

W
)

CCGT Onshore Solar Offshore



27 
 

Table 7. Impact of changes in the RES-E target by 2030 

 
Grand plan 

RE eco 
Grand plan 

RE40 
Grand plan 

RE50 
Grand plan 

RE60 
RES-E target 35 40 50 60 
Change in system cost (%) 0 +1 +11 +25 
Change in expected wind energy 
curtailment (%) 0 -71 +55 +81 
Changes in expected emissions (%) 0 -4 -16 -30 

 

6. Conclusions and Policy Recommendations 

Several of the results above have interesting implications. First and foremost, the “Grand plan” 
scenario leads to the lowest costs, along with the lowest emissions and highest reliability. This 
suggests that the decommissioning of old inefficient power generation stations is optimal from 
a least-cost perspective. The impact of decommissioning on carbon emissions is particularly 
significant, leading to a 37% reduction in 2030. 

The impact of decommissioning on European emission levels, as opposed to Irish levels, is less 
clear. This is due to the fact that electricity generation is covered by the EU-ETS system, and 
there may therefore be the potential for carbon leakage. The absence of a carbon price floor 
across Europe increases the likelihood of carbon leakage, as the lower demand for carbon 
permits from generators in one jurisdiction will reduce the price of carbon permits at EU level, 
and therefore reduce incentives for carbon reduction elsewhere in the EU. 

The north-south interconnector, in contrast, has a negligible impact on the aggregate results 
(whether or not decommissioning occurs). However, the locational details vary depending on 
whether the interconnector exists or not, particularly for expected energy not served (EENS). 
The interconnector’s primary function is to reduce both the number of hours and the number 
of locations of electricity supply interruptions. This has important implications for policy 
makers in determining the level of priority to award the interconnector.  

The renewable generation portfolio that proves cost-optimal relies initially on onshore wind, 
with offshore wind and solar investments delayed until 2025 and 2030 respectively. However 
given the results in Figure 14, it appears that the latter investments are driven primarily by 
curtailment. Raising the SNSP limit or investing in storage and/or interconnection may enable 
very high levels of renewable generation to be reached with lower levels of these more 
expensive renewable technologies. 

At the high levels of RES that Ireland has targeted, increased carbon prices have little effect 
other than to increase total costs. This suggests that the RES targets that have been set for the 
Irish system are at least equal to those that would prove optimal under the carbon prices 
assumed in this work, and may be higher. Policy makers should be aware of the potential for 
one policy measure (e.g. a renewable target) to render another measure (e.g. a carbon price 
signal) irrelevant. Therefore, they should exercise caution in investing or political capital or 
other resources in mutually inclusive policies simultaneously. 
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Nomenclature 

Indices and Sets 
𝑔𝑔/Ω𝑔𝑔  Index/set of all generators (existing and new) 
𝑀𝑀, 𝑗𝑗/Ω𝑖𝑖  Index/set of all nodes 
𝑀𝑀′  Index for fictitious transformer node 
𝑘𝑘/Ω𝑛𝑛  Index/set of all lines 
𝑀𝑀/Ω𝑡𝑡  Index/set of time stages 
𝑀𝑀𝑟𝑟/Ω𝐸𝐸𝑡𝑡𝑡𝑡   Index/set of existing transformers 
𝑐𝑐/Ω𝑖𝑖  Index/set of storylines (scenarios) 
𝑤𝑤,𝑤𝑤′/Ω𝑤𝑤  Index/set of operational states 
Ω𝑅𝑅𝐸𝐸𝑃𝑃  Set of all RES type power generators 
Ω𝑔𝑔ℓ  Set of existing lines 

Functions 
𝑇𝑇𝑇𝑇𝑡𝑡

𝑔𝑔𝑔𝑔𝑔𝑔  Cost of energy generated by all generators (€) 
𝑇𝑇𝑇𝑇𝑡𝑡𝑁𝑁𝑁𝑁   Cost of energy generated by new generators (€) 
𝑇𝑇𝑇𝑇𝑡𝑡𝐸𝐸𝑁𝑁   Cost of energy generated by existing generators (€) 
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡  Cost of unserved energy (€) 
𝑇𝑇𝑀𝑀𝑀𝑀𝑇𝑇𝑡𝑡

𝑔𝑔𝑔𝑔𝑔𝑔  Emission cost associated to all generators (€) 
𝑇𝑇𝑀𝑀𝑀𝑀𝑇𝑇𝑡𝑡𝑁𝑁𝑁𝑁   Emission cost associated to new generators (€) 
𝑇𝑇𝑀𝑀𝑀𝑀𝑇𝑇𝑡𝑡𝐸𝐸𝑁𝑁   Emission cost associated to existing generators (€) 
𝑇𝑇𝑀𝑀𝑇𝑇𝑇𝑇𝑡𝑡

𝑔𝑔𝑔𝑔𝑔𝑔  Investment cost in generators (€) 
𝑀𝑀𝑀𝑀𝑀𝑀𝑇𝑇𝑡𝑡

𝑔𝑔𝑔𝑔𝑔𝑔  Maintenance cost associated with all generators (€) 
𝑀𝑀𝑀𝑀𝑀𝑀𝑇𝑇𝑡𝑡𝑔𝑔𝑡𝑡𝑛𝑛  Maintenance cost associated with network components(€) 
  

Parameters 
𝑏𝑏𝑛𝑛0  Shunt susceptance of a line (pu) 
𝑏𝑏𝑛𝑛  Susceptance of a line (pu) 
𝑇𝑇𝐸𝐸𝑔𝑔𝑁𝑁  Emission rate of a new generator (tons of CO2e/MWh) 
𝑇𝑇𝐸𝐸𝑔𝑔𝐸𝐸  Emission rate of an existing generator (tons of CO2e/MWh) 
𝑔𝑔𝑛𝑛  Conductance of a line (pu) 
𝐿𝐿𝑇𝑇𝑔𝑔  Lifetime of a generator (years) 
𝐿𝐿𝑇𝑇𝑡𝑡𝑟𝑟  Lifetime of a transformer (years) 
𝑇𝑇𝑇𝑇𝑔𝑔,𝑖𝑖  Capital cost of a generator (€) 
𝑀𝑀𝑇𝑇𝑔𝑔𝑁𝑁  Maintenance cost of a new generator (€/year) 
𝑀𝑀𝑇𝑇𝑔𝑔𝐸𝐸   Maintenance cost of an existing generator (€/year) 
𝑀𝑀𝑇𝑇𝑛𝑛𝑁𝑁  Maintenance cost of a new line (€/year) 
𝑀𝑀𝑇𝑇𝑛𝑛𝐸𝐸   Maintenance cost of an existing line (€/year) 
𝑀𝑀𝑇𝑇𝑡𝑡𝑟𝑟𝑁𝑁   Maintenance cost of a new transformer (€/year) 
𝑀𝑀𝑇𝑇𝑡𝑡𝑟𝑟𝐸𝐸   Maintenance cost of an existing transformer (€/year) 
𝑀𝑀𝑄𝑄𝑛𝑛  Big-M (disjunctive) parameter 
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𝑀𝑀𝑃𝑃𝑛𝑛  Big-M (disjunctive) parameter 
𝑇𝑇𝑤𝑤  Number of operational states 
𝑃𝑃𝑃𝑃𝑖𝑖,𝑤𝑤,𝑡𝑡

𝑖𝑖,0   Active power demand without DR program (MW) 
𝑟𝑟  Interest rate (%) 
𝑄𝑄𝑃𝑃𝑖𝑖,𝑤𝑤

𝑖𝑖,0   Reactive power demand without DR program (MVAr) 
𝐸𝐸𝑡𝑡𝑟𝑟, 𝑋𝑋𝑡𝑡𝑟𝑟 Resistance, reactance of transformer (pu) 
𝐸𝐸𝑛𝑛  Resistance of a line (pu) 
𝑇𝑇𝐵𝐵  Base power (MVA) 
𝑇𝑇𝑡𝑡𝑟𝑟𝑖𝑖𝑚𝑚𝑚𝑚  Maximum apparent power flow through transformer (MVA) 
𝑇𝑇𝑛𝑛𝑖𝑖𝑚𝑚𝑚𝑚  Maximum apparent power flow through line (MVA) 
  
𝑇𝑇  Duration of the planning horizon (years) 
𝑋𝑋𝑛𝑛  Reactance of a line (pu) 
∆𝑉𝑉𝑖𝑖𝑚𝑚𝑚𝑚, ∆𝑉𝑉𝑖𝑖𝑖𝑖𝑔𝑔 Upper and lower limits of voltage deviations (pu) 
  
𝜆𝜆𝑔𝑔,𝑖𝑖,𝑤𝑤,𝑡𝑡
𝑁𝑁𝑁𝑁   Marginal operation cost of a new generator (€/MWh) 
𝜆𝜆𝑔𝑔,𝑖𝑖,𝑤𝑤,𝑡𝑡
𝐸𝐸𝑁𝑁   Marginal operation cost of an existing generator(€/MWh) 
𝜆𝜆𝑖𝑖,𝑤𝑤,𝑡𝑡
𝐶𝐶𝐶𝐶2𝑔𝑔  Unit cost of emissions (€/tons of CO2e) 
𝜐𝜐𝑖𝑖,ℎ
𝑁𝑁   Penalty for load shedding (€/MW) 
𝜐𝜐𝑖𝑖,ℎ
𝑄𝑄   Penalty for load shedding (€/MVAr) 
𝜉𝜉𝑤𝑤,𝑤𝑤′  Price elasticity of demand 
𝜋𝜋𝑤𝑤  Weight associated to representative operational state 
𝜌𝜌𝑖𝑖  Probability of realization of a storyline (scenario) 
𝜓𝜓  DR penetration level  

Variables 
𝑃𝑃𝑛𝑛,𝑖𝑖,𝑤𝑤,𝑡𝑡  Active power flows in a branch (MW) 
𝑃𝑃𝑔𝑔,𝑖𝑖,𝑖𝑖,𝑤𝑤,𝑡𝑡
𝑔𝑔𝑔𝑔𝑔𝑔   Active power production (MW) 

𝑃𝑃𝑔𝑔,𝑖𝑖,𝑖𝑖,𝑤𝑤,𝑡𝑡
𝑁𝑁   Active power production by new generator (MW) 

𝑃𝑃𝑔𝑔,𝑖𝑖,𝑖𝑖,𝑤𝑤,𝑡𝑡
𝐸𝐸   Active power production by existing generator (MW) 

𝑃𝑃𝑖𝑖,𝑖𝑖,𝑤𝑤,𝑡𝑡
𝑁𝑁𝑁𝑁𝑃𝑃   Unserved active power (MW) 

𝑃𝑃𝑃𝑃𝑖𝑖,𝑤𝑤,𝑡𝑡
𝑖𝑖   Active power demand with DR program (MW) 

𝑃𝑃𝐿𝐿𝑛𝑛,𝑖𝑖,𝑤𝑤,𝑡𝑡, 𝑄𝑄𝐿𝐿𝑛𝑛,𝑖𝑖,𝑤𝑤,𝑡𝑡 Active, reactive power losses (MW, MVAr) 
𝑃𝑃𝑡𝑡𝑟𝑟,𝑖𝑖,𝑤𝑤,𝑡𝑡  Active power flow through a transformer (MW) 
𝑃𝑃𝑡𝑡𝑟𝑟,𝑖𝑖,𝑤𝑤,𝑡𝑡  Reactive power flow through a transformer (MVAr) 
𝑃𝑃𝑛𝑛,𝑖𝑖,𝑤𝑤,𝑡𝑡
+ ,𝑃𝑃𝑛𝑛,𝑖𝑖,𝑤𝑤,𝑡𝑡

−   Auxiliary active power flow variables (MW) 
  
𝑄𝑄𝑔𝑔,𝑖𝑖,𝑖𝑖,𝑤𝑤,𝑡𝑡
𝑔𝑔𝑔𝑔𝑔𝑔   Reactive power production (MVAr) 

𝑄𝑄𝑛𝑛,𝑖𝑖,𝑤𝑤,𝑡𝑡  Reactive power flows in a branch (MVAr) 
𝑄𝑄𝑖𝑖,𝑖𝑖,𝑤𝑤,𝑡𝑡
𝑁𝑁𝑁𝑁𝑃𝑃   Unserved reactive power (MVAr) 

𝑄𝑄𝑃𝑃𝑖𝑖,𝑤𝑤,𝑡𝑡
𝑖𝑖   Active power demand with DR program (MVAr) 
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𝑄𝑄𝑛𝑛,𝑖𝑖,𝑤𝑤,𝑡𝑡
+ ,𝑄𝑄𝑛𝑛,𝑖𝑖,𝑤𝑤,𝑡𝑡

−   Auxiliary reactive power flow variables (MVAr) 

𝑄𝑄𝑖𝑖,𝑖𝑖,𝑤𝑤,𝑡𝑡
𝑟𝑟𝑖𝑖   Reactive power injected/absorbed at node i by a capacitor/reactor 

(MVAr) 
  
𝑥𝑥𝑔𝑔,𝑖𝑖,𝑡𝑡  Generator investment variable 
  
∆𝑉𝑉𝑖𝑖,𝑖𝑖,𝑤𝑤,𝑡𝑡  Voltage deviation at a node (pu) 
∆𝑀𝑀𝑡𝑡𝑟𝑟  Change in turns ratio per tap 
∆𝑄𝑄𝑛𝑛,𝑖𝑖,𝑤𝑤,𝑡𝑡,𝑙𝑙  Step-size flow variable (MVAr) 
∆𝑃𝑃𝑛𝑛,𝑖𝑖,𝑤𝑤,𝑡𝑡,𝑙𝑙  Step-size flow variable (MW) 
𝜃𝜃𝑛𝑛,𝑖𝑖,𝑤𝑤,𝑡𝑡  Angle difference along transmission end points (radians) 
𝜃𝜃𝑖𝑖,𝑖𝑖,𝑤𝑤,𝑡𝑡  Voltage angle at node i (radians) 

 

 
Appendices 

Appendix A. Parameters 
 

Table A.1. Parameter assumptions of generators (existing and candidate alike) [59]–[61] 

Generation 
technology 

Operation 
cost 

(€/MWh) 

Emission rate 
(tCO2/MWh) 

Investment 
cost 

(M€/MW) 

Cost reductions (cumulative) 

2020 2025 2030 
Offshore wind 22.8 0.015 3.65 0.05 0.10 0.20 
Onshore wind 13.0 0.015 1.40 0.05 0.10 0.20 
Solar PV 11.4 0.046 1.50 0.05 0.10 0.20 
Biomass 54.0 0.230 2.25 0.02 0.05 0.10 
Coal 34.0 0.925 0.90 0.05 0.08 0.10 
Coal with CCS 38.0 0.185 4.40 0.05 0.08 0.10 
CCGT 40.0 0.367 0.90 0.05 0.08 0.10 
CCGT with 
CCS 

 
55.0 

 
0.037 2.40 0.05 0.08 0.10 

Hydro 10.5 0.010 - - - - 
Gas oil fired 80.0 1.041 - - - - 
Heavy fuel oil 
fired 

 
100.0 

 
0.769 - - - - 
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