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Non-technical summary 

Research question 

This paper deals with stress tests for credit risk and shows how exploiting the discretion when 
setting up and implementing the underlying model can drive the results of a quantitative credit 
risk stress test for default probabilities.  

 

Contribution 

We contribute to the scarce literature on model and estimation risk in stress tests. We employ 
several variations of a CreditPortfolioView-style model using US data ranging from 2004 to 
2016 and compare the forecasted default probabilities of these models. Our clear focus on 
stress tests is the aspect that differentiates our paper from existing studies most. This is partic-
ularly relevant against the background of regulatory stress tests which have become more im-
portant in recent years.  

 

Results and policy implications 

This paper shows that stress forecasts of default probabilities highly depend on the modelling  
assumptions and that seemingly only minor variations can affect the results of stress tests  
considerably. That said, our findings reveal that the conversion of a shock (i.e., stress event) 
increases the (non-stress) default probability by 20% to 80% - this high range can be  
explained by the sensitivity of stress test models to model and estimation risk.  
Interestingly, forecasts for non-stress default probabilities are less exposed to model and  
estimation risk. In addition, the risk horizon over which the stress default probabilities  
are forecasted and whether we consider mean stress default probabilities or high  
quantiles seem to play only a minor role for the dispersion between the results of the different 
model specifications. These findings emphasize the importance of extensive robustness 
checks for model-based credit risk stress tests, particularly in regulatory stress tests.



 

Nichttechnische Zusammenfassung 

Fragestellung 

Dieses Forschungspapier untersucht Modellrisiken bei Stresstests für Kreditrisiken. Es  zeigt 
auf, wie sich der vorhandene Gestaltungsspielraum bei der Durchführung und Implementie-
rung des Modells auf die Ergebnisse von quantitativen Kreditrisiko-Stresstests für Ausfall-
wahrscheinlichkeiten auswirkt. 

Beitrag 

Wir erweitern die Literatur zu Modell- und Schätzrisiken in Stresstests. Wir verwenden ver-
schiedene Spezifikationen des Kreditrisikomodells CreditPortfolioView unter Nutzung von 
Daten für den US-amerikanischen Markt im Zeitraum von 2004 bis 2016 und vergleichen die 
Spezifikationen hinsichtlich der prognostizierten Ausfallwahrscheinlichkeiten. Unser Schwer-
punkt auf Stresstests grenzt unsere Analyse von bisherigen Studien ab; das ist vor allem vor 
dem Hintergrund der gestiegenen Bedeutung von regulatorischen Stresstests in den letzten 
Jahren relevant. 

Ergebnisse und Politikempfehlungen 

Unsere Ergebnisse zeigen, dass Prognosen für gestresste Ausfallwahrscheinlichkeiten stark 
von den Modellierungsannahmen abhängen und dass sich bereits geringe Modelländerungen 
stark auf die Ergebnisse von Stresstests auswirken können. Konkret bedeutet das, dass die Be-
rücksichtigung eines Schocks (Stressfall) zu einer Erhöhung der Ausfallwahrscheinlichkeit 
um 20% bis 80% führen kann – diese große Spannweite erklärt sich durch die hohe Sensitivi-
tät von Stresstestmodellen hinsichtlich Modell- und Schätzrisiken. Im Gegensatz dazu zeigt 
sich, dass nicht gestresste Ausfallwahrscheinlichen in geringerem Maße Modell- und Schätz-
risiken ausgesetzt sind. Darüber hinaus spielen die Länge des Risikohorizonts, über den hin-
weg die Prognose der gestressten Ausfallwahrscheinlichkeiten erfolgt, und die Frage, ob mitt-
lere gestresste Ausfallwahrscheinlichkeiten oder hohe Quantile betrachtet werden, nur eine 
untergeordnete Rolle für die Unterschiede zwischen den Ergebnissen der einzelnen Modell-
spezifikationen. Diese Resultate machen deutlich, dass aufwändige Robustheitsüberprüfungen 
für modellbasierte Stresstests erforderlich sind – vor allem in regulatorischen Stresstests. 
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Abstract 

This paper deals with stress tests for credit risk and shows how exploiting the discretion when setting 
up and implementing a model can drive the results of a quantitative stress test for default probabilities. 
For this purpose, we employ several variations of a CreditPortfolioView-style model using US data 
ranging from 2004 to 2016. We show that seemingly only slightly differing specifications can lead to 
entirely different stress test results – in relative and absolute terms. That said, our findings reveal that 
the conversion of a shock (i.e., stress event) increases the (non-stress) default probability by 20% to 
80% - depending on the stress test model selected. Interestingly, forecasts for non-stress default prob-
abilities are less exposed to model and estimation risk. In addition, the risk horizon over which the 
stress default probabilities are forecasted and whether we consider mean stress default probabilities or 
quantiles seem to play only a minor role for the dispersion between the results of the different model 
specifications. Our findings emphasize the importance of extensive robustness checks for model-based 
credit risk stress tests. 
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1 Introduction 

Banks are often required to translate the impact of an economic shock onto its risk parame-

ters. Examples include the Basel II credit risk framework where IRB banks have to reflect 

economic downturns in their risk parameters in Pillar 1 (see article 177 CRR) or the CEBS’ 

guidelines on stress testing (see CEBS (2010, p. 18)) which require banks to consider a severe 

economic downturn for their internal risk coverage calculations under Pillar 2. More topical 

examples are the EBA stress tests in 2014, 2016 and 2018 in the euro area, where banks either 

could translate a prescribed economic downturn scenario into their risk parameters or could 

directly employ the parameter values provided by the EBA.1 As failed internal or external 

stress tests may force a bank to increase its equity and banks usually consider equity to be ex-

pensive,2 banks at least have an incentive to employ those modelling and estimation tech-

niques that yield the stress test results that are most favourable for them. Up to now, there is 

no empirical evidence whether banks use this discretion to their favour or not when setting up 

and implementing a stress test model. However, there are some empirical hints that banks use 

the degrees of freedom within internal ratings-based approaches in such a way that the mod-

elled default probabilities are partly below historical default rates (see BCBS (2014) and Behn 

et al. (2016)). Thus, at the current stage of research, it at least cannot be excluded that the 

same effect could be observed in the context of model-based stress tests.  

 

In this paper, we focus on a specific risk type (credit risk) and a specific risk parameter (prob-

ability of default, PD) and empirically analyze to which extent multi-period stress PD values 

can vary depending on the employed modelling assumptions and estimation techniques. To 

achieve this, we employ several variations of a CreditPortfolioView (CPV)-style model3 us-

ing US data for the period 07/2004 to 08/2016. All variations are statistically sound approach-

es employed by practitioners and in related literature and it is ex-ante not obvious why one 

specification or estimation technique should be more adequate than another. Our out-of-

sample forecast ability comparison of the specifications also shows that no single specifica-

tion is dominating the other ones. 

 

                                                 
1 For the macro stress tests performed by the EBA, this is exactly what banks had to do (unless they wanted to 
employ EBA’s benchmark PD and LGD values). The corresponding forecasts of the EU commission for a risk 
horizon of two to three years are employed as the economic baseline and adverse scenario (see EBA (2014), 
ECB (2014), EBA (2016), EBA (2018a)). 
2 See Admati and Hellwig (2013) for an extensive discussion of supposedly expensive bank equity. 
3 See Wilson (1997a, 1997b). 
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We show that the chosen model specification and the employed estimation technique can 

hugely influence the results for the stress default probabilities. Accordingly, the conversion of 

a shock, i.e., moving from non-stress to stress PDs, exposes banks in relative and absolute 

terms to model and estimation risk. More specifically, the conversion of a shock (i.e., stress 

event) increases the (non-stress) default probability by 20% to 80% - depending on the stress 

test model selected. This dispersion of results shows the importance of extensive robustness 

checks for the underlying model when interpreting the results of credit risk stress tests. Inter-

estingly, forecasting non-stress PDs is less exposed to model and estimation risk. In addition, 

the risk horizon over which the stress default probabilities are forecasted and whether we con-

sider mean stress default probabilities or quantiles seem to play only a minor role for the dis-

persion between the different model specifications. 

 

Our paper contributes to various strands in the literature. First, it is related to statistical ap-

proaches for the prediction of default probabilities (see, e.g., the recent papers of Blöchlinger 

and Leippold (2018), and Jones et al. (2016) as well as the references cited therein). Having 

models that transform firm-level or macroeconomic predictor variables in forecasts for default 

probabilities is a necessary prerequisite for doing model-based credit risk stress tests. Second, 

our study is most closely related to that strand of literature in which CPV-style models (or ex-

tensions thereof)4 are used for carrying out a model-based credit risk stress test. These papers 

look for macroeconomic variables that can explain the systematic variation of default rates 

across time and, afterwards, these macroeconomic variables are shocked to compute stress de-

fault rates (see, for example, Boss (2002), Sorge and Virolainen (2006), Jokivuolle et al. 

(2008)). In some cases, feedback effects between the performance of the banking sector and 

the real economy are considered in these papers (see, for example, Virolainen (2004), Wong 

et al. (2008)). As an alternative to CPV-style econometric stress test approaches, Schechtman 

and Gaglianone (2012) apply quantile regressions to estimate the link between macroeconom-

ic variables and credit risk. A systematic analysis of how different modelling assumptions and 

estimation techniques may influence the stress test results is usually not (or only in a limited 

way) done in these papers. The fact that this is the clear focus of our paper is an essential dif-

ference between our study and the previously mentioned ones. Third, our paper is obviously 

related to the literature on model risk in risk models. Examples are Danielsson et al. (2016) 

who evaluate the model risk of models employed for forecasting systemic and market risk, 

Frey and McNeil (2003) and Hamerle and Rösch (2006) who analyze the model risk of credit 

                                                 
4 For a more detailed survey on quantitative credit risk stress test methodologies see, for example, Foglia (2009). 

2



 

portfolio models, and Hayden et al. (2014) who evaluate the influence of the chosen variable 

selection approach on model-based default probability predictions. Surprisingly, the literature 

in which credit risk stress tests and the aspect of model risk are combined (as we do) is rather 

scarce. One notable exception is Hale et al. (2015) who analyze the influence of the aggrega-

tion level on the results of macroeconomic credit risk stress tests. Another related paper is 

Canals-Cerdá and Kerr (2015) who empirically study issues of model specification, sample 

selection and stress scenario selection for credit card portfolios. With respect to model risk, 

they focus on the interplay between macroeconomic and account-level variables.5 

 

The remainder of the paper is structured as follows: Section 2 presents the methodology of the 

analysis and Section 3 shows the results. Section 4 concludes. 

 

2 Methodology 
In the following, first, we introduce the baseline specification of a CreditPortfolioView-style 

model for predicting stress default probabilities. Amongst several others, these models are 

widespread in German savings banks (see S-Rating und Risikosysteme (2018)). Second, vari-

ous modifications of this specification are described. All modifications are statistically sound, 

and it is ex-ante not obvious why one specification should be more adequate than another. 

However, as we show in Section 3.2, the modifications can hugely influence the results for 

the stress default probabilities. 

 

2.1 CreditPortfolioView-style baseline specification and PD forecasts 
For all our specifications, we employ a CPV-style approach that relates macroeconomic vari-

ables to sector-specific default rates. The macroeconomic variables are chosen in such a way 

that they explain a large fraction of the time series variation in default rates. More precisely, it 

is assumed that for each sector s , {1,2,..., }s S∈ , a macroeconomic index in period t  

                                                       , ,0 , , , , ,
1 0 1

yi KKI

s t s s i i t k s k s t k s t
i k k

y x y uβ β δ− −
= = =

= + ⋅ + ⋅ +∑∑ ∑  (1) 

linearly depends on some contemporaneous and/or time-lagged risk factors ,i t kx − , 

{1,2,..., }i I∈  and {0,1,2,..., }ik K∈ , and time-lagged values of the macroeconomic index 

                                                 
5 A further recent exception is Siemsen and Vilsmeier (2018) who focussed in parallel but mutually unknown 
work on a similar topic as we. 
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,s t ky − , {1,2,..., }yk K∈ . The macroeconomic index ,s ty  is assumed to be related to the sector-

specific default probability ,s tPD  by a logit transformation: 

                                          ( ), ,
, ,

1 1ln 1
1 exps t s t

s t s t

y PD
PD y

 
= − ⇔ = 

+ 
. (2) 

 
Hence, larger values of the macroeconomic index ,s ty  go along with smaller default probabili-

ties ,s tPD . The risk factors ,i tx , {1,2,..., }i I∈ , are modelled by autoregressive processes of 

ik -th order (AR( ik ) process): 

                                     , ,0 , , ,
1

ik

i t i i j i t j i t
j

x x vγ γ −
=

= + ⋅ +∑ . (3) 

To avoid overfitting, we restrict our search for an adequate time series model to AR( k ) pro-

cesses with a maximum order of 2k = . We apply the AIC (Akaike Information Criterion) to 

choose the appropriate number of lags.  

The ordinary least square (OLS) estimator is used to determine the parameters of equation (1) 

and (3). When the Godfrey-Breusch test indicates that the null hypothesis of no autocorrela-

tion (up to order four) of the error term ,i tv  and ,s tu , respectively, can be rejected at a signifi-

cance level of 5%, the Newey-West estimator is employed to compute the t -statistics and, 

hence, the p -values of the OLS parameter estimates.6  

 

The error terms 1Su ×∈  and 1Iv ×∈  are assumed to be multivariately normally distributed:7 

                                             (0, )
u

N
v
 

Σ 
 

  (4) 

with ( ) 10 S I+ ×∈  and 

                                                       , ( ) ( )

,

0
0
u u S I S I

v v

+ × +Σ 
Σ = ∈ Σ 

  (5) 

with ,
S S

u u
×Σ ∈ , ,

I I
v v

×Σ ∈ . 

 

                                                 
6 For the Newey-West estimations, AR processes with a varying order were employed for capturing the autocor-
relation in the error term. However, the coefficient values and significances were relatively stable across the var-
ying orders. Hence, we abandoned higher orders and assumed an order of two for the Newey-West estimations. 
7 The assumed multivariate distribution of the error terms influences the probability distributions of the stress de-
fault probabilities. Alternatively, bootstrapping or another distribution could be used. See, for example, Simons 
and Rolwes (2009), who model the error terms of the index equations as well as the error terms of the risk factor 
equations by a t-distribution. 
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Combining (1) to (5), the distribution of the sector-specific default probabilities for the next 

m  time periods (starting from period T ) can be computed using the following Monte-Carlo 

simulation algorithm with D  simulation runs:8 

 

For 1d =  to D  

 For 1n T= +  to T m+  

(i) Draw random numbers for the error terms ( )
,
d

s nu , {1,2,..., }s S∈ , and 

( )
,
d

i nv , {1,2,..., }i I∈ , according to the multivariate normal distribution 

(4) and (5). 

(ii) Calculate forecasts for the macroeconomic variables ( )
,
d

i nx , 

{1,2,..., }i I∈ , based on ( )
,
d

i nv  and the historical realizations ( )
, 1
d

i nx − , ( )
, 2
d

i nx − , 

…, ( )
, i

d
i n kx − . 

(iii) Calculate forecasts for the sector-specific macroeconomic indices ( )
,
d

s ny  

and default probabilities ( )
,
d

s nPD , {1,2,..., }s S∈ , based on ( )
,
d

s nu  and the 

forecasts for the macroeconomic variables ( )
,
d

i nx . 

Based on the realizations ( )
,
d

s nPD , {1,..., }d D∈ , we calculate empirical distribution functions 

for the sector-specific and time period-specific default probabilities ,s nPD , {1,2,..., }s S∈ , 

{ 1,..., }n T T m∈ + + . 

 

To compute distributions for stress sector-specific and time period-specific default probabili-

ties, the algorithm has to be amended slightly. Instead of using the unconditional multivariate 

normal distribution (4) and (5) in step (i), those error terms that are not stressed have to be 

sampled from a multivariate normal distribution that is conditioned on the stressed values of 

the other error terms. If Y  is an r -dimensional normally distributed random vector with the 

following partitioning:9 

         1

2

Y
Y

Y
 

=  
 

 with 1Y  a q -dimensional random vector ( q r< ), 

                                 1

2

µ
µ

µ
 

=  
 

, 11 12

21 22

Σ Σ 
Σ =  Σ Σ 

 

                                                 
8 See Boss (2002, pp. 81-82). 
9 See Greene (2008, pp. 1013-1014). 
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with 11
q q×Σ ∈  and ( ) ( )

22
r q r q− × −Σ ∈ , respectively, symmetric positive semidefinite matrices, 

22det( ) 0Σ ≠ , and ( )
12 21

q r q× −′Σ = Σ ∈ , then the conditional distribution of 1Y  given 2 2Y y=  is a 

multivariate normal distribution with mean 

2 2

1
1 1 12 22 2 2( )

Y y
yµ µ µ−

=
= + Σ Σ −  (6) 

and variance-covariance matrix 

2 2

1
11 12 22 21Y y

−
=

Σ = Σ −Σ Σ Σ . (7) 

In the baseline setting, at any one time only one risk factor is initially shocked for the first 

three months and the shock is set equal to that historical realization of the error term which 

had the most negative impact on the macroeconomic index in the past.10 More precisely, we 

define the shocked component 2 , 1 , 2 , 3* * *i T i T i TY v v v+ + += = =  by 

, ,{1,2,..., }
, 1 , 2 , 3

, ,{1,2,..., }

min , 0
* * *

max . 0
∈

+ + +

∈

>= = =  <

i t s it T
i T i T i T

i t s it T

v
v v v

v

β

β
(8) 

If 1S =  (what we assume in the following), the above definition is unambiguous. When, 

however, we have several sectors 1S >  and the sensitivities ,s iβ  have different signs, addi-

tional criteria have to be introduced to decide whether the largest or smallest historical reali-

zation of the standardized error term is chosen. In the following, we set 36m =  months and 

we nearly always11 assume that there is a univariate shock in the first future quarter and that 

in the subsequent 33 periods, all error terms are drawn from the unconditional multivariate 

normal distribution (4) and (5). However, of course, the initial shock propagates into the next 

periods according to the employed AR processes.12 To achieve high accuracy in the Monte-

Carlo simulation, we employ 1,000,000D =  draws. 

2.2 Data and variable selection 

We use monthly S&P/Experian Consumer Credit Default Composite Index data ranging from 

07/2004 to 08/2016 for estimating (1) (see Figure 1).13 This index is a combination of default 

rates for cars, first and second mortgages and bank cards, and considers 280 Mio. US con-

10 See Boss (2002, pp. 82-83). 
11 The exception is model 12 where the stress scenario is based on the Mahalanobis distance (see Section 2.3.3). 
12 Due to the correlation of the risk factors, those risk factors that are not explicitly stressed are influenced by the 
stress realization of the remaining risk factor and this influence propagates into the next periods according to the 
AR processes employed for modelling the remaining risk factors. 
13 See S&P Dow Jones Indices (2018). This data set has also been used, for example, by Fenech et al. (2015). As 
an alternative to the S&P/Experian Consumer Credit Default Composite Index, default rates provided by rating 
agencies, insolvency rates or the fraction of non-performing loans (NPLs) to all loans could be used. 
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sumers for over 11 trillion USD in loans, credit lines and leases. The S&P/Experian Consum-

er Credit Default Composite Index is calculated as the sum of all balances that newly default-

ed in the last three months divided by the sum of all open good balances and those balances 

that newly defaulted in the last three months multiplied by twelve months. The definition of 

default varies by product types: conventional loans default if they are 90 days past due (or 

worse); unspecified and revolving products default if they are 180 days past due (or worse). In 

addition, bankruptcy, repossession and a write-off are treated as default. Seasonal variations 

of the time series are eliminated by using X-13ARIMA-SEATS.14 The S&P/Experian Con-

sumer Credit Default Composite Index encompasses different subcategories (e.g., first mort-

gages and bank cards), but we subsume all in one sector and set 1S = . 

 

Figure 1: Evolution of the S&P/Experian Consumer Credit Default Composite Index 
over time 

  
The S&P/Experian Consumer Credit Default Composite Index is a combination of default rates for cars, first and 
second mortgages and bank cards, and considers 280 Mio. US consumers for over 11 trillion USD in loans, cred-
it lines, and leases. The index is calculated as the sum of all balances that newly defaulted in the last three 
months divided by the sum of all open good balances and those balances that newly defaulted in the last three 
months multiplied by twelve months. 

 

Since the S&P/Experian Consumer Credit Default Composite Index is a combination of de-

faulted balances from the last three months, only risk factors with two periods delay are con-

sidered in the variable selection process in order to avoid potential endogeneity issues. As in 

Kalrai and Schleicher (2002, pp. 71-75) for Austrian data, economic activity indicators, price 
                                                 
14 See U.S. Census Bureau (2017). SEATS is the acronym for "Signal Extraction in ARIMA Time Series". We 
use the seas package in R. 
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stability indicators, household indicators, firm indicators, financial market indicators and fur-

ther external indicators for the US are considered to be potential explanatory variables for the 

default rates (see Table 1). The data are taken from Datastream. 

 

From the comprehensive set of candidate explanatory variables, the most relevant ones ex-

plaining historical default rates have to be chosen. Some studies select relevant risk factors 

based on expert judgement and, afterwards, ensure that the chosen variables are (jointly) sig-

nificant. In these studies, an economic indicator (e.g., GDP) and an interest rate are often em-

ployed.15 To limit ad-hoc elements in the selection procedure for the explanatory variables, 

we apply the Bayesian model averaging (BMA)16 where we include only risk factors with a 

sufficient high likelihood. Simulations and empirical studies show that the BMA delivers a 

better forecast performance than other approaches which makes this technique popular (see, 

e.g., Hayden et al. (2014), Raftery et al. (1997) and Traczynski (2017)). 

                                                 
15 See, for example, Banque de France (2009) or Sorge and Virolainen (2006). 
16 For a robustness check of the selected risk factors, backward regression with robust (Huber-White) standard 
errors is also used. A detailed description of this approach is provided, for example, in Rawlings et al. (1998, pp. 
218-219). For a discussion of alternative variable selection procedures for logistic credit risk models, see Hayden 
et al. (2014). 
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Table 1: Descriptive statistics of the endogenous and exogenous variables 

  Mean Std Max Min  Data source Unit 

Endogenous variable             

S&P/Experian Consumer Credit De-
fault Composite Index 

2.09 1.24 5.51 0.81 S&P Dow Jones Indices % 

Index (logit) 3.99 0.54 4.81 2.84 - - 

Index (probit) 2.09 0.22 2.41 1.60 - - 

Exogenous variables             

Economic activity indicators             

Industrial production 100.32 4.70 106.69 87.41 Datastream: USIPTOT.G index 

Price stability indicators             

Inflation 219.27 14.97 240.30 189.10 Datastream: USCOPRCE index 

Money supply M1 902.19 230.66 1378.40 642.64 Datastream: USM1....B billion 
USD 

Money supply M3 4093.73 629.36 5413.29 3304.63 Datastream: USMA013B billion 
USD 

Moody's commodity index 2059.91 615.24 3320.20 1044.80 Datastream: MOCMDTY USD per 
points 

Reuter's commodity index 658.59 122.01 932.18 426.24 Datastream: RECMDTY USD per 
points  

Household indicators             

Disposable personal income 5234.21 285.83 5857.53 4756.96 Datastream: USPERDISB billion 
USD 

New home sales 600.18 320.34 1389.00 270.00 Datastream: USHOUSSE thousand 

Unemployment rate 6.64 1.84 10.00 4.40 Datastream: USUN%TOTQ % 

Firm indicators             

Consumer confidence 79.22 22.24 111.90 25.30 Datastream: USCNFCONQ index 

Consumer sentiment 79.87 11.15 98.10 55.30 Datastream: USUMCONSH index 

Financial market indicators             

3-month Treasury bill rate 1.25 1.75 5.01 -0.01 US Department of the    
Treasury 

% 

Term spread (10-year minus 1-year 
Treasury bill rate) 

1.67 1.03 3.43 -0.48 US Department of the  
Treasury 

% 

S&P 500 653.87 131.32 906.38 345.59 Datastream: S&PCOMP USD 

VIX 19.55 8.69 59.89 10.42 Datastream: CBOEVIX index 

External indicators             

Exports 108246.93 21121.17 137512.00 67645.80 Datastream: USEXPGDSB million 
USD 

Imports 168657.45 22869.28 199284.00 118736.00 Datastream: USIMPGDSB million 
USD 

USD/JPY exchange rate 0.0046 0.0006 0.0057 0.0034 Datastream: JPXRUSD. USD 

USD/GBP exchange rate 0.27 0.02 0.33 0.23 Datastream: STUSBOE USD 

Oil price WTI (FOB) per Barrel 34.48 9.73 64.49 14.15 Datastream: OILWTXI USD 

 

The idea of the Bayesian model averaging is to calculate for a given number O  of candidate 

risk factors, in our case 20 variables as shown in Table 1, all linear models lM , 20{1,..., 2 }l∈  

consisting of subsets of the risk factors and, then, to include only those which prove to be suf-

ficiently likely. The criterion for including a risk factor is the posterior inclusion probability 
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(PIP) which is given for any component hβ  of the parameter vector BMAβ  as a weighted sum 

of each model’s conditional probability over all models: 

                                        ( ) ( ) ( )
202

1
: h h l l

l
PIP P y P M P M yβ β

=

= = ⋅∑  (9) 

where 1( ,..., )Ty y y=  denotes the vector of realizations of the macroeconomic index. 

We follow the suggestion of Raftery (1995) of including only risk factors with a PIP of at 

least 50%.17 Obtaining a risk factor’s conditional inclusion probability ( )h lP Mβ  is straight-

forward as it can be taken from the p -values of the corresponding model. The conditional 

marginal likelihood ( )lP M y  is according to Bayes theorem proportional to the product of 

the conditional distribution of y  and a so-called model prior ( )lP M : 

                                  ( ) ( ) ( )l l lP M y P y M P M∝ ⋅ . (10) 

As the priors are initially unknown, commonly g  priors (see Zellner (1986)) are assumed for 

the models’ coefficients: 

                                    
1

10,g N
g

β
−  ′Γ Γ     

  (11) 

where the matrix T O×Γ∈  contains all T  historical observations for the O  candidate risk 

factors. The parameter g  allows for considering the degree of certainty, i.e., a smaller value 

of the parameter goes along with a lower variance. The marginal likelihood is given by: 

                            ( )
1

2
22(1 ) 1

1

l

T
o

l l
gP y M g R

g

−
−

−  
∝ + ⋅ − ⋅ + 

 (12) 

where lo  denotes the number of included risk factors in model lM . It is obvious that this term 

basically weighs up the goodness-of-fit as measured by model l ’s coefficient of determina-

tion 2
lR  and the term (1 ) log+  for penalizing for the model size. In order to set the parameter 

g , we apply the popular unit information prior (UIP) which sets g T= .18 

 

Evaluating all models ( )lP M y , 20{1,..., 2 }l∈ , which means that in our case we would have 

to conduct over one million regressions, often proves to be computationally too intricate. In 

                                                 
17 If the PIP is slightly below 50%, we include these variables if they prove to be significant in the regression 
analysis for equation (1). 
18 Eicher et al. (2011) conclude that the UIP delivers the best performance. Suitable alternative choices would 
have been 2max{ ; }g t K=  and 2g K=  (see, e.g., Fernandez et al. (2001), Feldkircher and Zeugner (2009)). 
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order to overcome this issue, we employ the Markov chain Monte-Carlo sampler (see, e.g., 

Madigan and York (1995)). 

 

To test for stationarity of the time series of the macroeconomic index and of the explanatory 

variables, we apply the Augmented Dickey-Fuller (ADF), Phillips-Perron (PP) and Kwiat-

kowski-Phillips-Schmidt-Shin (KPSS) test. A time trend is only considered within these tests 

when it is economically plausible. As the results of these three tests are partly conflicting, we 

assume stationarity when at least two out of three tests indicate stationarity (null hypothesis of 

non-stationarity is rejected by the ADF or PP test; null hypothesis of stationarity is not reject-

ed by the KPSS test). For all three tests, the significance level is 10%. We either take the log-

arithmic-return for exponentially increasing time series or the first difference for time series 

moving within a limited range. The latter method is employed for the macroeconomic index, 

new home sales, unemployment rate, VIX, 3-month Treasury bill rate, term spread, USD/JPY 

and USD/GBP exchange rates, and oil price WTI; the former for the other variables. All 

transformed time series are stationary. As some risk factors might be prone to multicollineari-

ty, we calculate the variance inflation factor. 

 

2.3 Modifications 
Having implemented a reasonable specification for the modelling of the relationship between 

macroeconomic variables and the default probability (see (1) to (5)), we want to test how eco-

nomically equally reasonable modifications influence the results for the stress default proba-

bilities. The modifications are obtained from literature on CPV-style models. In addition, we 

included modifications from other areas if they constituted a technically more accurate ap-

proach (e.g., FGLS estimator). Any discrepancies in predictions of default probabilities with 

our models would, of course, hold also true if we would have included more specifications. 

The variance inflation factor is calculated for each modification to rule out multicollinearity 

between the risk factors. 

 

Table 2 summarizes the baseline specification and gives an overview of the considered modi-

fications that are presented in this section. In order to facilitate comparisons, in each modifi-

cation only a single aspect (compared to the baseline specification) is amended. However, it 

should be noted that each model is statistically sound and it is ex-ante not obvious why one 

specification or estimation technique should be more adequate than another. 
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Table 2: Overview of the specification of the baseline specification and the considered 

modifications 
 Baseline specification (model 1) Modifications Model 

no. 
Time-lagged risk fac-
tors 

Time-lagged macroeconomic vari-
ables ( 2t − ) and additionally the 
time-lagged macroeconomic index 
( 2t − ) are considered as explana-
tory variables for the macroeco-
nomic index 

Without time-lagged macro-
economic index (t-2) as explana-
tory variable for the macroeco-
nomic index 

2 

Estimator for the mac-
roeconomic index equa-
tion 

OLS/Newey-West FGLS(AR(1)), FGLS(AR(3)) 
without the time-lagged ma-
croeconomic index ( 2t − ) as 
explanatory variable for the mac-
roeconomic index 

3, 4 

Transformation be-
tween default rate and 
macroeconomic index 

Logit Probit with BMA and backward 
regression as method for choosing 
relevant risk factors 

5, 6 

Time series processes 
for macroeconomic var-
iables 

AR(1)/AR(2) (based on AIC) Fixed AR(2), Fixed VAR(1), 
Fixed VAR(2), SUR 

7, 8, 9, 
10 

Stress test scenario Historical worst case scenario Hypothetical scenarios based on 
three standard deviations of the 
error terms and based on the Ma-
halanobis distance 

11, 12 

 

2.3.1 Macroeconomic index process 

In this section, we describe modifications of the baseline specification that affect the specifi-

cation and estimation of the macroeconomic index equation (1). 

 

Non-time-lagged macroeconomic index (model 2) 

In the base specification, we consider two period time-lagged macroeconomic variables , 2i tx − , 

{1,2,..., }i I∈ , and two period time-lagged realizations of the macroeconomic index 2ty − , as 

potential explanatory variables in (1).19 Within model 2, as in the original CPV-specification 

(see Wilson (1997a, 1997b)), we do not consider the lagged realizations of the macroeconom-

ic index.20 For this specification, the BMA is repeated for choosing the multivariately most 

appropriate risk factors. 

 

FGLS estimator (models 3 and 4) 

The OLS estimator is an efficient estimator only in the case of homoscedastic and serially un-

correlated error terms. In our application, the problem of autocorrelation is conceivable due to 

the methodology of the data preparation for the S&P/Experian Consumer Credit Default 
                                                 
19 As we have 1S = , we omit the sector index s  in the following. 
20 See also for example Boss (2002), Jokivuolle et al. (2008), and Misina et al. (2006). 
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Composite Index. In the base specification, we employ the Newey-West estimator to obtain 

autocorrelation robust standard errors and use the two-period lagged macroeconomic index as 

an exogenous variable. Another way of considering autocorrelation of the error term tu  in the 

index equation (1) is to apply the feasible generalized least squares (FGLS) estimator21. The 

FGLS estimator basically assumes a more flexible structure of the variance-covariance matrix 

of the error terms over time: 

                            ( )
2
1 1,2 1,

2
2,1 2 2,

2
,1 ,2

T

T

T T T

Var uu

σ σ σ
σ σ σ

σ σ σ

 
 
 ′ =  
  
 





   



. (13) 

Based on the autocorrelation-function (ACF) chart, we can observe a significant correlation 

(up to a significance level of 5%) between the contemporaneous error terms of the macroeco-

nomic index (1) and the error terms of the index equation with a lag of one and three periods. 

In order to avoid overfitting, we do not consider an AR process of the error terms of equation 

(1) within the FGLS framework with a lag larger than three. More specifically, we assume an 

AR(1) (model 3) and an AR(3) (model 4) process (equations (14) and (15)) without intercept 

for the error term of the macroeconomic index equation (1), respectively: 

                                               1t t tu uρ δ−= ⋅ +  (14) 

                                    1 1 2 2 3 3t t t t tu u u uρ ρ ρ δ− − −= ⋅ + ⋅ + ⋅ +  (15) 

where the error term tδ  is normally distributed and uncorrelated with all other error terms of 

the model. An AR(1) process has also been used for example by McNeil and Wendin (2007) 

and Miu and Ozdemir (2009). We take the risk factors as selected via the BMA for the base-

line specification, but, to avoid the endogeneity problem, we omit the two-period lagged mac-

roeconomic index as exogenous variable.22 

 

Probit function (models 5 and 6) 

In the baseline model, we employ (as in the original CPV model) a logit transformation to re-

late the observed default rates to realizations of the macroeconomic index. This is, indeed, not 

the only possible choice. One alternative is using the probit transformation:23 

                                  ( ) ( )1
t t t tp y y p−= Φ − ⇔ = −Φ  (16) 

                                                 
21 See Greene (2008, pp. 156-158). 
22 This ensures a higher comparability with our baseline model but neglects that potentially other risk factors 
might have been included in the model when we would employ a FGLS estimator within the BMA framework. 
23 For further alternatives, see Maddala (1983), Aldrich and Nelson (1984) or Greene (2001). 
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where ( )Φ ⋅  is the cumulative density function of the standard normal distribution. The index 

ty  gets a negative sign as an argument of ( )Φ ⋅  in (16) to ensure that – as in the case of the 

logit transformation – increasing index values cause decreasing default probabilities. As for 

model 1, the BMA and the backward regression as a robustness check are repeated for this 

model specification. Since the selected risk factors of the BMA and the backward regression 

differ in one risk factor24, we use both models (models 5 and 6) as specifications of the CPV-

style model. 

 

2.3.2 Risk factor processes 

 

Fixed second-order autoregressive processes (model 7) 

In the baseline specification, the order of the autoregressive processes by which the risk fac-

tors are modelled is selected based on the AIC whereby the order is restricted to a maximum 

of two. This leads to the situation that for some risk factors an AR(1) process is used and for 

other risk factors an AR(2) process is implemented.25 In this section, we want to check for the 

influence of this assumption on the stress default probabilities. For this, we employ an AR( k ) 

process of fixed order 2k =  for all risk factors (model 7). 

 

Vector-autoregressive regression (models 8 and 9) 

Instead of using AR processes, it is also possible to model the risk factors by vector-

autoregressive (VAR) processes. For example, VAR models are also employed by Schecht-

man and Gaglianone (2012). VAR processes are often taken into account if very little is 

known about the structure or relationships between the variables and, therefore, a dependency 

between all variables is assumed. This requires the estimation of many parameters and, thus, 

promotes overfitting. This goes along with a good in-sample fit but leads to less reliable out-

of-sample forecasts. Based on these arguments, we limit the number of considered lags and 

assume VAR(1) (model 8) and VAR(2) (model 9) processes for all risk factors. The general 

VAR(1) model with the parameter matrix I Iγ ×∈ and error terms 1Iv ×∈  is given in equa-

tion (17): 

                           
1 ,1, 1, 11,1 1,

, ,1 , , 1 ,I

x tt tI

I t I I I I t x t

vx x

x x v

γ γ

γ γ

−

−

     
     = +      

            



     



. (17) 

                                                 
24 Industrial production (t-2) is replaced by logarithmic-return imports (t-2). 
25 See Table 4 in Section 3.1. 
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In this specification, there exists a correlation between the risk factors due to the dependence 

of a risk factor to lagged other risk factors. For this reason, the contemporaneous correlations 

of the error terms of the risk factors 1Iv ×∈ are, in contrast to the baseline specification, not 

considered. Accordingly, we assume a diagonal variance-covariance matrix ,
I I

v v
×Σ ∈  for the 

simulation algorithm described in Section 2.1. 

 

Seemingly unrelated regression (model 10) 

Another possible specification is the seemingly unrelated regression (SUR) methodology 

(model 10).26 The difference between the SUR methodology and the usage of a VAR process 

is that there are no obvious influences between the risk factors in the SUR methodology. The 

risk factors depend solely on their own time-lagged values as exogenous variables. The corre-

lation is computed contemporaneously via the residuals of the AR processes of the risk fac-

tors.27 In contrast to the baseline specification, in model 10, this assumption is not only used 

in the simulations to forecast the risk factors, but also in the estimation of the parameters of 

risk factor processes. For this, the order of the AR processes of the risk factors are set equal to 

those in the baseline specification.  

 

2.3.3 Stress test scenarios 

The modifications described in this section do not concern discretion in setting up a model or 

in the estimation process, but deal with the degree of freedom that risk managers performing 

stress tests may have, for example under Pillar 2, namely the choice of the stress test scenar-

io.28 In supervisory stress tests, a scenario is usually given and, accordingly, discretion in 

choosing stress macroeconomic/financial variables is limited to cases where these scenarios 

do not cover all presumed variables of a bank’s model. For these modifications, the baseline 

specification of the CPV-style model is employed. 

 

Hypothetical scenario based on three standard deviations (model 11) 

In the baseline specification, we define the stress scenario for a single risk factor as the largest 

historical deviation of the empirical observations for this risk factor from its theoretical model 

with a negative impact on the macroeconomic index. In model 11, alternatively, the impact of 

                                                 
26 See the description of the SUR model in Greene (2008). 
27 Analyses that use a SUR methodology to model and forecast macroeconomic risk factors include Jokivuolle et 
al. (2008), Trenca and Benyovszki (2008), and Zedginidze (2012). 
28 See similarly, but within another modelling framework, Breuer et al. (2012). The requirements on selecting a 
scenario are, for example, discussed in EBA (2018b). 
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a given shock on the error term of three standard deviations is taken into account.29 However, 

the assumption that only a single risk factor is stressed (univariate stress scenario) is main-

tained. 

 

Hypothetical scenario based on the Mahalanobis distance (model 12) 

In this modification, a multivariate stress test scenario based on the Mahalanobis distance of 

the error terms iv , {1,2,..., }i I∈ , is used.30 The Mahalanobis distance of a random vector v  is 

defined as: 

                            ( ) ( )1( )Maha v v vµ µ−′= − ⋅Σ ⋅ −  (18) 

where [ ]E vµ =  and Σ  is the variance-covariance matrix of the vector components. The 

smaller the Mahalanobis distance of a realization of the random vector v  is, the more likely 

(plausible) – given the variance-covariance structure of the vector components and assumed 

ellipticity – is the respective realization. The Mahalanobis distance is employed to define so-

called trust regions of radius τ around [ ]E vµ = : 

                                   { }3: ( )IEll v Maha vτ τ⋅= ∈ ≤  (19) 

As we consider a dynamic three-months stress period, the dimension of the random vector 

1, 1 , 1 1, 2 , 2 1, 3 , 3( ,..., , ,..., , ,..., )T I T T I T T I Tv v v v v v v+ + + + + + ′=  is 3I ⋅ . The random vector v  represents an 

I -dimensional path of the error terms of the risk factors over the three considered stress peri-

ods. We assume 1, ,( ,..., ) (0, )n I n vvv v v N′= Σ
  for all { 1, 2, 3}n T T T∈ + + +  (see (4) and (5)). 

Using the above notation, the historical stress scenario for a risk factor i   

in the baseline specification can be represented by 

, 1 , 2 , 3* (0,...,0, * ,0, ,0, * ,0, ,0, * ,0, ,0)i i T i T i Tv v v v+ + + ′=   

3I ⋅∈  with corresponding values 

*( )iMaha v  ( {1,..., }i I∈ ). To ensure consistency between the univariate stress scenarios as set 

out in the baseline specification and those ones employed in this section, we define trust re-

gions 
i

Ellτ  by setting *( )i iMaha vτ =  ( {1,..., }i I∈ ). This ensures that the stress scenarios used 

in this specification and in the baseline specification are equally plausible in the sense of the 

Mahalanobis distance. However, the stress scenario used in this section defines a multivariate 

shock, whereas the other stress scenarios (historical worst case, three standard deviations) on-

ly imply a univariate shock. Out of each of the trust regions 
i

Ellτ  ( {1,..., }i I∈ ), we look for 

                                                 
29 Three standard deviations are a frequent choice (see, for example, Breuer et al. (2012, p. 337)). 
30 See, for example, Breuer et al. (2012) for the use of the Mahalanobis distance for stress testing. 
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that scenario during the time period of the next three months (which is identical to the as-

sumed duration of the univariate shocks) that maximizes the expected forecasted default 

probability in 5T + : 

                           { }5arg max ( , ) ,
i

i

worst
T T

v Ell
v E PD u v F v

τ

τ +
∈

=     (20) 

where TF  contains all past information up to time T  (in particular about the previous realiza-

tions of the risk factors). We choose the risk horizon 5T +  in the optimization problem (20) 

because the risk factors affect the macroeconomic index with a lag of two periods as set out in 

Section 2.2. Hence, the default probability forecasted for 5T +  is the first one that is influ-

enced by all three stress periods.31 

 

3 Results 
In this section, first, we present the results for the risk factor processes and for the macroeco-

nomic index equation for all model specifications used. In addition, we conduct an out-of-

sample comparison between these models to ensure that one model is not dominating the oth-

ers in terms of forecast ability for the default rates. Second, we show the impact that differing 

model specifications have for the stress test results. 

 

3.1 Specification of models 
Tables 3 and 4 summarize the estimation results for the macroeconomic index equation (1) 

and for the time series processes of the risk factors based on the full data sample ranging from 

07/2004 to 08/2016. 

                                                 
31 The macroeconomic index in 5T +  which determines the probability of default in 5T +  via (2) is given by: 

( ) ( ) ( ) ( ) ( ) ( 3)
5 1 1 2 3 1 4 2 5 3* * * , I T

T T T T T T T T T T T Ty y y x y x y x y x y x x × +
+ + − + + + + + + += + ∆ + ∆ + ∆ + ∆ + ∆ ∈ . 
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Table 3: Estimation results for the macroeconomic index equation 
  Parameters R² Adjusted R² 
Model 1: Baseline specification     0.2765 0.2555 
Intercept 0.0019       
Industrial Production (t-2) 1.5400 **     
VIX (t-2) -0.0015 ***     
Consumer Sentiment (t-2) 0.1573 **     
Macroeconomic Index (t-2) 0.3381 ***     
Model 2: Baseline specification without macroeconomic 
index (t-2) as explanatory variable 

0.1731 0.1553 

Intercept 0.0027       
Industrial Production (t-2) 2.2302 ***     
VIX (t-2) -0.0016 **     
Consumer Sentiment (t-2) 0.1544 **     
Model 3: FGLS-estimator (AR(1) process for residuals) - - 
Intercept 0.0030       
Industrial Production (t-2) 1.3513 ***     
VIX (t-2) -0.0014 **     
ρ 0.4919 ***     
Model 4: FGLS-estimator (AR(3) process for residuals) - - 
Intercept 0.0032       
Industrial Production (t-2) 1.0509 **     
VIX (t-2) -0.0013 **     
ρ1 0.4764 ***     
ρ2 0.1971 **     
ρ3 -0.1776 **     
Model 5: Probit transformation (BMA)   0.2952 0.2748 
Intercept 0.0007       
Industrial Production (t-2) 0.6407 **     
VIX (t-2) -0.0006 ***     
Consumer Sentiment (t-2) 0.0664 **     
Macroeconomic Index (t-2) 0.3520 ***     
Model 6: Probit transformation (backward regression) 0.2952 0.2747 
Intercept 0.0005       
Imports (t-2) 0.1624 ***     
VIX (t-2) -0.0007 ***     
Consumer Sentiment (t-2) 0.0596 **     
Macroeconomic Index (t-2) 0.3988 ***     
Model 7: Fixed AR(2) process for risk factors       
as model 1         
Model 8: Fixed VAR(1) process for risk factors       
as model 1         
Model 9: Fixed VAR(2) process for risk factors       
as model 1         
Model 10: SUR-process for risk factors       
as model 1         

 
This table summarizes the OLS parameter estimates with Newey-West autocorrelation robust covariance estima-
tor (except for models 3 and 4: FGLS estimator) of the macroeconomic index equation (1) and their significances 
for various specifications. The symbols *, ** and *** denote significance at the 10%, 5% and 1% levels. For all 
specifications, the variance inflation factor has been calculated (not shown in the table). As it is always only 
slightly above one, multicollinearity between the explanatory variables can be ruled out. For model 3 and 4 we 
cannot specify the coefficient of determination as it is not well-defined in those models and, thus, cannot be in-
terpreted as the (maximum) fraction of explained variance by systematic risk factors. 
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Table 4: Estimates of the risk factor processes 
  Parameters R2 Adjusted 

R2 
Applied  
specification 

Model 1: Baseline specification 
Industrial Production 
(t-2) 

Intercept 0.0003  0.0752 0.0686 AR(1)# 

t-1 0.2734 ** 
VIX (t-2) Intercept 0.0038   0.0481 0.0343 AR(2) 

t-1 -0.0313  
t-2 -0.2178 *** 

Consumer Sentiment 
(t-2) 

Intercept -0.0002  0.0566 0.0429 AR(2) 
t-1 0.0296  
t-2 -0.2368 *** 

Model 2: Baseline specification without macroeconomic index (t-2) as explanatory variable 
as model 1             
Model 3: FGLS-estimator (AR(1) process for residuals) 
as model 1             
Model 4: FGLS-estimator (AR(3) process for residuals) 
as model 1             
Model 5: Probit transformation (BMA) 
as model1             
Model 6: Probit transformation (backward regression) 
Imports (t-2) Intercept 0.0014   0.08288 0.0696 AR(2)# 

t-1 0.0690   
t-2 0.2708 ** 

VIX (t-2) as model 1 

Consumer Sentiment 
(t-2) 

as model 1 

Model 7: Fixed AR(2) process for risk factors 
Industrial Production 
(t-2) 

Intercept 0.0002   0.1179 0.1052 AR(2) # 
t-1 0.2144 * 
t-2 0.2152 *** 

VIX (t-2) as model 1 

Consumer Sentiment 
(t-2) 

as model 1 

Model 8: Fixed VAR(1) process for risk factors 
Industrial Production 
(t-2) 

Intercept 0.0003   0.1000 0.0804 VAR(1) # 
Industrial Production (t-3) 0.2873 ** 
VIX (t-3) 0.0002 * 
Consumer Sentiment (t-3) 0.0153  

VIX (t-2) Intercept 0.0388   0.0306 0.0095 VAR(1) 
Industrial Production (t-3) -112.2576  ** 
VIX (t-3) -0.0228  
Consumer Sentiment (t-3) -0.6026   
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Table 4: Estimates of the risk factor processes (continued) 
Consumer Sentiment 
(t-2) 

Intercept -0.0009   0.0987 0.0791 VAR(1) 
Industrial Production (t-3) 1.3917  ** 
VIX (t-3) -0.0031 *** 
Consumer Sentiment (t-3) 0.0152  

Model 9: Fixed VAR(2) process for risk factors 
Industrial Production 
(t-2) 

Intercept 0.0002   0.1704 0.1333 VAR(2) # 
Industrial Production (t-3) 0.2217 *** 
Industrial Production (t-4) 0.2461 *** 
VIX (t-3) 0.0002  
VIX (t-4) -0.0002  
Consumer Sentiment (t-3) 0.0035  
Consumer Sentiment (t-4) 0.0038  

VIX (t-2) Intercept 0.0504   0.0794 0.0382 VAR(2) 
Industrial Production (t-3) -103.5955 *  
Industrial Production (t-4) 1.8514   
VIX (t-3) -0.0363  
VIX (t-4) -0.2038 ** 
Consumer Sentiment (t-3) -5.3499   
Consumer Sentiment (t-4) 7.1600   

Consumer Sentiment 
(t-2) 

Intercept -0.0008   0.1638 0.1264 VAR(2) 
Industrial Production (t-3) 1.7107 ***  
Industrial Production (t-4) -0.5887   
VIX (t-3) -0.0032 *** 
VIX (t-4) -0.0007  
Consumer Sentiment (t-3) 0.0258  
Consumer Sentiment (t-4) -0.2613 *** 

Model 10: SUR process for risk factors 
Industrial Production 
(t-2) 

Intercept 0.0003   0.0733 0.0666 SUR-AR(1) 
t-1 0.3164 *** 

VIX (t-2) Intercept 0.0028   0.0469 0.0331 SUR-AR(2) 
t-1 -0.0656  
t-2 -0.2174 *** 

Consumer Sentiment 
(t-2) 

Intercept -0.0002   0.0562 0.0425 SUR-AR(2) 
t-1 0.0458  
t-2 -0.2252 *** 

 
This table summarizes the OLS parameter estimates (except for model 10: SUR process) of the risk factor pro-
cesses and their significances. The symbols *, ** and *** denote significance at the 10%, 5% and 1% level. 
When the minimal p -value of the Godfrey-Breusch test (up to a lag of four) is below 5%, the Newey-West es-
timator is used instead of the OLS estimator (denoted by #).  

 

After having applied the Bayesian model averaging approach, we include the two-period 

lagged variables industrial production, VIX and consumer sentiment as well as the two-period 

lagged macroeconomic index itself as explanatory variables in the baseline specification (see 
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Table 3).32 The explained variance of the model is 27.7% and the adjusted 2R  is 25.6%. The 

signs of the coefficients of the explanatory variables in the baseline specification are econom-

ically reasonable. A positive sign implies that increasing risk factor realizations go along with 

increasing index realizations and, hence, decreasing default probabilities (see (2)), and vice 

versa. As an increase in industrial production as well as higher values for consumer sentiment 

can usually be observed in economically good times due to the rise in demand, the estimated 

positive signs of the regression coefficients of the explanatory variables are in line with our 

intuition. At the same time, a negative sign for the coefficient of the variable VIX coincides 

with our intuition, as increased market volatility is due to investor uncertainty. Consequently, 

a decline in the macroeconomic index at high levels of the VIX is plausible. For the modified 

models 2 to 10, the signs of the estimated regression coefficients are also in line with our intu-

ition. The adjusted 2R  ranges from 15.5% to 27.5%. The best fit in terms of the adjusted 2R  

show model 5 and model 6 with a probit transformation of the S&P/Experian Consumer Cred-

it Default Composite Index. 

 

Using the information criteria AIC for selecting the order of the AR processes for the risk fac-

tors,33 we effectively obtain risk factor processes of order one and two (see Table 4). The 

specification of the AR processes has an influence on how long it takes until an initial shock 

vanishes. The 2R  ranges from 3% to 17% and the values for the adjusted 2R  are between 1% 

and 13.3%. 

 

In Section 2.1, we assumed that the covariances between the error terms of the index equa-

tions (see (1)) and the error terms of the risk factor equations (see (3)) are equal to zero 

( , , 0u v v uΣ = Σ = ). Deviating from this assumption would have two implications. First, when 

doing the stress simulations for the future default probabilities, a non-zero covariance would 

have to be considered when sampling from the conditional normal distribution (see (6) and 

(7)) for the remaining error terms. Of course, this could have an influence on the simulated 

stress default probabilities. Second, the assumption , 0u vΣ ≠  would directly cause an endoge-

neity problem in the index equation (1). When the error term su  of sector s  is correlated with 

the error term iv  of any risk factor i , this implies ( , ) 0i sCorr x u ≠ . As a consequence, the 

OLS estimator for the parameters ,0 ,,...,s s Iβ β  of the index equation would be biased and in-
                                                 
32 To ensure stationarity, we compute logarithmic returns of the variables industrial production and consumer 
sentiment and first differences of VIX and the macroeconomic index. 
33 Except for model 7 where we employ a fixed lag number of two. 
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consistent. In many studies on stress testing that employ the CPV model, the possibility 

, 0u vΣ ≠  is not directly excluded, but the issue of endogeneity is rarely explicitly addressed.34 

 

As we only assumed , , 0u v v uΣ = Σ =  and as an endogeneity problem might exist even if this 

assumption would be true (for example because of missing correlated variables in the index 

equation), we test for endogeneity of each of the explanatory variables (industrial production 

( 2t − ), VIX ( 2t − ) and consumer sentiment ( 2t − )) in our baseline specification (model 1). 

For this purpose, the Hausman test is employed. To perform this test, we need instrument var-

iables that are strong and exogenous. First, as in Schechtman and Gaglianone (2012), we use 

the risk factors itself with a further lag (compared to the baseline specification) as instrument 

variables. However, the lagged variables VIX ( 3t − ) and consumer sentiment ( 3t − ) prove to 

be weak instrument variables because their F -statistics are 0.11 and 0.08, respectively. To 

find strong instrument variables (that means F -statistics larger than 10) for the VIX ( 2t − ) 

and for the consumer sentiment ( 2t − ), (further) lagged and contemporaneous ( 2t − ) exoge-

nous variables of Table 1 are tried. Two contemporaneous variables are found to be strong in-

strument variables for VIX ( 2t − ).35 For consumer sentiment ( 2t − ), one two period time-

lagged variable ( 4t − ) is identified as a strong instrument variable.36 All these strong instru-

ment variables were used for performing the Hausman test for endogeneity of the explanatory 

variables of the baseline specification (model 1).37 For all risk factors in the baseline specifi-

cation the null hypothesis of exogeneity could not be rejected. Thus, endogeneity and biased 

parameter estimates seem to be no problem in the baseline specification. 

 

On the left hand side of Figure 2, the realized first differences of the macroeconomic index 

are compared with the in-sample (07/2004 to 08/2016) forecasted first differences of the mac-

roeconomic index. On the right hand side, the realized default rates are compared with the 

out-of-sample (09/2016 to 12/2017) predictions of the default probabilities (based on (1) and 

(2)). We only show the models with the highest (model 3: FGLS estimator (AR(1) process for 

residuals)) and lowest (model 2: Baseline specification without macroeconomic index (t-2) as 

explanatory variable) forecasted default probability at the risk horizon of one year. For the in-

                                                 
34 See, for example, Boss (2002) or Virolainen (2004). An exception is Schechtman and Gaglianone (2012). 
35 These are the S&P 500 ( 2t − ) and the USD/GBP exchange rate ( 2t − ). 
36 This is the variable VIX ( 4t − ). 
37 The instrument variable parameter estimates needed for the Hausman test statistic are computed using two 
stage least squares (2SLS). The Hausman test is repeated for the contemporaneous instrument variables S&P 500 
( 2t − ) and USD/GBP exchange rate ( 2t − ). Following the same procedure, the null hypothesis of exogeneity 
could not be rejected. 

22



 

sample predictions of the first differences in the macroeconomic index (monthly changes), the 

observed risk factor realizations of each model are inserted into (1) and the error term is set 

equal to its mean zero. As Figure 2 shows, the in-sample performance of the models estimated 

on the full data sample is not brilliant, but, at least, the downward peak during the crisis is re-

flected. For the out-of-sample prediction, the mean forecasted default probabilities in the non-

stress case are employed.38 

 

Figure 2: Realized versus in-sample forecasted first differences in the macroeconomic 

index and realized versus out-of-sample forecasted default probabilities 

 

 
 
On the left hand side, this figure shows the realized first differences of the macroeconomic index compared with 
the in-sample (07/2004 to 08/2016) forecasted first differences of the macroeconomic index. On the right hand 
side, the realized default rates are compared with the out-of-sample (09/2016 to 12/2017) predictions of the de-
fault probabilities (based on (1) and (2)). We only show the models with the highest (model 3: FGLS estimator 
(AR(1) process for residuals)) and lowest (model 2: Baseline specification without macroeconomic index (t-2) as 
explanatory variable) forecasted default probability at the risk horizon of one year. For the in-sample predictions 
of the first differences in the macroeconomic index (monthly changes), the observed risk factor realizations of 
each model are inserted into (1) and the error term is set equal to its mean zero. For the out-of-sample prediction, 
the mean forecasted default probabilities in the non-stress case are employed. 

 

Based on one million forecasts of the default probabilities at a risk horizon of 12T +  

(08/2017), Table 5 shows the mean deviation (MD) between the forecasted default probabili-

ties 12
forecasted

TPD +  and the realized default rates 12
realized
TPD +  as well as the mean squared error 

( )MSE : 

                                         12 12 12
forecasted realized

T T T TMD E PD PD F+ + +
 = −  ,                   (21) 

                                                 
38 The realized default rates for the periods 09/2016 to 12/2017 are taken from S&P Dow Jones Indices (2018). 
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                                           ( )2

12 12 12
forecasted realized

T T T TMSE E PD PD F+ + +
 = −  

,    (22) 

where TF  denotes the available information up to time T = 08/2016. Out-of-sample, the best 

performing models (in terms of mean squared errors) are the baseline specification and the 

baseline specification without macroeconomic index ( 2t − ) as explanatory variable (models 1 

and 2). Evaluating the out-of-sample performance based on the mean deviation, models 3 and 

8 are leading. However, if we consider the 2R  and the adjusted 2R as a measure of in-sample 

forecasting capability, model 2 is the worst performing model. Thus, no specification is clear-

ly dominating the other specifications. 

 

Table 5: Out-of-sample performance for a risk horizon of one year 

  MD MSE 
Model 1: Baseline specification -0.0144% 3.17E-06 
Model 2: Baseline specification without macroeconomic index (t-2)  
as explanatory variable -0.0235% 2.00E-06 

Model 3: FGLS-estimator (AR(1) process for residuals) -0.0035% 4.91E-06 
Model 4: FGLS-estimator (AR(3) process for residuals) -0.0145% 4.56E-06 
Model 5: Probit transformation (BMA) -0.0112% 4.09E-06 
Model 6: Probit transformation (backward regression) -0.0087% 4.62E-06 
Model 7: Fixed AR(2) process for risk factors -0.0127% 3.28E-06 
Model 8: Fixed VAR(1) process for risk factors -0.0057% 3.61E-06 
Model 9: Fixed VAR(2) process for risk factors -0.0093% 3.61E-06 
Model 10: SUR-process for risk factors -0.0135% 3.22E-06 
Model 11: Three standard deviations stress scenario -0.0143% 3.18E-06 
Model 12: Mahalanobis-based stress scenario (no (cross) autocorrelation) -0.0143% 3.19E-06 

 
This table shows the mean deviation (in percentage points) between the forecasted default probabilities and the 
realized default rates and the mean squared error at a risk horizon of one year ( 12T + ). Expectations are based 
on one million simulated forecasts of the default probabilities in each period. 
 
 

3.2 Stress default probabilities 
We simulate paths of PDs for the twelve models considered (see Table 2) and evaluate these 

paths after one, two and three years. Then, we assess model and estimation risk based on the 

discrepancies between the forecasted PDs in the different models. 

 

The results of the simulation are presented in Table 6. Specifically, the table shows the ex-

pected and unexpected (99.9% quantile39) PDs of all twelve models for the non-stress and 

                                                 
39 The 99.9% quantile of the empirical distribution function of the forecasted default probabilities is a much 
more prudent measure for the PD. 
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stress scenarios (i.e., separate shocks in industrial production, VIX and consumer sentiment) 

for risk horizons of one, two and three years. 

 

All twelve models yield expected non-stress PDs between 0.86% and 0.88% for a risk horizon 

of one year. This is a plausible range given that the last observed PD in 08/2016 is 0.85%. 

When we expand the risk horizon to two or three years, the differences in forecasted PDs be-

tween the models remain very low. However, the discrepancies between the models become 

more evident in the stress scenarios. For example, a shock in the industrial production trans-

mits to expected stress PDs at a risk horizon of one year between 1.03% (model 4) and 1.59% 

(model 9). 

 

When comparing the individual models with each other, we rely on a measure which is simi-

lar to the EBA’s proceeding in the EU-wide stress tests. More specifically, we focus on the 

differences of the stress and the non-stress PDs across the individual models. This is similar to 

computing multipliers for converting non-stress PDs to stress PDs. In this regard, though the 

absolute difference between the expected stress PDs resulting from the different models may 

seem to be low, we have - in relative terms - an increase compared with the non-stress PDs 

between +19% and +82% (for a shock in the industrial production and a risk horizon of one 

year). This is a substantial dispersion across the models. The results for longer risk horizons 

corroborate these findings. When transmitting a shock in the industrial production over a risk 

horizon of three years, the expected default probability ranges between 1.00% (model 11) and 

1.59% (model 9) corresponding to relative increases of +20% and +87%. For the other risk 

factors (VIX, consumer sentiment), the dispersion across the models is smaller. 

 

The results for the unexpected stress PDs confirm the high discrepancies between the twelve 

models in relative terms. For the sake of comparison with the previous results, we exemplarily 

describe the results of the scenario with a shock in the industrial production which again 

yields the largest dispersion across the specifications. The models forecast unexpected stress 

PDs between 1.88% (model 11) and 2.92% (model 9) for a one-year risk horizon - these num-

bers correspond to an increase between +18% and +76% compared with the non-stress sce-

nario of the same models. When extending the risk horizon to three years, the discrepancies 

remain substantial. The shock in industrial production leads to unexpected default probabili-

ties between 2.59% (model 2) and 5.03% (model 9) which correspond to relative increases be-

tween +39% and +82%. The results for shocks in the VIX or consumer sentiment confirm 
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these results, albeit the discrepancies between individual models are smaller. This underpins 

the importance of selecting relevant risk factors.40 

                                                 
40 For example, the EBA provides in its stress test methodology shock scenarios consisting of various risk fac-
tors. However, banks are not required to include all of these risk factors in their stress test model for credit risk. 
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Table 6: Forecasted default probabilities for the full data sample 

Risk horizon of one year (T+12) 

Non-Stress Industrial Production (t-2) VIX (t-2) Consumer Sentiment (t-2)
Model 1: Baseline model 0.87% 1.21%  (39.54%) 0.98%  (12.35%) 0.94%  (7.74%)
Model 2: Baseline model without macroeconomic index (t-2) as explanatory variable 0.86% 1.20%  (40.00%) 0.93%  (7.84%) 0.89%  (3.33%)
Model 3: FGLS-estimator (AR(1) process for residuals) 0.88% 1.09%  (24.41%) 0.93%  (5.94%)
Model 4: FGLS-estimator (AR(3) process for residuals) 0.87% 1.03%  (18.50%) 0.92%  (5.89%)
Model 5: Probit transformation (BMA) 0.87% 1.27%  (45.75%) 1.00%  (14.42%) 0.95%  (9.20%)
Model 6: Probit transformation (backward regression) 0.87% 1.29%  (47.30%) 1.02%  (16.89%) 0.99%  (12.84%)
Model 7: Fixed AR(2) process for risk factors 0.87% 1.32%  (52.10%) 0.97%  (11.78%) 0.93%  (6.54%)
Model 8: Fixed VAR(1) process for risk factors 0.88% 1.44%  (63.94%) 0.99%  (12.61%) 1.00%  (13.95%)
Model 9: Fixed VAR(2) process for risk factors 0.87% 1.59%  (81.75%) 0.99%  (13.51%) 0.96%  (9.83%)
Model 10: SUR-process for risk factors 0.87% 1.23%  (41.80%) 0.98%  (12.51%) 0.94%  (7.81%)
Model 11: Three standard deviations stress scenario 0.87% 1.04%  (19.59%) 0.94%  (8.37%) 0.93%  (6.63%)
Model 12: Mahalanobis-based stress scenario 0.87% 1.31%  (50.27%) 1.19%  (36.80%) 1.13%  (29.47%)

Mean

 
 

Non-Stress Industrial Production (t-2) VIX (t-2) Consumer Sentiment (t-2)
Model 1: Baseline model 1.59% 2.20%  (38.57%) 1.78%  (12.22%) 1.71%  (7.58%)
Model 2: Baseline model without macroeconomic index (t-2) as explanatory variable 1.39% 1.93%  (38.20%) 1.50%  (7.88%) 1.44%  (3.25%)
Model 3: FGLS-estimator (AR(1) process for residuals) 1.83% 2.27%  (23.53%) 1.94%  (5.77%)
Model 4: FGLS-estimator (AR(3) process for residuals) 1.77% 2.10%  (18.42%) 1.88%  (6.10%)
Model 5: Probit transformation (BMA) 1.68% 2.35%  (39.74%) 1.90%  (12.91%) 1.83%  (8.56%)
Model 6: Probit transformation (backward regression) 1.75% 2.46%  (40.87%) 2.02%  (15.41%) 1.96%  (11.97%)
Model 7: Fixed AR(2) process for risk factors 1.60% 2.40%  (49.58%) 1.79%  (11.74%) 1.71%  (6.50%)
Model 8: Fixed VAR(1) process for risk factors 1.66% 2.65%  (59.85%) 1.86%  (12.18%) 1.88%  (13.17%)
Model 9: Fixed VAR(2) process for risk factors 1.66% 2.92%  (76.24%) 1.88%  (13.42%) 1.81%  (9.44%)
Model 10: SUR-process for risk factors 1.59% 2.22%  (39.50%) 1.79%  (12.35%) 1.72%  (7.79%)
Model 11: Three standard deviations stress scenario 1.59% 1.88%  (18.47%) 1.71%  (7.86%) 1.70%  (6.71%)
Model 12: Mahalanobis-based stress scenario 1.59% 2.35%  (47.75%) 2.14%  (34.37%) 2.02%  (27.20%)

99.9% quantile
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Table 6: Forecasted default probabilities for the full data sample (continued) 

Risk horizon of two years (T+24) 

Non-Stress Industrial Production (t-2) VIX (t-2) Consumer Sentiment (t-2)
Model 1: Baseline model 0.85% 1.19%  (40.07%) 0.96%  (12.50%) 0.92%  (7.82%)
Model 2: Baseline model without macroeconomic index (t-2) as explanatory variable 0.84% 1.17%  (39.94%) 0.90%  (7.83%) 0.86%  (3.29%)
Model 3: FGLS-estimator (AR(1) process for residuals) 0.87% 1.09%  (24.48%) 0.93%  (5.95%)
Model 4: FGLS-estimator (AR(3) process for residuals) 0.86% 1.02%  (18.43%) 0.91%  (5.89%)
Model 5: Probit transformation (BMA) 0.86% 1.26%  (46.32%) 0.98%  (14.48%) 0.94%  (9.20%)
Model 6: Probit transformation (backward regression) 0.87% 1.29%  (49.23%) 1.01%  (16.92%) 0.98%  (12.89%)
Model 7: Fixed AR(2) process for risk factors 0.86% 1.32%  (54.07%) 0.96%  (11.77%) 0.91%  (6.41%)
Model 8: Fixed VAR(1) process for risk factors 0.87% 1.43%  (64.81%) 0.98%  (12.67%) 0.99%  (14.01%)
Model 9: Fixed VAR(2) process for risk factors 0.86% 1.61%  (86.47%) 0.98%  (13.82%) 0.95%  (10.02%)
Model 10: SUR-process for risk factors 0.85% 1.22%  (42.31%) 0.96%  (12.62%) 0.92%  (7.81%)
Model 11: Three standard deviations stress scenario 0.85% 1.02%  (19.78%) 0.92%  (8.41%) 0.91%  (6.67%)
Model 12: Mahalanobis-based stress scenario 0.85% 1.29%  (50.74%) 1.17%  (37.09%) 1.11%  (29.65%)

Mean

 
 

Non-Stress Industrial Production (t-2) VIX (t-2) Consumer Sentiment (t-2)
Model 1: Baseline model 2.06% 2.85%  (38.15%) 2.31%  (11.72%) 2.21%  (7.24%)
Model 2: Baseline model without macroeconomic index (t-2) as explanatory variable 1.65% 2.30%  (39.02%) 1.78%  (7.86%) 1.71%  (3.70%)
Model 3: FGLS-estimator (AR(1) process for residuals) 2.51% 3.10%  (23.69%) 2.67%  (6.40%)
Model 4: FGLS-estimator (AR(3) process for residuals) 2.37% 2.80%  (18.16%) 2.50%  (5.58%)
Model 5: Probit transformation (BMA) 2.22% 3.09%  (39.17%) 2.48%  (11.89%) 2.39%  (7.66%)
Model 6: Probit transformation (backward regression) 2.39% 3.34%  (39.81%) 2.73%  (14.18%) 2.65%  (10.85%)
Model 7: Fixed AR(2) process for risk factors 2.12% 3.21%  (51.27%) 2.34%  (10.34%) 2.24%  (5.65%)
Model 8: Fixed VAR(1) process for risk factors 2.22% 3.59%  (61.68%) 2.48%  (11.73%) 2.50%  (12.45%)
Model 9: Fixed VAR(2) process for risk factors 2.25% 4.07%  (81.42%) 2.54%  (13.08%) 2.46%  (9.45%)
Model 10: SUR-process for risk factors 2.07% 2.91%  (40.72%) 2.33%  (12.60%) 2.24%  (8.21%)
Model 11: Three standard deviations stress scenario 2.06% 2.45%  (19.17%) 2.22%  (8.13%) 2.20%  (6.80%)
Model 12: Mahalanobis-based stress scenario 2.06% 3.06%  (48.40%) 2.79%  (35.36%) 2.63%  (27.53%)

99.9% quantile
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Table 6: Forecasted default probabilities for the full data sample (continued) 

Risk horizon of three years (T+36) 

Non-Stress Industrial Production (t-2) VIX (t-2) Consumer Sentiment (t-2)
Model 1: Baseline model 0.84% 1.17%  (40.07%) 0.94%  (12.52%) 0.90%  (7.83%)
Model 2: Baseline model without macroeconomic index (t-2) as explanatory variable 0.81% 1.14%  (39.92%) 0.88%  (7.86%) 0.84%  (3.27%)
Model 3: FGLS-estimator (AR(1) process for residuals) 0.87% 1.08%  (24.33%) 0.92%  (5.90%)
Model 4: FGLS-estimator (AR(3) process for residuals) 0.85% 1.01%  (18.40%) 0.90%  (5.84%)
Model 5: Probit transformation (BMA) 0.84% 1.23%  (46.16%) 0.97%  (14.38%) 0.92%  (9.07%)
Model 6: Probit transformation (backward regression) 0.86% 1.28%  (48.91%) 1.00%  (16.82%) 0.97%  (12.81%)
Model 7: Fixed AR(2) process for risk factors 0.84% 1.30%  (54.02%) 0.94%  (11.73%) 0.90%  (6.39%)
Model 8: Fixed VAR(1) process for risk factors 0.85% 1.41%  (64.74%) 0.96%  (12.66%) 0.97%  (13.96%)
Model 9: Fixed VAR(2) process for risk factors 0.85% 1.59%  (86.41%) 0.97%  (13.78%) 0.94%  (10.03%)
Model 10: SUR-process for risk factors 0.84% 1.19%  (42.32%) 0.94%  (12.62%) 0.90%  (7.81%)
Model 11: Three standard deviations stress scenario 0.84% 1.00%  (19.76%) 0.91%  (8.40%) 0.89%  (6.70%)
Model 12: Mahalanobis-based stress scenario 0.84% 1.26%  (50.78%) 1.15%  (37.16%) 1.08%  (29.61%)

Mean

 
 

Non-Stress Industrial Production (t-2) VIX (t-2) Consumer Sentiment (t-2)
Model 1: Baseline model 2.46% 3.44%  (39.94%) 2.76%  (12.23%) 2.65%  (7.85%)
Model 2: Baseline model without macroeconomic index (t-2) as explanatory variable 1.86% 2.59%  (39.28%) 2.00%  (7.66%) 1.94%  (4.01%)
Model 3: FGLS-estimator (AR(1) process for residuals) 3.15% 3.87%  (22.54%) 3.33%  (5.48%)
Model 4: FGLS-estimator (AR(3) process for residuals) 2.92% 3.44%  (17.70%) 3.08%  (5.35%)
Model 5: Probit transformation (BMA) 2.67% 3.69%  (38.36%) 3.01%  (13.11%) 2.86%  (7.29%)
Model 6: Probit transformation (backward regression) 2.94% 4.10%  (39.60%) 3.36%  (14.57%) 3.26%  (10.96%)
Model 7: Fixed AR(2) process for risk factors 2.55% 3.87%  (51.68%) 2.83%  (10.86%) 2.69%  (5.70%)
Model 8: Fixed VAR(1) process for risk factors 2.71% 4.37%  (61.38%) 3.04%  (12.18%) 3.05%  (12.69%)
Model 9: Fixed VAR(2) process for risk factors 2.76% 5.03%  (81.99%) 3.14%  (13.69%) 3.03%  (9.85%)
Model 10: SUR-process for risk factors 2.47% 3.50%  (41.36%) 2.80%  (13.17%) 2.66%  (7.68%)
Model 11: Three standard deviations stress scenario 2.46% 2.94%  (19.41%) 2.66%  (8.27%) 2.63%  (7.06%)
Model 12: Mahalanobis-based stress scenario 2.47% 3.67%  (48.88%) 3.34%  (35.33%) 3.16%  (28.21%)

99.9% quantile

 
 
This table shows the mean and the 99.9% quantile of the empirical probability distribution of the forecasted stress default probabilities for various model specifications.  
The relative deviation between the stress PDs and the non-stress PDs is indicated in parentheses. For models 3 and 4 (FGLS-estimator with AR(1) (AR(2)) process for residuals), 
there are no entries in the column ‘consumer sentiment’ because the variable consumer sentiment is not significant in the index equation (1) for these models.  
For model 6 (probit transformation with backward regression), the shock in industrial production ( 2−t ) is replaced by a shock in imports ( 2−t ).  
In the case of model 12, the stress scenarios are characterized by the most harmful (in the sense of (20)) scenarios out of those trust regions Ellτ  that correspond  
to the respective historical worst case stress of the macroeconomic variables in the baseline specification (see Section 2.1).  
The maximum (dark grey) and minimum (light grey) forecasted values of the PDs are indicated for each (non-)stress scenario.
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We have observed large relative discrepancies in the PD forecasts across the models though 

the absolute differences remained relatively low. This is because PDs decreased considerably 

after the crisis and remained at a historically low level – the last observed PD is 0.85% in 

08/2016 (see Figure 1). In order to demonstrate that the discrepancies in the models’ stress PD 

forecasts are not only existent in relative terms but also in absolute terms, we re-estimate41 all 

models using the shorter time period 7/2004 to 12/2009 as these data are dominated by the 

crisis (“stress period calibration”, see Figure 1). The PD observed in 12/2009 is 4.78% which 

is fundamentally larger than 0.85% in 08/2016. Generally, the models’ calibration remains 

stable. However, it turns out that the VIX only has an insignificant impact for the shorter data 

sample and, thus, this variable is exempted from the model. The results based on the stress pe-

riod calibration are provided in Table 7. 

                                                 
41 This means that we have to re-estimate the macroeconomic equation and the risk-factor processes using only 
data from the period 7/2004 to 12/2009. The estimation results for these processes are available upon request. 
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Table 7: Forecasted default probabilities for the subsample up to 12/2009 

Risk horizon of one year (T+12) 

Non-Stress Industrial Production (t-2) Consumer Sentiment (t-2)
Model 1: Baseline model 5.19% 6.91%  (33.03%) 5.70%  (9.74%)
Model 2: Baseline model without macroeconomic index (t-2) as explanatory variable 5.37% 7.17%  (33.46%) 5.67%  (5.49%)
Model 3: FGLS-estimator (AR(1) process for residuals) 5.25% 6.87%  (30.79%) 5.34%  (1.77%)
Model 4: FGLS-estimator (AR(3) process for residuals) 5.39% 7.23%  (34.00%) 5.46%  (1.23%)
Model 5: Probit transformation (BMA) 5.09% 6.61%  (29.84%) 5.53%  (8.66%)
Model 6: Probit transformation (backward regression) 4.89% 6.96%  (42.43%) 5.30%  (8.37%)
Model 7: Fixed AR(2) process for risk factors 5.17% 7.03%  (35.98%) 6.05%  (17.05%)
Model 8: Fixed VAR(1) process for risk factors 5.15% 7.43%  (44.38%) 5.73%  (11.32%)
Model 9: Fixed VAR(2) process for risk factors 5.13% 9.07%  (76.66%) 5.92%  (15.35%)
Model 10: SUR-process for risk factors 5.19% 7.07%  (36.22%) 5.70%  (9.94%)
Model 11: Three standard deviations stress scenario 5.19% 6.41%  (23.36%) 5.72%  (10.06%)
Model 12: Mahalanobis-based stress scenario 5.20% 7.37%  (41.88%) 6.69%  (28.81%)

Mean

 
 

Non-Stress Industrial Production (t-2) Consumer Sentiment (t-2)
Model 1: Baseline model 9.64% 12.53%  (30.03%) 10.55%  (9.43%)
Model 2: Baseline model without macroeconomic index (t-2) as explanatory variable 9.10% 11.81%  (29.79%) 9.57%  (5.20%)
Model 3: FGLS-estimator (AR(1) process for residuals) 12.29% 15.61%  (27.01%) 12.52%  (1.87%)
Model 4: FGLS-estimator (AR(3) process for residuals) 10.58% 13.83%  (30.74%) 10.73%  (1.36%)
Model 5: Probit transformation (BMA) 8.76% 10.98%  (25.33%) 9.46%  (7.96%)
Model 6: Probit transformation (backward regression) 8.77% 11.77%  (34.31%) 9.43%  (7.60%)
Model 7: Fixed AR(2) process for risk factors 9.66% 12.78%  (32.38%) 11.18%  (15.74%)
Model 8: Fixed VAR(1) process for risk factors 9.86% 13.78%  (39.75%) 10.88%  (10.34%)
Model 9: Fixed VAR(2) process for risk factors 10.18% 16.77%  (64.83%) 11.52%  (13.24%)
Model 10: SUR-process for risk factors 9.69% 12.85%  (32.63%) 10.61%  (9.48%)
Model 11: Three standard deviations stress scenario 9.65% 11.68%  (21.02%) 10.55%  (9.23%)
Model 12: Mahalanobis-based stress scenario 9.65% 13.25%  (37.36%) 12.10%  (25.44%)

99.9% quantile
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Table 7: Forecasted default probabilities for the subsample up to 12/2009 (continued) 

Risk horizon of two years (T+24) 

Non-Stress Industrial Production (t-2) Consumer Sentiment (t-2)
Model 1: Baseline model 6.46% 8.55%  (32.42%) 7.07%  (9.56%)
Model 2: Baseline model without macroeconomic index (t-2) as explanatory variable 6.66% 8.84%  (32.77%) 7.02%  (5.41%)
Model 3: FGLS-estimator (AR(1) process for residuals) 6.65% 8.64%  (29.85%) 6.77%  (1.80%)
Model 4: FGLS-estimator (AR(3) process for residuals) 6.78% 9.02%  (33.20%) 6.86%  (1.28%)
Model 5: Probit transformation (BMA) 6.15% 7.91%  (28.52%) 6.66%  (8.27%)
Model 6: Probit transformation (backward regression) 5.91% 8.47%  (43.20%) 6.36%  (7.63%)
Model 7: Fixed AR(2) process for risk factors 6.38% 8.62%  (35.24%) 7.44%  (16.73%)
Model 8: Fixed VAR(1) process for risk factors 6.42% 9.21%  (43.50%) 7.12%  (11.02%)
Model 9: Fixed VAR(2) process for risk factors 6.44% 11.45%  (77.84%) 7.42%  (15.22%)
Model 10: SUR-process for risk factors 6.45% 8.75%  (35.54%) 7.08%  (9.71%)
Model 11: Three standard deviations stress scenario 6.46% 7.94%  (22.95%) 7.09%  (9.85%)
Model 12: Mahalanobis-based stress scenario 6.46% 9.11%  (40.97%) 8.29%  (28.27%)

Mean

 
 

Non-Stress Industrial Production (t-2) Consumer Sentiment (t-2)
Model 1: Baseline model 15.42% 19.79%  (28.32%) 16.71%  (8.34%)
Model 2: Baseline model without macroeconomic index (t-2) as explanatory variable 13.79% 17.73%  (28.59%) 14.44%  (4.71%)
Model 3: FGLS-estimator (AR(1) process for residuals) 21.79% 26.94%  (23.65%) 22.25%  (2.09%)
Model 4: FGLS-estimator (AR(3) process for residuals) 16.92% 21.68%  (28.13%) 17.15%  (1.37%)
Model 5: Probit transformation (BMA) 12.87% 15.78%  (22.65%) 13.74%  (6.76%)
Model 6: Probit transformation (backward regression) 13.31% 17.67%  (32.75%) 14.15%  (6.33%)
Model 7: Fixed AR(2) process for risk factors 15.35% 19.99%  (30.22%) 17.58%  (14.55%)
Model 8: Fixed VAR(1) process for risk factors 16.18% 22.19%  (37.14%) 17.69%  (9.32%)
Model 9: Fixed VAR(2) process for risk factors 17.30% 27.60%  (59.54%) 19.38%  (12.02%)
Model 10: SUR-process for risk factors 15.70% 20.33%  (29.49%) 16.96%  (8.05%)
Model 11: Three standard deviations stress scenario 15.37% 18.44%  (19.98%) 16.78%  (9.20%)
Model 12: Mahalanobis-based stress scenario 15.41% 20.81%  (34.98%) 19.18%  (24.45%)

99.9% quantile
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Table 7: Forecasted default probabilities for the subsample up to 12/2009 (continued) 

Risk horizon of three years (T+36) 

Non-Stress Industrial Production (t-2) Consumer Sentiment (t-2)
Model 1: Baseline model 7.99% 10.50%  (31.50%) 8.73%  (9.28%)
Model 2: Baseline model without macroeconomic index (t-2) as explanatory variable 8.22% 10.84%  (31.82%) 8.66%  (5.25%)
Model 3: FGLS-estimator (AR(1) process for residuals) 8.35% 10.74%  (28.56%) 8.49%  (1.67%)
Model 4: FGLS-estimator (AR(3) process for residuals) 8.46% 11.18%  (32.12%) 8.57%  (1.28%)
Model 5: Probit transformation (BMA) 7.37% 9.36%  (27.04%) 7.95%  (7.86%)
Model 6: Probit transformation (backward regression) 7.09% 9.99%  (40.86%) 7.61%  (7.29%)
Model 7: Fixed AR(2) process for risk factors 7.82% 10.50%  (34.26%) 9.10%  (16.34%)
Model 8: Fixed VAR(1) process for risk factors 7.95% 11.30%  (42.07%) 8.81%  (10.70%)
Model 9: Fixed VAR(2) process for risk factors 8.03% 14.02%  (74.61%) 9.22%  (14.80%)
Model 10: SUR-process for risk factors 7.99% 10.74%  (34.50%) 8.74%  (9.42%)
Model 11: Three standard deviations stress scenario 7.98% 9.77%  (22.39%) 8.75%  (9.62%)
Model 12: Mahalanobis-based stress scenario 7.99% 11.16%  (39.75%) 10.18%  (27.47%)

Mean

 
 

Non-Stress Industrial Production (t-2) Consumer Sentiment (t-2)
Model 1: Baseline model 22.33% 27.84%  (24.69%) 23.87%  (6.90%)
Model 2: Baseline model without macroeconomic index (t-2) as explanatory variable 19.37% 24.43%  (26.11%) 20.13%  (3.93%)
Model 3: FGLS-estimator (AR(1) process for residuals) 32.93% 39.49%  (19.90%) 33.24%  (0.93%)
Model 4: FGLS-estimator (AR(3) process for residuals) 24.36% 30.64%  (25.78%) 24.86%  (2.03%)
Model 5: Probit transformation (BMA) 17.25% 20.72%  (20.17%) 18.34%  (6.36%)
Model 6: Probit transformation (backward regression) 18.22% 23.50%  (28.95%) 19.23%  (5.51%)
Model 7: Fixed AR(2) process for risk factors 22.05% 28.19%  (27.88%) 24.91%  (13.00%)
Model 8: Fixed VAR(1) process for risk factors 23.73% 31.48%  (32.69%) 25.59%  (7.85%)
Model 9: Fixed VAR(2) process for risk factors 25.65% 38.79%  (51.22%) 28.46%  (10.95%)
Model 10: SUR-process for risk factors 22.76% 28.75%  (26.36%) 24.33%  (6.94%)
Model 11: Three standard deviations stress scenario 22.30% 26.21%  (17.54%) 24.10%  (8.09%)
Model 12: Mahalanobis-based stress scenario 22.21% 29.12%  (31.10%) 27.11%  (22.04%)

99.9% quantile

 
 
This table shows the mean and the 99.9% quantile of the empirical probability distribution of the forecasted stress default probabilities for various model specifications. In con-
trast to Table 6, use only a stress period for calibration. The relative deviation between the stress PDs and the non-stress PDs is indicated in parentheses.  
For models 3 and 4 (FGLS-estimator with AR(1) (AR(2)) process for residuals), there are no entries in the column ‘consumer sentiment’ because  
the variable consumer sentiment is not significant in the index equation (1) for these models. For model 6 (probit transformation with backward regression), the shock in industri-
al production ( 2−t ) is replaced by a shock in imports ( 2−t ). In the case of model 12, the stress scenarios are characterized by the most harmful (in the sense of (20)) scenarios 
out of those trust regions Ellτ  that correspond to the respective historical worst case stress of the macroeconomic variables in the baseline specification (see Section 2.1).  
The maximum (dark grey) and minimum (light grey) forecasted values of the PDs are indicated for each (non-)stress scenario.
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The huge impact of model and estimation risk is also evident for the stress period calibration. 

Again concentrating on a shock in the industrial production, we have comparable expected 

non-stress PDs ranging from 4.89% to 5.39% across the models for the one-year risk horizon. 

As before, the discrepancies between the individual models become clearer if we focus on the 

stress scenarios. More specifically, a shock in the industrial production can lead to expected 

forecasted PDs between 6.41% (model 11) and 9.07% (model 9) for a risk horizon of one 

year. This is a relative increase between +23% and +77%. When we expand the risk horizon 

to three years, the expected stress PDs spread between 9.36% (model 5) and 14.02% (model 

9) implying relative increases between + 27% and +75%. The results of shocks in the con-

sumer sentiment corroborate these findings, but, again, the effect is smaller, in particular, 

when unexpected stress PDs are considered 

 

All models are designed in such a way that it is a priori not clear which model is likely to be 

more or less severe – this is an important prerequisite for our analysis. It turns out that model 

9 (VAR(2) model for the risk factors) leads, on average, to the highest stress PDs when 

shocks in industrial production are assumed. However, model 12 (Mahalanobis-based stress 

scenario) proves to be in the majority of cases the most severe one for shocks in the VIX or 

consumer sentiment.42 For producing particularly low stress PDs, no clear favourite can be 

identified in case of a shock in the industrial production. For VIX and consumer sentiment 

shocks, model 2 (baseline specification without the macroeconomic index) leads to the lowest 

PDs – particularly when unexpected PDs are considered. However, these statements are only 

true when the models are calibrated on the full data sample. Only using the crisis subsample, 

the models 5 and 6 (both based on probit transformations) tend to produce the lowest stress 

PDs for all considered shocks. This high dispersion of models which lead to the most extreme 

results suggests that our findings are not driven by one or two outlier model specifications but 

are robust. Furthermore, they show that it is hardly possible to guess ex-ante which kind of 

model will produce the most conservative or least conservative stress test results.  

 

4 Conclusions 
The main question examined in this paper is whether different theoretically and empirically 

reasonable model specifications for credit risk stress tests can provide large differences in the 

                                                 
42 We also model the Mahalanobis-based stress scenario with empirical (cross) autocorrelation of the error terms 
of the AR( k ) processes in equation (3) instead of including the assumption of no (cross) autocorrelation. The re-
sults do not differ qualitatively. 
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stress test results, i.e., for forecasted stress PDs. In sum, our findings clearly suggest that 

seemingly minor modifications in modelling assumptions or estimation techniques can have a 

significant impact (in relative and absolute terms) on the stress test results. More specifically, 

we find that a shock in a risk factor (i.e., stress event) can materialize in expected and unex-

pected PD increases between +20% and +80% - depending on the stress test model selected. 

Furthermore, it is noteworthy that the forecasts for non-stress PDs of various models are clos-

er to each other, i.e., non-stress PD forecasts seem to be less exposed to model and estimation 

risk.43 Put differently, the processing of a shock within a model and its transmission to a stress 

PD seems to be the crucial part. Both, the differentiation between expected and unexpected 

PDs as well as the length of the risk horizon for which the PDs are forecasted seem to play 

only a minor role and affect the dispersion of forecasts across the various model specifications 

only to a limited extent. These findings emphasize the importance of extensive robustness 

checks and validation processes for the underlying model when interpreting the results of 

model-based credit risk stress tests. 

 

Furthermore, it should be noted that the transformation of macroeconomic variables into risk 

parameter realizations is required in many situations. While directly employing stressed risk 

parameters to assess the idiosyncratic risk of a single bank might be appropriate, a standard-

ized system-wide stress test across various jurisdictions requires more flexibility and the use 

of directly stressed risk parameters as given by the regulatory authorities appears not to be ad-

equate for each bank. Some directly stressed risk parameters might be well suited for some ju-

risdictions or some banks, but would be inappropriate for others, for example, because of di-

verging business models. 

                                                 
43However, in contrast, Berg and Koziol (2017) find, using the German credit registry data set from 40 banks and 
17,000 corporate borrowers, that the variability of PD estimates for the same borrower across banks is large. 
This finding diverging from our results might be due to the fact the variety of models and predictor variables 
employed across banks is much larger than the marginal modifications of our baseline model 1 that we carry out. 
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