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1. Introduction

Modern electricity generation systems have seen a significant increase in variable renewable generation,

such as wind and photovoltaic solar, in recent years, primarily in response to government targets. This in

turn increases the level of variability in the electricity supply (Bertsch et al., 2016). Increased flexibility

in other sources of electricity supply, and also demand, is therefore desirable in order to accommodate the

increased variability (Albadi and El-Saadany, 2008; Palensky and Dietrich, 2011; De Jonghe et al., 2012;

Siano, 2014; Clastres and Khalfallah, 2015; Broberg and Persson, 2016).

Specific technology investments are often proposed in order to accommodate this increased variability

in electricity supply. These include electricity storage (Barton and Infield, 2004), demand-side management

(Strbac, 2008) and electricity transmission and interconnection (Lynch et al., 2012; Spiecker et al., 2013).

Another technology that has the potential to accommodate surplus renewable generation on the system is

power-to-gas. The power-to-gas technology uses electricity to perform electrolysis on water, splitting the

water molecules into hydrogen and oxygen molecules. The hydrogen can be used directly in industrial

applications, as a transport or heating fuel or injected directly into the natural gas grid (provided the total

amount injected is sufficiently low). The hydrogen can also be combined with carbon dioxide to create

methane. Benjaminsson et al. (2013) and Gahleitner (2013) provide useful summaries of the technical and

cost characteristics of the technology, along with case studies.

The literature on power-to-gas can be broadly grouped into several categories. The first calculates the

levelised cost of electricity (LCOE) or net present value (NPV) of power-to-gas, particularly in high renewable

energy systems. Examples include Breyer et al. (2011); Guandalini et al. (2015); Lombardi et al. (2011);

Schiebahn et al. (2015); Hlusiak and Breyer (2012). Given that these studies are focused on the LCOE or

NPV of the technology, there is no consideration of the potential impact of power-to-gas on the profitability

of other generation technologies, or vice versa. Furthermore there are many assumptions made about the

costs of the technology and the operational decisions of the power-to-gas operator.

The second strand of literature concerns specific business cases or case studies of various applications of

power-to-gas, see for example Buchholz et al. (2014); Breyer et al. (2015b); Qadrdan et al. (2015). These

papers again tend to focus on the costs and revenues of the power-to-gas technology itself, potentially in

conjunction with investment in a complementary technology. However, they do not consider the system-wide

effects of power-to-gas investment. The investment decision in power-to-gas is exogenously-determined.

There are several studies that consider the impact of power-to-gas within an energy system, including

systems with one hundred per cent renewable generation. Examples include Breyer et al. (2015a); Palzer and

Henning (2014); Henning and Palzer (2014); Moeller et al. (2014); Varone and Ferrari (2015). These studies

tend to focus on the potential for surplus renewable generation to be consumed by power-to-gas units, rather

than focusing on the optimal operation of the entire system. Investments in various technologies are also

typically determined exogenously.

Finally some studies do consider the optimal operation of generation units on the system, along with
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the power-to-gas unit(s). Examples include Jentsch et al. (2014); de Boer et al. (2014) and Ahern et al.

(2015), all of which consider operational decisions of a system with an exogenously-determined installation of

power-to-gas. These studies all operate on a cost-minimisation basis. Vandewalle et al. (2015) also perform

a cost-minimisation exercise on the Belgian electricity, gas and carbon sector through an operational model,

but do attempt to determine the optimal investment in power-to-gas. However the investment in power-

to-gas itself is not a control variable of the model; rather the results of the operational model are used to

determine the optimal investment. In his study for Germany, Heffels (2015) does consider the investment

in power-to-gas as an endogenous variable using a deterministic cost-minimisation model, i.e. there is no

distinction between different market players and their portfolios.

Overall, there is no examination in the literature of the market or portfolio effects of investment in power-

to-gas, namely the potential for power-to-gas investment to render another technology more or less profitable.

The consideration of portfolio effects in least-cost electricity systems, rather than focusing solely on the cost

of each technology in isolation, was pioneered by Awerbuch (Awerbuch and Berger, 2003; Awerbuch, 2006;

Awerbuch and Yang, 2007). The approach was continued in the context of liberalised electricity markets

based on marginal-cost pricing, see for example Roques et al. (2008); Lynch et al. (2013); Tietjen et al.

(2016). While this literature focuses on both the risk and return of a given portfolio, it is important to

consider the potential for a given technology to render another technology more or less profitable on average,

as well as considering the variation of those profits.

The work presented here addresses several gaps in the literature. In contrast to the (mostly deterministic)

cost-minimisation modelling performed in the literature to date, we model a stylised electricity market as a

stochastic mixed complementarity problem (s-MCP), which accounts for the stochasticity of the renewable

generation. The s-MCP considers different players in energy markets and models their optimisation problems

individually. On the demand side, we distinguish between residential and industrial/commercial consumers,

both of whom have the objective of minimising their costs. On the supply side, we consider a number of

different generation firms that earn revenues from an energy market and a quantity-based capacity market.

Moreover, firms earn an additional feed-in premium (FIP) on top of the market price for their renewable

generation. The firms’ objective is to maximise their profits. We consider operational decisions of each of the

generation firms, but also allow firms to determine their optimal investment into new technologies, including

power-to-gas, as well as optimal retirement of existing units. Thus the optimal portfolio of technologies

is arrived at endogenously, including the optimal investment in power-to-gas. In order to determine the

interaction of power-to-gas and variable renewable technology, and in recognition of the fact that investment

in renewable generation is driven primarily by policy decisions rather than market outcomes, we exogenously

determine the level of installed wind capacity and consider the resulting investment decisions in power-to-gas.

The paper proceeds as follows. Section 2 outlines the modelling approach taken. Section 3 presents the

stylised electricity system chosen and describes the input data. Section 4 presents the main results, section

5 discusses the findings and section 6 concludes.
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2. Methodology

Table 1: Indices and sets.

f ∈ F Generating firms

t ∈ T Generating technologies

p ∈ P Time periods

k ∈ K Consumers groups

s ∈ S Scenarios

i ∈ I Iterations of Benders Decomposition algorithm

Note: sets contain a finite amount of non-zero natural numbers.

Table 2: Variables.

Firms’ primal variables

genf,t,p,s Generation from firm f with technology t in period p and scenario s

capbidf,t Capacity bid of firm f with technology t

invf,t Investment in new generation capacity for firm f with technology t

exitf,t Decommissioning of old generation capacity for firm f with technology t

genP2G
f,p,s Gas produced by firm f in timestep p and scenario s

invP2G
f Capacity of power-to-gas firm f invests in

Consumers’ primal variables

glsk,p,s Load shedding from consumer group k in period p and scenario s

gmicro
k,p,s Micro generation from consumer group k in period p and scenario s

gpvk,p,s PV generation from consumer group k in period p and scenario s

Dual variables

γp,s System price for time period p and scenario s

κ Unit capacity price

λ#. Lagrange multipliers associated with constraint # of the firms’ problem

µ#. Lagrange multipliers associated with constraint # of the firms’ problem consumers’ problem

Note: ’.’ is used as a place-holder as the subscripts for both Lagrange multipliers vary depending the on constraint.

In this section, the methodology is discussed. We utilise a stochastic MCP to represent an electricity

market with two types of players: generation firms and electricity consumer groups. The model is very

similar to the model developed in Bertsch et al. (2018). The most significant difference is the consideration

of investment and operation decisions of power-to-gas units.

Firms receive revenues from energy and capacity markets as well as a FIP and seek to maximise their

profits. They may hold multiple generating units of baseload, mid merit, peakload and wind technology.

Firms are distinguished by the initial generation portfolio they hold but may invest in additional capacity

of any technology. Firms may also invest in power-to-gas capacity. In addition, all firms are modelled as

price-takers, i.e., we assume that no firm may exert market power. Firms may also earn revenues from a

capacity market. As in Bertsch et al. (2018) the capacity payment mechanism we consider is a quantity based

mechanism.
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Table 3: Parameters.

PRs Probability associated with scenario s

MTCt Maintenance cost form generating technology t

CAPf,t Initial generating capacity for firm f with technology t

DREF
k,p Reference demand for consumer group k in period p and scenario s

GLS,MAX
k Maximum load shedding for consumer group k in any time period or scenario

INTMICRO
k Micro generation capacity for consumer group k

INTPV
k PV generating capacity for consumer group k

NORMPV
p,s PV generating profile for period p and scenario s

NORMG
f,t,p,s Generating profile for firm f with technology t in period p and scenario s

TARGET Capacity target for overall market

Xt Feed-In premium for technology t

XPV Feed-In premium for PV

DRt De-rating factor for technology t

A.
. Intercept associated with marginal cost functions

B.
. Slope associated with marginal cost functions

CPV
k,p Marginal cost of using PV generation for consumer group k in period p

ICGEN
t Investment in generating technology t cost

CAPP2G
f Initial power-to-gas capacity

EFF Efficiency of converting electrical energy to gas

CGAS Price of gas

Table 4: Functions.

CGEN
t (.) Marginal cost function for technology t

CLS
k,p(.) Load shedding operational cost for consumer group k in period p

CMICRO
k,p (.) Operational cost of using micro generation for consumer group k in period p
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Consumers minimise the cost of meeting their demand. They do so by utilising a range of possible

demand-side flexibility measures, such as load shedding, PV generation or thermal micro generation. We

do not model individual consumers but rather consider different consumer groups, in a similar manner to

that outlined in (Bertsch et al., 2018), whose decisions represent the aggregate actions of consumers in these

groups. Consumer groups are distinguished by different levels of demand-side flexibility capability and their

demand profiles.

The stochasticity of the model arises from the uncertainty surrounding wind and PV power (Bertsch et al.,

2018). Thus, each scenario in our model corresponds to different RES generation profiles, i.e. varying levels

of wind and solar power availability at each point in time. Each of the generation firms and consumer groups

considered have separate optimisation problems that are connected through market clearing conditions. The

stochastic MCP is made up of these market clearing conditions along with the Karush-Kuhn-Tucker (KKT)

conditions for optimality from each of the players. Thus, the MCP solves the optimisation problem of each

player simultaneously and in equilibrium.

Throughout this section the following conventions are used: lower-case Roman letters indicate indices or

primal variables, upper-case Roman letters represent parameters (i.e., data, functions), while Greek letters

indicate prices or dual variables. The variables in parentheses alongside each constraint in this section are

the Lagrange multipliers associated with those constraints.

2.1. Firm f ’s problem

Firm f maximises its expected profits (revenues less cost) by choosing the amount of generation, the

quantity of capacity bid, investment in new capacity and decommissioning of existing capacity. However,

in this paper, firm f must also choose the capacity of power-to-gas in which it wishes to invest and, if this

quantity is non-zero, how much gas it wishes to produce (and thus how much electricity it consumes). Firm

f considers revenues received from a capacity and an energy market as well as a FIP for RES generation. In

addition, it also considers any revenues it earns from the gas it produces. Its costs consist of generation costs,

investment costs and any costs incurred for maintaining its units. Furthermore, firm f ’s costs also include

the cost of generating electricity for power-to-gas. Firm f ’s optimisation problem is:

max
genf,t,p,s,cap

bid
f,t ,

invf,t,exitf,t
genP2G

f,p,s,inv
P2G
f

∑
t,p,s

(
PRs × genf,t,p,s ×

(
γp,s +Xt − CGEN

t (genf,t,p,s)
))
−

∑
t

(
ICGEN

t × invf,t +
(
invf,t + CAPf,t − exitf,t

)
×MTCt

)
+

∑
p,s

(
PRs

(
CGAS × genP2G

f,p,s − γp,s × (1/EFF )× genP2G
f,p,s

))
− ICP2G × invP2G

f +
∑
t

DRt × κ× capbid
f,t ,

(1a)
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subject to:

genf,t,p,s ≤ (CAPf,t + invf,t − exitf,t)×NORMG
f,t,p,s, ∀t, p, s, (λ1

f,t,p,s), (1b)

capbid
f,t ≤ CAPf,t + invf,t − exitf,t, ∀t, (λ2

f,t), (1c)

genP2G
f,p,s ≤ EFF × (CAPP2G

f + invP2G
f ), ∀t, p, s, (λ3

f,p,s), (1d)

where the parameter EFF represents the efficiency of converting electrical energy to gas within a power-to-gas

unit while CGAS represents the price of gas. The marginal cost of generating with technology t is

CGEN
t (x) = AGEN

t +BGEN
t x, (2)

which means the overall cost of generating electricity with technology t is quadratic.

Constraints (1b) and (1c) constrain the amount of energy generated by and the capacity bid of firm

f . Constraint (1d) ensures that, for each timestep and scenario, firm f cannot produce more gas than the

capacity of its power-to-gas unit. The parameter CAPP2G
f represents firm f ’s initial power-to-gas capacity

before any investment. Firm f ’s optimisation problem is convex if all values for BGEN
t are non-negative. The

KKT conditions of firm f ’s problem are discussed in Appendix A.

2.2. Consumer group k’s problem

Each consumer group minimises the cost of meeting their expected demand. As part of their optimisation

problem, they may choose to (partially) shed their load or to (partially) self-generate using solar PV or thermal

micro generation. For PV generation, they receive a FIP. We do not consider any load shifting or storage

options on the demand side as the focus is on understanding the potential role of power-to-gas. Considering

other flexibility measures would lead to distortions in this analysis. However, investigating whether demand

side storage and power-to-gas are competing or complementary technologies should be subject to future

research.

Consumer group k’s optimisation problem is:

min
gls
k,p,s,g

micro
k,p,s ,

gpv
k,p,s

∑
s,p

PRs

(
γp,s ×

(
DREF

k,p − gls
k,p,s − gmicro

k,p,s − g
pv
k,p,s

)
−XPV × gpv

k,p,s

+ gls
k,p,s × CLS

k,p(gls
k,p,s) + gmicro

k,p,s × CMICRO
k,p (gmicro

k,p,s ) + gpv
k,p,s × C

PV
k,p

) (3a)

subject to
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gls
k,p,s ≤ GLS,MAX

k , ∀p, s, (µ1
k,p,s), (3b)

gmicro
k,p,s ≤ INTMICRO

k , ∀p, s, (µ2
k,p,s), (3c)

gpv
k,p,s ≤ NORMPV

p,s × INTPV
k , ∀p, s, (µ3

k,p,s), (3d)

gls
k,p,s + gmicro

k,p,s + gpv
k,p,s ≤ DREF

k,p , ∀p, s, (µ4
k,p,s). (3e)

The marginal cost functions associated with load shedding and micro generation are:

CLS
k,p(x) = ALS

k,p +BLS
k,px, (4)

CMICRO
k,p (x) = AMICRO

k,p +BMICRO
k,p x. (5)

Constraint (3b) limits the amount of electricity consumer group k can shed while constraints (3c) and

(3d) limit the amount of electricity consumer group k can self-generate from micro- and PV generation,

respectively. Constraint (3e) ensures any electricity generated by consumer group k must be less than their

reference demand (the demand consumers have in absence of any demand side flexibilities). In other words,

constraint (3e) ensures consumer group k’s own generation cannot be used to meet other consumers’ demand.

Consumer group k’s problem is convex, assuming all values for BLS
k,p and BMICRO

k,p are non-negative. Its

KKT conditions are presented in Appendix A.2.

2.3. Market clearing conditions

The optimisation problems of each player are connected via the following market clearing conditions:∑
f,t

genf,t,p,s =
∑
f

(1/EFF )× genP2G
f,p,s +

∑
k

(
DREF

k,p − gLS
k,p,s − gMICRO

k,p,s − gPV
k,p,s

)
, ∀p, s, (γp,s) (6a)

∑
f,t

DRt × capbid
f,t = TARGET, (κ). (6b)

Equation (6a) ensures that the electricity generated equals the electricity consumed. Equation (6b) ensures

that the sum of capacity bids from firms, times a derating factor1, must equal the capacity target. The

variablegenP2G
f,p,s reflects the increased electricity demand from power-to-gas operation.

As each of the players’ optimisation problems are convex, the KKT conditions are both necessary and

sufficient for optimality (Gabriel et al., 2012). Thus, the stochastic MCP consists of the KKT conditions of

all players in addition to the market clearing conditions.

1The derating factor in this work reflects the proportion of its overall capacity a technology can provide to meet the capacity

target.
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2.4. Solving the problem

The solution approach involves a two step procedure which utilises a Benders Decomposition algorithm

to reduce the computational cost of the model:

1. The MCP is initially solved for a selection of 24 days in hourly resolution. These days represent 8-day

periods in winter, spring/autumn and summer, resulting in a total of 24 × 8 × 3 = 576 hourly time steps.

The objective function of each player are multiplied by weighting factors of 11.625, 22.750 or 11.375

depending on whether that hour represents a day in summer, spring/autumn or winter, respectively.

This ensures that a full year of 8784 hours is represented by the 576 hourly time steps. The weighting

factors are determined by the number of days in each season. Spring and autumn are represented by

the same week explaining the higher weighting factor of the time steps representing these seasons.

For this first step, a Benders Decomposition algorithm is used to solve the MCP. Benders Decomposition

is a solution algorithm that has been shown to solve stochastic MCPs in a computationally efficient

manner (Egging, 2013; Gabriel and Fuller, 2010). The Benders Decomposition pseudo-code is the same

as that described in the appendix of Bertsch et al. (2018) while the master problem and convergence

metric are similar to those presented in Bertsch et al. (2018) but, in this work, incorporate power-

to-gas parameters and variables. Appendix B details the differences. The Benders Decomposition

sub-problems of this paper can be described by the MCP presented in this section. For Benders

Decomposition sub-problems, the first-stage decision variables (in this case, all investment and capacity

bids variables) are fixed at the values obtained from the master problem of the same iteration.

2. The optimal investment (in both power-to-gas and electricity generation), de-commissioning and ca-

pacity bid variables from the first step are fixed as parameters in the second step. The MCP is then

solved 93 times, each time representing a different 48-hour period in a 366-day year. As there are no

inter-temporal constraints, splitting the model into smaller problems is equivalent to solving a single

model with 8784 timesteps, assuming investment and exit decisions are fixed. Splitting the problem up

into multiple smaller problems is however more computationally efficient (Devine et al., 2016). Further-

more, we believe it is reasonable to assume that investment/exit decisions and operational decisions are

not made simultaneously.

The outputs of the model are the optimal investment, de-commissioning and capacity bid decisions from

the first step and the optimal operational decisions and resulting prices from the second step. From these

outputs, consumer costs, generator profits, power-to-gas revenues, CO2 emissions and RES curtailment can

be easily calculated.

3. Input data

We apply the model described in section 2 to a case study based on the future Irish power system. For

this purpose, we mainly use data for 2025 from EirGrid (2016). Demand side data are described in section
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3.1. Subsequently, we describe input data related to the conventional supply side and power-to-gas in section

3.2 and data related to renewable generation in section 3.3.

3.1. Demand side data

The consumer groups we consider on the demand side include commercial/industrial as well as residential

consumers. Figure 1 illustrates the reference demand of the industrial and residential consumer groups on a

typical day. This figure shows that the residential demand profile is less flat (the peak is more pronounced)

than the industrial one. Based on EirGrid (2016), we assume total annual electricity demand of 33.6 TWh

and peak demand of 5655 MW. In terms of the quantity target for the capacity market, we calculate this as

1.2 times the system peak demand similar to Nolan et al. (2017), i.e. TARGET = 1.2 × 5655 MW = 6786

MW.
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Figure 1: Reference demand of industrial and residential consumers on a typical day

3.2. Conventional power generation and power-to-gas data

On the supply side, we consider five power generating firms with different generation portfolios. These

include specialised baseload, mid merit, peakload and renewable firms as well as an integrated firm with

generation capacity across all of these technologies. The maximum capacity values for each technology are

broadly based on EirGrid (2016). The initially installed capacity by technology and firm is presented in Table

5. Note that no firm has power-to-gas in their initial portfolio. Beyond power-to-gas investments, we look at

the firms’ investment decisions in new conventional generation. In their initial portfolio, however, the firms

do not have any of the new technologies.

Our model considers quadratic cost functions for the conventional generators as described in section 2.1,

i.e. the marginal costs at the intercept increase with the power output of each generator according to the

marginal cost slope BGEN
t = 0.000213 (see Grigg, 1996). Table 6 shows the marginal power generation costs

at the intercept, for further details see Bertsch et al. (2018).

There are large variations in the literature for investment costs and operational expenditures of power-to-

gas units. For the electrolysis, these range from e300/kW (Breyer et al., 2011) to e1000/kW (Taljan et al.,

2008) or even higher. Similarly, assumptions around the efficiency vary between 65% (Breyer et al., 2015b)
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Table 5: Initial portfolio by firm (CAPf,t).

Technology firm 1 firm 2 firm 3 firm 4 firm 5

Existing baseload (MW) 1947 1940 - - -

Existing mid merit (MW) 512 - 404 - -

Existing peakload (MW) 270 - - 234 -

New baseload (MW) 0 0 0 0 0

New mid merit (MW) 0 0 0 0 0

New peakload (MW) 0 0 0 0 0

Wind (MW) 2400-3840 0 0 0 2400-3840

Power-to-gas (MW) 0 0 0 0 0

and 90% (Yildiz and Kazimi, 2006). In this paper, we focus on electrolysis only and assume investment costs

of e600/kW and operational expenditures of around 2% of the specific investment per year. These values

translate into annualised specific investment costs of e43,589/MW y and fixed O& M costs of e10,897/MW

y (Table 6). Moreover, we assume an efficiency of 70% and a gas price of e18.00/MWhth, which is relevant

for the revenue side and operational decisions of the power-to-gas units.

Table 6: Techno-economic input data of supply side and power-to-gas technologies.

Technology Annuity of spe-

cific invest

Fixed O& M

costs

Marginal power

gen. costs at

intercept

Spec. CO2 emis-

sions

(ICGEN
t ) (MTCt) (AGEN

t ) -

(e/MW y) (e/MW y) (e/MWhel) (t CO2/MWhel)

Existing baseload - 41,667 48.87 1.17

Existing mid merit - 27,778 41.10 0.36

Existing peakload - 23,148 63.38 0.56

New baseload 110,769 41,667 31.58 0.78

New mid merit 67,268 27,778 34.00 0.30

New peakload 40,363 23,148 50.50 0.45

Power-to-gas 43,589 10,897 0 0

3.3. Renewable power generation data

The variable sources of renewable electricity generation we consider in this paper are wind and solar

PV. Data from the MERRA2 reanalysis (Bosilovich et al., 2016) were used to generate input data for these

two sources. Note that wind and solar PV are not only variable but also uncertain and their uncertainties

are correlated since both depend on the meteorological conditions. It is therefore important to take these

correlations into account when providing input data for the stochastic MCP.

The analysis is based on hourly MERRA2 data on surface incoming shortwave flux, air temperature and

wind speed for the years 1981 to 2015 inclusive. This data was transformed to wind and solar capacity

factors. For wind, the transformation is based on the method from Cradden et al. (2017) and Cannon et al.
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(2015) and the wind speed to capacity factor curve by Ofgem (2013). For solar PV, the transformation

follows Ruppert et al. (2016) and Schwarz et al. (2018) using parameters for Ireland described in Bertsch

et al. (2017). For computational reasons, the hourly wind and solar capacity factor time series of 35 years

were then clustered into six representative years.

Details of the renewable data generation and the clustering procedure are described in Bertsch et al.

(2018). The chosen years and probabilities of occurrence are summarised in Table 7. Using these historical

wind and PV data as a basis for our analysis ensures that the spatial and temporal correlations between wind

and PV are preserved.

Table 7: Representative years chosen for RES scenarios and corresponding probabilities of occurrence (see Bertsch et al., 2018).

Year 1983 1998 2001 2003 2004 2015

Probability of occurrence 0.486 0.286 0.086 0.086 0.029 0.029

Our assumptions in relation to the installed RES-E capacity are based on EirGrid (2016). The system we

study includes 50 MW of solar PV capacity, which are installed on the demand side in this study. Moreover,

the power system described by EirGrid (2016) includes 4800 MW of installed wind capacity, which we assume

are installed and operated on the supply side. In order to meet the long-term RES-E and decarbonisation

targets beyond 2025, the installed wind capacity will need to be further increased (Slednev et al., 2017).

Therefore, in order to analyse how increasing levels of wind capacity affect optimal investment decisions in

the power system, in particular in power-to-gas, we run our model several times while exogenously increasing

the wind capacity in 10% steps (in relation to the 4800 MW installed, i.e. steps of 480 MW). Consequently,

we do not allow for endogenous wind investment decisions. Overall, we consider a range of 4800 MW - 7680

MW of wind on the system corresponding to a capacity of 85% - 136% of the system peak load respectively.

Note that we do not vary the installed PV capacity in this paper.

4. Results

Figure 2 shows the total investment in power-to-gas technology under various exogenously-chosen installed

wind capacities. There is no investment in power-to-gas at lower levels of wind penetration but once the

wind capacity exceeds approximately 5280 MW (corresponding to 93% of the system peak load and a wind

penetration of roughly 50% of demand) there is positive investment. This result concurs with previous

literature on the topic (Heffels, 2015).

The linear relationship between power-to-gas investment and wind capacity is a consequence of modelling

the investment and output decisions of the firms as continuous linear variables. Including discontinuities in

the firms’ decision variables, such as modelling investment on a per unit basis, or including start costs and

no load costs in the dispatch decisions, would most likely alter the linear relationship between installed wind

capacity and power-to-gas investment. Altering the investment cost and/or the assumed efficiency of the

12



Figure 2: Total investment in power-to-gas technology under various installed wind capacities (MW)

power-to-gas technology would shift the curve up or down in relation to the y-axis but would not change the

shape of the curve.

Figure 3 shows the costs and revenues associated with investing in power-to-gas (when considering the

technology’s profits in isolation) for the scenario where the installed wind capacity on the system equals 127%

of the peak demand. Under this scenario, the optimal investment in power-to-gas is approximately 1,600

MWel.

The purchase of electricity to operate the power-to-gas plant yields revenue for the plant as the electricity

price becomes negative whenever the amount of wind generation available is greater than the demand. At

these times, the marginal cost of production is the marginal cost of wind, which is minus twenty-three euro

per megawatt hour (due to wind receiving a FIP over and above the market price). Consumption of electricity

during these hours therefore yields revenue for the power-to-gas plant owner.

In spite of this, the sum of the revenue from selling renewable gas at the wholesale price of gas and the

revenue from consuming electricity is less than the annual capital costs of investment in power-to-gas, and so

power-to-gas is a loss-making technology. Given the positive investment in power-to-gas, market or portfolio

effects must render it an efficient investment. This result underlines the importance of examining investment

in power-to-gas, and indeed any technology, in the context of the entire portfolio of technologies, rather than

restricting focus to the profitability of the technology on a stand-alone basis.

The model was also run without the option of investment in power-to-gas in order to isolate the impact

of same. Figure 4 shows the difference in wind curtailment for the cases with and without investment in

power-to-gas at each level of installed wind. In the absence of power-to-gas, the level of wind curtailment

increases with the level of wind installed on the system. When allowing the players to invest in power-to-gas,

however, the level of wind curtailment stays more or less at a constant level.

Figure 5 shows the market price duration curves with and without power-to-gas for levels of installed wind

13
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Figure 5: Price duration curves with and without power-to-gas
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Results: Changing profits of conventional generators 
for increasing levels of wind penetration 

12 Valentin Bertsch, ESRI 
Figure 6: Profitability of each conventional technology per megawatt installed for each wind level

capacity equalling around 100% of the peak load (a) and around 135% of the peak load (b). Unlike storage

technologies, which increase off-peak demand and reduce peak demand, power-to-gas only does the former

by using electricity for power-to-gas production during periods of low (net) demand. Thus the upper end of

the price duration curve is unchanged but off-peak prices increase significantly. This in turn increases the

profits of technologies with the lowest marginal costs that generate at times of low net demand, in particular

wind generation.

The profitability of each conventional technology type per megawatt installed across all firms is shown

in figure 6 for each of the levels of wind penetration considered. The profitability per megawatt installed of

the existing technologies increases as wind increases. This is a consequence of retirement decisions. Installed

wind capacity crowds out conventional technologies and so the revenues for each technology are distributed

over a smaller total installed capacity, boosting the revenues per megawatt installed.

In the case of wind, the profit per megawatt installed decreases as the total amount of wind installed

increases. However, the addition of power-to-gas increases the profit per megawatt of wind relative to the

case where there is no investment in power-to-gas (figure 7). This is due to the increase in off-peak prices

induced by the power-to-gas unit.

Given the results above, it stands to reason that firms that have wind capacity as part of their generation

portfolios will benefit the most from the presence of power-to-gas on the system. Figure 8 shows the profits

per megawatt of installed capacity that accrue to each firm assuming each firm was the firm to invest in
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Results: Changing profits of renewable generators 
for increasing levels of wind penetration 

13 Valentin Bertsch, ESRI 
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Results: Generator profits by firm 
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Figure 8: Profitability of each firm relative to the case with no power-to-gas

power-to-gas, thus incurring the capital cost and earning the revenues from electricity consumption and gas

production.

As expected, firms one and five, which have wind capacity in their portfolios, see higher profits per

megawatt installed for all levels of wind and power-to-gas capacity. The increase in their wind generation’s

profitability more than offsets the loss-making power-to-gas investment. The firms that have only conventional

generation in their portfolios, however, see lower profits relative to the case where there is no investment in

power-to-gas.

Figure 9 shows the total cost incurred by consumers at each level of installed wind capacity, both with

and without power-to-gas. These costs include energy and capacity payments paid by consumers in each

market along with any subsidy payments to wind generation. Any savings from self-consumption of solar

generation are also accounted for in the calculation. Consumer costs decrease with increasing levels of wind
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Figure 9: Total cost incurred by consumers at each level of installed wind capacity

generation due to the lower electricity prices induced by wind. However, power-to-gas increases off-peak

electricity prices and so increases consumer costs. Thus power-to-gas investments facilitate a transfer from

electricity consumers to wind capacity owners over and above the FIP payments wind generators receive from

consumers.

5. Discussion

There are several new contributions that the results above make to the literature. The importance of

considering the impact of a particular technology on the generation portfolio, rather than considering the

costs and benefits of the technology in isolation, is highlighted by this work. This holds both in relation to

firm portfolios and market portfolios. Metrics such as Levelised Cost of Electricity (LCOE) exhibit signifi-

cant weaknesses as a means of determining the relative strengths and weaknesses of generation technology

investments. In spite of this, such metrics are still widely used, with Musi et al. (2017); Lai and McCulloch

(2017); Clauser and Ewert (2017) and Geissmann (2017) providing only recent examples. The use of net

present value to determine whether to invest in a particular technology is also a poor metric as it does not

consider the potential for one technology to impact on the profitability of another technology held by a given

firm.

The fact that negative prices arise in our model drives the results, at least to some extent. These negative

prices incentivise investment in power-to-gas, which in turn raises market prices and thus consumer costs

(figure 9). Thus the subsidy paid by consumers to wind generators leads to them paying yet higher electricity

prices, and there is a greater total transfer from consumers to wind power producers in the presence of power-

to-gas compared to a scenario with no power-to-gas. This is in addition to the carbon cost already incurred

by consumers. Our model does not include a carbon credit for the production of renewable gas; however

the inclusion of same would increase investment in power-to-gas, and thus electricity prices, even further.
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Therefore the total transfer from consumers to wind power producers depends not only on the subsidy level

but also on the electricity generation portfolio. This has important implications for policy-makers considering

optimal renewable subsidisation and carbon taxation.

There is of course potential for competing technologies to crowd out the investment opportunities for

power-to-gas. For example, storage technologies that, like power-to-gas, increase off-peak electricity genera-

tion, but also reduce on-peak generation, reduce the potential impact of power-to-gas on wind owners’ profits.

In particular, consumers may have an incentive to invest in storage technologies, as they can reduce their

exposure to peak prices as well as increasing their off-peak price exposure, and so may incur lower costs than

those incurred with power-to-gas investment. The trade-offs between power-to-gas versus other potential

generation investments should therefore be further explored.

This paper considered optimal investments in a one-period framework. However expanding this work to a

repeated game may yield further insights as the timing of investments is important. Given that investments

in power-to-gas may render potential storage investments by consumers and other firms less profitable and

vice versa, there may be an optimal time to invest in each technology. Similarly, the presence of power-to-gas

on the system benefits all players that own wind generation, with the greatest net benefit going to firms

that own wind but do not own power-to-gas, and so do not incur the cost of the power-to-gas investment.

There is thus an option value of waiting inherent in power-to-gas investment, as a firm’s optimal strategy

would be to invest in wind given that a rival firm invests in power-to-gas. Future work may explore these

possibilities. Moreover, this work modelled all firms as price-takers; however in reality electricity markets

are characterised by oligopoly. The presence of price-makers in the market may change the optimal level

of investment in each technology, including power-to-gas, as price-making behaviour in the energy market

would raise prices, rendering all generation investments more profitable. The divergence of power-to-gas

investment, if any, when price making behaviour is introduced may also inform discussion on whether there

is an external cost or benefit to power-to-gas investment, and therefore whether a tax or a subsidy is justified.

Further work will consider the implications of price-making behaviour on the results presented here.

6. Conclusion

The variability of electricity systems increases with the level of penetration of variable renewable gener-

ation. This development calls for an increased flexibility of other parts of the systems, including the supply

and demand side. Power-to-gas is one technology that can provide flexibility to the electricity system and

has the potential to enhance the system integration of renewable generation.

We present a stochastic mixed complementarity model to understand what level of power-to-gas is optimal,

what determines this level, and which market player(s), if any, have an incentive to invest in this technology.

In the model, we consider consumers that minimise the costs of their electricity usage and generation firms

that maximise their profits from an energy market, a quantity-based capacity market and an additional

feed-in premium (FIP) for renewable generation. For each firm, the model endogenously determines optimal
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investment decisions, including power-to-gas, optimal retirement decisions and optimal operational decisions.

We use this model to analyse the market and portfolio effects of investment in power-to-gas, i.e. the potential

for power-to-gas to make another technology more or less profitable, which is a significant contribution to

the existing literature.

We find that, while we do not observe any investment in power-to-gas at low levels of wind penetration,

there is positive investment once the wind penetration exceeds roughly 50% of electricity demand. Moreover,

the optimal level of power-to-gas investment increases with the wind penetration in the system. This is

interesting because power-to-gas itself is a loss-making technology given the underlying techno-economic

parameters in this study. However, firms with renewable generation in their portfolio have an incentive

to invest in power-to-gas. This is because power-to-gas increases the electricity demand in hours of low

net demand and, hence, increases electricity prices in those hours which is beneficial for their renewable

generation. The increase in profits from renewables outweighs the losses the firms make from the power-

to-gas investment. These findings underline the importance of considering portfolio and market effects of

technology investments rather than considering the profitability of investments in isolation.

In addition, we find that the level of renewable curtailment stays more or less constant in the presence of

power-to-gas, whereas it increases with the level of wind capacity on the system when firms do not have the

option to invest in power-to-gas. This demonstrates the capability of power-to-gas to accommodate renewable

generation. However, it is important to understand that these wider benefits are paid for by the consumers

whose costs increase in the presence of power-to-gas. Future research should therefore include competing

technologies (e.g., distributed storage technologies) as possible investments on the demand side.
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Appendix A. Karush-Kuhn-Tucker conditions

This appendix presents the Karush-Kuhn-Tucker (KKT) conditions for optimality for the two types of

players modelled in this work. These conditions, along with the market clearing conditions (6), make up

the mixed complementarity problem. The ‘perp’ notation 0 ≤ a ⊥ b ≥ 0 is equivalent to a ≥ 0, b ≥ 0 and

a.b = 0.

Appendix A.1. Firms’ KKT conditions

The firms’ KKT conditions include all those from Appendix A.1 of Bertsch et al. (2018) in addition to:
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0 ≤ genP2G
f,p,s ⊥ −PRs

(
CGAS − γp,s × (1/EFF )

)
+ λ3

f,t,p,s ≥ 0, ∀f, p, s, (A.1)

0 ≤ invP2G
f ⊥ ICP2G −

∑
p,s

EFF × λ4
f,p,s + λ5 ≥ 0, ∀f, (A.2)

0 ≤ λ3
f,p,s ⊥ −genP2G

f,p,s + EFF × (CAPP2G
f + invP2G

f ) ≥ 0, ∀f, p, s. (A.3)

Appendix A.2. Consumers’ KKT conditions

The consumers’ KKT conditions are

0 ≤ gls
k,p,s ⊥ −PRs

(
γp,s −

∂CLS
k,p

∂gls
k,p,s

)
+ µ1

k,p,s + µ8
k,p,s ≥ 0, ∀k, p, s, (A.4)

0 ≤ gmicro
k,p,s ⊥ −PRs

(
γp,s −

∂CMICRO
k,p

∂gmicro
k,p,s

)
+ µ4

k,p,s + µ8
k,p,s ≥ 0, ∀k, p, s, (A.5)

0 ≤ gpv
k,p,s ⊥ −PRs

(
γp,s +XPV − CPV

k,p

)
+ µ5

k,p,s + µ8
k,p,s ≥ 0, ∀k, p, s, (A.6)

0 ≤ µ1
k,p,s ⊥ −gls

k,p,s +GLS,MAX
k ≥ 0 ∀k, p, s, (A.7)

0 ≤ µ2
k,p,s ⊥ −gmicro

k,p,s + INTMICRO
k ≥ 0 ∀k, p, s, (A.8)

0 ≤ µ3
k,p,s ⊥ −gpv

k,p,s + INTPV
k ×NORMPV

p,s ≥ 0 ∀k, p, s, (A.9)

0 ≤ µ4
k,p,s ⊥ −gls

k,p,s − gmicro
k,p,s − g

pv
k,p,s +DREF

k,p ≥ 0 ∀k, p, s. (A.10)

Appendix B. Benders Decomposition

In this appendix we describe the differences between the Benders Decomposition algorithms used in

Bertsch et al. (2018) and in this work. In particular we consider the differences for the master problems and

the convergence metrics.

Appendix B.1. KKT conditions for master problem of ith iteration

The KKT conditions for the MCP master problem of this work includes all the KKT conditions from

Appendix B.2 in Bertsch et al. (2018) except the Benders cut KKT conditions which are updated to include

power-to-gas parameters and variables as follows:
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0 ≤ θı̂ ⊥ α+
∑

f,t,p,s

(
PRs

(
2BGEN

t × genı̂f,t,p,s
)
×
∑
ı̄≤i

(
θı̄ × genı̄f,t,p,s

))
+
∑

f,t,p,s

λ1,̂ı
f,t,p,s × (CAPf,t + invf,t − exitf,t)×NORMG

f,t,p,s

+
∑
f,p,s

λ4,̂ı
f,p,s × EFF × (CAPP2G

f + invP2G
f )

+
∑
k,p,s

(
PRs × 2BLS

k,p × g
LS,̂ı
k,p,s

)
×
∑
ı̄≤i

(
θı̄ × gLS,̄ı

k,p,s

)
+
∑
k,p,s

(
PRs × 2BMICRO

k,p × gMICRO,̂ı
k,p,s

)
×
∑
ı̄≤i

(
θı̄ × gMICRO,̄ı

k,p,s

)
+
∑
k,p,s

(
µ1,̂ı
k,p,s ×G

LS,MAX
k + µ2,̂ı

k,p,s × INT
MICRO
k + µ3,̂ı

k,p,s ×NORM
PV
p,s × INTPV

k

+
(
µ4,̂ı
k,p,s + γ ı̂p,s

)
×DREF

k,p

)
≥ 0, ∀ı̂ ≤ i. (B.1)

The KKT conditions for the MCP master problem of this work also include

0 ≤ invP2G
f ⊥ ICP2G −

∑
ı̂≤i

θı̂
(∑

p,s

EFF × λ4,̂ı
f,p,s

)
≥ 0, ∀f. (B.2)

Appendix B.2. Convergence metric

In this appendix the convergence metric for the Benders Decomposition algorithm used in this work is

presented. It is similar to that of Bertsch et al. (2018) but is updated to include the power-to-gas parameters

and variables as follows:

TOLi =
∑

f,t,p,s

PRs

(
2BGEN

t ×
(
genif,t,p,s − gen

M,i
f,t,p,s

))
× genM,i

f,t,p,s

+
∑

f,t,p,s

(
λ1,i
f,t,p,s − λ

1,M,i
f,t,p,s

)
× (CAPf,t + invf,t − exitf,t)×NORMG

f,t,p,s

+
∑
f,p,s

(
λ3,i
f,p,s − λ

3,M,i
f,p,s

)
× EFF × (CAPP2G

f + invP2G
f )

+
∑
k,p,s

(
PRs × 2BLS

k,p ×
(
gLS,i
k,p,s − g

LS,M,i
k,p,s

))
× gLS,M,i

k,p,s

+
∑
k,p,s

(
PRs × 2BMICRO

k,p ×
(
gMICRO,i
k,p,s − gMICRO,M,i

k,p,s

))
× gMICRO,M,i

k,p,s

+
∑
k,p,s

((
µ1,i
k,p,s − µ

1,M,i
k,p,s

)
×GLS,MAX

k +
(
µ2,i
k,p,s − µ

2,M,i
k,p,s

)
× INTMICRO

k

+
(
µ3,i
k,p,s − µ

3,M,i
k,p,s

)
×NORMPV

p,s × INTPV
k +

(
µ4,i
k,p,s − µ

4,M,i
k,p,s + γip,s − γM,i

p,s

)
×DREF

k,p

)
.(B.3)
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Taljan, G., Fowler, M., Cañizares, C., Verbič, G., 2008. Hydrogen storage for mixed wind–nuclear power

plants in the context of a hydrogen economy. International Journal of Hydrogen Energy 33 (17), 4463–

4475.

Tietjen, O., Pahle, M., Fuss, S., 2016. Investment risks in power generation: A comparison of fossil fuel and

renewable energy dominated markets. Energy Economics 58, 174–185.

Vandewalle, J., Bruninx, K., Dhaeseleer, W., 2015. Effects of large-scale power to gas conversion on the

power, gas and carbon sectors and their interactions. Energy Conversion and Management 94, 28–39.

Varone, A., Ferrari, M., 2015. Power to liquid and power to gas: an option for the german energiewende.

Renewable and Sustainable Energy Reviews 45, 207–218.

Yildiz, B., Kazimi, M. S., 2006. Efficiency of hydrogen production systems using alternative nuclear energy

technologies. International Journal of Hydrogen Energy 31 (1), 77–92.

26



Year Number Title/Author(s) 
2017   
 589 Estimating an SME investment gap and the 

contribution of financing frictions 
Martina Lawless, Conor O’Toole, Rachel Slaymaker 

 588 Supporting decision-making in retirement planning: 
Do diagrams on pension benefit statements help? 
Pete Lunn and Féidhlim McGowan 

 587 Productivity spillovers from multinational activity to 
indigenous firms in Ireland 
Mattia Di Ubaldo, Martina Lawless and Iulia 
Siedschlag 

 586 Do consumers understand PCP car finance? An 
experimental investigation 
Terry McElvaney, Pete Lunn, Féidhlim McGowan 

 585 Analysing long-term interactions between demand 
response and different electricity markets using a 
stochastic market equilibrium model 
Valentin Bertsch , Mel Devine , Conor Sweeney , 
Andrew C. Parnell 

 584 Old firms and new products: Does experience 
increase survival? 
Martina Lawless and Zuzanna Studnicka 

 583 Drivers of people's preferences for spatial proximity 
to energy infrastructure technologies: a cross-country 
analysis 
Jason Harold, Valentin Bertsch, Thomas Lawrence and 
Magie Hall 

 582 Credit conditions and tenure choice: A cross-country 
examination 
David Cronin and Kieran McQuinn 

 581 The cyclicality of Irish fiscal policy ex-ante and ex-post 
David Cronin and Kieran McQuinn 

 580 Determinants of power spreads in electricity futures 
markets: A multinational analysis 
Petr Spodniak and Valentin Bertsch 

 579 Gifts and inheritances in Ireland 
Martina Lawless and Donal Lynch 

 578 Anglers' views on stock conservation: Sea Bass 
angling in Ireland 
Gianluca Grilli, John Curtis, Stephen Hynes and Paul 
O’Reilly 

 

For earlier Working Papers see http://ww.esri.ie  

 

http://ww.esri.ie/

	Introduction
	Methodology
	Firm f's problem
	Consumer group k's problem
	Market clearing conditions
	Solving the problem

	Input data
	Demand side data
	Conventional power generation and power-to-gas data
	Renewable power generation data

	Results
	Discussion
	Conclusion
	Karush-Kuhn-Tucker conditions
	Firms' KKT conditions
	Consumers' KKT conditions

	Benders Decomposition
	KKT conditions for master problem of ith iteration
	Convergence metric




