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Abstract

What determines the realisticness of a model? It is argued that to come up with an ac-

count of model realisticness that can answer this question, one has to make strong philosoph-

ical commitments to an account of representation, an account of model-world comparisons

as well as the ontology of models and their targets. Without such commitments it is not

feasible to determine the realisticness of a model. Since all these areas are subject to ongo-

ing philosophical debate, it is not feasible to come up with a unique and all-encompassing

account.

Based on this observation, one account of model realisticness, which is based on an

antirealist fictional view of models, a commitment to realism about mathematical objects,

and the DEKI account of representation, is introduced and discussed. The account aligns well

with the practice of applied scientists, who regularly apply validation techniques to assess

the realisticness of models. This practice can nicely be accommodated for in the proposed

account, and it suggests a number of promising avenues for further philosophical inquiry.

⇤For correspondence, you can contact the authors via email: claudius@claudius-graebner.com.
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1 Introduction

The present contribution is concerned with the nature of ‘unrealistic models’. The term is

used widely in applied sciences and philosophy. Particularly in the social sciences, a lack of

realisticness is often used to criticize a particular modeling approach, while in philosophy the

question of how such models become epistemic meaningful takes centre state (see e.g. Ylikoski

and Aydinonat, 2014). At the same time, the concrete criteria that determine the degree of

realisticness of a model remain ambiguous. The main contribution aspired by this paper is to

argue that this ambiguity is not surprising, given that several ways to determine the realisticness

of model exist, and that all of them require us to make certain controversial philosophical

assumptions, inter alia about the ontological nature of models or mathematical objects.

More precisely, any classification of a model as being ‘realistic’ or ‘unrealistic’ necessarily

refers to at least (1) an account of representation, (2) and account of model-world comparisons

and, thereby at least to some extent (3) to an account of the ontology of models. In all these

areas, a certain stand must be taken if one wishes to come up with reasonable criteria for

determining the realisticness of a model.

All of these areas remain contested, however, and it is not my aim to resolve these contro-

versies. Rather, I argue that any attempt to determine the realisticness of a model must take an

explicit position in these controversies. To illustrate why, I will use the following formulation,

which is probably consistent with how most applied scientists think about realisticness, as a

guiding example:1

Realisticness 1

“The realisticness of a model M is determined by the quality of the relevant aspects

of the representation relationship between M and its target in the real world T .”

As such, this formulation leaves open a number of intricate philosophical issues. Yet by

linking it into coherent accounts of model representation and model-world comparisons it can

be turned into one coherent account of unrealistic models. I exemplify this by building upon an

antirealist fictional view of models, realism about mathematical object, and the DEKI account

of representation. Furthermore, I show that the resulting account of realisticness aligns well

with the actual practice of applied scientists, who regularly use particular validation techniques

to determine the realisticness of a model.
1For an outline of how one could interpret ‘unrealisticness’ di↵erently see Mäki (2017).
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To reach this goal we proceed as follows: The next section argues why a general account of

model realisticness is not feasible and the commitment to accounts of representation and model-

world comparisons (and, thus, to the ontology of models) is inevitable. Based on this conclusion

I use the guiding example from above to show how a coherent account of model realisticness

can be derived from such commitments: section 3 grounds the account in the DEKI account of

representation (Frigg and Nguyen, 2016; Nguyen, 2016) and 4 explains how the relevant aspects

of the representation relationship between the model and its target can be identified. Section 5

then discusses an account of model-world comparisons that grounds quality assessments between

the model and its target. How such comparisons are made in practice, and how this corroborates

the overall account is discussed in section 6. Finally, section 7 discusses the results and highlights

important avenues for further research.

2 A general account of unrealisticness is impossible

The guiding idea of this contribution is that if we wish to determine the realisticness of a model,

we must make rather strong philosophical assumptions in a number of contested areas, such

as the ontology of models or the nature of model-world comparisons. This is an inconvenient

argument: It would obviously be preferable to have general criteria to determine the realisticness

of a model, independent of whether one is willing to subscribe to, say, realism or antirealism

with regard to models. Unfortunately, the search for such general criteria is a cul de sac:

First, to justify the label realisticness, an explicit reference to ‘reality’ is inevitable: it

makes sense to discuss the realisticness of models only if they somehow relate to reality.2 The

nature of the relationship between a model and its target has frequently been characterized as

a relationship of representation (e.g. Frigg and Nguyen, 2017). Moreover, it makes sense to

understand ‘realisticness’ not as a binary property, but to allow for comparative claims such

as “model A is more realistic than model B”. To make such claims, and to explain when a

model represents a target in reality at all, one has to come up with an account of representation.

A number of such accounts have been proposed in the literature, and only those with direct

bearings for upcoming discussions will be mentioned here (for a more complete review of the

various accounts see, e.g., Frigg and Nguyen, 2017): of continuous popularity are accounts based

on the similarity between a model and its target. According to these, models represent their

2This is why the qualifier ‘its target the real world’ has been added to the guiding example above. There
are many models that represent non-actual systems, such as three-sex populations or buildings to be built in the
future, but it is not clear whether “realisticness” is the right property to be discussed in this context. Other
labels, such as “plausibility” might be preferable. This question will be taken up in section 7, but will also be an
interesting topic for future work.
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targets in virtue of being similar to them. There are a number of variants of this approach,

depending on how ‘similarity’ is operationalized, and which qualifications to the relationship are

imposed: classical approaches are ‘naturalistic’ in the sense that they assume that similarity

can be determined objectively. Against this, more recent conceptions, such as the one by Giere

(2010), highlight subjectivity and grant the model user an important role: “Agents (1) intend;

(2) to use model, M; (3) to represent a part of the world, W; (4) for some purpose, P.”, or in

other words “A model M represents target T i↵ used as a representation of T by an agent A

for the purpose P” (but see already Apostel, 1960, for a much earlier account along these lines).

Granting subjectivity such a strong place in a conception of similarity seems unattractive, but

plays a considerable role in most recent accounts of representation based on similarity (such as,

e.g., Weisberg, 2013), and will, for these reasons, also feature in the account or ‘realisticness’

as elaborated below.3 A general challenge for such approaches based on the idea of similarity,

however, is that most models do not literally instantiate the properties of the systems they are

meant to represent. It is, thus, not a priori clear how they can be similar to them (Salis, 2016).

There is, however, a solution – which comes with a number of assumptions – to be discussed in

the context of model-world comparisons below in section 5.

Another influential approach of representation emphasizes the inferential role of models

(Frigg and Nguyen, 2017). Such approaches focus on how models enable users to make in-

ferences about their target, thereby linking the representative capacities of a model directly to

its ability to meet the surrogative reasoning condition.4 Suárez (2004), for example, formulates

necessary conditions for a model M to represent its target T by requiring M to allow for “com-

petent and informed agents to draw specific inferences regarding [T ]” (p. 773). Thus, he simply

takes the surrogative reasoning condition and turns it into a necessary condition for a model

to represent its target (Nguyen, 2016, p. 123). Another inflationary view put forth by Hughes

(1997) formulates three conditions: it must denote the target (‘D’), it must have an internal

dynamic that can be examined by the model user, e.g. by using mathematical rules of inference

or by simulating the model in a computer (‘D’), and, finally, allows for an interpretation in the

light of the target system (‘I’). But the conception as such does not o↵er (and does not seem

to be intended to o↵er) any deeper insights into how the representation relationship gets estab-

lished. An extended account, based on the notions of denotation, exemplification, keying-up

3For critical remarks on this role granted to subjectivity see Rusanen and Lappi (2012).
4Since there is a wide consensus that model thinking should enable users to make informed claims about the

targets of these models, Frigg and Nguyen (2017) introduce the term surrogate reasoning condition to stress that
every account of model representation should explain how these claims about targets can be derived from model
thinking.
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and imputation, has been proposed under the label of ‘DEKI’ by Frigg and Nguyen (2016), and

it is able to solve many of challenges an account of representation does face. It will, therefore,

be used section 3 to ground the representation relationship in the guiding example introduced

above. There are many other accounts of representation (for a critical review of the various

accounts see, e.g., Frigg and Nguyen, 2017), and no consensus has emerged so far. But it is

clear that representation as such is important whenever the realisticness of a model is assessed:

without specifying one’s account of representation, it is not feasible to determine the degree of

realisticness of a model.

Second, the realisticness of a model necessarily rests upon a comparison between the model

and its target in reality.5 Without any reference to ‘reality’, how could one make sense of the

term ‘realisticness’? But comparisons between models and objects in reality are not a trivial

matter: models are mostly nonactual, while their targets in reality are mostly actual entities.

Thus, models often do not literally instantiate the properties of the systems they represent (see

e.g. Godfrey-Smith, 2009). Any solution to this problem requires an explicit account of model-

world comparisons, an area of ongoing philosophical debate (see, e.g., Weisberg, 2013; Salis,

2016).

Proposals in the literature range conceptualizing model-world comparisons as hypotheses

about abstract and actual entities (e.g. Giere, 1990), over claiming that that we can compare

imagined model systems with actual targets in a fictionalist context (e.g. Frigg, 2010) to the

denial that such comparisons are made at all (e.g. Toon, 2012). A thorough discussion of the

pitfalls of these proposals, as well as a constructive proposal that is taken up in section 5, can

be found in Salis (2016). In the end, the core issue is that model systems do not literally

instantiate properties of their targets and comparisons are thus necessarily false (Salis, 2016).

But as explained in section 5, this problem can be circumvented at the cost of committing

oneself to the realism of mathematical object. But such strong assumptions are necessary if any

progress in this matter is to be made.

Third, as argued in Salis (2016), any successful accounts of model-world comparisons them-

selves require explicit assumptions about realism of models, mathematical objects or other ob-

jects in the target systems. Thus, whenever we are concerned with the ‘realisticness’ of models,

we must be willing to make certain ontological assumptions with regard to the nature of models

5Some models represent target systems that are not (yet) real: Knuuttila and Koskinen (2017), for example,
discuss examples of models in synthetic biology that represent organisms that not yet exist, but which could
be designed by using a model. The same holds for models in engineering or architecture, which often represent
buildings that have not yet been built. But these cases are not of foremost importance for an account of model
realisticness, and will be discussed not before section 7.
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and their targets. The ontology of models is heavily debated in philosophy: prominent accounts

include the view that models are akin to the work of fiction (see e.g. Frigg and Nguyen, 2016;

Salis, 2018), others consider them to be abstract structures (e.g. Weisberg, 2013) or epistemic

artifacts (e.g. Knuuttila, 2011).6 Adherents to the idea of models as abstract entities either

consider them to be “socially constructed entities”, which have “no reality beyond that given

to them by the community of scientists” (Giere, 1990, 78). More recently, the move towards

more subjective accounts of representation has a↵ected accounts for model-world relationships

as well: for Weisberg (2013), models consist of a structural part, but as also a construal, which

summarizes the intentions of the model user in the form of the intended target and scope as

well as the (subjective) fidelity criteria. Yet such accounts still face the problem that abstract

entities do not instantiate the properties of their targets, which renders them incompatible with

any realist conception of models (see also Salis, 2016). The same challenge is faced by (indirect)

fictionalist accounts, such the one by Frigg (2010).

The latter example has shown that even within a certain view of models, such as fictionalism,

various interpretations exist: aside from subscribing to direct or indirect variants of fictionalism,

one might also be a realist with regard to fictions, or an antirealist. The same is true with

regard to the entities in the target system, and mathematical objects, which play an important

role in many models both in the natural and social sciences (see e.g. Nguyen and Frigg, 2017).

Thus, even if one subscribes to the idea that models are akin to the work of fiction and endorses

a particular ontology of fictions, such as the one of Walton (1990), one still has several inter-

pretations at ones disposal. For the present purpose, it is important to remain as general with

regard to one’s ontology of models as possible, but to be specific enough to make sense of the

model-world comparisons inherent to any account of model realisticness such as in Realisticness

1 above.

In all, the elaborations above ruin any hope to reach a general account of the unrealisticness

of models. Certain assumptions must be made, and as long as philosophers have not settled the

issues definitely, the co-existence of di↵erent, equally plausible accounts of the realisticness of

models is unavoidable (see already Mäki, 1998). At the same time, one should try to develop

accounts of a model’s realisticness as general as possible with regard to the philosophical choices

just discussed: for example, while it is important to make certain ontological commitments,

such that model-world relationships can be made consistently, one does not necessarily need to

choose one particular ontological position. For instance, in the account of model realisticness

6For a recent survey see, e.g., Gelfert (2017).
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developed below, it is su�cient to subscribe to antirealism with regard to models. One does not

need to subscribe to one particular antirealist conception of models.

For the remainder of this paper, I take a definitive stand on all the areas discussed above,

not because I believe my choices to be the only ‘correct’ ones, but because I wish to demonstrate

how a coherent account of model realisticness can be derived from these assumptions.

3 Establishing the representation relation

“The realisticness of a model M is determined by the quality of the relevant aspects

of the representation relationship between M and its target in the real world

T .”

The first part of our characterization of the realisticness of a models refers to the “relevant

aspects of the representation relationship between the model and its target”. This begs two

questions: (1) what is meant by a ‘representation relationship’ and (2) what are the relevant

aspects of this relationship? The first question will be discussed in this, the second in the next

section. To answer both of them, an account of ‘representation’ is required.

As discussed above, several answers to the question as when a model M represents a target

T have been proposed Frigg and Nguyen (2017) not only provide for an overview about various

conceptions of representation, but also formulate a number of demands that every account of

representation should meet. In the present case I will mainly rely on the DEKI account of

representation, as developed by Nguyen (2016). Not only does DEKI meet the most of the

requirements as discussed in Frigg and Nguyen (2017), it is also straightforward to align it with

the actual practice of applied modelers to relate their models to reality (Gräbner, 2018).

The DEKI account formulates conditions that a model M must satisfy in order to count as

a representation of a target T :

1. The model M must denote its target T .

2. The model M must be a Z-representation exemplifying properties P1, ..., Pn.

3. The model M must come with a key K that indicates how the properties P1, ..., Pn can

be translated into a set of features Q1, ..., Qm.

4. The mode M must impute some features on its target T .

The first condition requires the model user to make clear that she uses the model as a means

for representation, and she must also specify what the target system of the model is. The
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second condition requires the model to be a Z-representation. A Z-representation is a one-place

predicate and Z is a place-holder for the kind of the target of the model. For instance, a picture

p of a woman is a woman-representation: WOMREP (p). This does not necessarily mean that

it represents one particular woman, since the women could also be fictional (such as Wonder

Woman). Referring to Z-representations in this context is important for any general account

of representation because one would like it to models that represent general (such as cities in

general instead of a particular city) or hypothetical (such as a three-sex population) targets

as well. An arbitrary object (the ‘structure’ the model is made of; on the ontology of models

see below) becomes a Z-representation when it is interpreted as such. A Z-representation

exemplifies certain properties P1, ..., Pn, if it instantiates them by directly referring to them.

This represents an important challenge for many accounts: since most models are not physical

systems they cannot really instantiate the properties of their actual targets. As will become

clear in the next section, here lies a crucial challenge: since most models are not physical, they

cannot instantiate many properties of their targets. A mathematical model of the economy

does not instantiate any stock of capital, yet the true economy clearly does. Solutions to this

challenge will be discussed in the next section when scrutinizing model-world comparisons, but

for now we follow Frigg and Nguyen (2017) and assume that instantiation must not necessarily

be interpreted literally, but that an explicit interpretation of the model structure instantiating

certain properties is su�cient.

The third condition asks for a key that links the just discussed properties of the model, P ,

to the relevant properties of the target system, Q. How this is to be done must be specified

by a key (or a ‘dictionary’), the simplest example for a key being the legend of a map. The

final condition requires the model to impute at least one property Q on the target system. This

step is crucial when we assess the ‘realisticness’ of a model, because one particularly relevant

way in which a model can be unrealistic is by making false imputations: a model can make a

prediction about how the target behaves, but it behaves di↵erently. But a model that makes

false predictions about its target does not stop representing this target - it just misrepresents

the target because it imputes the properties wrongly on the target.

The DEKI account is summarized in figure 1. As we can see, there are a number of links

between the model and its target in the shaded area, and the assessment of any of these links

can make us claim the model to be ‘unrealistic’. But which link is the decisive one when it

comes to the realisticness of the model? This directly relates to the second question posed at

the beginning of this section: what are the “relevant aspects of the representation relationship”

8



The model M
[Z-representation]

Exemplification

{P
0
i } : relevant model states at t0.

{Q
0
i } : Interpretation of the states.

The key k

The target at t0 The target at t1
‘Real’ mechanisms

{P
1
i } : relevant model states at t1.

Actual model
mechanisms

{Q
1
i } : Interpretation of the states.Interpretation of

model mechanisms

Exemplification

The key k

The target system T

Imputation of
mechanisms

Imputation
of states

Imputation
of states

Model-world

comparisons

Figure 1: A visualization of the DEKI framework. Note that the denotation of from the model
to the target is not visualized for reasons of readability.

of which the quality needs to be assessed?

4 Selecting the relevant aspects of the representation relation

“The realisticness of a model M is determined by the quality of the relevant

aspects of the representation relationship between M and its target in the

real world T .”

In the previous section we have clarified how the representation relationship in our conception

of model realisticness can be grounded on the DEKI account of representation. Now we can

concern ourselves with how the “relevant aspects” of this relationship can be determined. As

can be seen in the shaded area in figure 1, there are a number of links between the model and

its target, so we have a number of candidates to base our assessment of the realisticness of the

model upon.

It does certainly not make sense to assess the quality of all of them at once: modelers

usually do not mean to design their model such that they match all aspects of their targets, but

rather focus on particular aspects of the latter (Mäki, 2009). Mäki links this to the comment

and the purpose of a model. Godfrey-Smith (2006) and Weisberg (2007, 2013) use the term

‘construal’ in a similar way. In particular, Weisberg argues that any model must come with such

a ‘construal’, which is determined by the model user’s intentions and is composed of four parts:
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an assignment that specifies “the specification of the phenomenon in the world to be studied”

(Weisberg, 2007, 219), and it essentially plays the role of denotation in the DEKI account. The

intended scope clarifies those parts of the target that should be represented by the model, while

the fidelity criteria specify the “standards theorists use to evaluate a model’s ability to represent

real phenomena” (Weisberg, 2007, 219).

Against this backdrop it seems inadequate to specify a priori which links between a model

and its target in the shaded area of figure 1 are relevant to assess its realisticness: if one would

consider all aspects on equal footing, almost all models would qualify as ‘unrealistic’. If not, one

would need to come up with an all-encompassing criterion. Such claim a la Friedman (1966)’s

“only the predictions of a model matter” have been proven to be of little value. Thus, it makes

sense to leave the decision about which links between a model and its target should be placed

under scrutiny to the model user, but to require the latter to be explicit about the kind of

realisticness she is assessing: if one scrutinizes the mechanisms that are designed in the model,

and compares them with the mechanisms in the target, one is assessing the realisticness of a

model with respect to its mechanisms. If one compares the output of the model for some time in

the future with those values observed in the target, one is assessing the realisticness of a model

with respect to its predictions. It makes little sense to speak of an overall realisitcness of a

model, because it is by no means clear how the scores for the various aspects of the relationship

between the model and its target should be aggregated. Surely, the purpose for which the model

is to be used provides for some guidance, since it is less important to assess the mechanisms in

a model that is used for purely predictive tasks, but even here it is not clear whether one should

rely only on the output of the model, and, if not, how to weight the various assessments of the

model realisticness.

The only solution to this problem I can envisage is to abolish the idea of a ‘general realistic-

ness’, but to qualify the kind of realisticness one is talking about on a case-by-case basis, and

thereby to refer to the construal of the model. Again, this conclusion does not seem to be the

most attractive one, but at least it is internally coherent and it helps avoiding communication

problems when researcher A furiously critisizes the unrealisticness of researcher B’s model by

pointing to the unrealistic assumptions, but researcher B actually meant to develop the model

for entirely di↵erent circumstances and only for the purpose of prediction.
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5 The model-world relationship: theoretical issues

“The realisticness of a model M is determined by the quality of the relevant aspects

of the representation relationship between M and its target in the real world

T .”

In the previous section we have clarified what is meant by the ‘the relevant aspects of the

representation relationship’. We will now be concerned with the question of how to assess their

quality. Again, two steps are necessary: the first one is theoretical and is concerned with the

assumptions we have to make in order to reasonably make comparisons between a model and its

target. Such comparisons are necessary to ‘assess the quality’ of the relationship. The second

step is more practical and asks how such comparisons can be and are made in practice. This helps

aligning the general account with the actual practice of scientists and, luckily, to corroborate it

further. The first step will be taken in this, step two in the next section.

As argued above, the realisticness of a model refers to its alignment with its target, and the

DEKI account of representation as introduced above already hints and several links between

a model and its target. But assessing these links is not straightforward: aside from a few

exceptions, models usually do not literally instantiate the properties P that are compared to

the properties as instantiated by the target (e.g. Godfrey-Smith, 2009; Salis, 2016). Thus, it is a

priori unclear how statements about a model translate into (potentially) true statements about

the real target and, thus, how the quality of the model-world relationship can be assessed: it is

not clear how a statement based on any of the links in the shaded area in figure 1 can be be

true (or ‘good’ or ‘realistic’).

A potential solution has been proposed by Salis (2016). Her account of model-world relation-

ships not only produces the intuitive truth and quality conditions for model-world relationships

but also helps to circumvent the problem of uninstantiated properties in model systems.7 At

the same time the account comes with two assumptions to be discussed in more depth at the

end of the section: one has to subscribe to realism with regard to mathematical objects and

anti-realism with regard to models.

Salis’ account, which will be followed in the rest of this paper, works as follows: First, one

develops and analyzes a model within a purely imaginary context. Similar to Frigg (2010), she

builds upon Walton (1990) and considers models to be props in a game of make-belief. So far,

7Her account also provides an answer to the critique of factionalism by Odenbaugh (2015) who fears that “if
modeling is a form of make-believe, then this scientific success is make-believe as well” (p. 285). Thus, it also
allows us to remain more agnostic with regard to our ontological stand on models, which is attractive for any
account of model realisticness.
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Model 
[US-economy-representation] 

Total income

Target 
The US economy] 

Total income

w1 w2
Real sphere of mathematical objects

Figure 2: An illustration of how model-world comparisons work once realism for mathematical
objects is assumed. The upper comparison between the model and the target cannot work
since the model cannot instantiate the property ‘total wealth’ as the actual US economy. The
comparison of the two degrees of total wealth within the sphere of mathematical objects is
feasible, however.

we are operating exclusively in the upper half of figure 1.

Second, one refers to what she called an extended imagination, where one extends the game

(in Walton’s sense) involving the original model by an extended fiction inspired by the real target

system. Here, one compares - within one’s imagination - properties of the (fictional) model with

the (fictional) target. Here, we are operating within the full picture of figure 1, but consider

the lower part only in our imagination (which is, of course, still inspired by our observations

of the real target). In particular, the model-world comparisons are conducted for two imagined

systems.

Third, to leave the imaginative sphere and to consider the lower part of figure 1 not only in

our imagination, but as the real system it is,8 we must assume the true existence of mathematical

objects, employs fictional operator and quantify over fictions.

This is best illustrated via the example visualized in figure 2: suppose we have a model that

we use to explain the aggregated income in the economy of the USA. Assuming that the real

economy in the USA instantiates a property ‘total income’, we cannot compare the state variable

of the model that we consider to represent aggregate income in the model economy with the

true values, because the model does not really instantiate aggregate income. We can conduct

this comparison only within an extended game, in which we imagine that our model economy

instantiates ‘total income’. But we can assume the existence of some degrees for aggregated

8When we compare models with reality in practice we often to not access reality directly, but use data which
itself has been created by models: data on the unemployment rate or the GDP of an economy, which is often
used to assess the realisticness of a model, is often not a result of a direct observation, but itself the outcome of
a model. Thus, this final step is not trivial. This point will be taken up again in section 6.
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income w1 and w2 (which we consider to be mathematical objects), such that w1 ⇡ w2. By

subscribing to realism with respect to mathematical objects, these values truly exist. We can

then claim than the aggregated income in the USA is w1, and, according to our model M , the

US model system has w2. This latter statement obviously has truth conditions, and it can be

evaluated against the states of the real world.

This way, we can directly compare the values and evaluate them against the fidelity criteria

as attached to our model M . Depending on the outcome of this assessment, we can make

statements about the realisticness of the model if the model shares many of those instantiated

properties with its target (similar to Weisberg, 2013). By this, we have resolved the meta-

theoretical issues in assessing the relations in the shaded area of figure 1. But before we turn to

the practical di�culties inherently attached to these comparisons in the next section we must

discuss the ontological commitments that we have to subscribe to for our theoretical solution to

be viable:

First, one has to take an antirealist stand on models as fictions. Salis (2016) formulates her

account within a fictional view of models, according to which models are props in a game of

make-belief a la Walton (1990), just as literal fiction (see Frigg, 2010). If one took a realist view

on models one would assume that the fictional entities in the models exist. But if they do, it is

not clear how they could instantiate the properties their actual counterparts have. One might,

of course, imagine them to instantiate these properties, but in this case an antirealist account of

models, according to which we imagine the fictional entities in the models right from the start

seems much more plausible (Salis, 2016).

Second, one has to assume realism with regard to mathematical objects. The reason is that

mathematical objects represent the ‘bridge’ between the model and the target: by assuming

that there exist mathematical values that represent the degrees of properties to be compared

between the model and the target, we ensure that we compare two instantiated properties.

6 The model-world relationship: practical issues

“The realisticness of a model M is determined by the quality of the relevant

aspects of the representation relationship between M and its target in the real

world T .”

Now that the (meta-)theoretical issues about the relationship between models and their

targets have been discussed we can turn to the practical issues involved. This contributes to our

13



The model M
[Z-representation]

Exemplification

{P
0
i } : relevant model states at t0.

{Q
0
i } : Interpretation of the states.

The key k

The target at t0 The target at t1
‘Real’ mechanisms

{P
1
i } : relevant model states at t1.

Actual model
mechanisms

{Q
1
i } : Interpretation of the states.Interpretation of

model mechanisms

Exemplification

The key k

The target system T

Process

validation

Imputation of
mechanisms

Imputation
of states

Imputation
of states

Input

validation

Output

validation

Figure 3: An illustration of where the various kinds of validation techniques take place. Note that
there are two di↵erent kinds of output validation, descriptive and predictive output validation.
They cannot be distinguished in the figure, but only by the validation practice: for predictive
output validation one compares the values the models predicts after being trained on a limited
training data set not encompassing the whole time period with those of the target in the whole
time period, while descriptive output validation only calibrates the model to match the states of
the target. For such a calibration, all data is used, and no distinction between test and training
data is made.

philosophical undertaking in three ways: first, we see whether our account is consistent with

scientific practice; second, we might even be able to distill further philosophical lessons from this

practice; third, we might find inspiration to formulate new challenges for further philosophical

scrutiny.

When applied sciences relate their models to reality they regularly employ validation tech-

niques. In contrast to verification techniques, which are are used to assess the internal func-

tioning and the coherence of models, validation techniques are used to assess the link between

the model and its target (Gräbner, 2018). Scientific practice here lends support to the claim of

section 4 according to which there is not a single all-encompassing way to determine the real-

isticness of models, but various dimensions of realisticness must be distinguished. While there

are numerous concrete techniques for model validation – which necessarily di↵er depending on

the modeling framework at hand – four main types of validation can be delineated (Tesfatsion,

2017; Gräbner, 2018): input validation, process validation, descriptive output validation, and

predictive output validation.

These di↵erent forms – of which the boundaries can be fluid in practice – are compared

visually in figure 3: Input validation assesses how well the initial model specifications fit the
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target system and it takes place in the red-shaded area of figure 3. For example, in a model of

a financial market, one might compare the number of traders in the model, and in the target

markets. Such assessment does not necessarily rely on a one-to-one comparison, but usually

includes an ‘interpretation’: a single agent in the model could be thought of as representing

100 traders in the target market. Nevertheless, the model must provide some ‘key’ (Frigg and

Nguyen, 2016) that facilitates such interpretations and prevents them from becoming arbitrary.

Process validation studies how well the mechanisms built into the model mimic the mecha-

nisms operating in the target system. It takes place in the green-shaded area of figure 3. While

this is important whenever one is interested in the structural validity of a model (see e.g. Grüne-

Yano↵ and Weirich, 2010), it is also notoriously di�cult since mechanisms in reality are usually

not directly perceivable.9

Descriptive output validation scrutinizes the ability of the model to replicate real data.

For example, one might ask how well a macroeconomic model is able to re-create a past time

series for GDP growth. This practice has to be distinguished from predictive output validation.

Although equivalent in classical accounts of scientific explanation (e.g. in the covering law model

of Hempel and Oppenheim, 1948), and located in the same blue shaded area in figure 3, the

two are exercised very di↵erently: while descriptive output validation simply means to calibrate

the free parameters of a model to create an output that matches the time series of interest,

predictive output validation means to separate the available data into a training and test set,

to use the former to calibrate the models, and then to test its performance out of the original

sample on the test set. It is well-known from statistics that a descriptive output validation

supplies best results for models with many free parameters while such models – due to the issue

of overfitting – perform poorly when predictive output validity is performed. While it cannot

be distinguished in all theoretical accounts, the di↵erence between descriptive and predictive

output validation in practice is huge and significant.

These four approaches to model validation echo our claim from the previous section according

to which there is not one all-encompassing way to assess the realisticness of a model, but rather

that a model can be realistic in various dimensions. In practice the means that we may consider a

model to be realistic in the sense of its descriptive output capacity whenever it can be calibrated

well to existing observations, and we may call it ‘realistic’ in the sense of its mechanistic adequacy

it it performs well in process validation. Of course, the same model may score very di↵erently

9There are many reasonable ways to assess the question of whether the implemented mechanism A is more or
less likely to operate in the real world than mechanism B. These ways include expert and stakeholder validation
(or ‘participatory validation’, Smajgl and Bohensky, 2013), process tracing (Steel, 2008, ch. 9), face validation
(Klügl, 2008) and a clever use of experiments (e.g. Bravo et al., 2015).
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in the various forms, and it may not even be accessible to all of them.

This conclusion gets re-inforced by the claim of some that there are some serious practical

– maybe even fundamental – trade-o↵s with regard to the various ways models are related

to reality: the idea of trade-o↵s in modeling design goes back to Levins (1966). More recently,

Matthewson and Weisberg (2008), have proven a fundamental trade-o↵ between model precision

and generality. With regard to the realisticness of a model, Gräbner (2018) claims that there

are at least practical trade-o↵s faced by applied scientists that prevent a model to perform

well in all four kinds of validation simulataneously. And at least for predictive and descriptive

output validation, this trade-o↵ is formally well established in statistics (see e.g. chapter 8 in

Stachurski, 2016). The existence of such trade-o↵s makes it even clearer that it is less useful

to call a model ‘realistic’ or ‘unrealistic’ per se. Rather, one must be specific in what sense the

unrealisticness of a model is assessed.

Thus, while the practice of using various validation techniques aligns well with the account

of model realisticness outlined so far, there remain two practical challenges, which are both of

considerable philosophical interest: First, a lot of data that is used for model validation is not

a collection of pre-existing facts. Rather, theory – and, thus, models – is an important part of

any data-gathering and representation process, either because data is created (or processed) by

models, or its collection and creation is strongly theory-dependent.10 This begs the (admittedly,

age-old) question of how and whether a model can be related directly to its target in reality at

all.

Second, models not only represent their targets, they also impact upon them, or are even

used to transform the world along their own lines (Boldyrev and Ushakov, 2016). Particularly in

economics, this has been come under the label of ‘model performativity’, although it is doubtful

that this is the adequate label (see Mäki 2013 for a critical discussion). This becomes particularly

relevant if a model impacts causally upon its target in such a way that its own predictions are

validated, which impedes a critical validation. A prominent example is the Potential Output

model of the European Commission, which is used to determine the fiscal leeway of Eurozone

countries and makes use of a Cobb-Douglas production function and so called Kalman filtering.

In a nutshell, the model allows greater fiscal liberty to countries that are on an economic upswing

(thereby allowing these countries to boost their economy further and to validate the model’s

prediction of a positive output gap) and does the contrary to countries that are on an economic

10One example discussed by Shaikh (2016) refers to unemployment data: Another refers to the measurement
of capital, which has been re-defined various ways in previous decades, which makes it hard to validate a model
against data on the capital stock or the rate of profit.
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downturn (for an in-dept analysis of this case see Heimberger and Kapeller, 2017). Does it makes

sense, in such case, to ascribe high realisticness in terms of output validation to the potential-

output model? If the model was not used in practice, it precautions would have been much

worse, so our account of model realisticness obviously has di�culties when applied to models

that impact notably on their targets.

Despite these di�culties, the ways of applied scientists to compare models to their targets

corroborates (or at least is consistent) with the central ingredients of our account of the realis-

ticness of models.

7 Summary and discussion

This contribution was concerned with accounts of model realisticness. While discussions about

the realisticness of models abound in both philosophy and applied scientific practice, coherent

accounts that provide for procedures to classify models as ‘realistic’ or ‘unrealistic’ have been

sparse. The present contribution tried to address this gap in the literature in two ways:

First, it has been argued that any account of model realisticness must be based both on

an account of representation and an account of model-world comparisons. Particularly the

latter also requires one to make certain ontological commitments with regard to the realism of

mathematical objects and model systems. All these areas are philosophically highly contested,

which is why it is not surprising that no single account of model realisticness has emerged, and

unless philosophers find a consensus on the subject areas just mentioned – which is unlikely to

happen – a general and all-encompassing account of model realisticness remains a chimera.

Second, it has been illustrated how one can reach a coherent account of model realisticness

once one is willing to make philosophical commitments in these areas. This has been illustrated

by an account that is built on the assumptions that (1) mathematical object do exist independent

of the mind (realism with regard to mathematical objects) and (2) models do not exist indepen-

dently of the mind (anti-realism with regard to models), and that relies on the DEKI account

of representation. The account can be expresed via simple formulation “The realisticness of a

model M is determined by the quality of the relevant aspects of the representation relationship

between M and its target in the real world T” and comes with a number of advantages and

interesting philosophical and practical implications, which deserve further attention:

One advantage refers to the flexibility of the account: by relying on the DEKI account

of representation the present account also does not have problems with models of non-actual

systems, such as models of building to be built in the future. While one might that ‘realisticness’

17



is the best way to assess such models, one could still evaluate model realisticness by their

mechanistic adequacy, i.e. based on a process validation. One might then classify such models

as ‘unrealistic’ when they are at odds with the laws of physics, for example. Nevertheless,

‘plausibility’ seems to be a more intuitive (and broader) way assess such models. But the

account presented here – aside other more obvious choices such as Sugden (2000)’s ‘credibility’

with regard to economic models or the discussions in Mäki (2009) – could well serve as a vantage

point for an account of model plausibility.

Another advantage of the present account is that it aligns well with the actual practice of

many applied scientists. The way realisticness is assessed theoretically can be directly opera-

tionalized via the use of established validation techniques, which are commonly used in applied

science to determine the ‘realisticness’ of a model. Such alignment with scientific practice also

immediately suggest some further avenues for philosophical scrutiny: first, many validation

techniques directly refer to data that have themself being processed or even produced by other

models. Data on aggregate production or unemployment in economics are typical examples.

Thus, the validation of one model often relies on another model producing adequate data, which

presupposes validation of this latter model. The theoretical and practical implications of this

‘nested validation’ for accounts of model realisticness, but also model-world comparison in gen-

eral, are certainly worth exploring in future work.

Another interesting avenue is to relate the present idea of ‘realisticness’ to other alternatives

in the literature (for a small survey see Mäki, 2017). Of direct relevance for the proposal at hand

are ‘substitute models’ as defined by Mäki (2017): models that denote targets in reality, but

are not explored with respect to their relation to these targets (i.e. they are not validated), but

only with respect to their internal dynamics. Such models are widely used in scientific practice,

in particular in economics, where they provide ‘causal mechanism schemes’ a la Ylikoski and

Aydinonat (2014) to be used as components for more complex models. As such, they are clearly

unrealistic since once they were compared to their targets, the fit would – in accordance with their

construal – be poor. The way the resulting ‘causal mechanism schemes’ are aggregated to more

complicated models that are then more ‘realistic’ in the sense advocated in the present paper

would then be an interesting avenue for future research, as would be a comparison with ‘minimal

models’ that lack any target right from the start (Grüne-Yano↵, 2009). Finally, many scientists

do not relate a single model to reality, but use multiple models at once (Aydinonat, 2018). It

is an interesting question how their joint application relate to the validation of the individual

models, or whether such sets of models can even have something like a ‘joint realisticness’.
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In all, the present contribution has introduced one coherent account of model realisticness,

which is built upon an antirealist fictional view of models, realism about mathematical objects,

and the DEKI account of representation. It is certainly desirable to develop alternative accounts,

not resting on these particular assumptions. But it was also shown that in any case such

rather strong commitments have to be made whenever an account of model realisticness is to

be developed.
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Gräbner C (2018) How to Relate Models to Reality? An Epistemological Framework for the

Validation and Verification of Computational Models. Journal of Artificial Societies and Sim-

ulation 21(3)
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Klügl F (2008) A validation methodology for agent-based simulations. In: the 2008 ACM sym-

posium, ACM Press, New York, New York, USA, p 39

Knuuttila T (2011) Modelling and representing: An artefactual approach to model-based rep-

resentation. Studies in History and Philosophy of Science Part A 42(2):262–271

Knuuttila T, Koskinen R (2017) Synthetic Biology’s Alternative Realities – Turning Fictional

Systems into Concrete Ones. Mimeo

Levins R (1966) The Strategy of Model Building in Population Biology. American Scientist

54(4):421–431
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