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Abstract

This paper examines the impact of intraday periodicity on forecasting realized
volatility using a heterogeneous autoregressive model (HAR) framework. We show
that periodicity inflates the variance of the realized volatility and biases jump esti-
mators. This combined effect adversely affects forecasting. To account for this, we
propose a periodicity-adjusted model, HARP, where predictors are built from the
periodicity-filtered data. We demonstrate empirically (using 30 stocks from various
business sectors and the SPY for the period 2000-2016) and via Monte Carlo sim-
ulations that the HARP models produce significantly better forecasts, especially at
the 1-day and 5-days ahead horizons.
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1 Introduction

The last two decades following the seminal work of Andersen and Bollerslev (1998a)
saw the emergence of realized volatility (RV) and related measures as proxies for the daily
observed volatility of any financial security for which intraday price observations were
available. The shift in volatility from latent to quasi-observable! meant forecasting could
now rely on simple autoregressive models. Corsi (2009)’s heterogenous autoregressive
model (HAR) emerged as the standard in forecasting univariate realized volatility.

In this paper, we show that the periodicity of intraday volatility impacts realized
volatility forecasts based on autoregressive models through two channels. The first and
most important channel is by distorting the variance of the realized volatility, which in
turn contributes to biasing the coefficients of the forecasting models. The second channel
is via the realized jumps regressors that appear in some predictive models and can also
be biased in the presence of intraday periodicity.

To address the observed impact of periodicity, we propose a new class of forecasting
models for the realized variance, HARP, where the predictors are based on data from
which periodicity is filtered out. We compare the forecasting performance of the HARP
models to several HAR models existing in the literature. To this end, we perform a
simulation exercise, followed by an empirical application based on high frequency data
for the SPDR S&P 500 ETF (SPY) and 30 S&P 500 constituents, observed over more
than 4,000 days. Both simulation and empirical exercises attest the superiority of HARP
models when forecasting 1-day to 5-days ahead. Specifically, for SPY, we observe im-
provements of over 10% for HARP models at the 1-day ahead horizon. For the average
stock, depending on the model specification, filtering data reduces the forecast losses by
approximately 2% to 4% at the 1-day horizon, and up to 5% at the 5-days horizon. At
the 1-day horizon, the highest improvements are for models with realized jumps in their
specifications, where data filtering leads to better proxies for the jump regressors.

Andersen et al. (2003) were the first to propose autoregressive models to forecast
realized volatility. They document the presence of long memory in the time series of log-
arithmic realized volatilities and suggest a fractionally integrated autoregressive approach
in modelling. Inspired by the heterogeneous autoregressive conditional heteroskedastic-
ity (HARCH) model featured in Miiller et al. (1997) and Dacorogna et al. (1997), Corsi
(2009) proposes the HAR-RV model which regresses realized volatilities on past daily,

weekly and monthly realized volatilities. This model can replicate the high levels of per-

IThe use of the term quasi here is due to the fact that all realized measures are estimates.



sistence observed in the series of daily realized volatilities, without relying on fractional
integration. Given its simple linear structure and ease in estimation, the HAR-RV has
become the most popular option in forecasting realized volatilities.

When jumps are featured in the prices of financial securities, the realized volatility
captures price variability due to both the diffusion and jump components of the price pro-
cess. Numerous robust to jumps volatility estimators have been developed in Barndorff-
Nielsen et al. (2006a), Barndorff-Nielsen and Shephard (2004, 2006b), Barndorff-Nielsen
et al. (2006b) Mancini (2004, 2009), Christensen and Podolskij (2007), Andersen et al.
(2012) and Corsi et al. (2010). In addition, there are abundant statistical procedures test-
ing for the presence of jumps in the observed path of the price process: Ait-Sahalia and
Jacod (2009), Andersen et al. (2007b), Barndorff-Nielsen and Shephard (2006a), Jiang
and Oomen (2008), Lee and Mykland (2008), Podolskij and Ziggel (2010) among others.

As the daily integrated variance and jumps have different levels of persistence, they are
likely to impact volatility forecasting in different ways. Andersen et al. (2007a) propose
adding the lagged realized daily squared jump as an extra explanatory variable to the
HAR-RV regression, leading to the HAR-RV-J model. They also propose the HAR-RV-
CJ model, which uses as predictors daily, weekly and monthly estimates of the integrated
variance and integrated squared jumps. They find that accounting for jumps generally
leads to an increase in the explanatory power. This finding is also confirmed by Corsi
et al. (2010), who perform a more exhaustive forecast exercise.

Corsi and Reno (2012) add negative returns to the previous HAR-RV specifications,
in order to account for a potential leverage effect. They show improved accuracy in fore-
casting the S&P 500. Bollerslev et al. (2016) argue that all realized measures used in
HAR models are bound to include measurement errors, which should be taken into ac-
count in modelling. The new model, abbreviated HARQ),? performs well in environments
of high variability of the measurement error.

The impact of periodicity on the dynamic properties of high frequency returns was
first examined by Andersen and Bollerslev (1997). They model intraday volatility as a
product between two components: a deterministic periodic component and the actual
volatility, i.e. a stochastic component reflecting variability in the fundamental value of
the financial security. Such specification has become the literature standard and is also
considered in our analysis. Andersen et al. (2001) and Bollerslev et al. (2000) employ sim-

ilar specifications in modelling intraday volatility in the FX market and the US Treasury

24Q” comes from the fact that the realized quarticity, as the estimated asymptotic variance of the
realized variance, is included in the specification.



bond market.

While the periodicity component does not impact the realized variance, by integrating
to 1 over the trading day, little is known on its impact on other realized measures. Dette
et al. (2016) examine the effect of periodicity on the realized bi-power variation, its
variance and covariance with the realized variance, as well as on the realized quarticity
under a restrictive DGP, where volatility is constant during the trading day. A co-product
of the present paper consists of some simulation evidence on the impact of periodicity
on the realized volatility estimation error under a realistic DGP. In the high frequency
literature, the only model-free theoretical approach accounting for intraday periodicity
is in the work by Andersen et al. (2018), who propose a statistical test for time-varying
intraday periodicity.

Intraday periodicity has also been shown to impact the jump detection ability of the
intraday jump tests proposed by Andersen et al. (2007b) and Lee and Mykland (2008),
where high levels of periodicity can increase the probability of type 1 error (Andersen
et al., 2007b). This suggests that the effects of jumps and periodicity on the price and
functions of the price can be confounding. Boudt et al. (2011) recommend applying intra-
day jump tests on returns from which periodicity is filtered out. As previous approaches
to estimate intraday periodicity are not robust to jumps in prices and do not allow the
actual volatility to vary over time, they propose non-parametric and parametric estima-
tion methods for the periodicity component that allow for such data features. These
properties make the Boudt et al. (2011) methods our choice for estimating periodicity.

There are a few other contributions in the literature that account for intraday peri-
odicity when forecasting volatility. In most cases, the periodicity component is removed
before modelling and forecasting the intraday returns. Then, the final intraday forecasts
are obtained by adding back the estimated periodicity. Martens et al. (2002) forecast in-
traday volatility using various GARCH models. Deo et al. (2006) propose a long memory
stochastic volatility model to forecast intraday returns which are further aggregated to
obtain the forecast realized variance. Chortareas et al. (2011) compare daily aggregates of
intraday volatility forecasts from a FI-GARCH model to the realized volatility forecasts
from an ARFIMA. Frijns and Margaritis (2008) use the estimated periodicity function
and the volatility level at the beginning of the trading day to forecast end-of-trading-day
volatility. While these contributions model and forecast intraday data, our models apply
to daily volatility.

The rest of the paper is structured as follows. Section 2 provides some theoretical

background on defining and forecasting the realized variance and estimating the intra-



day periodicity component of the spot volatility. Section 3 discusses the impact of the
intraday periodicity on modelling and forecasting the realized variance. Section 4 con-
tains simulation and empirical results that compare the forecasts of the HARP and HAR

models. Section 5 concludes the paper.

2 Theoretical Background

Let p(t) denote a logarithmic asset price at time ¢ belonging to a special class of

semimartingales with jumps:
dp(t) = p(t)dt + o(t) dW (t) + dL(t), t€[0,T] (1)

where p(t) is a continuous and locally bounded drift term, o () is the spot volatility which
is adapted and cadlag. W(t) is one-dimensional standard Brownian motion, while L(t)
is a jump process. Without loss of generality, we assume T to be integer, representing
the number of trading days over which we perform the analysis. Under this convention,
all integers in [0, 7] mark the end of a trading day. The volatility at time ¢ over the past
day is given by the integrated variance, IV, = [/ o?(u) du.

Within each trading day, we are able to observe a number of M observations, equally
spaced such that the time interval between any two consecutive observations is equal to
A = %.3 Let ry;, © = 1,..., M, be the ¢-th intraday return during the one-day interval
(t — 1,¢], such that r,; = p(t — 1 +4iA) —p(t — 14 (i — 1)A). In the absence of jumps,
the integrated volatility is consistently estimated by the realized variance,(Andersen and
Bollerslev, 1998a, Andersen et al., 2003) defined as RV, = Zf\il rfl If the price contains
jumps, RV is no longer consistent for the integrated variance, converging to the quadratic
variance of the price process, [, [02(u) + L?(u)] du. One needs to rely on a robust to
jumps estimator of the integrated variance, such as the realized bipower variation of
Barndorff-Nielsen and Shephard (2004) given by BV, = -1.57 S Ireallreioal-

We define the intraday volatility periodicity, f(t), as a multiplicative component to
the actual spot volatility, s(t), as in Andersen and Bollerslev (1997, 1998b), Andersen
et al. (2001), Boudt et al. (2011):

a(t) = s(t)f (1), (2a)
such that /t—l fA(u)du =1, (2b)

3Note that defining realized volatility does not require equally spaced observations. We make this
assumption here for simplicity.



so that intraday periodicity has no impact on the integrated variance, i.e. ft—1 o*(u) du =
ftt—l s?(u) du. In practice, as we observe a discrete number of observations, the condition

in equation (2b) can be written using the following Riemann integral:

M

AY fi=1, (3)

i=1
where f; is the i-th value of the function f(-) observed during a trading day. Clearly,
when A approaches 0, the Riemann sum converges to the integral in (2b).

The two components of spot volatility defined above in (2a) differ greatly. The periodic
component is a deterministic function of intraday time and reflects intraday trading
patterns. The actual spot volatility s(¢) is a stochastic process which varies in time

reflecting the available information on the asset.

2.1 Models for Forecasting Realized Volatility

In the present analysis, we consider a wide range of HAR forecasting models. Let h

be the forecasting horizon, measured in days.

HAR-RV
The original HAR-RV model proposed by Corsi (2009) is represented by the following

auto-regression:
RV iin—1 = Bo + BaRVi1 + BuRVis—1 + BmRVio2 11 + €14n-1, (4)

where RV, 1451 is the forecasted realized variance over the next h days (starting from day
t), RV, the daily lag of the realized variance, RV;_5;_; the average realized variance
over the past week, RV, 29, 1 the average realized variance over the past month, and
€:4n—1 1s the forecasting error. [y is the regression constant term, while £y4, 5, and 5,
are the coefficients corresponding to the one-day, one-week and one-month lagged values

of the realized variance.

HAR-RV-J

Andersen et al. (2007a) define the contribution of jumps to the daily quadratic vari-
ation of the price as J; = max(RV; — C,0), for t = 1,--- T, where C; is a consistent
estimator of the integrated variance. The daily lag of the jumps, J;_1, is added to the
HAR-RV forecasting regression:

RViyin—1 = Bo + BaRVi—1 + BuRVi—s51-1 + B RVi—oo—1 + BrJi—1 + €14n-1. (5)



HAR-RV-CJ
In this model, also by Andersen et al. (2007a), past lags of the estimated continuous
and discontinuous components of the quadratic variation are considered in the forecasting

regression, as follows:

RV, iin—1 = Bo + Be,Ci—1 + Be, Ci—s1-1 + Be,, Ci—224—1 + Br,Ji—1 + By Jr—54-1+

B Ji—22.4-1 + €t4n-1, (6)

where C;_1, Cy_5,-1 and Cy_99,_1 are the one-day, one-week and one-month lagged es-
timates of the integrated variance, and J;_1, J;_5,-1 and J;_22,1 are the one-day, one-
week and one-month lagged estimates of the jumps’ contribution to the quadratic vari-

ation. Following Andersen et al. (2007a), C; = RV, - I;(no jumps) + BV, - I;(jumps), for

t=1,---,T, where I,(-) is the indicator function for whether jumps were identified on
day t or not.
HARQ

As Bollerslev et al. (2016) indicate, the variance of the realized volatility measure-
ment error is a function of the integrated quarticity, ﬂil ot(u)du, t = 1,--- ,T. Their
main forecasting model accounts for the error in measuring the one-day lagged realized

variance,* as follows:

RViyin—1 = Bo+ (Ba+ BdQRQiii)RV;tfl + BwRVi—s -1 + B RVi—a21-1 + €1n—1, (7)

where RQ;_1 = M Zf\il rf_u is an estimator of the integrated quarticity.

2.2 Intraday Periodicity Estimation

We use the nonparametric methodology proposed by Boudt et al. (2011), which is
robust to the presence of jumps in the price process. We define standardized intraday
returns, 7;, ¢ = 1,..., M, as the returns r,; divided by the squared root of the realized
bipower variation estimated on a local window. For a certain intraday time, i, we observe

T standardized intraday returns.

4 Authors explain that measurement errors for the one week and one month realized volatilities do
not have a significant impact on forecasting.



The intraday periodicity estimator is defined as:

jwsp - 1WOD (5)
JASI, WSD?
Zszl Xl,ifl%i

WSD,; = ,|1.081
21:1 Xi,i

forall ¢ = 1,..., M, where WSD; is the weighted standard deviation (WSD) and y;,,

I = 1,...,T are weights computed using the shortest half periodicity estimator and

defined in appendix B.1.

3 The Impact of Periodicity on the Forecasting Re-
gression

To illustrate the impact of periodicity on the forecasting regression, we first consider
a simple DGP and compare the coefficients of the forecasting regression in the presence of
intraday periodicity to the coefficients obtained in the absence of periodicity. We further
perform this comparison for a more complex and realistic DGP by relying on simulation
evidence. Finally, we consider the impact of periodicity on forecasting via distortions in

jump tests.

3.1 The Simple AR(1) Model

We assume the daily integrated variance evolves according to an AR(1) process.
IV, = BV s + &, (9)

where t € {1,2,...,T}, |®| < 1, and ¢ is i.i.d. with Var(e;) = o2. In addition, within each
trading day, the actual spot volatility remains constant at a level equal to a fraction of
the daily integrated variance, AI'V;. If we also account for intraday periodicity, the spot
volatility for the i-th A-length window during a trading day equals AIV;f?. Assuming
no drift, the i-th return is r;; = /AIV, fyw;, where w; is i.i.d. N(0,1) and independent
of present and past values of s(-). Suppose one attempts to forecast volatility using the

following AR(1) model for the realized variance:
RV, = ¢RV,_1 + wy, (10)

with ¢ equal to the well-known formula:

cov (RV;, RV, _4)
. 11
Var (RV}) (11)

¢ =

8



In the above equations, as RV; is only a proxy for the integrated variance, it is
subject to measurement error. Bollerslev et al. (2016) show that when the true DGP for
the integrated variance is an AR(1), as in (9), the presence of measurement error implies
ARMA(1,1) dynamics for the realized volatility and not the AR(1) model specified in
(10). Estimating this latter misspecified model leads to the presence of an attenuation
bias in the estimator ¢. Since this bias affects the errors of the model in (10) and not
the autoregressive parameter in (11), our analysis is based on the AR(1) model due to
its simplicity. Moreover, as shown in Bollerslev et al. (2016), bias correction is easy to
implement, implying relatively simple extensions to our results, without modifying the
conclusions in terms of the implications of the intraday periodicity.

To assess the impact of periodicity on the value of ¢, we compute the numerator
and denominator in equation (11) in the presence/ absence of periodicity. The required
derivations are enclosed in appendix A. While the auto-covariance remains unaffected by
periodicity, we obtain the following variance formulae for the case in which periodicity is

present (equation (12a) below), compared to the case when it is absent (equation (12b)):

o? M 1
Var(RV;) = A? : _6@2 (2 Z i+ P) (12a)
=1
no 2 2 1
Var(RV; periodicity = A” - f s <Z + P) . (12b)

The main difference between the above formulae resides in the term Zf\il ft From
equation (3), we know that 7, f2 = A=' > 1. Then, X, ff > ¥ 2= A~ s0
that Var(RV;) > Var(RV})Pe”gC?iCity. This implies that ¢, as given in equation (11), is
lower —in absolute value— than the corresponding coefficient for the case of no periodicity.
Thus, ¢ understates the true correlation coefficient, ®, for two reasons. First, the presence
of measurement error leads to the variance distortion in (12b), pushing ¢ downwards from
®. Second, as shown in equation (12a), the presence of periodicity generates a further

increase in the variance of realized volatility, further reducing ¢.

3.2 Simulation Evidence

The analytic results in the previous section were possible because we relied on a simple

DGP. Extending such results to a more complex DGP can be achieved via Monte Carlo



simulation, whereby log-prices follow a one-factor stochastic volatility model with jumps:

dp(t) = ndt + f()w(t) dW,(t) + dL()
VA(t) = exp{o + 11vi ()}
(13)
dvi(t) = a, ()i (t) dt + dW,(t)
f(t)=C+ Ae™™ 4 Be ")

where W's are correlated standard Brownian motions, v(t) is a stochastic volatility factor,
and L(t) is a compound Poisson process. This model has been used by Huang and
Tauchen (2005) among others. The price drift is set n = 0.03, while for the volatility
factor, we have o, = —0.1, 79 = 0 and 7, = 0.125. Leverage p = corr(dW,,,dW,,) is set
equal to —0.62, while jumps arrive with constant intensity A = 0.4 and have sizes of up
to 30% below or above the spot volatility.

The intraday volatility function f(t¢) is defined as the sum of two exponentials, which
provide the well-known U-shape. We follow Andersen et al. (2012) and Hasbrouck (1999)
and set A =0.75, B =10.25, C = 0.89, and a = b = 10. Simulations are generated using
an Euler scheme based on 23,400 initial data points (corresponding to seconds), which we
further aggregate to lower sampling frequencies. We simulate a total of 150,000 sample
paths of length 1,000 days.

Figure 1 shows the simulated path of the log price for 1,000 trading days in the upper
left corner, along with corresponding paths for the integrated volatility and squared jumps
in the lower half of the figure. The upper right corner plots the simulated and estimated
values of the intraday periodicity function. The estimates are obtained by applying the

formulas in (8) and follow closely the U-shaped periodicity curve.
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Figure 1: Simulated log-price and its components
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Note: This figure depicts the simulated log-price, simulated and estimated intraday periodicity,
integrated volatility and jumps over 1000 days using the simulation outlined in equation (13).

We can filter out periodicity by dividing each intraday return r;; by the corresponding
periodicity estimate, fiWSD . This enables us to compare forecasts based on the original
(unfiltered) returns to forecasts where predictors are obtained from filtered returns. We
consider two forecasting models for the realized volatility. The first model is a simple
regression with only one predictor: the lagged RV based on either unfiltered or filtered
data. The second model uses as predictors the daily, weekly and monthly lags of the RV
based on either unfiltered or filtered data. In the case of unfiltered data, the first model
is equivalent to an AR(1) model for the realized variance, while the second corresponds
to the HAR-RV model specified in (4).

Figure 2 shows the estimated coefficients for the simple model obtained by relying on
filtered and unfiltered return data for different sampling frequencies. The straight line
at the top of the figure represents the “true” coefficient, defined as the AR(1) coefficient
estimated on the time series of daily quadratic variance.” The coefficient obtained when
RV relies on filtered returns is much closer to the true coefficient across all sampling

frequencies. Moreover, the gap between this coefficient and the one based on the unfiltered

5Note that the term “true” in this case is unrelated to the true DGP of the quadratic variance, given
n (13).

11



returns increases as we decrease the sampling frequency.

Figure 2: Simulated filtered vs. unfiltered AR(1) coefficients
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Note: This figure plots the true coefficient of an AR(1) model versus the estimated coefficient using
unfiltered data (squared marker) and filtered data (circled marker) across different sampling
frequencies.

Figure 3 plots the three coefficients of the second model across decreasing sampling
frequencies estimated on filtered and unfiltered data. From left to right, the first panel
of the figure corresponds to 4 from (4), the middle panel to 3, while the last panel to
Bm. The straight line in each panel represents the corresponding estimates on the daily
quadratic variance. These are referred to as “true” coefficients, as in the case of the

AR(1) model above.
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Given that HAR-RV is a multiple regression model, coefficients include RV variance
type terms in both the numerator and denominator. As a result, for this model, it is dif-
ficult to understand the direction of the impact of periodicity on coefficients. Simulation
results in figure 2 show that, even with a complex DGP as in (13), both daily and weekly
coefficients are closer to their true values once periodicity is filtered out, for almost all
sampling frequencies. Unlike the case of the simple model, coefficients are higher —in
absolute value— for unfiltered models than for filtered models. The high divergence of the
daily coefficient for the filtered model estimated on 60 seconds data can be attributed to
distortions from jumps. As jumps do not scale with the sampling frequency, their impact
on periodicity estimates is greater at higher sampling frequencies. Moreover, in general,
the filtered model coefficients show more variability across sampling frequencies due to
the measurement error from estimating periodicity. Comparisons of the monthly coeffi-
cients are inconclusive for ranking filtered and unfiltered models. For this coefficient, the

regressor is an average over 22 days of data, smoothing out the effect of periodicity.

3.3 Impact on Detected Jumps

Two of the most popular HAR models, HAR-RV-J (equation (5)) and HAR-RV-CJ
(equation (6)), use the estimated daily squared jumps as predictors. These estimates
depend on the outcome of jump tests that decide whether jumps have occurred during a
particular trading day. The most familiar test for jumps is the one proposed by Barndorft-
Nielsen and Shephard (2006a), relying on a comparison between RV and the jump robust

realized bipower variation, BVj, defined in section 2. The test statistics for this test and
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for an alternative jump test are presented in appendix B.2.

While realized variance remains unchanged under periodicity, this does not hold for
other realized-type estimators. Dette et al. (2016) derive the joint distribution of the
realized volatility and the realized bipower variation in the presence of intraday periodicity
for a simple DGP with constant intraday volatility. They show that not accounting for
periodicity in this simple context can lead to spurious jump detection.

We use simulations from the DGP in (13) to explore the impact of intraday periodicity
on spurious jump detection. We apply the Barndorff-Nielsen and Shephard (2006a) jump
test to 30,000 replications of simulated data, aggregated at sampling frequencies ranging
from 60 to 1,800 seconds. Results for the original return data and periodicity filtered data
are shown in figure 4. The left hand panel of the figure shows results for a significance
level @ = 1% and the panel on the right for a significance level of o = 5%.

Figure 4: Proportion of spurious jumps by sampling frequency for filtered and unfiltered
data

Panel A: o = 0.01 Panel B: a = 0.05
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Note: This plot graphs the proportion of spurious detection of jumps across sampling frequencies using
the BNS test, Barndorfl-Nielsen and Shephard (2006a), evaluated at the 1% and 5% significance level.

As the figure shows, the number of spurious jumps detected is higher for unfiltered
returns, result that remains valid across all sampling frequencies. Moreover, this finding

is confirmed in appendix C.1 for the case of the jump test proposed by Andersen et al.
(2012).

4 HARP Models and their Forecasting Performance

Section 3 shows that the presence of intraday periodicity can distort the results for
forecasting the realized variance based on autoregressive models. This can happen in
a direct manner, with periodicity generating biases in the coefficients of the forecasting

regressions, or indirectly by increasing the measurement error in the jump regressors.
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In this section, we introduce a new class of models to forecast the realized variance,
HARP, where the predictors rely on data from which periodicity is filtered out (the “P”
in HARP stands for periodicity-filtered). Naturally, all HAR models illustrated in section
2.1 can be transformed into HARP models by simply using filtered data to compute all
regressors. Unlike most HAR models,” HARP models are not autoregressions.” Equation
(14) below introduces the HARP-RV model, i.e. the HARP version of the HAR-RV model
given in equation (4). Similar equations can be written for the HARP versions of the rest

of the HAR models in section 4.
RVipin-1 = Bo+ BaRVEM " 4 6, RVISIT 4 B, RVELET evpna, (14)

where the superscript p—fiitered shows that the RV proxies rely on data from which peri-
odicity was pre-filtered out.

We further compare the forecasting performance of the HARP models to that of the
HAR models, using both simulation-based and empirical evidence. We demonstrate that
considerable forecasting gains can be attained by filtering data, especially at short and
medium horizons.

To evaluate the forecasting performance of the two classes of models, we use two
separate loss functions, the mean squared error (MSE) and the quasi-likelihood (QLIKE)
loss, defined in equation (15) below:

MSE(RV,, F,) = (RV, — F})?

15
QLIKE(RV,, F,) = e _ log% —1, (15)
Fy Fy

where F; is the out-of-sample forecast of the realized variance.

For forecast horizons beyond 1-day, both HARP and HAR models are adapted to
the new time scale by replacing the daily RVs on the left-hand-side with the weekly
and monthly RVs. Thus, separate models are fitted for each forecasting horizon. In the
analysis based on real data, we perform both in-sample and out-of-sample forecasts, while

the results for simulated data involve only the latter.®

4.1 Simulation Results

We rely on data simulated from the DGP in (13) to estimate all HAR models enu-
merated in section 2.1, as well as their HARP counterparts. For each 1000-day long

6The HAR-RV-CJ model is also not an autoregression.

"The HARP models resemble autoregressions where the dependent variable is measured with errors.
As the dependent variable includes periodicity, it will have a conditional distribution with the same mean
as the the periodicity-free RV, but a different variance, which is similar to having measurement errors in
the dependent variable.

8When forecasting out-of-sample, we re-fit the models each day.
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simulated path, we re-estimate the models each day on a rolling window of 350 days. For
each forecasting model in 2.1 and forecast horizon, we compute the ratio of forecast losses
for the HARP version of the model versus the HAR model. A ratio below one signals the
superiority of the model based on filtered returns. The quantiles of such ratios for the

1-day and 1-week forecasting horizons are plotted in figures 5 and 6 against the sampling

frequency.
Figure 5: Loss ratio for simulated data — h =1
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Note: The figure plots the quantiles ranging from 0.05 to 0.95 in increments of 0.05 for the MSE and
QLIKE loss ratios, for HARP versus HAR models.
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Figure 6: Loss ratio for simulated data — h =5
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Note: The figure plots the quantiles ranging from 0.05 to 0.95 in increments of 0.05 for the MSE and
QLIKE loss ratios, for HARP versus HAR models.

Generally, the quantiles of the loss ratios are more dispersed at higher sampling fre-
quencies. At lower frequencies, regressants and predictors in the forecasting equations are
affected by measurement error. The reduced dispersion of loss ratios at low frequencies
suggests that measurement error has a similar bearing on forecasts regardless on whether
based on filtered or unfiltered returns.

For the MSE, in the case of both forecasting horizons, upper quantiles take values
of around 1, while lower quantiles are below this value, indicating that the distributions
of these ratios are skewed to the left of 1. This effect is generally more pronounced
for the 5-day forecast, where the lower quantiles at 60 seconds are below 0.94 for the
HARP-RV/ HAR-RV and HARP-RV-CJ/ HAR-RV-CJ loss ratios. The asymmetries in
the distributions of HARP-RV-J/ HAR-RV-J and HARP(Q/ HARQ loss ratios are more
tempered, but maintained through most sampling frequencies. For the QLIKE loss, we
observe a similar distributional asymmetry, more pronounced for the HARP-RV/ HAR-
RV and HARP-RV-CJ/ HAR-RV-CJ ratios.

While results in figures 5 and 6 suggest the superiority of methods relying on filtered
data for the 1-day and 1-week ahead forecasts, results for 1-month ahead are unclear (see

appendix C.2). For this horizon, the distributions of the loss ratios do not show clear
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signs of asymmetry with respect to the value 1, making it difficult to rank predictions
based on filtered versus unfiltered data. At longer horizons, the forecast error has a much

bigger impact on both types of predictions, rendering data filtering less effective.

4.2 Empirical Analysis
4.2.1 Data

We use intraday price data from the TickData database for the SPDR S&P 500 ETF
(SPY) and 30 individual stocks in the S&P 500 basket. We observe a total of 4,277 trading
days between 2000 and 2016. Data is aggregated down from tick level using previous tick
interpolation and is furthered sampled every 300 seconds, leaving us with 78 observations
per day. The choice of this sampling frequency is standard in the literature, motivated
by the trade-off between bias and variance (for more details, see Ait-Sahalia et al., 2005,
Hansen and Lunde, 2006).

The intraday periodicity function is assumed not to vary from one day to another and
is estimated as described in section 2.2. Figure 7 plots the estimated periodicity for SPY
and the average estimated periodicity for the 30 S&P 500 stocks considered. Both plots
reveal the characteristic U-shape for the estimated curve. The SPY estimated periodicity
shows greater variation in comparison to the average stock periodicity, where averaging
leads to a smoother curve.

Figure 7: Intraday estimated periodicity for SPY (left) and average periodicity for all
stocks (right).
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Table 1 below reports, for each ticker in our sample, the minimum, maximum and
median values of the realized variance, the number of jumps detected and the estimated
proportion of the continuous component relative to the total RV. The left hand side of
the table reports these statistics for the unfiltered return data, and the right hand side

for periodicity-filtered returns.
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For SPY, we detect 353 jumps for unfiltered data, meaning that we identify jumps
on 8.25% of days. When data is filtered, the number of jumps drops to 281, suggesting
that 6.57% days had jumps. Results for individual stocks show high variability in the
number of jumps identified for both filtered and unfiltered data. On average, we observe
646 jumps for the unfiltered data, which decreases substantially after filtering to 416.
As shown in section 3.3, the presence of intraday periodicity can lead to spurious jump
detection. Removing the periodicity component from data can thus lead to fewer realized
jumps. Additional results on jump identification based on the test by Andersen et al.
(2012) are available in appendix C.3.

The analytic results for the simple AR(1) DGP in section 3.1 showed that periodicity
impacted the autoregressive coefficient via the variance of the realized volatility. For a
generic DGP, the asymptotic variance of the realized volatility is the integrated quar-
ticity, which can be estimated via the realized quarticity. Both theoretical and realized
quarticities are defined above in section 2.1. Figure 8 plots the SPY realized variance
and its 95% confidence bands across time for a 10-days window, starting on 2008-09-30,

differentiating again between unfiltered- and filtered -based estimates.

Figure 8: 95% confidence bands for the SPY realized variance based on unfiltered versus
filtered data as a function of time, plotted for a 10-days window, starting on 2008-09-30
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Confidence intervals obtained on the unfiltered returns are generally wider than confi-
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dence intervals obtained for filtered data. Thus, while the realized variance is unaffected
by periodicity, its higher moments are impacted by it. This empirical finding backs the
analytical and simulation results in section 3 in suggesting that periodicity alters the

distribution of the realized variance, and consequently, its forecasts.

4.2.2 Forecasting Results

In-sample Forecasts

Tables 2, 3, 4 and 5 report the regression results for all HAR and HARP models,
estimated on the entire sample, for SPY and a stock average. Estimated standard errors
are robust to heteroscedasticity and autocorrelation, as we allow for serial correlation of
up to orders 5, 10 and 44 for the 1-day, 5-days and 22-days models, respectively. We
compute both in-sample and out-of-sample R-squared coefficients, reported as RZ and
R2

00S)

where the computation of R2  is based on Campbell and Thompson (2007) and
uses over 3,000 observations. The bold R-squared coefficients are the ones bigger in the
comparison between HARP and HAR models.

In general, all tables show that for SPY, R? and R? , from HARP models are higher in
the majority of cases, irrespective of the forecasting horizon. In addition, the coefficients’
standard errors for 1-day ahead models are generally lower following filtering, across all
model specifications considered, suggesting that at short horizons, HARP models tend
to be better specified than HAR models. Finally, averaging results across stocks leads to
similar findings, with HARP models consistently outperforming HAR models.

All tables report for SPY By + Bu -+ Bm (B, + Be., + Be,, for the HAR-RV-CJ model),
which represents the level of persistence when the models are autoregressions (all HAR
except HAR-RV-CJ). For HARP models, this number gives some indication on the level
of persistence in an autoregressive model where the dependent variable is measured with
error, due to the presence of periodicity. As HARP models are not nested in the HAR
class, comparisons of persistence between the HARP and HAR models should be inter-
preted with caution. While all models show a very high degree of persistence, we observe
lower levels of persistence for all HARP models over all horizons. At the same time, the
levels of persistence in the residuals of the estimated HARP models are much lower than

for the HAR models. This confirms that HARP models are generally better specified and

explains why these models outperform HAR models in forecasting.
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Table 2: Estimated 1-, 5-, and 22- day ahead HAR(P)-RV models for SPY
and a stock average.

HAR HARP

h=1 h=5 h=22 h=1 h=5 h=22
Bo 0.095*  0.148*  0.288**  0.097*  0.148**  (.289***
s.e. (0.054)  (0.059)  (0.058)  (0.053)  (0.058)  (0.060)
By 0.246*  0.184™*  0.103"*  0.217*  0.147"*  0.089**
s.€. (0.099)  (0.052)  (0.021)  (0.089)  (0.054)  (0.026)
Bu 0.422%%*  0.347"*  (.322°*  0.435**  0.392"*  (.343"*
s.e. (0.142)  (0.102)  (0.108)  (0.142)  (0.110)  (0.124)
Bom 0.238*  0.323"*  0.290"*  0.239**  0.302"*  (.273"*
s.e. (0.097)  (0.097)  (0.085)  (0.102)  (0.103)  (0.095)
R2 0512  0.629 0.562 0.511 0.635  0.56
R?,. 0.426 0.590 0.496 0.484 0.617 0.523
Ba + Buw + Brm 0.906 0.854 0.716 0.891 0.842 0.705
Average Stocks
R 0455 0595 0582 0471  0.608  0.587
R 0.344 0.548 0499 0351 0563  0.497
Ba + Buw + B 0.891 0.845 0.740 0.861 0.815 0.710

Note: This table reports the regression coefficients, standard errors in parentheses,
and in- and out-of-sample R-squared for the HAR-RV and HARP-RV models based

on various horizons, estimated on SPY data.

The standard errors are estimated

using the Newey-West HAC estimator. The bottom panel shows the stock average
in- and out-of-sample R-squared obtained for HAR-RV and HARP-RV models of
various horizons. Bold numbers indicate the R-squared coefficients that are higher

for filtered as opposed to unfiltered models.

ko ksk

5% and 1% respectively.

For SPY, the in-sample R-squared has similar values for the HARP-RV and HAR-
RV 1-day ahead models, while for the 5- and 22-days ahead models, this coefficient is
higher when the forecast is based on filtered data. In terms of out-of-sample R-squared,
the HARP-RV model outperforms the HAR-RV model uniformly across all horizons. In
addition, for the 1-day ahead model, filtering data leads to a decrease in the standard
errors of coefficients /6/’\0 and B:i, while the standard error of B; remains at the same level.
The in-sample R-squared averaged across stocks is higher for the HARP-RV models for all

forecasting horizons, while in terms of average out-of-sample R-squared, we have higher

values for the 1-day and 5-days ahead HARP-RV models.

22

and *** denote significance at 10%,



Table 3: Estimated 1-, 5-, and 22- day ahead HAR(P)-RV-J models for

SPY and a stock average.

HAR HARP

h=1 h=5 h=22 h=1 h=5 h=22
5o 0.006*  0.149%  0.288**  0.008*  0.149*  0.289***
s.c. (0.054)  (0.058)  (0.058)  (0.053)  (0.057)  (0.061)
By 0.250%  0.189*  0.107°*  0.223  0.153"**  0.093***
s.c. (0.104)  (0.053)  (0.023)  (0.091)  (0.056)  (0.027)
B 0421 0345 0321 0.431%*  0.388***  0.340***
s.c. (0.145)  (0.103)  (0.107)  (0.142)  (0.109)  (0.122)
B 0.239%  0.325%*  0.201%*  0.242"  0.304"**  0.275*
s.c. (0.097)  (0.097)  (0.084)  (0.102)  (0.103)  (0.094)
By —0.243 —0274 —0.181 —0313 —0.308 —0.211
s.c. (0.270)  (0.195)  (0.176)  (0.227)  (0.191)  (0.167)
R, 0512  0.630 0551 0511  0.635  0.568
R2 0417 0598 0508 0480 0614  0.514
By+Bo+Bm 0910 0858 0719 0895  0.845  0.708
Average Stocks
R 0460 0599 0584 0473  0.610  0.588
R, 0.348 0552 0498 0354 0562  0.496
By+Bo+DBm 0904 0855 0742 0865  0.818  0.708

Note: This table reports the regression coefficients, standard errors in parentheses,
and in- and out-of-sample R-squared for the HAR-RV-J and HARP-RV-J models
based on various horizons, estimated on SPY data. The standard errors are estimated
using the Newey-West HAC estimator. The bottom panel shows the stock average in-
and out-of-sample R-squared obtained for the HAR-RV-J and HARP-RV-J models
of various horizons. Bold numbers indicate the R-squared coefficients that are higher
for filtered as opposed to unfiltered models. *, ** and *** denote significance at 10%,
5% and 1% respectively.

In the case of the HAR-RV-J and HARP-RV-J models, E}d is always negative, in
line with the existing literature (Andersen et al., 2007a, see). For the HARP-RV-J, 6/;1
is larger in absolute value and has smaller standard errors compared to the HAR-RV-J
model. As filtering out periodicity reduces the number of detected spurious jumps (see
section 3.3), the jump predictor for the HARP-RV-J model is less affected by measurement
error and, as a result, it is more informative. In addition, in the case of the 1-day ahead
model, we observe lower standard errors after filtering for almost all other coefficients,
ie. BAO, BAd and B;

For SPY, the in-sample R-squared coefficients are higher for the HARP-RV-J models
in the case of the 5- and 22-days horizons, while the out-of-sample R-squared is higher for
these models across all horizons. A particularly high change following filtering is observed

for the 1-day ahead model, where the out-of-sample R-squared increases from 0.417 for
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HAR-RV-J to 0.480 for HARP-RV-J. Average results for stocks show higher average in-
sample R-squared coefficients for HARP-RV-J models across all horizons. In the case of
the average out-of-sample R-squared, the superiority of filtered data is preserved for the

1-day and 5-days ahead models.

Table 4: Estimated 1-, 5-, and 22-days ahead HAR(P)-RV-CJ models for
SPY and a stock average.

HAR HARP
h=1 h=5 h=2 h=1 h=5 h=22
Bo 0.098"  0.149** 0.284** 0.101*  0.152"**  0.290"*
s.e. (0.054)  (0.053)  (0.055)  (0.052)  (0.053)  (0.058)
Bea 0.241%  0.172°% 0100  0.218**  0.142"**  0.088"*
s.e. (0.105)  (0.051)  (0.022)  (0.092)  (0.053)  (0.026)
Be., 0448  0.399*  0.350™* 0440  0.412°*  0.350"**
s.e. (0.149)  (0.098)  (0.117)  (0.142)  (0.102)  (0.123)
B 0.235"*  0.306™*  0.262*  0.247*  0.307*  0.275"**
s.c. (0.087)  (0.091)  (0.089)  (0.099)  (0.100)  (0.096)
B, 0255 0379 0100 0107 0280  0.051
s.e. (0.246)  (0.329)  (0.142)  (0.201)  (0.326)  (0.119)
B, —0.961  —2.368" —0.941 —0542 —1.917" —0.570
s.c. (0.603)  (1.179)  (0.790)  (0.493)  (1.134)  (0.549)
B 0522 1520 2010 0163 0873  0.567
s.e. (1.735)  (2.054)  (2.051)  (1.460)  (1.806)  (1.708)
R, 0514 0641 0554 0512 0643  0.570
R 0407 058 0485 0468  0.615  0.526

008

B, + Bon + Be,. 0924 0878 0712 0.905  0.862  0.714

Average Stocks

R 0.462 0.604 0.592 0475 0613  0.595

18

R 0.312 0.554 0.508 0.338 0.565 0.507

00S

Be,+ Bo + Bo. 0897 0839 0.725 0857 0.802  0.693

Note: This table reports the regression coefficients, standard errors in parentheses,
and in- and out-of-sample R-squared for the HAR-RV-CJ and HARP-RV-CJ models
based on various horizons, estimated on SPY data. The standard errors are estimated
using the Newey-West HAC estimator. The bottom panel shows the stock average in-
and out-of-sample R-squared obtained for the HAR-RV-CJ and HARP-RV-CJ models
of various horizons. Bold numbers indicate the R-squared coefficients that are higher

* kk

for filtered as opposed to unfiltered models. *, ** and *** denote significance at 10%,
5% and 1% respectively.

In line with our findings for the HARP-RV-J model, for the HARP-RV-CJ model, we
notice an important reduction in the standard errors for the coefficients of all realized
jumps repressors across all forecasting horizons in comparison to the unfiltered model.
For the 1-day ahead model, the standard errors of @), Bo\d and B/c: also show a substantial

decrease after filtering.
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The HARP-RV-CJ models generally show higher in-sample and out-of-sample R-
squared for SPY and on average across all stocks. In particular, for SPY, the out-of-
sample R-squared shows the highest increase after data filtering for this class of models
compared to all other HARP models. The most extreme change occurs for the 1-day
ahead model, where the out-of-sample R-squared increases from 0.407 for HAR-RV-CJ
to 0.468 for HARP-RV-CJ.

Table 5: Estimated 1-, 5-, and 22-days ahead HAR(P)Q models for SPY
and a stock average.

HAR HARP
h=1 h=5 h=2 h=1  h=5 h=22
Bo —0.029 0072 0218 —0.002  0.077  0.228"*
s.e. (0.055)  (0.064)  (0.061)  (0.052)  (0.064)  (0.062)
Ba 0.658"**  0.436™*  0.334**  0.578"* 0407  0.311"
s.e. (0.097)  (0.116)  (0.101)  (0.083)  (0.105)  (0.077)
Buo 0.306*  0.275*  0.257***  0.305  0.299"**  0.264"*
s.e. (0.127)  (0.101)  (0.091)  (0.137)  (0.112)  (0.115)
B 0129 0257  0.230* 0159  0.244*  0.224*
s.e. (0.116)  (0.112)  (0.101)  (0.102)  (0.109)  (0.101)
Bao —0.010"* —0.006"* —0.005*** —0.008"* —0.006*** —0.005"**
s.e. (0.002)  (0.002)  (0.002)  (0.001)  (0.001)  (0.001)
2 0539 0644 0578 0535  0.653  0.585
R? 0544 0628 0466 0561  0.665  0.463

008
-~

Ba + B; + B;L 1.093 0.968 0.821 1.042 0.950 0.798

Average Stocks
—2

R, 0.472 0.610 0596 0485  0.622  0.603
R, 0.375 0.551 0495 0399 0567  0.489

B+ Bu + B 0.977 0.910 0.793 0.937 0.887 0.774

Note: This table reports the regression coefficients, standard errors in parentheses,
and in- and out-of-sample R-squared for the HARQ and HARPQ models based
on various horizons, estimated on SPY data. The standard errors are estimated
using the Newey-West HAC estimator. The bottom panel shows the stock average
in- and out-of-sample R-squared obtained for the HARQ and HARP(Q models of
various horizons. Bold numbers indicate the R-squared coefficients that are higher
for filtered as opposed to unfiltered models. *, ** and *** denote significance at 10%,
5% and 1% respectively.

Standard errors for @, the estimated coefficient for RQ; / 2RVt, as illustrated in equa-
tion (7), are lower for the HARPQ model than for the HARQ model. As seen in section
3, periodicity impacts the estimated asymptotic RV variance, RQ);, leading to additional
distortions to results for this model. Pre-filtering data diminishes the periodicity-related
bias in R@); and thus leads to more precise estimates of 8. For the 1-day ahead model,

we also observe lower standard errors of 3\07 [?‘d and B; for the HARPQ model. Moreover,

25



filtered models outperform unfiltered models in 5 out of 6 cases, for SPY, as well as on
average across stocks.

Appendix D reports, as a robustness check, the results obtained for the HAR(P)-RV-J
and HAR(P)-RV-CJ models where the Andersen et al. (2012) test was used to identify

jumps.

Out-of-sample Forecasts

We compute out-of-sample forecast losses for all HAR and HARP models. The ratios
of the losses from HARP versus HAR models for the 1-day, 1-week and 1-month horizons
are reported in tables 6, 7, and 8. In each table, the top panel shows results for the SPY
and the average across all stocks. Bold numbers indicate that filtered models outperform
their counterpart. We further compare the performance of HARP models to that of
HAR models by applying the Diebold and Mariano (1995) test. Let €} be the errors
from one of the HAR models in equations (4), (5),(6) and (7) and €/ errors from these
models” HARP counterparts. Further, let L(-) denote one of the loss functions in (15)
and d'// = L(e¥) — L(e]). Then, the Diebold and Mariano (1995) test statistic is defined

as: . P
1 U
T Zt:l dy

DM =
JVa (F 2L )

— N(0,1), (16)

d*7 sample

where Var (% Zle d:f/ ! > is a consistent estimator for the variance of the
mean. We run a right tailed test, where rejection means that the average loss from
HARP models is lower than the average loss from HAR models. In the tables, starred
numbers indicate significance at 5% significance level.

The bottom panel in all tables states the number of stocks for which HARP models
outperform HAR models based on the Diebold and Mariano (1995) test applied at a 5%
significance level. For the models including jumps, we present results relying on both tests
for jumps considered in this paper, the classic Barndorff-Nielsen and Shephard (2006a)

test, based on the realized bipower variation (BV columns), as well as the Andersen et al.

(2012) test, relying on the median realized variance (MedRV columns).
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Table 6: Out-of-sample forecast losses — h =1

BV MedRV
HARP-RV/ HARPQ/ HARP-RV-J/ HARP-RV-CJ/ HARP-RV-J/ HARP-RV-CJ/
HAR-RV HARQ HAR-RV-J HAR-RV-CJ HAR-RV-J HAR-RV-CJ

MSE 0.898" 0.962 0.891* 0.897* 0.894* 0.896**
SPY  QLIKE 0998 1.317 0.995 0.988" 0.985" 0.985*
A r VSE 0.983 0.963 0.987 0.972 0.978 0.973
ve. Stocks QLIKE  0.964 0.956 0.975 0.978 0.974 0.973
Diebold & Mariano Test — Individual Stocks
MSE 11 9 11 12 8 8
QLIKE 20 20 18 10 17 15

Note: This table reports the ratio of the losses from HARP versus HAR models for various forecasting horizons.
Bold numbers indicate that HARP models outperform their HAR counterparts. Doubly starred highlights the HARP
models whose losses are significantly lower than their HAR model counterpart based on the Diebold and Mariano test
at the 5% level. The entries in the bottom panel are the number of stocks for which the HARP model is significantly
better than its HAR model counterpart at the 5% significance level.

In the case of the 1-day models for SPY, all except one loss ratios take values below
1, with the MSE ratios ranging just above 0.89. For both loss functions, the lowest ratios
are observed for the models with realized jumps in their specifications (last four columns).
This is in line with the in-sample results for SPY in paragraph 4.2.2, where we observed
lower standard errors at 1-day ahead and higher R-squared coefficients for the HARP-
RV-J and HARP-RV-CJ models in comparison to their HAR counterparts. As shown
in section 3, periodicity impacts HAR models with jumps via two channels: distortions
in the higher moments of the integrated variance estimators and measurement error in
the jump regressor. Filtering out periodicity addresses distortions via both channels and
leads to better specified models and improved forecasts at short horizons.

When using the MSE loss criterion, the Diebold and Mariano (1995) test indicates a
significant gain (at 5% significance level) from forecasting the SPY RV based on filtered
data for all but one models. When the QLIKE loss criterion is used, we find significance
for all but one models with jumps in their specification.

The average loss ratios for all considered stocks and all models are below 1, indicating
that filtering periodicity helps to improve forecasting for the majority of stocks. The
second line in the bottom panel shows that the MSE from HARP models is significantly
lower than the MSE from HAR models for a number of 8 to 12 stocks, and an average
of 10 stocks.” The last line of the bottom panel shows that the QLIKE loss is lower for
HARP models for a number of stocks ranging between 10 and 20, with a high average of

17, which is over half the number of stocks considered.

9Please note that failure to reject in this case does not imply superiority of HAR models, but just
that differences are not statistically significant.
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Table 7: Out-of-sample forecast losses — h =5

BV MedRV
HARP-RV/ HARPQ/ HARP-RV-J/ HARP-RV-CJ/ HARP-RV-J/ HARP-RV-CJ/
HAR-RV HARQ HAR-RV-J HAR-RV-CJ HAR-RV-J HAR-RV-CJ

MSE 0.934" 0.904* 0.961* 0.937" 0.936 0.921
SPY . QLIKE  0.994 0.932* 0.998 0.968" 0.983 0.951*
Ave. Stock MSE 0.964 0.961 0.980 0.976 0.969 0.953
Vg Stocks  OTIKE  0.978 0.983 0.985 0.993 0.984 0.980
Diebold & Mariano Test — Individual Stocks
MSE 14 11 10 8 10 11
QLIKE 13 14 13 8 12 14

Note: This table reports the ratio of the losses from HARP versus HAR models for various forecasting horizons.
Bold numbers indicate that HARP models outperform their HAR counterparts. Doubly starred highlights the HARP
models whose losses are significantly lower than their HAR model counterpart based on the Diebold and Mariano test
at the 5% level. The entries in the bottom panel are the number of stocks for which the HARP model is significantly
better than its HAR model counterpart at the 5% significance level.

For the 5-days models, all loss ratios are below 1 in the case of SPY. Moreover, the
Diebold and Mariano (1995) test shows that the first four MSE losses are significantly
lower for HARP models in comparison to HAR models. For the QLIKE loss criterion, we
observe significantly lower losses for the HARPQ model and both HARP-RV-CJ models
(BV and MedRV) in comparison to the HAR counterpart models. In the case of models
with jumps in their specifications (last four columns), while loss ratios are always below
1, they are not lower than the ratios for the other models, which was the case when
forecasting 1-day ahead. This is likely due to the fact that the impact of periodicity on
jump predictors is diluted when they aggregate data over several days.

Across all models, the average loss ratios for all considered stocks are below 1, indi-
cating, just as for the 1-day ahead model, that filtering periodicity is beneficial for the
majority of stocks. Finally, the bottom panel shows that the MSE is significantly lower
in the case of HARP models for a number of stocks ranging between 8 and 14, with
an average of 11 stocks. In addition, the HARP QLIKE loss is significantly lower for a

number of stocks ranging between 8 and 14, with an average of 12.
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Table 8: Out-of-sample forecast losses — h = 22

BV MedRV
HARP-RV/ HARPQ/ HARP-RV-J/ HARP-RV-CJ/ HARP-RV-J/ HARP-RV-CJ/
HAR-RV HARQ HAR-RV-J HAR-RV-CJ HAR-RV-J HAR-RV-CJ

MSE 0.947* 1.006 0.988 0.921* 0.971 0.967
SPY . QLIKE  0970*  0.999 0.994 0.971* 0.977" 0.973"
A r VSE 0.995 1.006 0.995 0.998 0.999 0.999
ve. Stocks  OpIkE 1,002 1.014 1.002 1.017 1.004 0.998
Diebold & Mariano Test — Individual Stocks
MSE 7 4 5 6 5 6
QLIKE 8 3 7 6 7 8

Note: This table reports the ratio of the losses from HARP versus HAR models for various forecasting horizons.
Bold numbers indicate that HARP models outperform their HAR counterparts. Doubly starred highlights the HARP
models whose losses are significantly lower than their HAR model counterpart based on the Diebold and Mariano test
at the 5% level. The entries in the bottom panel are the number of stocks for which the HARP model is significantly
better than its HAR model counterpart at the 5% significance level.

Table 8 presents the out-of-sample results for the 22- month ahead models. For SPY,
all but one ratios is below 1. The exception occurs for the MSE loss ratio HARPQ/HARQ),
but even in this case, the ratio is very close to 1. The Diebold and Mariano (1995) test
indicates that the MSE is significantly lower for HARP-RV and HARP-RV-CJ based on
the realized bipower variation when these models are compared to their HAR counter-
parts. The QLIKE loss is significantly lower for HARP-RV, HARP-RV-CJ based on both
jump tests, and HARP-RV-J based on the Andersen et al. (2012) test.

The stock average MSE ratio is lower than 1 in all cases except for HARPQ/HARQ),
while the stock average QLIKE loss ratio is lower than 1 in only one case. In the bottom
panel, MSE is significantly lower in the case HARP models for a number of stocks ranging
between 4 and 7, with an average of 6 stocks, while the HARP QLIKE loss is significantly
lower for a number of stocks ranging between 3 and 8, with an average of 7.

Both our Monte Carlo and empirical findings suggest that HARP models display
a better out-of-sample performance than HAR models at short and medium horizons.
However, we find mixed evidence for longer horizons, indicating that distortions due to
intraday periodicity are mostly negligible in this case and realized measures based on

unfiltered data produce as accurate forecasts as the filtered measures.

5 Conclusion

The contribution of this paper is twofold. Firstly, we document the impact of volatil-
ity intraday periodicity on forecasting the realized variance using heterogenous auto-

regressive (HAR) models. While periodicity has no impact on the realized volatility
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itself, it distorts its variance, leading to biases in the coefficients of forecasting models.
We derive the variance and the 1-lag auto-correlation coefficient for the realized variance
in the case of a very simple DGP and show that periodicity artificially inflates the vari-
ance and has a decreasing impact on the auto-correlation. For a more complex DGP,
we provide simulation evidence showing that the estimated coefficients of the forecasting
regression are closer to their true values when predictors are built from pre-filtered re-
turns. In addition, we provide simulation evidence that periodicity distorts the jump test
results, using two of the most known tests for jumps, the Barndorff-Nielsen and Shep-
hard (2006a) and the Andersen et al. (2012) tests. As the realized daily squared jumps
enter some of the frequently applied forecasting models, their periodicity related bias can
further impact forecasting.

Secondly, we introduce a new class of forecasting models for the realized variance,
HARP, where predictors rely on data from which periodicity is filtered out. We provide a
thorough set of in-sample and out-of-sample forecasting comparisons between the HARP
and HAR models, relying on both simulated and real data. Our analysis encompasses the
HARP versions of the most common HAR models in the literature, the HAR-RV model
by Corsi (2009), the HAR-RV-J and HAR-RV-CJ models by (Andersen et al., 2007a), and
the HARQ model by Bollerslev et al. (2016). Our dataset includes intraday observations
for the SPDR ETF and 30 S&P500 constituents, covering a period of over 4,000 trading
days. The simulation and empirical evidence indicates that pre-filtering the data for
periodicity leads to forecasting gains for all model specifications when forecasting 1-day
to b-days ahead. At the 1-day ahead horizon, the HARP-RV-J and HAR-RV-CJ models
show the greatest improvements following filtering, due to lower distortions in the jump
predictors. Findings are mixed when forecasting 22-days ahead, for which the increased

forecasting error is likely to dilute the impact of periodicity.
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A Some Proofs for the Simple AR(1) Model

Under the assumptions of section 3.1, RV, = 3.1 i = AIV; SV Rl

E(RV;) = AE(IV}) Zf =0,

=1

where we used the fact that E(w?) = 1 and E(IV;) = 0 given the DGP for IV in equation
(9).

Proof of equation (12a).

Var(RV;) = E (RV?) = A’E(IV?)E Z f4w4+zz frw} fruw?
i
E(IV?) 3Zf4+22f ?
=1 j=1
J#i

a2 O [3§:f4+§:f2(1_f2>]
1 - i=1 Z i=1 "\A Z
- 1

2(22f;‘+y>. O
=1

For comparison purposes, we compute the same variance in the absence of periodicity:

Proof of equation (12b).

Var( RV, periodicity = A2 E(IV2)E Z wh + Z Z W

i=1 j5=1

J#i
= A’E(IV?) [3M + M(M —1)] = A2 o (2,1 O
¢ 1—®2 \A  A?)°
Let w;, @ = 1,..., M be a sequence of i.i.d. standard normal variables entering the
intraday returns on day ¢ and w}, ¢ = 1,..., M another sequence of i.i.d. standard

normals, independent of w;, entering returns on day t — h, h > 1. The auto-covariance

of lag h is obtained below.
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Auto-covariance derivation.

cov (RV;, RVi_y) = E(RV,RV,_;) = A’E

M M
E (IWIw_h > frwi ) fwl v;_h)
i=1 j=1

M M M
=AES B [IViIViy, | > flwdw?® +> ) ffwl fiw?® | |[TViey
=1 =1 j5=1
2
M M
= N’E[IViy E(IVIVio)] | D f+ > f217
i=1 j=1
J#i

= A’E [IthhE (q)hlvtfh +e+ P+ + ®h71€t7h+1uvtfh)] :

. 4 . o (1 2 2 h 4 1 o O:
[;f +;f,~ (Z—ﬁ) = AR (®"s'(t — h)) 55 = "0
O
B More on Methodology
B.1 Weighted Standard Deviation
For each ¢« = 1,..., M, we observe T' standardized returns, 7;;, which we sort in

increasing order, as follows:
T STE S ST

Given the above ordered set, we define the sub-sets containing half (k = [77/2] 4 1)
contiguous observations: {7y, ..., (x)i}s- -+ T (T—rt1)sis - - - T(1),i}- The shortest half

scale estimator is the shortest length of these subsets:
ShortH; = 0.741 min(f(,i)ﬂ- —T@)is - T(T)i — f(T,,{Jrl)’i)

The short-half periodicity estimator is given by:

p ShortH;

Shor 1 _ M

Ji tH_A M ShortH?’ A=l
Zj:l or 7

The weights used to compute the weighted standard deviation in section 2.2 are

defined, forall l =1,.... T and alli=1,..., M, as:

Xli = X(Fl,i/fzShOTtH)7

) 1 if 22 <6.635
z) =
X 0 otherwise.
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B.2 Jump Tests

In this paper, we identify jumps relying mostly on the test proposed by Barndorff-
Nielsen and Shephard (2006a) and further developed by Huang and Tauchen (2005). The

test statistic, ZBV, is given by:

o 1 — BV,/RY

_ ~ N(0,1
! \/0.61 max(1, TPQ;/BV}?) 01

where T'P(); is the realized tripower quarticity, that consistently estimates the integrated

quarticity in the presence of jumps and is defined as:

M t
M
TPQ; = M1.74m Z; |7’t,z‘|4/3|7"t,i—1|4/3|Tt,i—2|4/3 S /tl 04(u) du.

The above test is widely used in empirical work due to its simplicity and reasonable
size and power properties under various scenarios (Dumitru and Urga, 2012, see). As
documented in section 1, there are several other tests for jumps in the literature. In
this paper, we also employ the test proposed by Andersen et al. (2012) to make sure our
results are robust to the choice of the jump test. This test relies on the median realized
variance to estimate the integrated variation and is shown to have better finite sample
properties than the original test by Barndorff-Nielsen and Shephard (2006a). The test

statistic is given below:

MRy _ 1 — MedRV,/RV, NO.1)
V/0.96M T max(1, MedRQ,/MedRV}?) ’
with
M M—1 :
MedRV, = 7 21.42 Z med (|7 1|, |reil, [reia])? TN /t 1 o?(u) du
=2 -
and
M M—1 "
MedRQ, = 0092 3~ med(reial, el Iresnt])* 2 /t o) du
=2 -

37



C Additional Results

C.1 Spurious Detection of Jumps for the Jump Test by Ander-
sen et al. (2012)

Figure 9: Proportion of spurious jumps by sampling frequency for filtered and unfiltered
data
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Note: This plot graphs the proportion of surious detection of jumps across sampling frequencies using
the ABD, Andersen et al. (2007b), evaluated at the 1% and 5% significance level.

C.2 Simulated h = 22 Out-of-Sample Loss Ratio

Figure 10: Loss ratio for simulated data — h = 22
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Note: This figure plots the quantiles ranging from 0.05 to 0.95 in increments of 0.05 for the MSE and
QLIKE loss ratios for models relying on filtered data versus unfiltered data.
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C.3 Results for the jump test by Andersen et al. (2012)

Table 9: Realized number of jumps and the estimated proportion of integrated
variance in the quadratic variation.

Unfiltered Filtered
Stock Ticker # Jumps  %QV  # Jumps %QV
SPDR ETF SPY 368 97.303 295 97.404
3M MMM 536 94.738 218 97.916
AK Steel AKS 491 94.478 312 96.945
Arconic Inc. ARNC 342 96.660 171 98.882
Brown-Forman BEFB 712 89.189 464 95.309
BT Group BT 561 90.807 583 90.271
China Mobile CHL 604 92.477 401 95.365
Citigroup C 380 96.424 148 98.576
Coca-Cola KO 548 94.172 177 98.626
DUKE Energy DUK 522 95.028 205 98.285
eBay EBAY 464 96.433 172 98.756
General Dynamics GD 538 93.426 250 97.177
General Electric GE 389 95.934 177 98.187
Halliburton HAL 389 95.362 144 98.050
Home Depot HD 404 95.855 144 98.892
Honeywell HON 487 94.442 200 97.534
Humana HUM 526 93.730 226 97.521
Intel INTC 399 97.071 167 98.651
LVLT LVLT 528 93.722 254 97.179
McDonald’s MCD 474 93.268 150 98.631
Microsoft MSET 435 96.203 164 98.678
ONEOK OKE 652 88.230 457 92.536
Pfizer PFE 469 93.613 154 98.229
Procter & Gamble PG 551 92.869 180 96.772
Southern Co. SO 465 94.757 164 98.590
Travelers Companies Inc TRV 599 91.497 241 96.669
United Health UNH 502 93.415 192 98.288
UPS UPS 561 93.810 203 97.980
Verizon VZ 487 93.912 186 98.021
Vodafone VOD 303 97.503 215 98.408
Xerox XRX 488 93.787 268 97.793

Avg. Stocks 494 94.094 233 97.424

Note: This table reports the total number of jump days using the ABD test at
the 1% significance level and the %QV for filtered and unfiltered data. The %QV

is estimated as %QV = 3G
’ N 23:1(014'%) ’
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Additional In-Sample Results for Models with Jumps

Table 10: Estimated 1-, 5-, and 22- day ahead HAR(P)-RV-J models for
SPY and a stock average, with jumps detected with the Andersen et al.
(2012) test

HAR HARP

h=1 h=5 h =22 h=1 h=5 h =22
Bo 0.095* 0.148**  (0.288**  (.094* 0.146%*  0.287**
s.e. (0.054)  (0.057)  (0.058)  (0.051)  (0.055)  (0.061)
By 0.279*  0.209**  0.120"*  0.297**  0.211"*  (0.135***
s.e. (0.112)  (0.054)  (0.026)  (0.099)  (0.058)  (0.037)
Ba 0.396*  0.326**  0.309"**  0.379**  0.348**  (0.311**
s.c. (0.149)  (0.104)  (0.107)  (0.151)  (0.117)  (0.127)
Bon 0.242**  0.327**  0.293*  0.232"*  0.296**  0.269***
s.c. (0.095)  (0.096)  (0.085)  (0.093)  (0.097)  (0.092)
Ed —0.405*  —0.311"* —0.204  —0.523** —0.411"** —0.303***
s.e. (0.177)  (0.135)  (0.126)  (0.140)  (0.104)  (0.094)
R?, 0.515 0.632 0.553 0.521 0.644 0.575
R? 0.419 0.588 0.495 0.481 0.614 0.510

00Ss
~

Bi+ Bu+Bm 0917 0.862 0.722 0.908 0.855 0.715

Average Stocks

R, 0.461 0.599 0584 0474 0610  0.589
R 0.341 0552 0497 0352 0564  0.494
Ba+Bu+Bm 0904 0.854 0.743 0.865 0.817 0.710

Note: This table reports regression coefficients, standard errors in parentheses, and
in- and out-of-sample R-squared for the HAR-RV-J and HARP-RV-J models based
on various horizons, estimated on SPY data. The standard errors are estimated using
the Newey-West HAC estimator. The bottom panel shows the stock average in- and
out-of-sample R-squared obtained for the HAR-RV-J and HARP-RV-J models of
various horizons. Bold numbers indicate the R-squared coefficients that are higher
for filtered as opposed to unfiltered models. *, ** and *** denote significance at 10%,
5% and 1% respectively.
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Table 11: Estimated 1-, 5-, and 22- day ahead HAR(P)-RV-CJ models for
SPY and a stock average, with jumps detected with the Andersen et al.
(2012) test

HAR HARP

h=1 h=5 h=22 h=1 h=5 h=22
Bo 0.098*  0.150"*  0.290**  0.096*  0.147***  0.280"**
s.e. (0.053)  (0.053)  (0.058)  (0.050)  (0.052)  (0.061)
Bey 0.268**  0.189"*  0.110**  0.270"*  0.171**  0.109"**
s.e. (0.113)  (0.052)  (0.023)  (0.102)  (0.053)  (0.026)
Be., 0.4217*  0.378"*  0.332°*  0.432°*  0.433"*  0.364*
s.e. (0.154)  (0.096)  (0.112)  (0.162)  (0.110)  (0.130)
Be,. 0.245*  0.321*  0.206"*  0.230*  0.281**  0.265"
s.e. (0.095)  (0.099)  (0.094)  (0.098)  (0.102)  (0.099)
B, 0.003  0.140  0.037 —0.078 0.015  —0.023
s.e. (0.139)  (0.188)  (0.080)  (0.090)  (0.098)  (0.041)
B 0213 —0.889 —0.263 —0.230 —0.604** —0.296*
s.e. (0.238)  (0.572)  (0.256)  (0.147)  (0.304)  (0.130)
B 0003 0297 0075 —0276 —0.136 —0.174
s.e. (0.780)  (0.950)  (0.575)  (0.300)  (0.378)  (0.298)
R2, 0517  0.640 0556  0.526  0.657  0.582
R? 0.401 0.581 0494 0464 0614  0.511

00Ss
-~

Ba + B; + B;n 0.934 0.888 0.738 0.932 0.885 0.738

Average Stocks

R, 0.464 0.605 0.590 0.476 0.615 0.595
R 0.332 0.548 0.504 0.347 0.565 0.505

00s

B+ Bu + B 0.901 0.843 0.732 0.854 0.799 0.689

Note: This table reports the regression coefficients, standard errors in parentheses,
and in- and out-of-sample R-squared for the HAR-RV-CJ and HARP-RV-CJ models
based on various horizons, estimated on SPY data. The standard errors are estimated
using the Newey-West HAC estimator. The bottom panel shows the stock average
in- and out-of-sample R-squared obtained for the HAR-RV-CJ and HARP-RV-CJ
models of various horizons. Bold numbers indicate the R-squared coefficients that are
higher for filtered as opposed to unfiltered models. *, ** and *** denote significance
at 10%, 5% and 1% respectively.
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